JP4003909B2 - Electromagnetic shield type fixed structure on free access floor - Google Patents

Electromagnetic shield type fixed structure on free access floor Download PDF

Info

Publication number
JP4003909B2
JP4003909B2 JP19274099A JP19274099A JP4003909B2 JP 4003909 B2 JP4003909 B2 JP 4003909B2 JP 19274099 A JP19274099 A JP 19274099A JP 19274099 A JP19274099 A JP 19274099A JP 4003909 B2 JP4003909 B2 JP 4003909B2
Authority
JP
Japan
Prior art keywords
floor
electromagnetic shielding
waterproof layer
free access
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19274099A
Other languages
Japanese (ja)
Other versions
JP2001020432A (en
Inventor
淳一 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP19274099A priority Critical patent/JP4003909B2/en
Publication of JP2001020432A publication Critical patent/JP2001020432A/en
Application granted granted Critical
Publication of JP4003909B2 publication Critical patent/JP4003909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/47Oils, fats or waxes natural resins
    • C04B41/478Bitumen, asphalt, e.g. paraffin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/488Other macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C04B41/4884Polyurethanes; Polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00422Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/27Water resistance, i.e. waterproof or water-repellent materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Building Environments (AREA)
  • Floor Finish (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【0001】
【発明の属する技術の分野】
本発明はフリーアクセスフロアの電磁シールド型固定構造に関し、とくにフリーアクセスフロアの確実な固定に適する電磁シールド型固定構造に関する。
【0002】
【従来の技術】
オフィスビルやテナントビル等において、ビル内に設置する電子機器の電磁障害防止等を目的として、フロア単位又は部屋単位で設ける電磁シールドに対する需要が高まっている。電磁シールドフロアやルームは、その床面、天井面を含む全壁面を所要シールド効果が得られる亜鉛引鉄板や導電性不織布等の導電性部材又はこれらの複合部材等(以下、電磁シールド材という。)で隙間なく囲むことにより形成される。
【0003】
他方、例えばオフィスビル等の床スラブがプレキャストコンクリート版(以下、PC版という。)やハーフPC版等の接合により形成されている場合は、上階での水漏れ等による階下への漏水防止を目的として、床スラブに防水施工がなされる。一般的な防水施工は、アスファルト等による防水層をスラブ上に設けるものである。
【0004】
従来、防水層を設けた床スラブに対する電磁シールドは、図4に示すように、防水層6の表面に電磁シールド材9を隙間なく敷き詰めることにより施工さている。同図を参照して防水層6上へ電磁シールド材9の層を設ける施工手順を簡単に説明すると、先ずPC版1の接合により形成したスラブ2の表面にアスファルト等による防水層6を施工する。アスファルト防水層6は、強い粘着力でスラブ2に強固に付着する。防水層6が固化したのち、防水層6上に電磁シールド材9を隙間なく敷き詰めて施工する。電磁シールド材9は、防水層6を破らないように、接着剤8で防水層6に固定する。
【0005】
【発明が解決しようとする課題】
オフィスビル等では、図5に示すように、コンピュータ及び通信機器の配線や接続機器等の収納に適する配線用空間10を床下に設けるため、床スラブ2から離して浮かせたフリーアクセスフロア(以下、OAフロアということがある。)11の施工が増えている。OAフロア11の施工方法の一例は、床スラブ2上に下端を固定した支柱12の上端により、床スラブ2から離れたOAフロア11を支持するものである。上述した図4の電磁シールドフロア等では、床スラブ2の表面に施工した電磁シールド材9の層の上にOAフロア支柱12の下端を固定する。OAフロア支柱12は、例えば所定の水平力Mが加えられても動かない等の条件に応じた強度で床スラブ2又は電磁シールド材9の層へ固定する必要がある。
【0006】
しかし、床スラブ2上の防水層6の表面に電磁シールド材9の層を設けた場合は、床スラブ2と防水層6との間の結合は強固であるものの、床スラブ2とOAフロア支柱12との固定強度の確保が難しくなる問題点がある。図5に示すように、比較的薄い(一般的に1mm以下)電磁シールド材9は、防水層6の保護の観点から釘などのようなアンカー材による床面への固定はできず、接着剤8等により防水層6へ固定される。この時、防水層6表面の不陸、即ち凸凹や継ぎ目部での段差等のため、電磁シールド材9と防水層6との全面接着はできず、強固な接着は期待できない。この電磁シールド材9上にOAフロア支柱12が接着剤8等で固定され、この部分もアンカーによる固定はできないので、床スラブ2とOAフロア支柱12との固定強度の確保が困難となる。これは、本来防水層6に直接OAフロア支柱12が接着されるべきであるのに、防水層6とOAフロア支柱12との間に薄い電磁シールド材9が挟み込まれるためである。特に、電磁シールド材9がシールド不織布の場合は、ほとんど固定強度を期待できない。
【0007】
そこで本発明の目的は、OAフロアの固定を確保するため、防水能と電磁シールド能とを併有する電磁シールド性防水層を用いたフリーアクセスフロアの電磁シールド型固定構造を提供することにある。
【0008】
【課題を解決するための手段】
図1の実施例を参照するに、本発明によるフリーアクセスフロアの電磁シールド型固定構造は、コンクリート床スラブ2から浮かせたフリーアクセスフロア11の固定構造において、溶融したアスファルト系又はウレタン系の防水素材に総量の1/3重量比以下であって電磁シールド能の発現に足る量の粒径5〜30μmの導電性粉末を均質に混入してスラブ2の頂面へ固着させた電磁シールド性防水層7、及び防水層7上に所定強度で接着させた下端とフリーアクセスフロア11を支持する上端とを有するフロア支柱12を備えてなるものである。
【0009】
本発明で用いる防水素材は、水を透過させない防水能及びコンクリート床スラブに固着する固着能を有する必要がある。前記防水能は導電性粉末利用の電磁シールド型防水床の防水機能のために不可欠であり、前記固着能はOAフロアの固定を確保するために不可欠である。アスファルト系又はウレタン系の防水素材は、この防水能と固着能とを併有する。
【0010】
防水素材に導電性粉末を混入するのは、電磁シールド能を付与するためである。防水素材への導電性粉末の混入が電磁シールド能を発現させる機構の詳細は必ずしも明らかではないが、防水素材がその混入により有限のインピーダンスを保有するようになるのも一因と推測される。導電性粉末の粒径を30μm以下とするのは、粒径が30μmを超える場合は十分な電磁シールド能及び混合均一性が得られないためである。導電性粉末の混入量を総量の1/3重量比以下とするのは、混入量が総量の1/3重量比以上の場合には、施工性の悪化、コスト増、防水性能の低下などの問題が生じ、しかも電磁シールド性能は頭打ちとなってそれほど向上しないからである。粒径が小さ過ぎるか又は導電性粉末の混入量が多過ぎると、防水素材の防水能及びコンクリート固着能が損なわれる。
【0011】
導電性粉末の好ましい例は、ニッケル、銅、アルミニウム又はカーボンの粉末であるが、本発明はこれらの例に限定されるものではない。
【0012】
【発明の実施の形態】
本発明において使用する防水素材の種類、導電性粉末の種類と粒径、及びそれらの混合比等は実験によって定めることができる。
【0013】
[実験例]
導電性粉末としての粒径5〜30μmのニッケル粉末を、溶融したアスファルト系防水素材に総量に対する重量比で1/4(ニッケル量/総量)の割合で混入し、攪拌により材料を均質に混ぜ合わせた。この混入量は、要求される周波数帯における所要電磁シールド性能に応じて適宜選択することができる。
【0014】
上記のニッケル粉末が混入されたアスファルト系防水素材によって、厚さ3mmの電磁シールド性防水層試験片7t(図3参照)を調製した。
【0015】
また図3に示すように、2枚の金属板15からなる二重構造周囲壁を用いて内外間の電波減衰量が100dB以上である電波暗室16を作り、その暗室16の試験片取付窓17に固定装置14により前記電磁シールド性防水層試験片7tを取り付けて、電磁シールド性防水層7による電磁シールド効果の実験を行なった。試験電波送信器18から50〜3050MHz帯の電波を前記電磁シールド性防水層の試験片7tへ向けて送出し、その試験片7tを介して電波暗室16内へ伝送し、電波暗室16内での受信レベルを試験電波受信器19で測定した。取付窓17から電磁シールド性防水層試験片7tを取り外した状態での試験電波の受信レベル測定値と、その試験片7tを取り付けた状態での試験電波の受信レベル測定値との比較から、該試験片7tの電波減衰量を算出することにより電磁シールド効果を測定した。
【0016】
この実験例において、50〜3050MHzの周波数帯で、40dB以上の電波減衰量の得られることが確認できた。また、本発明者は、試験片7tの固着能に問題がないことを確認した。即ち、コンクリート平板上に前記試験片7tと同じ電磁シールド性防水層を塗布し、OAフロアの支柱を接着し、押し倒し試験を実施した。この結果、電磁シールド性防水層が、導電性粒子を混入していない一般防水層と同等の十分な接着強度、即ち固着能を有することを確認した。
【0017】
従って、前記実験例に示すコンクリート床スラブ2の頂面に、例えばアスファルト系の防水素材に総量の1/3重量比の割合で粒径5〜30μmのニッケル粉末等の導電性粉末が混入されたものの使用により、防水能と電磁シールド能とを併有する電磁シールド性防水層7を固着させることができる。この電磁シールド性防水層7は床スラブ2に固着するので、OAフロア11の支柱12をこの電磁シールド性防水層7に固定すれば、OAフロア11を確実に固定することができる。
【0018】
こうして本発明の目的である「OAフロアの固定を確保するため、防水能と電磁シールド能とを併有する電磁シールド性防水層を用いたフリーアクセスフロアの電磁シールド型固定構造」の提供が達成できる。
【0019】
【実施例】
図2を参照するに、床スラブ2を囲む周囲壁3内の壁面シールド層9wの下端部と床スラブ2上の電磁シールド性防水層7とを、周縁接続部材5により電気的に接続すれば、床スラブ2に対し、前記周囲壁3の電磁シールドに連結した電磁シールドを付与することができる。床スラブ2の上方空間が、図2のような周囲壁3及びこれに連結された電磁シールド付の天井(図示せず)によって囲まれている場合には、その空間を電磁シールドすることができる。図中、符号13は壁化粧材を示す。
【0020】
本発明はまた、電磁シールド性防水層7を形成するため防水素材に混入すべき導電性粉末の種類、粒径、及び混入量を、シールドすべき電波の周波数帯及び所要減衰量によって選択することができる。予め各種防水素材と組合せて使用される前記導電性粉末の種類、粒径、及び混入量について、電磁シールドの周波数−電波減衰量特性を測定し記録しておけば、一定限度内において、所要の周波数帯及び所要の減衰量に応じた最適の電磁シールドを、前記導電性粉末の種類、粒径、及び混入量の選択によって形成することができる。
【0021】
【発明の効果】
以上説明したように、本発明によるフリーアクセスフロアの電磁シールド型固定構造は、コンクリート床スラブに対する固着能と電磁シールド能とを併有する電磁シールド性防水層を用いるので、次の顕著な効果を奏する。
【0022】
(イ)単機能の電磁シールド層を使わないので、そのような電磁シールド層の
設置工程を省略し、低コスト化と短工期化を図ることができる。
(ロ)OAフロアの固定を、確実で安定したものとすることができる。
(ハ)アスファルトを防水材とする場合には、アスファルト自体が電磁シールド能を有するので、施工各段階での損傷や性能劣化要因が少なく、竣工時に確実な電磁シールド性能を確保することができる。また、竣工後にも電磁シールド層の表面状態を目視で確認することができる。
(ニ)床仕上げ面を電磁シールド層とすることができるので、その床を囲む周囲壁面の電磁シールド層との接続が容易である。
(ホ)屋上防水床その他の防水床への適用が可能である。
(ヘ)シールドすべき電波の周波数帯及び所要の電波減衰量に対して、最適の電磁シールド床を、適当な防水素材と導電性粉末との選択によって形成することができる。
【図面の簡単な説明】
【図1】は、本発明の一実施例の説明図である。
【図2】は、導電性粉末利用の電磁シールド型防水床と周囲壁体との接続方法の説明図である。
【図3】は、電磁シールド効果の計測方法の説明図である。
【図4】は、従来の電磁シールド型の防水床の説明図である。
【図5】は、従来のフリーアクセスフロアの設置方法の説明図である。
【符号の説明】
1…プレキャストコンクリート版
2…床スラブ 3…周囲壁体
4…電磁シールド型防水床 5…周縁接続部材
6…防水層 7…電磁シールド性防水層
8…接着剤 9…電磁シールド材
10…配線用空間 11…OAフロア
12…支柱 13…壁化粧材
14…固定装置 15…金属板
16…電波暗室 17…取付窓
18…試験電波送信器 19…試験電波受信器
[0001]
[Field of the Invention]
The present invention relates to an electromagnetic shield fixing structure of a raised floor, to an electromagnetic shield fixing structure particularly suitable for a reliable fixation of the raised floor.
[0002]
[Prior art]
In office buildings, tenant buildings, etc., there is an increasing demand for electromagnetic shields provided in units of floors or rooms for the purpose of preventing electromagnetic interference of electronic devices installed in the buildings. Electromagnetic shield floors and rooms are electrically conductive members such as galvanized iron plates and conductive non-woven fabrics, or their composite members (hereinafter referred to as electromagnetic shield materials) that can obtain the required shielding effect on the entire wall surface including the floor and ceiling surfaces. ) With no gaps.
[0003]
On the other hand, when floor slabs such as office buildings are formed by joining precast concrete slabs (hereinafter referred to as PC slabs), half PC slabs, etc., it is possible to prevent leaking downstairs due to water leaks on the upper floors. As a purpose, waterproof construction is performed on the floor slab. In general waterproof construction, a waterproof layer made of asphalt or the like is provided on a slab.
[0004]
Conventionally, an electromagnetic shield for a floor slab provided with a waterproof layer is constructed by laying an electromagnetic shield material 9 on the surface of the waterproof layer 6 without a gap as shown in FIG. The construction procedure for providing the layer of the electromagnetic shielding material 9 on the waterproof layer 6 will be briefly described with reference to the same drawing. First, the waterproof layer 6 made of asphalt or the like is applied to the surface of the slab 2 formed by joining the PC plate 1. . The asphalt waterproof layer 6 adheres firmly to the slab 2 with a strong adhesive force. After the waterproof layer 6 is solidified, the electromagnetic shielding material 9 is spread over the waterproof layer 6 without any gaps. The electromagnetic shielding material 9 is fixed to the waterproof layer 6 with an adhesive 8 so as not to break the waterproof layer 6.
[0005]
[Problems to be solved by the invention]
In an office building or the like, as shown in FIG. 5, a free access floor (hereinafter, referred to as “floating space”) that is floated away from the floor slab 2 is provided below the floor slab 2 in order to provide a wiring space 10 suitable for storing computer and communication equipment wiring and connection equipment. Sometimes called OA floor.) 11 construction is increasing. An example of the construction method of the OA floor 11 is to support the OA floor 11 separated from the floor slab 2 by the upper end of the column 12 having the lower end fixed on the floor slab 2. In the electromagnetic shield floor or the like of FIG. 4 described above, the lower end of the OA floor column 12 is fixed on the layer of the electromagnetic shield material 9 constructed on the surface of the floor slab 2. The OA floor support 12 needs to be fixed to the floor slab 2 or the layer of the electromagnetic shielding material 9 with a strength according to a condition such as not moving even when a predetermined horizontal force M is applied.
[0006]
However, when the layer of the electromagnetic shielding material 9 is provided on the surface of the waterproof layer 6 on the floor slab 2, the connection between the floor slab 2 and the waterproof layer 6 is strong, but the floor slab 2 and the OA floor strut There is a problem that it is difficult to secure the fixed strength with 12. As shown in FIG. 5, the relatively thin electromagnetic shield material 9 (generally 1 mm or less) cannot be fixed to the floor surface with an anchor material such as a nail from the viewpoint of protection of the waterproof layer 6, and is an adhesive. It is fixed to the waterproof layer 6 by 8 or the like. At this time, due to unevenness of the surface of the waterproof layer 6, that is, unevenness or a step at the joint portion, the entire surface of the electromagnetic shield material 9 and the waterproof layer 6 cannot be bonded, and strong bonding cannot be expected. Since the OA floor column 12 is fixed on the electromagnetic shield material 9 with an adhesive 8 or the like, and this portion cannot be fixed with an anchor, it is difficult to secure the fixing strength between the floor slab 2 and the OA floor column 12. This is because the thin electromagnetic shielding material 9 is sandwiched between the waterproof layer 6 and the OA floor column 12 although the OA floor column 12 should be directly bonded to the waterproof layer 6. In particular, when the electromagnetic shielding material 9 is a shield nonwoven fabric, almost no fixed strength can be expected.
[0007]
It is an object of the present invention, in order to ensure the fixing of OA floor, it is to provide an electromagnetic shield fixing structure of the free access floor using the electromagnetic shielding waterproof layer having both waterproof ability and electromagnetic shielding ability.
[0008]
[Means for Solving the Problems]
Referring to the embodiment of FIG. 1, the electromagnetic shield type fixing structure of the free access floor according to the present invention is a molten asphalt or urethane waterproof material in the fixing structure of the free access floor 11 floating from the concrete floor slab 2. An electromagnetic shielding waterproof layer in which a conductive powder having a particle size of 5 to 30 μm which is less than 1/3 weight ratio of the total amount and sufficient for the expression of electromagnetic shielding ability is homogeneously mixed and fixed to the top surface of the slab 2 7 and a floor column 12 having a lower end bonded to the waterproof layer 7 with a predetermined strength and an upper end supporting the free access floor 11 .
[0009]
The waterproof material used in the present invention needs to have a waterproof property that does not allow permeation of water and an adhering capability that adheres to a concrete floor slab. The waterproof capability is indispensable for the waterproof function of the electromagnetic shield type waterproof floor using conductive powder, and the fixing capability is indispensable for securing the OA floor. An asphalt-based or urethane-based waterproof material has both this waterproof capability and fixing capability.
[0010]
The reason why the conductive powder is mixed into the waterproof material is to provide electromagnetic shielding ability. Although the details of the mechanism by which mixing of the conductive powder into the waterproof material develops the electromagnetic shielding ability is not necessarily clear, it is assumed that the waterproof material has a finite impedance due to the mixing. The reason why the particle size of the conductive powder is 30 μm or less is that when the particle size exceeds 30 μm, sufficient electromagnetic shielding ability and mixing uniformity cannot be obtained. The amount of conductive powder mixed is set to 1/3 weight ratio or less of the total amount. When the mixed amount is 1/3 weight ratio or more of the total amount, the workability deteriorates, the cost increases, and the waterproof performance decreases. This is because a problem occurs and the electromagnetic shielding performance reaches its peak and does not improve so much. If the particle size is too small or the conductive powder is mixed in too much, the waterproofing ability and the concrete fixing ability of the waterproof material are impaired.
[0011]
Preferred examples of the conductive powder are nickel, copper, aluminum or carbon powder, but the present invention is not limited to these examples.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The type of waterproof material used in the present invention, the type and particle size of conductive powder, and the mixing ratio thereof can be determined by experiment.
[0013]
[Experimental example]
Nickel powder with a particle size of 5 to 30 μm as conductive powder is mixed in the molten asphalt waterproof material at a ratio of 1/4 (nickel amount / total amount) to the total amount, and the materials are mixed homogeneously by stirring. It was. This mixing amount can be appropriately selected according to the required electromagnetic shielding performance in the required frequency band.
[0014]
A 3 mm thick electromagnetic shielding waterproof layer test piece 7t (see FIG. 3) was prepared from the above asphalt waterproof material mixed with nickel powder.
[0015]
Further, as shown in FIG. 3, an anechoic chamber 16 having a radio attenuation of 100 dB or more between the inside and outside is formed by using a double structure surrounding wall made of two metal plates 15, and a test piece mounting window 17 of the dark chamber 16 is formed. The electromagnetic shielding waterproof layer test piece 7t was attached to the fixing device 14 to test the electromagnetic shielding effect by the electromagnetic shielding waterproof layer 7. The test radio wave transmitter 18 sends a radio wave of 50 to 3050 MHz band toward the test piece 7 t of the electromagnetic shielding waterproof layer, and transmits it to the anechoic chamber 16 through the test piece 7 t. The reception level was measured with the test radio wave receiver 19. From the comparison between the reception level measurement value of the test radio wave with the electromagnetic shielding waterproof layer test piece 7t removed from the mounting window 17 and the reception level measurement value of the test radio wave with the test piece 7t attached, the The electromagnetic shielding effect was measured by calculating the radio wave attenuation of the test piece 7t.
[0016]
In this experimental example, it was confirmed that a radio attenuation of 40 dB or more was obtained in the frequency band of 50 to 3050 MHz. Further, the present inventor has confirmed that there is no problem in the fixing ability of the test piece 7t. That is, the same electromagnetic shielding waterproof layer as that of the test piece 7t was applied on a concrete flat plate, and the struts on the OA floor were bonded and pushed down to carry out the test. As a result, it was confirmed that the electromagnetic shielding waterproof layer has sufficient adhesive strength equivalent to that of a general waterproof layer in which conductive particles are not mixed, that is, fixing ability.
[0017]
Therefore, conductive powder such as nickel powder having a particle diameter of 5 to 30 μm is mixed into the top surface of the concrete floor slab 2 shown in the experimental example, for example, in an asphalt waterproof material at a ratio of 1/3 weight ratio of the total amount. By using one, the electromagnetic shielding waterproof layer 7 having both waterproof ability and electromagnetic shielding ability can be fixed. Since the electromagnetic shielding waterproof layer 7 is fixed to the floor slab 2, the OA floor 11 can be securely fixed by fixing the support 12 of the OA floor 11 to the electromagnetic shielding waterproof layer 7.
[0018]
Thus, the provision of “an electromagnetic shield type fixing structure of a free access floor using an electromagnetic shielding waterproof layer having both waterproof ability and electromagnetic shielding ability in order to ensure the fixation of the OA floor”, which is an object of the present invention, can be achieved. .
[0019]
【Example】
Referring to FIG. 2, if the lower end portion of the wall shield layer 9 w in the surrounding wall 3 surrounding the floor slab 2 and the electromagnetic shielding waterproof layer 7 on the floor slab 2 are electrically connected by the peripheral connection member 5. The floor slab 2 can be provided with an electromagnetic shield connected to the electromagnetic shield of the surrounding wall 3. When the upper space of the floor slab 2 is surrounded by the surrounding wall 3 as shown in FIG. 2 and a ceiling (not shown) with an electromagnetic shield connected thereto, the space can be electromagnetically shielded. . In the figure, reference numeral 13 denotes a wall decorative material.
[0020]
The present invention also selects the type, particle size, and amount of conductive powder to be mixed in the waterproof material to form the electromagnetic shielding waterproof layer 7 according to the frequency band of the radio wave to be shielded and the required attenuation. Can do. If the frequency-radiation attenuation characteristics of the electromagnetic shield are measured and recorded in advance for the type, particle size, and mixing amount of the conductive powder used in combination with various waterproof materials, within a certain limit, the required An optimum electromagnetic shield corresponding to the frequency band and the required attenuation can be formed by selecting the type, particle size, and mixing amount of the conductive powder.
[0021]
【The invention's effect】
As described above, the electromagnetic shield type fixing structure of the free access floor according to the present invention uses the electromagnetic shielding waterproof layer having both the adhering ability to the concrete floor slab and the electromagnetic shielding ability, and has the following remarkable effects. .
[0022]
(A) Since a single-function electromagnetic shield layer is not used, the installation process of such an electromagnetic shield layer can be omitted, and the cost and the construction period can be reduced.
(B) The OA floor can be fixed securely and stably.
(C) When asphalt is used as a waterproofing material, the asphalt itself has electromagnetic shielding ability, so there are few damages and performance deterioration factors at each stage of construction, and reliable electromagnetic shielding performance can be ensured at the time of completion. In addition, the surface state of the electromagnetic shield layer can be visually confirmed even after completion.
(D) Since the floor finish surface can be an electromagnetic shield layer, connection to the electromagnetic shield layer on the surrounding wall surface surrounding the floor is easy.
(E) Applicable to roof waterproof floors and other waterproof floors.
(F) An optimum electromagnetic shield floor can be formed by selecting an appropriate waterproof material and conductive powder for the frequency band of the radio wave to be shielded and the required radio wave attenuation.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a method of connecting an electromagnetic shield type waterproof floor using conductive powder and a surrounding wall body.
FIG. 3 is an explanatory diagram of a method for measuring an electromagnetic shielding effect.
FIG. 4 is an explanatory diagram of a conventional electromagnetic shield type waterproof floor.
FIG. 5 is an explanatory diagram of a conventional method for installing a free access floor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Precast concrete plate 2 ... Floor slab 3 ... Perimeter wall body 4 ... Electromagnetic shield type waterproof floor 5 ... Peripheral connection member 6 ... Waterproof layer 7 ... Electromagnetic shield waterproof layer 8 ... Adhesive 9 ... Electromagnetic shield material
10 ... Wiring space 11 ... OA floor
12 ... post 13 ... wall decoration
14 ... Fixing device 15 ... Metal plate
16 ... Anechoic chamber 17 ... Mounting window
18 ... Test radio transmitter 19 ... Test radio receiver

Claims (4)

コンクリート床スラブから浮かせたフリーアクセスフロアの固定構造において、溶融したアスファルト系又はウレタン系の防水素材に総量の1/3重量比以下であって電磁シールド能の発現に足る量の粒径5〜30μmの導電性粉末を均質に混入して前記スラブの頂面へ固着させた電磁シールド性防水層、及び前記防水層上に所定強度で接着させた下端とフリーアクセスフロアを支持する上端とを有するフロア支柱を備えてなるフリーアクセスフロアの電磁シールド型固定構造In a fixed structure of a free access floor floating from a concrete floor slab, a particle size of 5 to 30 μm that is less than 1/3 weight ratio of the total amount of melted asphalt or urethane waterproof material and sufficient for the expression of electromagnetic shielding ability An electromagnetic shielding waterproof layer in which the conductive powder is uniformly mixed and fixed to the top surface of the slab , and a floor having a lower end bonded to the waterproof layer with a predetermined strength and an upper end supporting the free access floor Electromagnetic shield type fixed structure of free access floor with support . 請求項1の固定構造において、前記導電性粉末をニッケル、銅、アルミニウム又はカーボンの粉末としてなるフリーアクセスフロアの電磁シールド型固定構造In fixing structure according to claim 1, wherein the conductive powder of nickel, copper, aluminum or raised floor of the electromagnetic shield fixing structure comprising a carbon powder. 請求項1又は2の固定構造において、前記電磁シールド性防水層を厚さ1〜4mmとしてなるフリーアクセスフロアの電磁シールド型固定構造The fixing structure according to claim 1 or 2, wherein the electromagnetic shielding waterproof layer has a thickness of 1 to 4 mm and a free access floor electromagnetic shielding type fixing structure . 請求項1から3の何れかの固定構造において、前記床スラブを囲む周囲壁の壁面電磁シールド層の下端部と前記床スラブ上の電磁シールド性防水層とを電気的に接続する周縁接続部材を設けてなるフリーアクセスフロアの電磁シールド型固定構造The peripheral connection member which electrically connects the lower end part of the wall surface electromagnetic shielding layer of the surrounding wall surrounding the said floor slab, and the electromagnetic shielding waterproof layer on the said floor slab in the fixed structure in any one of Claim 1 to 3. An electromagnetic shield type fixing structure for the free access floor .
JP19274099A 1999-07-07 1999-07-07 Electromagnetic shield type fixed structure on free access floor Expired - Fee Related JP4003909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19274099A JP4003909B2 (en) 1999-07-07 1999-07-07 Electromagnetic shield type fixed structure on free access floor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19274099A JP4003909B2 (en) 1999-07-07 1999-07-07 Electromagnetic shield type fixed structure on free access floor

Publications (2)

Publication Number Publication Date
JP2001020432A JP2001020432A (en) 2001-01-23
JP4003909B2 true JP4003909B2 (en) 2007-11-07

Family

ID=16296281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19274099A Expired - Fee Related JP4003909B2 (en) 1999-07-07 1999-07-07 Electromagnetic shield type fixed structure on free access floor

Country Status (1)

Country Link
JP (1) JP4003909B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6255041B2 (en) * 2016-01-14 2017-12-27 日建リース工業株式会社 Unit house

Also Published As

Publication number Publication date
JP2001020432A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP4003909B2 (en) Electromagnetic shield type fixed structure on free access floor
WO2005106150A1 (en) Building structure for preventing infiltration of noise
CN207794396U (en) A kind of stone curtain wall with multiple-protection-function
JP3282724B2 (en) Electromagnetic shield type waterproof support structure on the free access floor
JP3493976B2 (en) Electromagnetic shielding method using PC version
JP2910552B2 (en) Coating method
JP3707764B2 (en) Deck plate joining method with electromagnetic shielding performance
JP3871929B2 (en) Electromagnetic shield structure construction method and electromagnetic shield structure base
JPH0541595Y2 (en)
JP3000215B1 (en) Electromagnetic wave shielding precast concrete plate and building outer wall structure using the precast concrete plate
JP4162173B2 (en) Electromagnetic shield coating method
JPH0766585A (en) Execution method of electromagnetic shield room and its structure
JP4162174B2 (en) Electromagnetic shield coating method
JP3886776B2 (en) Electromagnetic shield method
JP2603670B2 (en) Electromagnetic shield basement
JP3663572B2 (en) Electromagnetic shield acoustic facility
JP4420263B2 (en) Electromagnetic shielding method
JP3047031B2 (en) Electromagnetic wave shield structure at floor / wall connection
JPS63128796A (en) Electromagnetic shielding condtruction of concrete wall
JP4063983B2 (en) Anechoic chamber ceiling equipment
JPH11112190A (en) Electromagnetic shield structuring method
JP2949152B2 (en) Electromagnetic wave shield room construction method
JP2001336247A (en) Electromagnetic wave shield ceiling and renewal construction method
EP0977474A2 (en) Screening of low frequency electromagnetic fields
JPH0534159Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees