JP4001561B2 - Melting canister - Google Patents

Melting canister Download PDF

Info

Publication number
JP4001561B2
JP4001561B2 JP2003086769A JP2003086769A JP4001561B2 JP 4001561 B2 JP4001561 B2 JP 4001561B2 JP 2003086769 A JP2003086769 A JP 2003086769A JP 2003086769 A JP2003086769 A JP 2003086769A JP 4001561 B2 JP4001561 B2 JP 4001561B2
Authority
JP
Japan
Prior art keywords
canister
melting
prevention ring
overflow prevention
solid waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003086769A
Other languages
Japanese (ja)
Other versions
JP2004294252A (en
Inventor
淳也 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003086769A priority Critical patent/JP4001561B2/en
Publication of JP2004294252A publication Critical patent/JP2004294252A/en
Application granted granted Critical
Publication of JP4001561B2 publication Critical patent/JP4001561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、原子力施設から発生する放射性雑固体廃棄物を溶融固化処理するために使用される溶融用キャニスタに関するものである。
【0002】
【従来の技術】
【特許文献1】
特許第3096184号公報
【0003】
原子力発電所その他の原子力施設から発生する金属、コンクリート、ガラスなどの放射性雑固体廃棄物は、従来から高周波誘導加熱炉において溶融されたうえ固化処理されており、このためにセラミックス製のキャニスタが用いられている。放射性雑固体廃棄物はキャニスタ内で1400〜1500℃程度の高温で溶融処理されるが、放射性雑固体廃棄物中に低沸点成分が含まれていると、キャニスタ内の溶湯に投入したときに気化して発泡し、溶湯面が暴れる場合がある。このときには図5に示されるように溶湯表面に多量の跳ね散りが生じ、キャニスタ外部に溢流するおそれがある。このような溢流が生じるとキャニスタの昇降部分に付着して昇降が円滑に行えなくなったり、炉内に放射性物質が付着するという問題を招く。なお低沸点成分の代表的なものは沸点が約930℃の亜鉛であり、亜鉛めっきされた鉄製品に多く含まれている。
【0004】
このため多量の低沸点物質を含む放射性雑固体廃棄物を処理する場合には、溶湯面が一時的に上昇したときにも跳ね散りによる溢流が生じないようキャニスタに投入する放射性雑固体廃棄物を少なめにするか、低沸点物質を前処理して完全に除去する必要があった。しかし放射性雑固体廃棄物の投入量を減少させると容積効率が低下するという問題がある。また、前処理工程において完全に低沸点廃棄物を除去することは難しいという問題があった。
【0005】
そこで前記の特許文献1には、放射性雑固体廃棄物について低沸点物質を含んだ固体廃棄物とそれ以外の固体廃棄物に分別したうえ溶融処理させる方法が記載されている。しかしこの方法では、完全に除去できなかった低沸点成分による溶湯溢流を防止できないという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決し、低沸点物質を含む放射性雑固体廃棄物を溶融処理する場合にも、キャニスタからの溢流を防止することができ、従ってキャニスタへの投入量を下げる必要がなく、また前処理により除去できなかった低沸点成分が混入した場合についても安定した処理が可能な溶融用キャニスタを提供するためになされたものである。
【0007】
【課題を解決するための手段】
前述の目的を達成するためになされた本発明は、放射性雑固体廃棄物を溶融固化処理するための溶融用キャニスタにおいて、キャニスタ上部開口縁に内庇部を形成する溢流防止リングを設けたことを特徴とするものである。この溢流防止リングをキャニスタ上部開口縁に接着または嵌め込みにより取り付けた構造とすることができ、材質としては溶融温度に耐えうる材質であればよく、特に熱応力を抑制するために溢流防止リングをキャニスタと同材質とすることが好ましい。
【0008】
本発明の溶融用キャニスタは、上部開口縁に溢流防止リングを設けたため、低沸点物質を含む放射性雑固体廃棄物を溶融処理する際に溶湯面が一時的に上昇して暴れても、跳ね散った溶湯の飛散を溢流防止リングで防止することができる。このため通常の放射性雑固体廃棄物を溶融処理する場合と同様に、溶融処理が可能となる。この溢流防止リングは接着または嵌め込みによって容易に取り付けることができ、材質は溶融温度に耐えうるものであればどのような材質を用いてもよいが、特にキャニスタと同材質としておけば熱膨張差による割れが生じることもない。
次に、本発明の好ましい実施の形態を図に基づいて詳細に説明する。
【0009】
【発明の実施の形態】
図1において、1は高周波による誘導加熱ができる導電性セラミックスよりなるキャニスタである。該キャニスタ1はカーボンを含有させたアルミナ系またはジルコニア系などのセラミックスよりなり、例えば直径480mm、厚み30mmのものである。キャニスタ1の上部開口縁には、水平な内庇部2を形成する溢流防止リング3が設けてある。図1における溢流防止リング3は厚みを例えば10mmとした平板リング状のもので、内庇部2はキャニスタ1の内側に25mm程度張出すようになっている。この溢流防止リング3は、溶融温度に耐えうる材質であれば問題ないが、特に、キャニスタ1と同材質としておけば、熱膨張率が等しくなるため、加熱時の熱応力による亀裂発生や破損を防止することができる。図1の溢流防止リング3は、接着剤によりキャニスタ1の上部開口縁に接着されている。
【0010】
図1の溢流防止リング3は平板リング状のものであるが、図2に示されるように数十mmの高さを持たせて内庇部2の内側を上向き傾斜面としてもよい。内庇部2を上向き傾斜面とすることにより、溶湯の跳ね散り方向を内向きに変えることができるので、跳ね散りが溢流防止リング3上に落ちることがなくなり、キャニスタ1の外部への溢流をより確実に防止できることとなる。このため内庇部2を上向き傾斜とした溢流防止リング3の場合は、内庇部2を若干小さくすることができる。
【0011】
なお、溢流防止リング3の高さを高くし過ぎると溶融時に必要な上部クリアランスが確保できなくなる。また溢流防止リング3はキャニスタ1から取り外されることなくそのままドラム缶に収納して保管されるため、溢流防止リング3の高さを高くし過ぎると切断等の作業が必要となる。溢流防止リングの高さは、炉内上部クリアランス、並びにドラム缶高さとの関係から設定する必要がある。
【0012】
図2の溢流防止リング3も接着剤によりキャニスタ1の上部開口縁に接着されているが、図3に示すように溢流防止リング3にキャニスタ1の開口縁内周に嵌りこむ段部4を設けておき、嵌めこみ式とすることもできる。この場合には接着工程が不要となる。ただしキャニスタ1の開口縁内周に嵌め込むと外径が大きくなってドラム缶に収納しにくくなるため、図3のように内周嵌めこみ型とすることが好ましい。
【0013】
次に、図4に示す高周波溶融炉10による放射性雑固体廃棄物の溶融処理方法を説明する。先ず、図4に一点鎖線で示されるように、下降位置にある昇降台11上にキャニスタ1を載置したうえ、昇降装置を駆動して図4の実線で示されるようにキャニスタ1を炉本体12内に下方から挿入する。キャニスタ1内には予め所定量の放射性雑固体廃棄物が収納されている。
【0014】
その後、誘導加熱コイル13に高周波電力を加えて導電性セラミックスよりなるキャニスタ1を1400〜1500℃に誘導加熱し、放射性雑固体を溶融させる。溶融に伴い液面が低下するので、廃棄物廃棄物投入口14を介してキャニスタ1内に放射性雑固体廃棄物を追加投入して溶融処理させる。このとき投入した放射性雑固体廃棄物に亜鉛等の低沸点物質が含まれていると、低沸点物質が溶湯内で気化して発泡し、キャニスタ1内の溶湯が一時的に上昇する。
【0015】
この一時的な溶湯面の上昇時、溶湯表面では多量の跳ね散りが発生する。しかし外部に飛び出しやすいキャニスタ周縁部で生じる跳ね散りはキャニスタ1の開口上縁に設けた溢流防止リング3の内庇部2にぶつかって止められるので、跳ね散る溶湯がキャニスタ1の外部に溢流することは防止される。また図2、3に示されるような内庇部内側を上向き傾斜とした溢流防止リング3の場合、上向き傾斜の内庇部2は内庇部内側を水平としたものより、跳ね散る溶湯の方向を内側に向け、溢流をより的確に防止できることとなる。
【0016】
このようにして溢流を防止しつつキャニスタ1内に放射性雑固体廃棄物を投入して溶融し、キャニスタ1内の溶湯面が所定のレベルに達したら、昇降台16を降下させて、支台23上からキャニスタ1を搬出する。前記したように、溢流防止リング3はキャニスタ1に取り付けられたままとする。搬出されたキャニスタ1は冷却されて溶湯を固化させ、ドラム缶内に収納してセメントモルタルが注入され、輸送及び貯蔵に適した安定した溶融固化体となる。
【0017】
【発明の効果】
本発明は前記説明によって明らかなように、放射性雑固体廃棄物を溶融させる溶融炉に用いるキャニスタの上部開口縁に内庇部を形成する溢流防止リングを設けたことにより、溶湯内に投入された低沸点物質が気化して溶湯面の一時的な上昇が生じたり、溶湯表面からの跳ね散りが生じても、溢流を防止することができる。このためキャニスタへの収容量を減らす必要がない。放射性雑固体廃棄物前処理時に分別できなかった低沸点成分が混入した場合についても安定した処理が可能である。
【0018】
また請求項2のように、溢流防止リングをキャニスタ上部開口縁に接着または内嵌めにより取り付ければ、キャニスタの製作コストが大幅に上昇することはなく、請求項3のように溢流防止リングを溶融温度に耐えうる材質であればどのような材質を用いてもよいので、コストや成形性等の条件下において最適な材質を選択することができる。特に請求項4のように溢流防止リングをキャニスタと同材質とすることにより、熱膨張率による亀裂や破損を的確に抑えることができる。従って、本発明は従来の問題点を解消した溶融用キャニスタとして業界の発展に寄与するところ大なものである。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す断面図である。
【図2】本発明の第2の実施形態を示す断面図である。
【図3】本発明の第3の実施形態を示す断面図である。
【図4】高周波溶融炉を示す一部切欠正面図である。
【図5】従来技術における溢流の発生を示す説明図である。
【符号の説明】
1 キャニスタ、2 内庇部、3 溢流防止リング、10 高周波溶融炉、11 昇降台、12 炉本体、13 誘導加熱コイル、14 廃棄物廃棄物投入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a melting canister used for melting and solidifying radioactive miscellaneous solid waste generated from a nuclear facility.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent No. 3096184 [0003]
Radioactive miscellaneous solid waste such as metal, concrete, and glass generated from nuclear power plants and other nuclear facilities has been conventionally melted and solidified in a high-frequency induction heating furnace, and a ceramic canister is used for this purpose. It has been. Radioactive miscellaneous solid waste is melted at a high temperature of about 1400-1500 ° C. in the canister. However, if the radioactive miscellaneous solid waste contains low-boiling-point components, May foam and foam, and the molten metal surface may be exposed. At this time, as shown in FIG. 5, a large amount of splashing occurs on the surface of the melt, and there is a possibility of overflowing outside the canister. If such an overflow occurs, it will adhere to the ascending / descending portion of the canister and will not be able to move up and down smoothly, or will cause a problem that radioactive material will adhere to the furnace. A typical low-boiling component is zinc having a boiling point of about 930 ° C., which is abundant in galvanized iron products.
[0004]
Therefore, when processing radioactive miscellaneous solid waste containing a large amount of low-boiling substances, the radioactive miscellaneous solid waste thrown into the canister will not cause overflow due to splashing even when the molten metal surface rises temporarily. The low boiling point material had to be pretreated and completely removed. However, there is a problem that volumetric efficiency decreases when the input amount of radioactive miscellaneous solid waste is reduced. Further, there is a problem that it is difficult to completely remove low boiling point waste in the pretreatment process.
[0005]
Therefore, Patent Document 1 describes a method for subjecting radioactive miscellaneous solid waste to a solid waste containing a low boiling point substance and a solid waste other than that and then subjecting it to a melting treatment. However, this method has a problem that it cannot prevent molten metal overflow due to low boiling point components that could not be completely removed.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-described conventional problems, and can prevent overflow from the canister even when the radioactive miscellaneous solid waste containing low-boiling substances is melt-processed. Therefore, the input amount to the canister can be reduced. The object of the present invention is to provide a melting canister that can be stably treated even when a low boiling point component that does not need to be lowered and cannot be removed by pretreatment is mixed.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention is a melting canister for melting and solidifying radioactive solid waste, and is provided with an overflow prevention ring that forms an inner flange at the upper opening edge of the canister. It is characterized by. The overflow prevention ring can be attached to the upper opening edge of the canister by bonding or fitting, and any material that can withstand the melting temperature may be used. Especially, the overflow prevention ring is used to suppress thermal stress. Is preferably made of the same material as the canister.
[0008]
The melting canister of the present invention is provided with an overflow prevention ring at the upper opening edge, so even when the radioactive miscellaneous solid waste containing low-boiling substances is melted, even if the molten metal surface rises temporarily and jumps, Spattering of the molten metal can be prevented by the overflow prevention ring. For this reason, the melting process can be performed in the same manner as in the case of melting a normal radioactive miscellaneous solid waste. This overflow prevention ring can be easily attached by gluing or fitting, and any material can be used as long as it can withstand the melting temperature. No cracking occurs.
Next, a preferred embodiment of the present invention will be described in detail with reference to the drawings.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, reference numeral 1 denotes a canister made of conductive ceramics capable of induction heating by high frequency. The canister 1 is made of an alumina or zirconia ceramic containing carbon, and has a diameter of 480 mm and a thickness of 30 mm, for example. An overflow prevention ring 3 that forms a horizontal inner flange 2 is provided at the upper opening edge of the canister 1. The overflow prevention ring 3 in FIG. 1 is a flat ring shape having a thickness of, for example, 10 mm, and the inner flange portion 2 projects over the inside of the canister 1 by about 25 mm. The overflow prevention ring 3 may be any material as long as it can withstand the melting temperature. In particular, if the same material as that of the canister 1 is used, the coefficient of thermal expansion becomes equal. Can be prevented. The overflow prevention ring 3 in FIG. 1 is bonded to the upper opening edge of the canister 1 with an adhesive.
[0010]
The overflow prevention ring 3 in FIG. 1 is a flat ring shape, but it may have a height of several tens of millimeters as shown in FIG. By making the inner flange portion 2 an upward inclined surface, the splash direction of the molten metal can be changed inward, so that the splash does not fall on the overflow prevention ring 3 and overflows to the outside of the canister 1. The flow can be prevented more reliably. For this reason, in the case of the overflow prevention ring 3 in which the inner flange portion 2 is inclined upward, the inner flange portion 2 can be slightly reduced.
[0011]
If the height of the overflow prevention ring 3 is too high, the upper clearance required for melting cannot be secured. Further, since the overflow prevention ring 3 is stored and stored in the drum can as it is without being removed from the canister 1, if the height of the overflow prevention ring 3 is too high, an operation such as cutting is required. The height of the overflow prevention ring needs to be set based on the relationship between the upper clearance in the furnace and the height of the drum.
[0012]
The overflow prevention ring 3 in FIG. 2 is also bonded to the upper opening edge of the canister 1 with an adhesive. However, as shown in FIG. 3, the step 4 that fits into the overflow prevention ring 3 on the inner periphery of the opening edge of the canister 1. It is also possible to provide a fitting type. In this case, an adhesion process is not necessary. However, since the outer diameter becomes large when it is fitted to the inner periphery of the opening edge of the canister 1 and it is difficult to store it in the drum can, it is preferable to use the inner circumference fitting type as shown in FIG.
[0013]
Next, a method for melting radioactive miscellaneous solid waste by the high-frequency melting furnace 10 shown in FIG. 4 will be described. First, as shown by a one-dot chain line in FIG. 4, the canister 1 is placed on the lifting platform 11 in the lowered position, and then the lifting device is driven to move the canister 1 to the furnace body as shown by the solid line in FIG. 4. Insert into 12 from below. A predetermined amount of radioactive miscellaneous solid waste is stored in the canister 1 in advance.
[0014]
Thereafter, high frequency power is applied to the induction heating coil 13 to inductively heat the canister 1 made of conductive ceramics to 1400 to 1500 ° C. to melt the radioactive miscellaneous solid. Since the liquid level is lowered with melting, radioactive miscellaneous solid waste is additionally charged into the canister 1 via the waste waste charging port 14 and melted. If the radioactive miscellaneous solid waste introduced at this time contains a low-boiling substance such as zinc, the low-boiling substance vaporizes and foams in the molten metal, and the molten metal in the canister 1 temporarily rises.
[0015]
During the temporary rise of the molten metal surface, a large amount of splashing occurs on the molten metal surface. However, splashing that occurs at the peripheral edge of the canister that tends to jump to the outside is stopped by hitting the inner flange 2 of the overflow prevention ring 3 provided at the upper edge of the opening of the canister 1. Doing so is prevented. 2 and 3, in the case of the overflow prevention ring 3 with the inner heel portion inside inclined upward, the upward inclined inner ridge portion 2 of the molten metal that scatters more than the one with the inner heel portion inner side horizontal. The direction will be inward, and overflow will be prevented more accurately.
[0016]
In this way, while preventing overflow, radioactive miscellaneous solid waste is introduced into the canister 1 and melted. When the molten metal surface in the canister 1 reaches a predetermined level, the elevator 16 is lowered to lower the abutment. 23 Canister 1 is carried out from above. As described above, the overflow prevention ring 3 remains attached to the canister 1. The unloaded canister 1 is cooled to solidify the molten metal, accommodated in a drum can, and cement mortar is poured into a stable melt-solidified material suitable for transportation and storage.
[0017]
【The invention's effect】
As is apparent from the above description, the present invention is introduced into the molten metal by providing an overflow prevention ring that forms an inner flange at the upper opening edge of the canister used in the melting furnace for melting radioactive miscellaneous solid waste. Even if the low boiling point material is vaporized to cause a temporary rise of the molten metal surface or a splash from the molten metal surface, overflow can be prevented. For this reason, there is no need to reduce the capacity of the canister. Stable treatment is possible even when low-boiling components that could not be separated during pretreatment of radioactive solid waste are mixed.
[0018]
In addition, if the overflow prevention ring is attached to the upper opening edge of the canister by adhesion or internal fitting as in claim 2, the production cost of the canister does not increase significantly, and the overflow prevention ring is in accordance with claim 3. Any material can be used as long as it can withstand the melting temperature. Therefore, an optimal material can be selected under conditions such as cost and formability. In particular, when the overflow prevention ring is made of the same material as that of the canister as in the fourth aspect, cracks and breakage due to the coefficient of thermal expansion can be accurately suppressed. Therefore, the present invention greatly contributes to the development of the industry as a melting canister that solves the conventional problems.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a second embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a third embodiment of the present invention.
FIG. 4 is a partially cutaway front view showing a high-frequency melting furnace.
FIG. 5 is an explanatory diagram showing the occurrence of overflow in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Canister, 2 Inner ridge part, 3 Overflow prevention ring, 10 High frequency melting furnace, 11 Lifting stand, 12 Furnace main body, 13 Induction heating coil, 14 Waste waste inlet

Claims (4)

放射性雑固体廃棄物を溶融固化処理するための溶融用キャニスタにおいて、キャニスタ上部開口縁に内庇部を形成する溢流防止リングを設けたことを特徴とする溶融用キャニスタ。A melting canister for melting and solidifying radioactive miscellaneous solid waste, comprising an overflow prevention ring that forms an inner flange at an opening edge of the upper portion of the canister. 溢流防止リングをキャニスタ上部開口縁に接着または嵌め込みにより取り付けたことを特徴とする請求項1に記載の溶融用キャニスタ。2. The melting canister according to claim 1, wherein the overflow prevention ring is attached to the upper opening edge of the canister by adhesion or fitting. 溢流防止リングを溶融温度に耐えうる材質としたことを特徴とする請求項1または2に記載の溶融用キャニスタ。3. The melting canister according to claim 1, wherein the overflow prevention ring is made of a material that can withstand a melting temperature. 溢流防止リングをキャニスタと同材質としたことを特徴とする請求項1から3のいずれかに記載の溶融用キャニスタ。4. The melting canister according to claim 1, wherein the overflow prevention ring is made of the same material as that of the canister.
JP2003086769A 2003-03-27 2003-03-27 Melting canister Expired - Lifetime JP4001561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086769A JP4001561B2 (en) 2003-03-27 2003-03-27 Melting canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086769A JP4001561B2 (en) 2003-03-27 2003-03-27 Melting canister

Publications (2)

Publication Number Publication Date
JP2004294252A JP2004294252A (en) 2004-10-21
JP4001561B2 true JP4001561B2 (en) 2007-10-31

Family

ID=33401305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086769A Expired - Lifetime JP4001561B2 (en) 2003-03-27 2003-03-27 Melting canister

Country Status (1)

Country Link
JP (1) JP4001561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5004490B2 (en) * 2006-03-31 2012-08-22 中国電力株式会社 A melting furnace structure that prevents the combustion flame from wrapping around the outer periphery of the canister
JP7258693B2 (en) * 2019-08-09 2023-04-17 株式会社神戸製鋼所 Method for manufacturing bulk metal article

Also Published As

Publication number Publication date
JP2004294252A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
CA1168040A (en) Technique for conserving hot metal temperature
JP4001561B2 (en) Melting canister
US3610600A (en) Continuously operable plant for degassing and pouring metal melts
US4157110A (en) Method of producing ingots of unalloyed and alloyed steels
CN109022858A (en) A kind of aluminum melting process
JP5014876B2 (en) Secondary refining method of low-sulfur steel to suppress sulfurization phenomenon in vacuum degassing process
FI104381B (en) Dispenser for an electric oven
JP4521880B2 (en) Continuous casting method to prevent contamination sources from entering tundish
KR20190128444A (en) Method for coating of container and method for processing molten metal
JP4906384B2 (en) Waste sorting table
RU2166842C1 (en) Consumable electrode
RU2291209C2 (en) Metals and alloys melting and casting method
JP2004294308A (en) Melting processing method of miscellaneous solid waste
JP2544720Y2 (en) Tuyere structure of gas injection nozzle for molten metal container
JPH0277516A (en) Method for treating steelmaking slag producing at steelmaking process
RU2310547C2 (en) Melting crucible
JPH06240313A (en) Method for cooling and crushing treatment of slag
JPH0933692A (en) Producing for radioactive material container vessel
JP6414097B2 (en) How to reuse molten steel
JP2007146206A (en) Heat-retaining plate for molten metal carrying vessel and heat-retaining method
CN1473081A (en) Method and device for controlling temperature of steel from surface of bath of continuous casting installation up to furnace tap
JPS6036877Y2 (en) Structure of flange joint of molten steel processing equipment
KR810000573B1 (en) Method of producing ingots of unalloyed and alloyed steels
JPH01118348A (en) Method for reutilizing tundish in continuous casting of steel
CN114210934A (en) Casting process of as-cast high manganese steel lining plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

EXPY Cancellation because of completion of term