JP2832159B2 - Determination of fermentation end time or acidity of lactic acid bacteria - Google Patents

Determination of fermentation end time or acidity of lactic acid bacteria

Info

Publication number
JP2832159B2
JP2832159B2 JP5263695A JP5263695A JP2832159B2 JP 2832159 B2 JP2832159 B2 JP 2832159B2 JP 5263695 A JP5263695 A JP 5263695A JP 5263695 A JP5263695 A JP 5263695A JP 2832159 B2 JP2832159 B2 JP 2832159B2
Authority
JP
Japan
Prior art keywords
time
fermentation
lactic acid
acidity
acid bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5263695A
Other languages
Japanese (ja)
Other versions
JPH08242761A (en
Inventor
健治 友田
和一 青木
達也 松明
久榮 齋藤
誠 東村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKIJIRUSHI NYUGYO KK
Original Assignee
YUKIJIRUSHI NYUGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKIJIRUSHI NYUGYO KK filed Critical YUKIJIRUSHI NYUGYO KK
Priority to JP5263695A priority Critical patent/JP2832159B2/en
Publication of JPH08242761A publication Critical patent/JPH08242761A/en
Application granted granted Critical
Publication of JP2832159B2 publication Critical patent/JP2832159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Dairy Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、食品原料に乳酸菌を培
養したスターターを添加して発酵培養させ、凝固する食
品を製造する上で、乳酸菌の発酵状態を管理し、制御す
る方法に関するものであって、例えばチーズ、ヨーグル
ト等の乳製品や、乳酸菌を使用するゲル食品などの製造
工程における発酵管理と工程の制御を行う方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling and controlling the fermentation state of a lactic acid bacterium in the production of a coagulated food by adding a starter obtained by culturing a lactic acid bacterium to a food material and producing a coagulated food. In addition, the present invention relates to a method for performing fermentation management and process control in a production process of dairy products such as cheese and yogurt and gel foods using lactic acid bacteria.

【0002】[0002]

【従来技術】乳酸菌は古くはチーズの製造及びヨーグル
ト等の発酵乳製品などに用いられるほか、近年、体内に
おける効用から各種食品の機能性向上素材として用いら
れ、飲料、デザートなど各種食品に用いられている。こ
の乳酸菌は風味向上のほか、培養発育における乳酸の産
生によって食品を酸性化する方法として利用されてい
る。植菌は、製品原料に乳酸菌を直接添加する方法があ
るが、一般的にはスターターと呼ばれる増殖培養された
乳酸菌を用いる方法が利用される。スターターの製造で
は少量培養から大量培養へと代を受け継いで量産される
継代培養が利用されるが、培養管理上でファージ汚染の
防止や菌株間バランスの調整など特殊なノウハウや技術
が必要とされる。かくして、製品原料にスターターを適
量添加することで乳酸菌が植菌され適当温度に保持され
て製品化されることになるが、製品中での乳酸菌の発育
による乳酸生成が製品の品質を大きく左右するため、こ
の発酵時間の管理、温度や発酵停止のための冷却時期の
管理、制御は重要な製造技術である。
2. Description of the Related Art Lactic acid bacteria have long been used in the manufacture of cheese, fermented milk products such as yogurt, etc. In recent years, they have been used as materials for improving the functionality of various foods due to their effects in the body, and have been used in various foods such as drinks and desserts. ing. This lactic acid bacterium is used as a method for acidifying foods by producing lactic acid during culture development in addition to improving flavor. For inoculation, there is a method in which lactic acid bacteria are directly added to the raw material of the product. In general, a method using lactic acid bacteria grown and cultured, called a starter, is used. In the production of starters, subculture, which is mass-produced by inheriting from small-scale culture to large-scale culture, is used, but special know-how and techniques such as prevention of phage contamination and adjustment of the balance between strains are required in culture management. Is done. Thus, lactic acid bacteria are inoculated by adding an appropriate amount of starter to the raw material of the product, and the product is produced by maintaining the temperature at an appropriate temperature.Production of lactic acid by the growth of lactic acid bacteria in the product greatly affects the quality of the product. Therefore, management of the fermentation time, and management and control of the temperature and the cooling time for stopping the fermentation are important production techniques.

【0003】一般的に従来は発酵時間の管理項目として
酸度測定が実施され、適当な時間間隔で製品をサンプリ
ングし、酸度を測定していた。また、発酵時間は原料組
成やスターター添加量、発酵温度などと相関しており、
一定の製造技術が確立されれば、一定の発酵時間を設定
して工程管理することも可能であった。
[0003] Generally, conventionally, acidity is measured as a control item of fermentation time, and products are sampled at appropriate time intervals to measure the acidity. Also, fermentation time is correlated with raw material composition, starter addition amount, fermentation temperature, etc.
If a certain production technology was established, it was also possible to set a certain fermentation time and control the process.

【0004】更に従来提案されている管理技術として、
特開昭55−144881号「発酵管理方法」のごとく
比較電極を用いたpH計を用い、pH値と酸度との相関
性から発酵管理する方法がある。該特許では更に電極内
圧力が発酵槽内圧力より高く保持された比較電極を用
い、電極内部液(KCl溶液等)が流出することによっ
て測定電極に乳蛋白などが付着することを防止し、測定
精度を維持する目的が達成されている。
[0004] Further, as a management technique that has been conventionally proposed,
There is a method of controlling fermentation based on the correlation between pH value and acidity using a pH meter using a comparison electrode as disclosed in Japanese Patent Application Laid-Open No. 55-144883, "Method of Fermentation Management". The patent further uses a comparative electrode in which the pressure inside the electrode is kept higher than the pressure inside the fermenter, and prevents milk proteins and the like from adhering to the measuring electrode due to the outflow of the liquid inside the electrode (such as a KCl solution). The goal of maintaining accuracy has been achieved.

【0005】また、特開昭63−59838号「食品の
醗酵管理法」のごとく、乳酸菌を殺菌した食品の導電率
の変化を測定して、その値から発酵停止時期を判定する
ことにより発酵管理する方法が提案されている。これは
微生物である乳酸菌の増殖と乳酸の産生によりイオン濃
度が増加し、相まって導電率が上昇することを利用した
ものである。
[0005] Further, as disclosed in JP-A-63-59838, "Ferment fermentation control method", a change in the conductivity of food in which lactic acid bacteria have been sterilized is measured, and the fermentation stop time is determined from the measured value. A way to do that has been proposed. This utilizes the fact that the growth of lactic acid bacteria, which is a microorganism, and the production of lactic acid increase the ion concentration and, consequently, increase the electrical conductivity.

【0006】さらに特開平4−349878号「スター
ターの製造法」に記されるごとく、ATP発光量を測定
し、その測定値の対数の前後比が一定の範囲に達したと
き培養を停止する方法がある。この方法は植菌した培地
をサンプリングし、これに試薬を混合して発光量をルミ
ノメーターで読み取りその前後の値の対数を比較するも
のである。
Further, as described in Japanese Patent Application Laid-Open No. 4-34978 / 1992, "A method for producing a starter", a method of measuring the amount of ATP luminescence and stopping the culture when the logarithmic ratio of the measured value reaches a certain range. There is. In this method, the inoculated medium is sampled, a reagent is mixed with the medium, the luminescence is read by a luminometer, and the logarithm of the value before and after the luminescence is compared.

【0007】この他、本出願人は先に特願平5−141
001号「乳酸菌の活力の測定方法」を提案している。
この方法は、発熱作用を有するとともに自らの温度を計
測可能な発熱センサーを用いてセンサー温度と乳酸菌培
地の温度を測定し、その温度差と乳酸菌の活力との相関
性から活力を測定するものである。又この方法は、温度
測定とともに酸度を既知の方法で測定し、酸度と温度差
が示す酸凝固時間で表される2次元の選定範囲から乳酸
菌の活力を判定する方法であって、この方法の主なる目
的は製品原料に植菌される乳酸菌を高濃度で含有するス
ターターを管理、選択することにある。もちろん該方法
はそのまま製品製造の工程管理に応用することも可能で
ある。
In addition, the present applicant has previously filed Japanese Patent Application No. 5-141.
No. 001 "Method for measuring the vitality of lactic acid bacteria" is proposed.
This method measures the sensor temperature and the temperature of the lactic acid bacteria medium using a heat-generating sensor that has a heating effect and can measure its own temperature, and measures the vitality from the correlation between the temperature difference and the vitality of the lactic acid bacteria. is there. This method is a method of measuring the acidity together with the temperature measurement by a known method, and determining the vitality of the lactic acid bacteria from a two-dimensional selection range represented by the acidity and the acid coagulation time indicated by the temperature difference. The main purpose is to control and select starters containing high concentrations of lactic acid bacteria to be inoculated into product raw materials. Of course, the method can be applied to the process control of product manufacturing as it is.

【0008】[0008]

【発明が解決しようとする課題】乳酸菌の植菌後の食品
原料は、乳酸菌の増殖培養を促すため一定温度に保持さ
れるが、その培養管理は製品の品質に大きく影響するた
め、各種の管理方法が試されてきた。最も一般的な方法
はサンプリングによる酸度の測定で、乳酸菌の増殖とと
もに乳酸菌が産生する乳酸が増加し酸度が上昇すること
から発酵状況を判定する方法である。この酸度測定は発
酵状況を把握するばかりでなく製品の酸度を一定以下に
管理する役目があり、酸度は製品品質の指標の一つでも
ある。しかし、そのサンプリングは製品の一部を抽出し
てくる操作となり、培養器を一部開放することになるの
で、外部から汚染物質が混入する虞があった。このため
原料に乳酸菌を植菌後ただちに容器に充填し、これを恒
温倉庫内で保持して培養工程を完了させるという製造方
法があるが、この場合はサンプリングによる汚染を防止
できるものの、容器毎に培養状況が異なり、発酵管理し
にくいこと、また原料組成が常に一定とは限らないので
一定の発酵時間の管理だけでは製品を製造することがで
きないという問題があった。
The food materials after inoculation of lactic acid bacteria are kept at a constant temperature in order to promote the growth and culture of lactic acid bacteria. The method has been tried. The most common method is to measure the acidity by sampling, and the fermentation status is determined from the fact that the lactic acid produced by the lactic acid bacteria increases and the acidity increases as the lactic acid bacteria grow. This acidity measurement has a role not only to grasp the fermentation status but also to control the acidity of the product to a certain level or less, and the acidity is also an index of the product quality. However, the sampling is an operation of extracting a part of the product, and a part of the incubator is opened, so that there is a possibility that contaminants may be mixed in from the outside. For this reason, there is a manufacturing method in which lactic acid bacteria are inoculated as raw materials into a container immediately after inoculation, and this is held in a constant temperature warehouse to complete the cultivation process.In this case, although contamination by sampling can be prevented, each container has its own method. There is a problem that the fermentation management is difficult due to the different cultivation conditions and that the raw material composition is not always constant, so that a product cannot be produced only by controlling a constant fermentation time.

【0009】これらの問題から、発酵培養の管理手段と
して、従来技術にあげたような方法が提案されてきた。
先ず、特開昭55−144881号は、pH測定は測定
電極の保全が測定を良好に維持するポイントであり、電
極の精度維持のためには的確な方法かもしれないが、一
般的に食品の測定に用いる測定装置として材質がガラス
であることは、ともすれば破損事故が発生した場合を考
えると不適切であり、pH計は敬遠されている。また、
該発明は食品中に本来の食品組成物以外の液体が流出す
ることになり、安全性が重視される食品の製造には適し
た方法と言えない。
[0009] From these problems, methods as described in the prior art have been proposed as a means for managing fermentation culture.
First, Japanese Patent Application Laid-Open No. 55-144881 states that pH measurement is a point where maintenance of the measurement electrode maintains the measurement well and may be an accurate method for maintaining the accuracy of the electrode. The fact that glass is used as a measuring device for measurement is inappropriate in view of the possibility of a breakage accident, and pH meters are avoided. Also,
This invention causes a liquid other than the original food composition to flow out into the food, and cannot be said to be a method suitable for the production of foods in which safety is important.

【0010】以上の点は、従来技術の特開昭63−59
838号の明細書中の記載にも指摘がある。ところで、
この特開昭63−59838号の発明は、一定の導電率
に達したとき発酵を停止する食品の発酵管理方法である
ことは前述したが、この発明によれば導電率と乳酸酸度
が相関し、酸度を管理することができるように誤解しが
ちであるが、酸度と相関するという確固たる実証はされ
ていない。該発明の適用範囲は、実施例で示される関係
に限定され、全ての発酵管理に適用出来るものではな
い。特に酸度は乳酸菌の増殖と確実に一定の相関関係に
あるものではなく、乳酸菌の活力や培養環境によって変
化するもので、イオン濃度の変化と必ずしも一定の関係
で酸度が変化するものではない。つまりイオン濃度の変
化は乳酸菌の増殖状況にも影響しており、乳酸菌の増殖
数と乳酸の産生による酸度上昇が一定の相関を示さない
以上、イオン濃度の変化は乳酸の産生に限らず、他の要
因も含まれた総合的なものであると言える。また、この
発明の実施例では酸度、pHなどと相関性が示されてい
るが、食品の組成の異なるものや培養環境によってどの
ようになるかは一切示されていない。本発明者が実験的
に該発明を検証した結果では、導電率として乳酸やpH
などに示されない他の要素である培地固形分のわずかな
差や温度変化等が影響したためか、導電率値そのものが
測定毎に変化し、実工程での利用は、これらを厳密に管
理できる工程への適用に留まることが分かった。
The above points are described in Japanese Patent Application Laid-Open No. 63-59 / 1988.
No. 838 also points out. by the way,
Although the invention of Japanese Patent Application Laid-Open No. 63-59838 is a fermentation management method for food in which fermentation is stopped when a certain electric conductivity is reached, according to the present invention, the electric conductivity and the lactic acidity are correlated. It is easy to misunderstand that acidity can be controlled, but there is no firm demonstration that it correlates with acidity. The applicable range of the present invention is limited to the relationship shown in the examples, and is not applicable to all fermentation managements. In particular, the acidity does not surely have a certain correlation with the growth of lactic acid bacteria, but changes according to the vitality of the lactic acid bacteria and the culture environment, and does not necessarily change in a certain relationship with the change in ion concentration. In other words, changes in ion concentration also affect the growth of lactic acid bacteria. Since the number of lactic acid bacteria growing and the increase in acidity due to lactic acid do not show a certain correlation, the change in ion concentration is not limited to lactic acid production. It can be said that this is a comprehensive thing that also includes the above factors. Further, in Examples of the present invention, correlations are shown with acidity, pH, and the like, but no description is given of what changes depending on food compositions having different compositions or culture environments. As a result of experimental verification of the invention by the present inventor, lactic acid and pH
The conductivity value itself changes every measurement, possibly due to the influence of slight differences in medium solids and temperature changes, which are other factors not shown in the above. It was found that the application was limited to.

【0011】つぎに、ATP発光量を測定する特開平4
−349878号は、食品のサンプリング液に試薬を混
合してルミノメーター値として読み取るもので、サンプ
リング時における汚染の危険性は解消されておらず、
又、使用したサンプリング食品は試薬の混合により廃棄
せざるを得ない。サンプリングは微量であるとしても、
食品のサンプリングと廃棄には測定操作の煩雑さがあ
り、場合によっては廃棄物処理問題も生じる可能性があ
るなど問題点が多い。
Next, Japanese Patent Laid-Open No.
-34978 is a method of mixing a reagent with a sampling liquid of food and reading it as a luminometer value, the risk of contamination at the time of sampling has not been solved,
Also, the used sampled food must be discarded by mixing the reagents. Even if the sampling is small,
Sampling and disposal of food have many problems, such as complicated measurement operations, and in some cases, waste disposal problems.

【0012】本発明の先行発明としては特願平5−24
1001号があるが、この方法は主にスターターの活力
の測定に用いられるもので、製品原料に添加するスター
ターは継代培養を経て複数セット培養され、中で汚染さ
れることなく乳酸菌の活力が維持されているものを選定
して食品原料に添加するバルクスターターとして利用す
るものである。この活力の測定は発熱センサーの測定値
を指標とするほか、さらにスターターの酸度を既知の方
法で測定し、発熱センサーの測定値が示す酸凝固時間と
酸度とで表される2次元の選定範囲により活力を判定す
るものである。該方法ではバルクスターターまでの乳酸
菌の活力を主に測定するもので、酸度測定による汚染の
可能性があり、その目的はバルクスターターとして使用
可能なスターターはどの培養器のスターターかを判定す
ることにあり、製品製造上での酸度測定による培養管理
とは異なるものであった。
The prior invention of the present invention is disclosed in Japanese Patent Application No. 5-24.
No. 1001 is used, but this method is mainly used for measuring the vitality of the starter. The starter to be added to the raw material of the product is cultured in a plurality of sets through subculture, and the vitality of the lactic acid bacterium can be reduced without contamination. Those that are maintained are selected and used as bulk starters to be added to food ingredients. This vitality is measured by using the measured value of the exothermic sensor as an index. In addition, the acidity of the starter is measured by a known method, and a two-dimensional selection range represented by the acid coagulation time and the acidity indicated by the measured value of the exothermic sensor. The vitality is determined by the following. In this method, the vitality of lactic acid bacteria up to the bulk starter is mainly measured, and there is a possibility of contamination by acidity measurement, and the purpose is to determine which incubator is a starter that can be used as a bulk starter. This was different from the culture control by measuring the acidity in the production of the product.

【0013】本発明は製品原料にバルクスターターの添
加による乳酸菌の植菌を行った後の製品の発酵管理を、
インラインでかつ無菌的に実施することを目的とするも
のである。
[0013] The present invention relates to fermentation management of a product after inoculating lactic acid bacteria by adding a bulk starter to the product raw material,
It is intended to be performed in-line and aseptically.

【0014】[0014]

【課題を解決するための手段】本発明は以上のような目
的を達成するため次のような乳酸菌の発酵終了時間を決
定する方法を提供するものである。即ち、原料に乳酸菌
を培養したスターターを添加して発酵製品を得る飲食品
の製造に際し、乳酸菌スターターの添加から原料の凝固
変化までの凝固時間を計測し、凝固時間に対する発酵時
間の比率及び酸度との回帰式により、乳酸菌の発酵終了
時間を決定することにより、乳酸菌の発酵を制御するの
である。前記の回帰式は、計測した凝固時間と、任意の
発酵経過時間とを用いて、前記任意の発酵経過時間の発
酵液の酸度を決定することも可能である。又凝固時間の
計測には、発熱作用を有するとともに自らの温度を計測
可能な発熱センサーを用いて、該発熱センサーによって
測定される発熱センサーの温度あるいはその温度と原料
の発酵温度との温度差の変化により計測したものを用い
れば、インラインにより乳酸菌の発酵終了時間の決定や
任意の発酵経過時間の乳酸菌の酸度を決定することも可
能である。又、前記回帰式は、例えば培地原料の固形分
について、前記回帰式の各係数を個々の固形分値で回帰
してもとめた比率を用いて補正を行って乳酸菌の発酵終
了時間を決定するとより正確な時間の決定が出来る。同
様に前記回帰式において、乳酸菌添加率については、添
加率の違いによる凝固時間の変化率を用いて前記回帰式
より得られる凝固時間に対する発酵時間の比率を補正す
ることにより所定の酸度に達する乳酸菌の発酵終了時間
を決定し正確な時間の決定が出来る。
SUMMARY OF THE INVENTION The present invention provides a method for determining the end time of fermentation of lactic acid bacteria in order to achieve the above object. That is, when manufacturing a food or drink to obtain a fermented product by adding a starter obtained by culturing lactic acid bacteria to the raw material, the coagulation time from the addition of the lactic acid bacteria starter to the coagulation change of the raw material is measured, and the ratio of the fermentation time to the coagulation time and the acidity. The fermentation of lactic acid bacteria is controlled by determining the end time of fermentation of lactic acid bacteria according to the regression equation. The regression equation can also determine the acidity of the fermented liquor at the arbitrary fermentation elapsed time using the measured coagulation time and an arbitrary fermentation elapsed time. For the measurement of the coagulation time, a heating sensor having a heating effect and capable of measuring its own temperature is used, and the temperature of the heating sensor measured by the heating sensor or the temperature difference between the temperature and the fermentation temperature of the raw material is used. If the measured value of the change is used, it is also possible to determine the fermentation end time of the lactic acid bacterium or the acidity of the lactic acid bacterium at an arbitrary fermentation elapsed time in-line. In addition, the regression equation is, for example, for the solid content of the raw material of the culture medium, it is more preferable to determine the fermentation end time of the lactic acid bacterium by correcting each coefficient of the regression equation by using a ratio determined by regressing the individual solid content values. Accurate time can be determined. Similarly, in the regression equation, for the lactic acid bacteria addition rate, the lactic acid bacteria reaching a predetermined acidity by correcting the ratio of the fermentation time to the coagulation time obtained from the regression equation using the change rate of the coagulation time due to the difference in the addition rate And the exact time can be determined.

【0015】[0015]

【作用】本発明は発熱センサー等で測定出来る製品の酸
凝固変化を検出し、乳酸菌を培養したスターターの添加
から該変化までを凝固時間とし、更にスターター添加か
ら一定酸度に達するまでの時間を発酵時間とするとき、
凝固時間に対する発酵時間の比率を発酵時間に関する指
標値として、該指標値と酸度との相関性から発酵を管理
し、かつ発酵終了を制御するものである。特に本発明の
方法により得られた各種のデータから発酵時間に関する
指標値と酸度の関係より、乳酸菌の活性の違いによる所
定酸度到達時間を測定するとともに、発酵温度の変化に
ともなう発酵終了時間の変化についても対応を可能とし
たものである。さらに、培地原料の固形分とスターター
添加率が変化した場合においても、これらを変数とする
あらかじめ求めた補正式を用いて、発酵条件の変更に伴
う発酵終了時間及び発酵終了酸度を予測可能な方法を提
供するものである。なお以上の関係式は多くのデータを
数値解析したことにより得られたもので、下記の式によ
る。
The present invention detects the change in acid coagulation of a product that can be measured by a heat-generating sensor, etc., determines the coagulation time from the addition of a starter in which lactic acid bacteria are cultured to the change, and further fermentation time from the starter addition to a certain acidity. Time
The ratio of the fermentation time to the coagulation time is used as an index value for the fermentation time, and the fermentation is managed from the correlation between the index value and the acidity, and the fermentation end is controlled. Particularly, from the relationship between the index value and the acidity related to the fermentation time from various data obtained by the method of the present invention, the time required to reach a predetermined acidity due to the difference in the activity of the lactic acid bacteria is measured, and the change in the fermentation end time with the change in the fermentation temperature. Is also available. Furthermore, even when the solid content of the culture medium and the starter addition rate are changed, a method capable of predicting the fermentation termination time and the fermentation termination acidity accompanying a change in fermentation conditions using a correction formula obtained in advance using these as variables. Is provided. The above relational expression was obtained by numerically analyzing a large amount of data, and is based on the following expression.

【0016】.(乳酸菌活性及び発酵温度に関する回
帰式) 以下の(1)式は基本的酸度と発酵時間に関する指標値
の基本的回帰式である。
[0016] (Regression Formula for Lactic Acid Bacterial Activity and Fermentation Temperature) The following formula (1) is a basic regression formula for an index value relating to basic acidity and fermentation time.

【0017】 Y=AX2 +BX+C ・・・ (1)Y = AX 2 + BX + C (1)

【0018】なお Y:酸度 X:凝固時間に対する発酵時間の比率 A,B,C:基準となる培地固形分、スターター添加率
での凝固時間に対する発酵時間の比率と酸度との回帰式
より得られる係数
Y: Acidity X: Ratio of fermentation time to coagulation time A, B, C: Obtained from a regression equation between the ratio of fermentation time to coagulation time at reference medium solids and coagulation time at starter addition rate and acidity coefficient

【0019】.(培地固形分に関する補正式) 以下の(2)〜(5)は培地固形分が変化した際の
(1)式の係数の補正式である。
[0019] (Correction formula for medium solid content) The following (2) to (5) are correction formulas for the coefficient of formula (1) when the medium solid content changes.

【0020】 Y=AjX2 +BjX+Cj ・・・(2)Y = AjX 2 + BjX + Cj (2)

【0021】 Aj=(Nj−Nk)a+A ・・・(3)Aj = (Nj−Nk) a + A (3)

【0022】 Bj=(Nj−Nk)b+B ・・・(4)Bj = (Nj−Nk) b + B (4)

【0023】 Cj=(Nj−Nk)c+C ・・・(5)Cj = (Nj−Nk) c + C (5)

【0024】なお Aj,Bj,Cj:固形分が変化した際の凝固時間に対
する発酵時間の比率と酸度との回帰式に用いる係数 Nk:基準となる固形分値 Nj:変更した固形分値 a,b,c:固形分が1%変化した際の係数変化率
Aj, Bj, Cj: Coefficient used for regression equation of ratio of fermentation time to coagulation time when solid content changes and acidity Nk: Reference solid content value Nj: Changed solid content value a, b, c: coefficient change rate when solid content changes by 1%

【0025】.(スターターの添加率に対する関係
式) 以下の(6)(7)式はスターター添加率が変化した際
の発酵時間に関する指標値Xの補正式である。
[0025] (Relational Expressions for Starter Addition Ratio) The following expressions (6) and (7) are correction expressions for the index value X relating to the fermentation time when the starter addition ratio changes.

【0026】 Xs=1+{(X−1)/AA} ・・・(6)Xs = 1 + {(X−1) / AA} (6)

【0027】 AA=[Ck+{(Sj−Sk)×d}]/Ck・・・(7)AA = [Ck + {(Sj−Sk) × d}] / Ck (7)

【0028】なお Xs:スターター添加率が変化した際の所定酸度におけ
る発酵時間/凝固時間 X:基準となるスターター添加率での所定酸度における
発酵時間/凝固時間 AA:スターター添加率の変化に伴う凝固時間の変化率 d:基準となるスターターと同じ活性、同じ発酵条件で
のスターター添加率1%変更における凝固時間の変化幅 Ck:基準となるスターター添加率における凝固時間 Sk:基準となるスターター添加率 Sj:変更したスターター添加率
Xs: fermentation time / coagulation time at a predetermined acidity when the starter addition rate changes X: fermentation time / coagulation time at a predetermined acidity at a reference starter addition rate AA: coagulation with a change in the starter addition rate Time change rate d: Change in coagulation time when the starter addition rate is changed by 1% under the same activity and the same fermentation condition as the reference starter Ck: Coagulation time at the reference starter addition rate Sk: Reference starter addition rate Sj: changed starter addition rate

【0029】この(1)乃至(7)式を使用して、発酵
終了時間を決定できる。具体的な作業としては、(1)
式において目的の酸度をYに代入し、その酸度に対応す
る発酵時間に関する指標値Xを算出する。そして、実測
した凝固時間にその指標値Xを乗算し発酵終了時間を決
定するものである。次に培地固形分が変化した場合は、
基本的回帰式の各係数をあらかじめラボ試験により算出
した補正式(3)〜(5)により算出し、更に使用する
スターター添加率が変化した場合は、同じ活性であれば
凝固後の酸度変化は同じであることが判明しているか
ら、基本となるスターターと同じ活性、同じ発酵条件で
のスターター添加率変更に伴う凝固時間をあらかじめラ
ボ試験により算出し、その回帰式の係数であるスタータ
ー添加率変化に伴う凝固時間の変化率を補正式(7)式
を用いて算出し、基本的回帰式での所定の酸度における
凝固時間に対する発酵時間の比率を、(6)式を用いて
変更したスターター添加率の比率に補正する。なお、こ
れらの該当式の係数については、固形分が10%〜14
%、スターター添加率が0.5%〜3%の範囲のデータ
を元に得られたものであるので、以上の範囲を越えるも
のについては、本発明方法により、新たにデータを集め
数値解析により適切な定数を設定する必要があるが、近
年の乳酸菌を用いた発酵食品の製造方法においては、該
式でもほぼ対応可能である。なお、ここで使用した基本
的回帰式は、今回行った二次式に限るものでなく、相関
性の良いものであれば、指数回帰式あるいは対数変換に
よる回帰式の他、どのような回帰式でも良いことは、言
うまでもない。また、同じ活性、同じ発酵条件であれば
スターター添加率が変化しても凝固後の酸度変化は同じ
ことが判明しているので、実際の製造工程で、以上の条
件を満足できるのであれば、所定の酸度に達する発酵時
間を凝固後の時間で予測しても良いことは容易に理解出
来る。
Using the equations (1) to (7), the fermentation end time can be determined. Specific work includes (1)
In the equation, the target acidity is substituted for Y, and an index value X relating to the fermentation time corresponding to the acidity is calculated. Then, the fermentation end time is determined by multiplying the actually measured coagulation time by the index value X. Next, if the medium solids change,
Each coefficient of the basic regression equation is calculated by the correction equations (3) to (5) calculated in advance by a lab test. If the addition rate of the starter used changes, the acidity change after coagulation is the same if the activity is the same. Since it is known to be the same, the same activity as the basic starter, the coagulation time due to the change in the starter addition rate under the same fermentation conditions is calculated in advance by a laboratory test, and the starter addition rate which is a coefficient of the regression equation is calculated. The change rate of the coagulation time due to the change is calculated using the correction equation (7), and the ratio of the fermentation time to the coagulation time at a predetermined acidity in the basic regression equation is changed using the equation (6). Correct to the addition ratio. In addition, about the coefficient of these applicable formulas, solid content is 10%-14%.
%, And the starter addition rate was obtained based on the data in the range of 0.5% to 3%. For the data exceeding the above range, new data was collected by the method of the present invention and numerical analysis was performed. Although it is necessary to set an appropriate constant, in a recent method for producing a fermented food using lactic acid bacteria, this formula can be used to substantially cope with this. Note that the basic regression equation used here is not limited to the quadratic equation used this time, and any regression equation other than the exponential regression equation or the logarithmic transformation equation can be used as long as it has good correlation. But it goes without saying that it is good. Also, even if the starter addition rate changes with the same activity and the same fermentation conditions, the acidity change after coagulation has been found to be the same, so in the actual manufacturing process, if the above conditions can be satisfied, It can be easily understood that the fermentation time to reach the predetermined acidity may be predicted by the time after coagulation.

【0030】[0030]

【実施例】以下、本発明の実施例について説明する。本
発明の一実施例として、発熱作用を有するとともに自ら
の温度を計測可能な発熱センサーを利用することが有用
である。この発熱センサーはいわゆる細線加熱法を利用
したものである。関連する初期の発明として、特開昭5
9−217162、特開昭60−152943、特開昭
62−185146等が挙げられる。本発明の発熱セン
サーを利用して、発酵食品の原料温度と発熱センサーの
温度あるいは発熱センサーの温度と食品の原料温度との
温度差を測定することにより、乳酸菌を培養したスター
ターの添加から凝固までの凝固時間を測定する。そし
て、既知の方法により酸度測定を行い、この酸度が一定
の値に達するまでを発酵時間とする時、その間の発酵食
品の原料温度の推移と、発熱センサーの温度と食品原料
温度の差の変化であるΔθの推移を凝固時間及び発酵時
間と関係付けたものが、図1である。なお、発熱センサ
ーには、レオキャッチ(登録商標)を使用した。即ち、
食品原料温度と発熱センサーの温度の温度差の変化Δθ
を発酵食品にスターターを添加した後継続的に計測する
ことにより、食品が凝固したとき、その凝固変化によっ
て熱伝達率が変化し、結果として温度差に変化が現れる
ことから、凝固点が計測出来、スターター添加からの時
間計測によって凝固時間が計測できるのである。この後
スターター添加から、一定酸度になることによる発酵終
了までの発酵時間はサンプリングによる既知の方法で判
定することにより、発酵時間を計測する。なお、図1で
一定酸度に達した発酵時間到達の直後に、温度差Δθの
測定値に変化が記録されているが、これはその上の原料
温度が示すように発酵停止のため急激に温度を低下させ
るべく温度操作したことにより、生じた熱伝達率の変化
を計測したものであり、凝固とは無関係である。
Embodiments of the present invention will be described below. As an embodiment of the present invention, it is useful to use a heat generation sensor having a heat generation function and capable of measuring its own temperature. This heat sensor utilizes a so-called fine wire heating method. A related early invention is disclosed in
9-217162, JP-A-60-152943 and JP-A-62-185146. By using the exothermic sensor of the present invention, by measuring the temperature of the raw material temperature of the fermented food and the temperature of the exothermic sensor or the temperature difference between the temperature of the exothermic sensor and the temperature of the raw material of the food, from the addition of a starter in which lactic acid bacteria are cultured to coagulation. The coagulation time is measured. Then, the acidity is measured by a known method, and the fermentation time is defined as the time until the acidity reaches a certain value. FIG. 1 shows the relationship between the change of Δθ and the coagulation time and the fermentation time. Note that Leo Catch (registered trademark) was used as the heat generation sensor. That is,
Change in temperature difference between food material temperature and temperature of heat sensor Δθ
By continuously measuring after adding the starter to the fermented food, when the food solidifies, the heat transfer coefficient changes due to the coagulation change, and as a result a change appears in the temperature difference, the coagulation point can be measured, The coagulation time can be measured by measuring the time from the starter addition. Thereafter, the fermentation time from the starter addition to the end of fermentation at a constant acidity is determined by a known method by sampling, and the fermentation time is measured. Immediately after the fermentation time at which the acidity reached a certain level in FIG. 1, a change was recorded in the measured value of the temperature difference Δθ. This is a measurement of the change in the heat transfer coefficient caused by operating the temperature to reduce the temperature, and has nothing to do with solidification.

【0031】本発明者はこれらの方法により、酸度と測
定値との関係を模索した結果、凝固時間に対する発酵時
間の比率と酸度が相関性をもつことを発見した。そこ
で、この関係が種々の条件下で一般性を持つのかを検討
した。先ず培地固形分及び乳酸菌を培養したスターター
の添加率を一定にして、発酵温度を変化させて実験し
た。即ち条件的には、培地固形分12%、乳酸菌を培養
したスターターの添加率を1%とし、発酵温度を44
℃、39℃、34℃でそれぞれ発酵乳製品を製造し、表
1のごとく凝固時間、発酵時間、酸度を計測した。
As a result of exploring the relationship between the acidity and the measured value by these methods, the present inventors have found that the ratio of the fermentation time to the coagulation time and the acidity are correlated. Therefore, it was examined whether this relationship has generality under various conditions. First, an experiment was performed while changing the fermentation temperature while keeping the addition rate of the starter in which the solid medium and the lactic acid bacteria were cultured. That is, conditionally, the solid content of the medium was 12%, the addition rate of a starter in which lactic acid bacteria were cultured was 1%, and the fermentation temperature was 44%.
Fermented milk products were produced at ℃, 39 ℃ and 34 ℃, respectively, and the coagulation time, fermentation time and acidity were measured as shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1の結果からも判るように、一般的に原
料の発酵温度を変えた場合、乳酸菌の活性に影響し、温
度が高い程その活性は高くなりその結果酸度の上昇速度
が速まることが知られており、その通りの結果となって
いる。更に、実際の製造においては、製造ロット毎の発
酵温度の違いや継代培養中にスターター活性が低下して
しまうことが影響したりするので、同じ活性、同じ条件
での発酵は不可能であることから、発酵終了時間を予測
することが出来なかった。そこで、本発明者らは凝固時
間に着目したところ、原料の発酵温度が高くなるに従っ
て凝固時間は短くなることが分かった。これは、スター
ターの活性向上のため酸度上昇の促進により起こった酸
凝固と考えられる。このことから、凝固時間は活性の評
価値として利用できると判断されることから、発酵時間
をこの凝固時間に対する比率に置き換え、この比率と酸
度との関係を図示すると、図2のごとく一定の相関線を
得ることができ、下記に示すような式を得た。
As can be seen from the results in Table 1, when the fermentation temperature of the raw material is changed, the activity of the lactic acid bacteria is generally affected. The higher the temperature, the higher the activity and the faster the acidity rises. Is known and the result is exactly as it is. Furthermore, in actual production, fermentation under the same activity and under the same conditions is impossible because the difference in fermentation temperature between production lots and the fact that the starter activity decreases during subculture are affected. Therefore, the fermentation end time could not be predicted. Then, the present inventors focused on the coagulation time and found that the coagulation time became shorter as the fermentation temperature of the raw material became higher. This is considered to be acid coagulation caused by promotion of an increase in the acidity to improve the activity of the starter. From this, it is determined that the clotting time can be used as an evaluation value of the activity. Therefore, the fermentation time is replaced with a ratio to the clotting time, and the relationship between the ratio and the acidity is shown as a constant correlation as shown in FIG. A line was obtained, and the equation shown below was obtained.

【0034】 Y=−0.292X2 +1.895X−1.0223 ・・・(1’)Y = −0.292X 2 + 1.895X−1.0223 (1 ′)

【0035】Y:酸度 X:発酵時間/凝固時間Y: acidity X: fermentation time / coagulation time

【0036】このことから、原料の発酵温度の変化等に
よりスターター活性が変化しても、本発明のように凝固
時間に所定の比率を乗算することにより、容易に発酵終
了時間の予測やその時の酸度の予測が可能であることが
分かった。
Thus, even if the starter activity changes due to a change in the fermentation temperature of the raw material or the like, by multiplying the coagulation time by a predetermined ratio as in the present invention, it is possible to easily predict the fermentation end time and to determine the fermentation end time. It was found that the acidity could be predicted.

【0037】さらに培地固形分を変えた場合について本
発明の方法の有効性を検証した。即ち、上記のごとくス
ターター活性の違いや発酵条件の影響を考慮し、同じ活
性、同じ発酵条件のもとでのラボ試験による培地固形分
の割合を変えた場合の凝固時間および酸度変化について
実験した。その結果、固形分10%、12%、14%、
スターター添加率1%、発酵温度39℃で測定したとこ
ろ、凝固時間に対する発酵時間の比率と酸度の関係は図
3のごとくなり、酸度は、固形分が高くなるに従い高く
なることが判明した。これは、固形分を変えた場合は、
培地中のナトリウム量やカリウム量の変化による緩衡作
用が酸度に働き、酸度変化に影響するためと予測され
る。ここで図3における固形分毎の測定結果を検討する
と、発酵時間に関する指標値に対する酸度は、固形分に
対応した一定の傾きの違いを持ってシフトしていること
から、回帰式の係数を定数で補正が可能である。
Further, the effectiveness of the method of the present invention was verified when the solid content of the medium was changed. That is, considering the difference in the starter activity and the effect of fermentation conditions as described above, the same activity, the coagulation time and the acidity change when the ratio of the medium solid content was changed by a lab test under the same fermentation conditions were tested. . As a result, solid content 10%, 12%, 14%,
When measured at a starter addition rate of 1% and a fermentation temperature of 39 ° C., the relationship between the ratio of the fermentation time to the coagulation time and the acidity was as shown in FIG. 3, and it was found that the acidity increased as the solid content increased. This means that if you change the solids,
It is expected that the buffering action due to the change in the amount of sodium or potassium in the medium acts on the acidity and affects the change in the acidity. Here, when the measurement results for each solid content in FIG. 3 are examined, the acidity for the index value related to the fermentation time is shifted with a certain slope difference corresponding to the solid content, so that the coefficient of the regression equation is constant. Can be corrected.

【0038】そこで、図4乃至図6に示すようにこの回
帰式の係数毎の補正定数を求めた。即ち上記の(1’)
式を前述したように
Therefore, as shown in FIGS. 4 to 6, correction constants for each coefficient of this regression equation were obtained. That is, the above (1 ′)
Equation as described above

【0039】 Y=AjX2 +BjX+Cj −−−(2)Y = AjX 2 + BjX + Cj (2)

【0040】と置き換え、各Aj、Bj、Cjの係数に
ついて、固形分との間の相関を調べた。図4は、上記A
jと固形分との関係を示したグラフであり、図示のよう
に一定の相関が得られた。同様に図5は、上記Bjと固
形分との関係を示したグラフであり、図6は、上記Cj
と固形分との関係を示したグラフであり、両図に図示の
ように一定の相関が得られた。以上の結果より、この傾
きを用いて固形分が異なった時の酸度と発酵時間に関す
る指標値の関係を維持する下式を得た。
The correlation between each coefficient of Aj, Bj and Cj and the solid content was examined. FIG.
6 is a graph showing a relationship between j and solid content, and a certain correlation was obtained as shown in the figure. Similarly, FIG. 5 is a graph showing the relationship between Bj and the solid content, and FIG.
5 is a graph showing the relationship between and solid content, and a certain correlation was obtained as shown in both figures. From the above results, the following equation was obtained using this slope to maintain the relationship between the acidity when the solid content was different and the index value for the fermentation time.

【0041】 Aj= -0.005 (Nj−12) -0.0292 ・・・(3’)Aj = −0.005 (Nj−12) −0.0292 (3 ′)

【0042】 Bj= 0.122 (Nj−12)+1.895 ・・・(4’)Bj = 0.122 (Nj−12) +1.895 (4 ′)

【0043】 Cj= -0.068 (Nj−12)-1.022 ・・・(5’) Cj = −0.068 (Nj−12) −1.022 (5 ′)

【0044】Aj,Bj,Cj:固形分が変化した際の
凝固時間に対する発酵時間の比率と酸度との回帰式に用
いる係数 X:発酵時間/凝固時間 Nj:変更した固形分値
Aj, Bj, Cj: Coefficient used for regression equation of ratio of fermentation time to coagulation time when solid content changes and acidity X: Fermentation time / coagulation time Nj: Modified solid content value

【0045】図7は、実際の製造工程において、固形分
10%、12%、14%を2バッチずつ、スターターの
添加率を1%とし、発酵温度39℃で測定を行った結果
と上記(3’)(4’)(5’)式を用いて得た固形分
10%、12%、14%の回帰線をプロットしたもので
実際の測定値と一致する結果を得た。
FIG. 7 shows the results of the measurement at the fermentation temperature of 39 ° C. in the actual production process at a solid content of 10%, 12%, and 14% in batches of 2 and a starter addition rate of 1%. 3 ′) (4 ′) (5 ′) Plotted regression lines of 10%, 12%, and 14% of the solid content obtained using the formulas, the results were in agreement with the actual measured values.

【0046】次にスターター添加率を変えて前記相関性
を検証した。まず、前述の固形分でのテストと同様、同
じ活性、同じ発酵条件下で、ラボ試験によりスターター
添加率を0.5%、1.0%、2%、3%と変化させ、
固形分は12%、発酵温度39℃での凝固時間および酸
度変化について実験を行った。その結果、図8に示すよ
うに、凝固時間は添加率が低い程長くなることが判明し
た。また、図9は、凝固後の酸度を示したもので、凝固
後の酸度変化はスターター添加率の違いに関係無く同じ
であった。ちなみに凝固時の酸度を測定した結果、下記
に示すようにほぼ同じ値であった。 このことから、スターター添加率を変えた場合は、スタ
ーター添加時の乳酸菌数の違いにより凝固酸度に達する
までの時間は異なるが、凝固後の酸度変化は同じである
ことが判明した。
Next, the correlation was verified by changing the starter addition rate. First, in the same manner as in the above-described solid content test, the starter addition rate was changed to 0.5%, 1.0%, 2%, and 3% by a lab test under the same activity and the same fermentation conditions.
Experiments were conducted on the solid content of 12%, the coagulation time at a fermentation temperature of 39 ° C, and the change in acidity. As a result, as shown in FIG. 8, it was found that the solidification time became longer as the addition ratio was lower. FIG. 9 shows the acidity after coagulation, and the change in acidity after coagulation was the same regardless of the difference in the starter addition rate. Incidentally, as a result of measuring the acidity at the time of solidification, the values were almost the same as shown below. From this, it was found that when the starter addition rate was changed, the time required to reach the coagulation acidity was different due to the difference in the number of lactic acid bacteria at the time of the starter addition, but the acidity change after coagulation was the same.

【0047】そこで、前述の図8のスターター添加率と
凝固時間の関係より求めた回帰式の傾きに関する係数
を、添加率の変更に伴う凝固時間の変化幅とし、前記
(7)式を用いてこの変化幅よりスターター添加率変化
に伴う凝固時間の変化率AAを求め、基本的回帰式での
指定の酸度での凝固時間に対する発酵時間の比率を前記
(6)式により、この凝固時間の変化率で補正し、変更
したスターター添加率での凝固時間に対する発酵時間の
比率を決定した。
Therefore, the coefficient relating to the slope of the regression equation obtained from the relationship between the starter addition rate and the coagulation time in FIG. 8 is defined as the change width of the coagulation time due to the change in the addition rate, and the above equation (7) is used. The change rate of the coagulation time AA according to the change in the starter addition rate is determined from the change width, and the ratio of the fermentation time to the coagulation time at the specified acidity in the basic regression equation is calculated by the above equation (6). The ratio of the fermentation time to the clotting time at the changed starter addition rate was determined.

【0048】図10は実際の製造工程においてスタータ
ー添加率を0.5%、1%、2%、3%と変化させ、固
形分は12%、発酵温度39℃で測定を行った結果であ
る。この図10に示した実際の製造工程の各スターター
添加率における凝固時間を変化率AAを用いて、スター
ター添加率1%の凝固時間に換算し、凝固時間に対する
発酵時間の比率を求めたところ、図11に示すように補
正でき高い相関性が得られた。このことより、本発明は
実際の工程において該式に目的の酸度、スターター添加
率、固形分を代入し、発熱センサーで測定される凝固時
間を代入すると発酵時間が決定され、工程制御に利用で
きることが実証された。
FIG. 10 shows the results obtained by changing the starter addition rate to 0.5%, 1%, 2% and 3% in the actual production process, the solid content was 12%, and the fermentation temperature was 39 ° C. . The coagulation time at each starter addition rate in the actual manufacturing process shown in FIG. 10 was converted to the coagulation time at a starter addition rate of 1% using the change rate AA, and the ratio of the fermentation time to the coagulation time was determined. As shown in FIG. 11, correction was possible and high correlation was obtained. From the above, in the present invention, the fermentation time is determined by substituting the desired acidity, the starter addition rate, and the solid content into the formula in the actual process, and then substituting the coagulation time measured by the heat generation sensor, the fermentation time can be used for process control. Has been demonstrated.

【0049】[0049]

【発明の効果】【The invention's effect】

1、発酵食品の製造工程においてインラインで凝固時間
を測定できることから汚染による製品製造の失敗が阻止
でき、かつこの凝固時間から予定する酸度に達する発酵
時間を算出できることにより、酸度測定の為のサンプリ
ングを省略でき、汚染防止がより確実になる他、作業が
簡略化された。特に培養管理は人手を要していたもので
あり、本発明の方法により発酵時間終了を予測すること
が可能となり、自動制御が可能になった。
1. Since the coagulation time can be measured in-line in the production process of fermented food, the failure of product production due to contamination can be prevented, and the fermentation time to reach the expected acidity can be calculated from the coagulation time, so that sampling for acidity measurement can be performed. It can be omitted, the prevention of contamination becomes more reliable, and the operation is simplified. In particular, the cultivation management required manual labor, and the method of the present invention made it possible to predict the end of the fermentation time, and enabled automatic control.

【0050】2、培地固形分やスターター添加率の変更
による発酵終了判定の変更は、酸度と凝固時間に対する
発酵時間の比率との回帰式を基本として、この回帰式を
補正することにより容易に可能となり、これによって従
来製造完了してみなければ製品の品質が把握出来なかっ
たが、本発明によれば、製造における失敗が格段に少な
くなり、損失が減少した結果、一定品質を有する歩留り
の良い製品製造が可能になった。
2. The determination of fermentation termination by changing the solid content of the culture medium or the rate of addition of the starter can be easily changed by correcting the regression equation based on the regression equation of the acidity and the ratio of the fermentation time to the coagulation time. Thus, the quality of the product could not be grasped unless the conventional manufacturing was completed.According to the present invention, the number of failures in the manufacturing was remarkably reduced, and the loss was reduced. Product manufacturing has become possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】縦軸に温度、横軸に時間をとり、発酵食品の原
料温度と、発熱センサーの温度と発酵食品温度の差の変
化であるΔθを凝固時間及び発酵時間と関係付けたグラ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph in which temperature is plotted on the vertical axis and time is plotted on the horizontal axis, and the raw material temperature of the fermented food and Δθ which is a change in the difference between the temperature of the heat generation sensor and the fermented food temperature are related to the coagulation time and the fermentation time.

【図2】縦軸に酸度、横軸に発酵時間の凝固時間に対す
る比率をとり、培地固形分12%、乳酸菌を培養したス
ターターの添加率を1%とし、発酵温度44℃は△、3
9℃は●、34℃は□で示したグラフ
FIG. 2 shows the acidity on the vertical axis and the ratio of the fermentation time to the coagulation time on the horizontal axis. The solid content of the medium is 12%, and the addition rate of a starter in which lactic acid bacteria are cultured is 1%.
9 ° C is indicated by ●, 34 ° C is indicated by □

【図3】縦軸に酸度、横軸に発酵時間の凝固時間に対す
る比率をとり、スターター添加率1%、発酵温度39℃
の条件で、固形分10%は○、12%は△、14%は□
で表したグラフ
FIG. 3 shows the acidity on the vertical axis and the ratio of fermentation time to coagulation time on the horizontal axis, a starter addition rate of 1% and a fermentation temperature of 39 ° C.
In the conditions of 10%, solid content 10% is ○, 12% is Δ, 14% is □
Graph represented by

【図4】係数Ajと固形分との関係を示したグラフFIG. 4 is a graph showing a relationship between a coefficient Aj and a solid content.

【図5】係数Bjと固形分との関係を示したグラフFIG. 5 is a graph showing a relationship between a coefficient Bj and a solid content.

【図6】係数Cjと固形分との関係を示したグラフFIG. 6 is a graph showing a relationship between a coefficient Cj and a solid content.

【図7】縦軸に酸度、横軸に発酵時間の凝固時間に対す
る比率をとり、スターターの添加率を1%、発酵温度3
9℃の条件で、各2バッチずつ測定し、固形分10%は
▲、12%は●、14%は□で表したグラフ
FIG. 7 shows the acidity on the vertical axis and the ratio of fermentation time to coagulation time on the horizontal axis.
2 batches each were measured under the condition of 9 ° C, and the solid content 10% was indicated by ▲, 12% by ●, and 14% by □.

【図8】縦軸に凝固時間、横軸にスターター添加率を表
したグラフ
FIG. 8 is a graph showing the solidification time on the vertical axis and the starter addition rate on the horizontal axis.

【図9】縦軸に凝固後の酸度、横軸に発酵時間の凝固時
間に対する比率をとり、スターター添加率0.5%は
○、1.0%は●、2.0%は△、3.0%を□で表し
たグラフ
FIG. 9 shows the acidity after coagulation on the vertical axis, and the ratio of fermentation time to coagulation time on the horizontal axis. The starter addition rate of 0.5% is ○, 1.0% is ●, 2.0% is Δ3. Graph in which 0.0% is represented by □

【図10】縦軸に酸度、横軸に発酵時間の凝固時間に対
する比率をとり、スターター添加率0.5%は▲、1.
0%は●、2.0%は△、3.0%は□で表したグラフ
FIG. 10 shows the acidity on the vertical axis and the ratio of fermentation time to coagulation time on the horizontal axis.
0% is represented by ●, 2.0% is represented by Δ, 3.0% is represented by □

【図11】図10の各スターター添加率における凝固時
間を添加率1%の凝固時間に換算し、凝固時間に対する
発酵時間の比率を求めたグラフ
11 is a graph showing the ratio of the fermentation time to the coagulation time obtained by converting the coagulation time at each starter addition rate in FIG. 10 into a coagulation time at an addition rate of 1%.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齋藤 久榮 千葉県柏市篠籠田1135−1 サルビアマ ンション628 (72)発明者 東村 誠 埼玉県川越市新宿町5−11−3 雪印乳 業寮 (56)参考文献 Izv Vyssh Uchebn Zaved Pisch Tekhno l,No.4(1984)p.41−43 (58)調査した分野(Int.Cl.6,DB名) A23C 9/123 A23C 19/032 G01N 11/00 G01N 25/18 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hisae Saito 1135-1 Shinogoda, Kashiwa-shi, Chiba Salvia Mansion 628 (72) Inventor Makoto Higashimura 5-11-3 Shinjuku-cho, Kawagoe-shi, Saitama ) References Izv Vyssh Ucheb Zaved Pisch Technol, No. 4 (1984) p. 41-43 (58) Field surveyed (Int. Cl. 6 , DB name) A23C 9/123 A23C 19/032 G01N 11/00 G01N 25/18 JICST file (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原料に乳酸菌を培養したスターターを添
加して発酵製品を得る飲食品の製造に際し、乳酸菌スタ
ーターの添加から原料の凝固変化までの凝固時間を計測
し、凝固時間に対する発酵時間の比率と酸度との回帰式
から乳酸菌の発酵終了時間を決定する方法。
1. A method for producing a fermented product by adding a starter obtained by culturing lactic acid bacteria to a raw material to obtain a fermented product, wherein the coagulation time from the addition of the lactic acid bacteria starter to the coagulation change of the raw material is measured, and the ratio of the fermentation time to the coagulation time. A method for determining the fermentation end time of lactic acid bacteria from a regression equation between lactic acid bacteria and acidity.
【請求項2】 原料に乳酸菌を培養したスターターを添
加して発酵製品を得る飲食品の製造に際し、乳酸菌スタ
ーターの添加から原料の凝固変化までの凝固時間を計測
し、任意の発酵経過時間を選択して、凝固時間に対する
発酵時間の比率と酸度との回帰式から任意の発酵経過時
間の乳酸菌の酸度を決定する方法。
2. In the production of foods and beverages in which a fermented product is obtained by adding a starter obtained by culturing lactic acid bacteria to a raw material, the coagulation time from the addition of the lactic acid bacteria starter to the coagulation change of the raw material is measured, and an arbitrary fermentation elapsed time is selected. And determining the acidity of the lactic acid bacteria at any elapsed fermentation time from a regression equation between the ratio of the fermentation time to the coagulation time and the acidity.
【請求項3】 請求項1記載の乳酸菌の発酵終了時間を
決定する方法又は請求項2記載の任意の発酵経過時間の
乳酸菌の酸度を決定する方法において、発酵製品の凝固
時間を、発熱作用を有するとともに自らの温度を計測可
能な発熱センサーを用いて、該発熱センサーによって測
定される発熱センサーの温度あるいはその温度と原料の
発酵温度との温度差の変化により計測したものを用いる
乳酸菌の発酵終了時間を決定する方法又は任意の発酵経
過時間の乳酸菌の酸度を決定する方法
3. The method for determining the fermentation end time of a lactic acid bacterium according to claim 1 or the method for determining an acidity of a lactic acid bacterium at an arbitrary fermentation elapsed time according to claim 2, wherein the coagulation time of the fermented product is determined by an exothermic effect. The fermentation of lactic acid bacteria using a heat sensor having a heat sensor capable of measuring its own temperature and measuring the temperature of the heat sensor measured by the heat sensor or a temperature difference between the temperature and the fermentation temperature of the raw material. Method for determining the time or method for determining the acidity of lactic acid bacteria at any elapsed fermentation time
【請求項4】 請求項1の回帰式において、原料の固形
分について、前記回帰式の各係数を個々の固形分値で回
帰してもとめた比率を用いて補正を行った乳酸菌の発酵
終了時間を決定する方法。
4. The fermentation end time of a lactic acid bacterium according to claim 1, wherein the solid content of the raw material is corrected using a ratio obtained by regressing each coefficient of the regression formula with each solid content value. How to determine.
【請求項5】 請求項1の回帰式において、乳酸菌スタ
ーター添加率については、添加率の違いによる凝固時間
の変化率を用いて前記回帰式より得られる凝固時間に対
する発酵時間の比率を補正することにより所定の酸度に
達する乳酸菌の発酵終了時間を決定する方法。
5. The regression formula according to claim 1, wherein for the lactic acid bacteria starter addition rate, the ratio of the fermentation time to the coagulation time obtained from the regression equation is corrected using the change rate of the coagulation time due to the difference in the addition rate. A method for determining a fermentation end time of a lactic acid bacterium reaching a predetermined acidity by the method described above.
JP5263695A 1995-03-13 1995-03-13 Determination of fermentation end time or acidity of lactic acid bacteria Expired - Fee Related JP2832159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5263695A JP2832159B2 (en) 1995-03-13 1995-03-13 Determination of fermentation end time or acidity of lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263695A JP2832159B2 (en) 1995-03-13 1995-03-13 Determination of fermentation end time or acidity of lactic acid bacteria

Publications (2)

Publication Number Publication Date
JPH08242761A JPH08242761A (en) 1996-09-24
JP2832159B2 true JP2832159B2 (en) 1998-12-02

Family

ID=12920321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263695A Expired - Fee Related JP2832159B2 (en) 1995-03-13 1995-03-13 Determination of fermentation end time or acidity of lactic acid bacteria

Country Status (1)

Country Link
JP (1) JP2832159B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001665B2 (en) * 1997-09-24 2007-10-31 株式会社ヤクルト本社 Fermentation product culture management method
SG182379A1 (en) * 2010-01-06 2012-08-30 Meiji Co Ltd Method for producing fermented milk, and dairy product
CN102726523B (en) * 2012-07-03 2014-07-02 浙江一鸣食品股份有限公司 Processing method for zero-additive probiotics yoghourt
KR101885737B1 (en) * 2018-04-30 2018-08-06 주식회사 이지요구르트 Yogurt maker and method for controlling temperature of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Izv Vyssh Uchebn Zaved Pisch Tekhnol,No.4(1984)p.41−43

Also Published As

Publication number Publication date
JPH08242761A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
Fujikawa et al. Modeling Staphylococcus aureus growth and enterotoxin production in milk
CN110023482B (en) Growth control of eukaryotic cells
Urniezius et al. Generic estimator of biomass concentration for Escherichia coli and Saccharomyces cerevisiae fed-batch cultures based on cumulative oxygen consumption rate
US11603517B2 (en) Method for monitoring a biotechnological process
JP2832159B2 (en) Determination of fermentation end time or acidity of lactic acid bacteria
CN111159635B (en) Method for establishing and applying liquid probiotic shelf life prediction model
CN106987636A (en) A kind of method for judging Luzhou-flavor liquor pit mud quality
Okigbo et al. Lactic culture activity tests using pH and impedance instrumentation
JP2724284B2 (en) How to measure the vitality of lactic acid bacteria
Garcia-Armesto et al. Modern microbiological methods for foods: colony count and direct count methods. A review
Franks et al. Mechanistic model of the growth of Streptococcus cremoris HP at super optimal temperatures
Champagne et al. The spot test method for the in-plant enumeration of bacteriophages with paired cultures of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus
FONTANA et al. Rapid enumeration of clostridial spores in raw milk samples using an impedimetric method
CN106434414A (en) Online pH change rate monitoring based HCDC (high cell density cultivation) method for lactic acid bacteria
CN114854817B (en) Method for detecting active saccharomycetes
CN102952844A (en) Preparation method of standard sample for establishing quantitative curve of coliform bacteria, establishment method and application of quantitative curve
SU1295338A1 (en) Method of quantitative determining of lactic-acid bacteria
Neilson et al. The enumeration of thermophilic bacteria by the plate count method
CN1327229C (en) Method for detecting antibiotic in milk through PH meter
Liu Validation of an optical technology for the determination of ph in milk for the manufacture of yogurt
WO2002073154A2 (en) Method and the detection of bacteria and bacterial groups
JPH10271989A (en) Control of culture of bifidus bacteria
JPH08317797A (en) Measurement of fermention tank
Iciek et al. Continuous Control of Microbiological Contamination of Juice in a Sugar Extractor
Cooperman Assay for folic acid activity in blood

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980825

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070925

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100925

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100925

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120925

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130925

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees