JP4001665B2 - Fermentation product culture management method - Google Patents

Fermentation product culture management method Download PDF

Info

Publication number
JP4001665B2
JP4001665B2 JP27653497A JP27653497A JP4001665B2 JP 4001665 B2 JP4001665 B2 JP 4001665B2 JP 27653497 A JP27653497 A JP 27653497A JP 27653497 A JP27653497 A JP 27653497A JP 4001665 B2 JP4001665 B2 JP 4001665B2
Authority
JP
Japan
Prior art keywords
culture
absorbance
rate
change
lactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27653497A
Other languages
Japanese (ja)
Other versions
JPH1189564A (en
Inventor
和仁 早川
勝寿 原田
昭彦 宮城
宏 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yakult Honsha Co Ltd
Original Assignee
Yakult Honsha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yakult Honsha Co Ltd filed Critical Yakult Honsha Co Ltd
Priority to JP27653497A priority Critical patent/JP4001665B2/en
Publication of JPH1189564A publication Critical patent/JPH1189564A/en
Application granted granted Critical
Publication of JP4001665B2 publication Critical patent/JP4001665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dairy Products (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発酵乳等の乳酸菌を利用した各種発酵製品を製造するに際して、その培養工程における乳酸菌の培養状態を管理する方法に関するものであり、さらに詳しくは、本発明は、FT−IR法を利用した、乳酸菌の培養工程の管理方法、特に培養物の凝固速度を簡便に測定し、培養終点を正確に予測することを可能とする新しい乳酸菌の培養管理方法に関する。
【0002】
【従来の技術】
一般に、発酵乳などの乳酸菌を利用した各種製品の製造にあたり、その培養工程の管理において、培養の終了点(培養終点)の決定は重要である。
従来は、基質としての糖の濃度、発酵の進行に伴い生成してくる生成物としての乳酸の濃度、および発酵液の酸度やpHなどの数値の変化などを指標として、発酵の管理、即ち、発酵の進行状況や、発酵終了のタイミングを図ることが行われている。これらの数値を得るために、従来は、発酵工程において、適宜の段階で発酵液を一旦サンプリングし、次いで、それぞれの項目について、例えば、中和滴定法などを利用して、常法に従い、分析定量を行うことが通常であった。
しかし、このような方法によると、それぞれの指標値を測定するのに、滴定の誤差が大きいという問題があり、また、かなりの時間や人手を要するので、簡便かつ迅速な形で培養工程の管理を行うことができなかった。
一方、本出願人は先に特開平9−37770において、培養液中の乳酸の解離および非解離型の吸光度および糖の吸光度変化に着目し、FT−IRを用いてpH値などを測定する培養管理方法を提案している。
【0003】
【発明が解決しようとする課題】
上記の如く、上記従来方法に鑑みて、従来、発酵乳などの培養工程において、乳酸菌の培養状態を管理する指標としての、糖の濃度、乳酸の濃度、酸度、pH値を迅速・簡便かつ正確に測定する方法の開発、特にインライン的に測定する方法の開発、およびそれに基づく新しい乳酸菌の培養管理方法の開発が、望まれていた。
本発明者らは、そのような新しい乳酸菌の培養管理方法を開発することを目標として鋭意研究を進めた結果、FT−IR法(フーリエ変換赤外分光法)を用い、発酵液の赤外吸収スペクトルを測定し、培養物中の1635cm-1近傍のアミドIの吸光度および/または1540cm-1近傍のアミドIIの吸光度を経時的に測定し、当該吸光度の変化速度を指標として、培養物の凝固速度を測定し、培養終了点を決定することが可能であることを確認し、本発明を完成した。
また、FT−IR法の中でも全反射スペクトル(ATR−FT−IR法)を測定する方法である、ATR−FT−IR法によれば、インライン的に、各種指標の数値が測定可能であること、特に、培養終点を正確に予測できること、そして、それにより乳酸菌の培養管理の自動化を行うことができることを見出した。
【0004】
本発明は、発酵乳などの乳酸菌を利用した各種製品の製造にあたり、その培養工程を管理する方法を提供することを目的とするものである。
また、本発明は、乳酸菌の培養工程において、培養物の凝固速度を測定し、さらに培養終了点を決定することを可能とする新しい培養管理方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
上記課題を解決する本発明は、乳酸菌を利用した発酵製品の培養工程において、FT−IR法を用いて、培養物の1635cm アミドIの吸光度および/または1540cm アミドIIの吸光度を経時的に測定し、当該吸光度の変化速度を指標として発酵製品の培養を管理することを特徴とする上記発酵製品の培養管理方法である。
さらには、本発明は、上記発酵製品の培養工程において、FT−IR法を用いて、培養物の1635cm アミドIの吸光度および/または1540cm アミドIIの吸光度を経時的に測定し、当該吸光度の変化速度を指標として、培養物の凝固速度を測定し、培養終了点を予測/決定することを特徴とする上記発酵製品の培養管理方法である。
本発明では、上記FT−IR法として、ATR−FT−IR法を用いて、吸光度の測定を行うこと、を好ましい実施の態様としている。尚、上記FT−IR法による吸光度の測定では、培養物の1635cm −1 のアミドIの吸光度および/または1540cm −1 のアミドIIの吸光度が経時的に測定されるが、測定の精度的に実質的に1635cm −1 あるいは1540cm −1 に含まれる場合は、それらの近傍であっても本発明の範囲に含まれる。
【0006】
【発明の実施の形態】
次に、本発明についてさらに詳細に説明する。
本発明は、乳酸菌を利用した各種製品の培養工程において適用されるが、本発明は、乳酸菌を含む発酵・培養工程であれば、その製品の種類を問わず対象とされる。以下、発酵乳の培養を例として説明する。
乳酸菌を利用した各種製品の製造工程において、乳酸菌の生産する酸によって起こる乳の凝固現象は、1635cm-1および/または1540cm-1近傍の吸光度の変化として観察される。この2つの吸光バンドは、タンパク質分子のアミドの吸収として知られ、1635cm-1はC=O伸縮振動であるアミドI、1540cm-1はN―H変角振動のアミドIIと呼ばれている。
発酵乳の培養において、後記する実施例1の場合のデータを例として、培養時間とpHおよび1635cm-1および1540cm-1の吸光度の関係を図1に示した。吸光度は、培養0時間のスペクトルをリファレンスとして、変化量で示した。乳の凝固が始まるpH5.1近傍で吸光度が急変することを確認した。
この吸光度の変化速度を培養時間に対してプロットすると図2のようになる。この2つの吸光度の変化速度は、主にミルクタンパク質の凝固速度の従属関数である。換言すると、吸光度の変化速度は、発酵の速度を表しているといえる。したがって、吸光度の変化速度から培養終点を決めることができる。
【0007】
具体的には、次の2つの関数式のいづれか、もしくは両方を用いることにより培養終点を決定することができる。
利用する吸光度は、上述の2つの吸収バンドのうちのどちらを用いても良く、あるは両方用いても良く、あるいは2つの吸光度の和を用いても良い。ただし、波数精度の低い分光器を用いる場合や、水の吸光度に変化を与えるような操作を行う場合は、1635cm-1のアミドIの吸光度は、1650cm-1の水の吸収の影響を受けるので、1540cm-1のみを利用することが望ましい。
t= f(v) ─────── (1)
t= f(s) ─────── (2)
吸光度の変化速度が最大となったときから培養終点までの時間:t
吸光度の最大変化速度:v
吸光度の変化速度の軌跡と時間軸とで囲まれる面積:s
関数fは、培養系により異なるので、あらかじめ培養を行い、設定しておく必要がある。
本発明は、乳酸菌の生産する酸によって起こる乳の凝固現象を上記吸光度の変化速度として定量化して、凝固速度を測定し、培養終点を決定することを可能とするものである。本発明は、発酵乳などの乳酸菌を利用した各種製品の培養系における培養管理方法としてその製品の種類を問わず適用することが可能である。
【0008】
【実施例】
以下、実施例に基づいて本発明を具体的に説明する。
実施例1
ストレプトコッカス サーモフィルス(Streptococcus thermophilus)YIT2001 を20% 濃度の脱脂粉乳水溶液で、37℃、緩やかに攪拌しつつ培養した。赤外スペクトルは、フーリエ変換赤外分光光度計 FTS-65A (バイオラド デジラボ)(Bio-Rad Digilab)および、FT-IR/ATR プローブ モデル DPR-210(S) ( アクシオンアナリティカル)(Axion Analytical Inc. )を組み合わせて1900〜900 cm-1の範囲で赤外吸収スペクトルの連続自動インライン計測を行った。データ蓄積および解析は、コンピュータ(IBM-PC)を用いて検討した。
スターターの活性や添加量により培養終点が変化することが知られている。上述した関係式(1) を導くために、スターターの活性を変化させて数バッチ培養した。その結果、以下の関係式が得られた。
t= 0.45/v ─────── (3)
吸光度の変化速度が最大となったときから培養終点までの時間:t
吸光度の最大変化速度:v
【0009】
培養の例として、スターターの活性が高い培養Aと低い培養Bのケースについて述べる。滴定酸度値20を培養終点した場合、培養Aの培養時間は20時間、培養Bは25時間であった。このときの1635cm-1および1540cm-1の吸光度の和の培養経時変化を図3の上段に示す。図3の吸光度の和の培養経時変化を時間で微分した吸光度の変化速度を図3の下段に示す。吸光度の変化速度の最大値と最大値になったときの培養時間は、それぞれ培養Aでは−0.041(Ab./h)、9h、培養Bでは−0.032(Ab./h)、10hであった。この吸光度の最大変化速度を式(3)に代入するとそれぞれ、11、15が得られる。
したがって、総培養時間は培養Aは11+9で20時間、培養Bは15+10で25時間となり、滴定酸度値に基づいた培養の終点と一致し、本発明の方法で培養終点が決定できることが示された。
【0010】
実施例2
ビフィドバクテリウム ブレーベ(Bibidobacterium breve )YIT4065 を20% 濃度の全脂粉乳水溶液で、37℃、緩やかに攪拌しつつ培養した。赤外スペクトルは、フーリエ変換赤外分光光度計 FTS- 65A ( バイオラド デジラボ)(Bio-Rad Digilab)および、FT-IR/ATR プローブ モデル DPR- 210(S) ( アクシオン アナリティカル)(Axion Analytical Inc. )を組み合わせて1900〜900cm-1の範囲で赤外吸収スペクトルの連続自動インライン計測を行った。データ蓄積および解析は、コンピュータ(IBM-PC)を用いて検討した。
滴定酸度値20を培養終点した場合、培養48時間で終点となった。このときの1635cm-1および1540cm-1の吸光度の和の培養経時変化および吸光度の変化速度を図4に示す。培養開始27.5時間で、吸光度の変化速度は最大値の0.0175(Ab./h)となっている。
したがって、この培養系においては、以下の関係式で培養終点の決定が可能であった。
t= 0.35/v
吸光度の変化速度が最大となったときから培養終点までの時間:t
吸光度の最大変化速度:v
【0011】
上述のように、本発明は、発酵乳などの乳酸菌を利用した各種製品の培養工程において、インラインによる赤外分光分析法を用いることにより、培養状態の監視が、測定試料の前処理を行う必要もなく、閉鎖系で監視できることから、コンタミネーションのリスクが小さく、簡便かつ迅速に完全自動で行えることが示された。したがって、従来、滴定酸度で培養プロセスを監視していた乳酸菌飲料、発酵乳などの系において本発明の方法が極めて有効であることが明らかとなった。
【0012】
【発明の効果】
以上詳述したように、本発明は、発酵乳などの乳酸菌を利用した各種製品の培養工程において、FT−IR法を用いて、培養物の1635cm-1近傍のアミドIの吸光度および/または1540cm-1近傍のアミドIIの吸光度を経時的に測定し、当該吸光度の変化速度を指標として、培養物の凝固速度を測定し、培養終点を決定することを特徴とする上記発酵製品の培養管理方法に係るものであり、本発明によれば、(1)測定試料の前処理を行う必要がない、(2)発酵製品の培養状態を閉鎖系で監視できる、(3)発酵製品の培養工程において、培養物の凝固速度を簡便に測定し、培養終点を正確に予測/決定することができる、(4)インラインにより簡便かつ迅速に発酵製品の培養管理を行うことができる、などの格別の効果が得られる。
【図面の簡単な説明】
【図1】実施例1の発酵乳の培養工程における、培養時間とpH値、および1635cm-1および1540cm-1の吸光度の関係を示す。
【図2】実施例1における、吸光度の変化速度を培養時間に対してプロットした結果を示す。
【図3】実施例1における、1635cm-1および1540cm-1の吸光度の和の培養経時変化を示す。
【図4】上記図3の吸光度の和の培養経時変化を時間で微分した吸光度の変化速度を示す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for managing the culture state of lactic acid bacteria in the culture process in producing various fermented products using lactic acid bacteria such as fermented milk. More specifically, the present invention relates to the FT-IR method. The present invention relates to a method for managing a culture process of lactic acid bacteria, and more particularly to a new culture management method for lactic acid bacteria that makes it possible to easily measure the coagulation rate of a culture and accurately predict the culture end point.
[0002]
[Prior art]
Generally, in the production of various products using lactic acid bacteria such as fermented milk, it is important to determine the end point of culture (culture end point) in the management of the culture process.
Conventionally, the management of fermentation, using as an index the concentration of sugar as a substrate, the concentration of lactic acid as a product produced as the fermentation progresses, and the acidity and pH of the fermentation liquor, i.e., The progress of fermentation and the timing of the end of fermentation are performed. In order to obtain these numerical values, conventionally, in the fermentation process, the fermentation liquor is once sampled at an appropriate stage, and then analyzed for each item according to a conventional method using, for example, a neutralization titration method. It was usual to perform quantification.
However, according to such a method, there is a problem that a titration error is large to measure each index value, and it takes a considerable amount of time and manpower, so that the culture process can be managed in a simple and rapid manner. Could not do.
On the other hand, the applicant previously disclosed in Japanese Patent Application Laid-Open No. 9-37770 focusing on the dissociation and non-dissociation type absorbance of lactic acid in the culture solution and the change in absorbance of sugar, and measuring the pH value using FT-IR. A management method is proposed.
[0003]
[Problems to be solved by the invention]
As described above, in view of the above conventional method, conventionally, in the culturing process of fermented milk or the like, the concentration of sugar, the concentration of lactic acid, the acidity, and the pH value as indicators for managing the culturing state of lactic acid bacteria are quickly, simply and accurately. Development of a method for measuring lactic acid bacteria in particular, and development of a method for culture control of a new lactic acid bacterium based on the development of a method for in-line measurement have been desired.
As a result of diligent research aimed at developing such a new culture management method for lactic acid bacteria, the present inventors have used the FT-IR method (Fourier transform infrared spectroscopy), and the infrared absorption of the fermentation broth. The spectrum was measured, and the absorbance of amide I near 1635 cm −1 and / or the absorbance of amide II near 1540 cm −1 in the culture was measured over time, and the coagulation of the culture was measured using the rate of change of the absorbance as an index. The rate was measured and it was confirmed that the end point of culture could be determined, and the present invention was completed.
In addition, according to the ATR-FT-IR method, which is a method of measuring the total reflection spectrum (ATR-FT-IR method) among the FT-IR methods, the numerical values of various indices can be measured in-line. In particular, it has been found that the culture end point can be accurately predicted, and that the culture management of lactic acid bacteria can be automated.
[0004]
An object of the present invention is to provide a method for managing the culture process in the production of various products using lactic acid bacteria such as fermented milk.
Another object of the present invention is to provide a new culture management method capable of measuring the coagulation rate of a culture and determining the culture end point in the lactic acid bacteria culture process.
[0005]
[Means for Solving the Problems]
The present invention for solving the aforementioned problems is, in the step of culturing fermentation products using lactic acid bacteria, using the FT-IR method, 1635 cm culture - absorbance of 1 amide I and / or 1540 cm - 1 absorbance of the amide II Is measured over time, and the culture of the fermented product is managed using the rate of change in absorbance as an index.
Furthermore, the onset bright, in the step of culturing the above fermentation product, using the FT-IR method, 1635 cm culture - 1 absorbance of the amide I and / or 1540 cm - 1 of the absorbance of the amide II over time The culture management method for a fermented product according to claim 1, wherein the measurement is performed, the rate of change in absorbance is used as an index, the solidification rate of the culture is measured, and the culture end point is predicted / determined.
In the present invention, as the FT-IR method, it is a preferred embodiment to measure the absorbance using the ATR-FT-IR method. In the measurement of absorbance by the FT-IR method, the absorbance of amide I at 1635 cm −1 and / or the absorbance of amide II at 1540 cm −1 in the culture is measured over time. In particular, when it is included in 1635 cm −1 or 1540 cm −1 , even the vicinity thereof is included in the scope of the present invention.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in more detail.
Although this invention is applied in the culture | cultivation process of various products using lactic acid bacteria, if this invention is a fermentation and culture | cultivation process containing lactic acid bacteria, it will be object regardless of the kind of the product. Hereinafter, culture of fermented milk will be described as an example.
In the production process of various products using lactic acid bacteria, the coagulation phenomenon of milk caused by the acid produced by lactic acid bacteria is observed as a change in absorbance around 1635 cm −1 and / or 1540 cm −1 . These two absorption bands are known as absorption of the amide of the protein molecule, and 1635 cm −1 is called amide I which is C═O stretching vibration, and 1540 cm −1 is called amide II of NH deformation vibration.
In the fermentation of fermented milk, the relationship between culture time, pH, and absorbance at 1635 cm −1 and 1540 cm −1 is shown in FIG. Absorbance was shown as the amount of change using the spectrum at 0 hours of culture as a reference. It was confirmed that the absorbance changed suddenly around pH 5.1 where milk coagulation began.
When the rate of change in absorbance is plotted against the incubation time, it is as shown in FIG. The rate of change of the two absorbances is mainly a dependent function of the milk protein clotting rate. In other words, it can be said that the rate of change in absorbance represents the rate of fermentation. Therefore, the culture end point can be determined from the rate of change in absorbance.
[0007]
Specifically, the culture end point can be determined by using either one or both of the following two functional expressions.
As the absorbance to be used, either one of the two absorption bands described above may be used, or both may be used, or the sum of the two absorbances may be used. However, if using low wavenumber precision spectrometer, when performing an operation which gives a change in absorbance of water, the absorbance of the amide I of 1635 cm -1, so influenced by the absorption of water 1650 cm -1 It is desirable to use only 1540 cm −1 .
t = f (v) ─────── (1)
t = f (s) ─────── (2)
Time from when the rate of change in absorbance reaches the maximum until the end of culture: t
Maximum change rate of absorbance: v
Area surrounded by the locus of change rate of absorbance and the time axis: s
Since the function f varies depending on the culture system, it is necessary to perform culture in advance and set it.
The present invention makes it possible to quantify the coagulation phenomenon of milk caused by the acid produced by lactic acid bacteria as the rate of change of the absorbance, measure the coagulation rate, and determine the culture end point. The present invention can be applied as a culture management method in a culture system of various products using lactic acid bacteria such as fermented milk regardless of the type of the product.
[0008]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
Example 1
Streptococcus thermophilus (Streptococcus thermophilus) YIT2001 was cultured in a 20% strength non-fat dry milk aqueous solution at 37 ° C. with gentle stirring. Infrared spectra were measured using Fourier Transform Infrared Spectrophotometer FTS-65A (Bio-Rad Digilab) and FT-IR / ATR probe model DPR-210 (S) (Axion Analytical Inc. ) And continuous automatic in-line measurement of infrared absorption spectrum in the range of 1900 to 900 cm −1 . Data accumulation and analysis were examined using a computer (IBM-PC).
It is known that the culture end point changes depending on the activity and the amount of the starter. In order to derive the above-mentioned relational expression (1), several batch cultures were carried out while changing the activity of the starter. As a result, the following relational expression was obtained.
t = 0.45 / v ─────── (3)
Time from when the rate of change in absorbance reaches the maximum until the end of culture: t
Maximum change rate of absorbance: v
[0009]
As an example of culture, a case of culture A having high starter activity and culture B having low activity will be described. When the titration acidity value of 20 was reached, the culture time of culture A was 20 hours and culture B was 25 hours. The culture time course of the sum of the absorbance at 1635 cm -1 and 1540 cm -1 in the case shown in the upper part of FIG. The lower part of FIG. 3 shows the rate of change in absorbance obtained by differentiating the time-dependent change in the culture with time in the sum of absorbances in FIG. The maximum value of the change rate of absorbance and the culture time when the maximum value are reached are −0.041 (Ab./h) and 9 h for culture A, −0.032 (Ab./h) for culture B, 10 hours. Substituting this maximum absorbance change rate into equation (3) yields 11 and 15, respectively.
Therefore, the total culture time was 20 hours for culture A at 11 + 9 and 25 hours for culture B at 15 + 10, which was consistent with the culture end point based on the titrated acidity value, indicating that the culture end point can be determined by the method of the present invention. .
[0010]
Example 2
Bibidobacterium breve YIT4065 was cultured in a 20% strength whole fat milk powder aqueous solution at 37 ° C. with gentle stirring. Infrared spectra were measured using Fourier Transform Infrared Spectrophotometer FTS-65A (Bio-Rad Digilab) and FT-IR / ATR probe model DPR-210 (S) (Axion Analytical Inc. ) And continuous automatic in-line measurement of the infrared absorption spectrum was performed in the range of 1900 to 900 cm −1 . Data accumulation and analysis were examined using a computer (IBM-PC).
When a titration acidity value of 20 was reached, the end point was reached after 48 hours of culture. Shows the rate of change in culture aging and absorbance of the sum of absorbance at 1635 cm -1 and 1540 cm -1 in this case is shown in FIG. 4. The absorbance change rate is 0.0175 (Ab./h) which is the maximum value after 27.5 hours from the start of the culture.
Therefore, in this culture system, the end point of culture could be determined by the following relational expression.
t = 0.35 / v
Time from when the rate of change in absorbance reaches the maximum until the end of culture: t
Maximum change rate of absorbance: v
[0011]
As described above, in the present invention, in the culturing process of various products using lactic acid bacteria such as fermented milk, it is necessary to monitor the culture state by pre-processing the measurement sample by using in-line infrared spectroscopy. In addition, since it can be monitored in a closed system, it has been shown that the risk of contamination is small, and it can be performed easily, quickly and fully automatically. Therefore, it has been clarified that the method of the present invention is extremely effective in systems such as lactic acid bacteria beverages and fermented milk that have conventionally been monitored for culture processes with titrated acidity.
[0012]
【The invention's effect】
As described above in detail, the present invention uses the FT-IR method in the culturing process of various products using lactic acid bacteria such as fermented milk, and the absorbance of amide I in the vicinity of 1635 cm −1 and / or 1540 cm. -1 , measuring the absorbance of amide II in the vicinity of time, measuring the coagulation rate of the culture using the rate of change of the absorbance as an index, and determining the end point of the culture, According to the present invention, (1) it is not necessary to pre-process the measurement sample, (2) the culture state of the fermentation product can be monitored in a closed system, and (3) the fermentation product culture process Special effects such as simple measurement of the coagulation rate of the culture and accurate prediction / determination of the culture end point, (4) easy and rapid culture management of the fermentation product by in-line Gain It is.
[Brief description of the drawings]
[1] in the culturing step of the fermented milk of Example 1, showing the incubation time and the pH value, and the absorbance of the relationship between 1635 cm -1 and 1540 cm -1.
FIG. 2 shows the results of plotting the rate of change in absorbance against the culture time in Example 1.
In [3] Example 1 shows the culture time course of the sum of the absorbance at 1635 cm -1 and 1540 cm -1.
FIG. 4 shows the rate of change in absorbance obtained by differentiating the change in culture with time in the sum of absorbance in FIG. 3 with respect to time.

Claims (2)

乳酸菌を利用した発酵製品の培養工程において、FT−IR法を用いて、培養物の1635cm アミドIの吸光度および/または1540cm アミドIIの吸光度を経時的に測定し、当該吸光度の変化速度を指標として、培養物の凝固速度を測定し、培養終点を決定することを特徴とする発酵製品の培養管理方法。In the step of culturing fermentation products using lactic acid bacteria, using the FT-IR method, 1635 cm culture - 1 amide I of absorbance and / or 1540 cm - over time by measuring the absorbance of 1 amide II, the absorbance the rate of change as an index, the solidification rate of the culture was measured, originating酵製article method of culturing manage you and determining a culture endpoint. FT−IR法として、ATR−FT−IR法を用いて、吸光度の測定を行うことを特徴とする、請求項1記載の発酵製品の培養管理方法。As FT-IR method, ATR-FT-IR method using, characterized rows Ukoto absorbance measurements, culture management method of fermentation product of claim 1 Symbol placement.
JP27653497A 1997-09-24 1997-09-24 Fermentation product culture management method Expired - Fee Related JP4001665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27653497A JP4001665B2 (en) 1997-09-24 1997-09-24 Fermentation product culture management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27653497A JP4001665B2 (en) 1997-09-24 1997-09-24 Fermentation product culture management method

Publications (2)

Publication Number Publication Date
JPH1189564A JPH1189564A (en) 1999-04-06
JP4001665B2 true JP4001665B2 (en) 2007-10-31

Family

ID=17570820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27653497A Expired - Fee Related JP4001665B2 (en) 1997-09-24 1997-09-24 Fermentation product culture management method

Country Status (1)

Country Link
JP (1) JP4001665B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1204855A1 (en) 1999-07-16 2002-05-15 Human Genome Sciences, Inc. Real-time, in situ biomanufacturing process monitoring and control in response to ir spectroscopy
EP2279185B1 (en) * 2008-03-20 2014-01-15 LEK Pharmaceuticals d.d. Catalyzed carbonylation in the synthesis of angiotensin ii antagonists
JP7165570B2 (en) * 2018-12-04 2022-11-04 浜松ホトニクス株式会社 Fermentation state monitoring device and fermentation state monitoring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217162A (en) * 1983-05-25 1984-12-07 Snow Brand Milk Prod Co Ltd Measurement of milk coagulation
JPH02236141A (en) * 1989-03-09 1990-09-19 Shokuhin Sangyo Onrain Sensor Gijutsu Kenkyu Kumiai Judgment of change in contents held in container from liquid to solid
JP2724284B2 (en) * 1993-09-28 1998-03-09 雪印乳業株式会社 How to measure the vitality of lactic acid bacteria
JP2900979B2 (en) * 1994-08-17 1999-06-02 雪印乳業株式会社 Lactic acidity measurement method of lactic acid fermentation broth using infrared ATR method
JP2832159B2 (en) * 1995-03-13 1998-12-02 雪印乳業株式会社 Determination of fermentation end time or acidity of lactic acid bacteria
JP3717977B2 (en) * 1995-07-31 2005-11-16 株式会社ヤクルト本社 Culture control method for lactic acid bacteria

Also Published As

Publication number Publication date
JPH1189564A (en) 1999-04-06

Similar Documents

Publication Publication Date Title
Hazen et al. Measurement of glucose and other analytes in undiluted human serum with near-infrared transmission spectroscopy
McShane et al. Near-infrared spectroscopy for determination of glucose, lactate, and ammonia in cell culture media
Tosi et al. Assessment of in‐line near‐infrared spectroscopy for continuous monitoring of fermentation processes
US11561182B2 (en) Method for detecting quality of cell culture fluid based on Raman spectral measurement
Li et al. Parallel comparison of in situ Raman and NIR spectroscopies to simultaneously measure multiple variables toward real-time monitoring of CHO cell bioreactor cultures
CN105628644A (en) Device and method for on-line monitoring of protein enzymolysis process based on in-situ real-time spectrum
Jørgensen et al. On‐line batch fermentation process monitoring (NIR)—introducing ‘biological process time’
JP3717977B2 (en) Culture control method for lactic acid bacteria
Milligan et al. Semisynthetic model calibration for monitoring glucose in mammalian cell culture with in situ near infrared spectroscopy
JP4001665B2 (en) Fermentation product culture management method
CN106018336B (en) A method of human serum albumin acetate buffer solution precipitation process is monitored based on near-infrared spectral analysis technology
JP2900979B2 (en) Lactic acidity measurement method of lactic acid fermentation broth using infrared ATR method
AU4077095A (en) Analytical method for evaluating flavor stability of fermented alcoholic beverage using electron spin resonance
RU2524624C2 (en) Real-time system, method of calibrating system and simultaneous detection of residues of antibiotics and their concentration in milk
CN108796005A (en) A kind of method of real-time monitoring Corynebacterium glutamicum fermentation process
US20040096930A1 (en) Method for monitoring biotechnological processes
CN111474134A (en) Method for controlling butyric acid fermentation by using online near infrared
CN116793991B (en) Glutamic acid concentration measurement method based on near infrared spectrum and mixing loss
Ramm et al. Systematic Preprocessing of Dielectric Spectroscopy Data and Estimating Viable Cell Densities
Havmand et al. Measurement of water-holding capacity in fermented milk using near-infrared spectroscopy combined with chemometric methods
SU1704069A1 (en) Fermented milk mass determination method
Li et al. Immobilization of L-glutamate oxidase and peroxidase for glutamate determination in flow injection analysis system
Cha et al. Ultrasonic measurements and its evaluation for the monitoring of Saccharomyces cerevisiae cultivation
Corrieu et al. Computer-based fermentation process control
JPH08317797A (en) Measurement of fermention tank

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees