JP4001347B2 - Light emitting diode and manufacturing method thereof - Google Patents

Light emitting diode and manufacturing method thereof Download PDF

Info

Publication number
JP4001347B2
JP4001347B2 JP2004501970A JP2004501970A JP4001347B2 JP 4001347 B2 JP4001347 B2 JP 4001347B2 JP 2004501970 A JP2004501970 A JP 2004501970A JP 2004501970 A JP2004501970 A JP 2004501970A JP 4001347 B2 JP4001347 B2 JP 4001347B2
Authority
JP
Japan
Prior art keywords
case
light emitting
epoxy resin
emitting diode
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004501970A
Other languages
Japanese (ja)
Other versions
JPWO2003092082A1 (en
Inventor
繁 山崎
Original Assignee
株式会社 オプトデバイス研究所
株式会社パール電球製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 オプトデバイス研究所, 株式会社パール電球製作所 filed Critical 株式会社 オプトデバイス研究所
Priority claimed from PCT/JP2003/005341 external-priority patent/WO2003092082A1/en
Publication of JPWO2003092082A1 publication Critical patent/JPWO2003092082A1/en
Application granted granted Critical
Publication of JP4001347B2 publication Critical patent/JP4001347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)

Description

技術分野
本発明は、硬化促進型エポキシ樹脂の一種であるカチオン重合型透明エポキシ樹脂で充填された反射面を有する発光ダイオードおよびその製造方法に関するものである。
背景技術
発光素子から発する光を金属反射面を介して有効に外部前方に放射するための発光ダイオード構造は、多くの先行技術に開示されている。これらの先行技術において、金属反射面がケースの外側に蒸着されるか、ケースの内側に蒸着されるか、またはあらかじめ製造された金属板反射面を用いるかによって3つのタイプに分けられる。
金属反射面がケースの外側に設けられる第1の例として、特開昭49−82290号、特開昭58−82290号に開示された発光ダイオードが知られている。図6に示すこの種の発光ダイオードにおいては、発光素子61は、リード62a上に導電性接着剤63によって取り付けられ、リード62bと金ワイヤー64により電気的に接続される。その後、リード62a,62bに取り付けられた発光素子61を半球状または放物形状の型の中に入れて、光透過性樹脂65を用いてトランスファーモールド法でリード62a,62bと発光素子61を一体化して固形成形したものである。その後、上記半球状または放物形状の凸状面の外部表面に金属蒸着またはメッキ法等によって表面コート処理を行い凹状反射面66を形成し、さらにこの凹状反射面66を保護するためにオーバーコート層67が施されている。この凹状反射面66は発光素子61で放射された光を反射して放射面68から外部へ放射する。このような構造によって、発光素子61から放射された光の殆ど全てを一旦反射面66で反射させ、放射面68から発光ダイオードの外部へ放射することができる。
さらに、金属反射面がケースの内側に設けられる第2の例として、特開昭62−269984号、特開平01−143366号、実開昭55−113570号などに開示された発光ダイオードが知られている。図7に示すようにこの種の発光ダイオードにおいては、ケース71の凹面部にアルミニウムもしくは銀を蒸着し又はメッキ層を設けた反射面72の焦点に位置するように発光素子73が配置されている。その発光素子73の一端はリード74a上に導電性接着剤を用いて取り付けられ、他端は金線75を介してリード74bに電気的に接続されている点は上記の第1の例と同様である。
これらの発光ダイオードでは、まず、ケース71の凹面部にアルミニウムもしくは銀を蒸着し又はメッキ層72を設ける。その後、リード74a、74bをケース71に挿入し、その後、発光素子73の一端をリード74a上に導電性接着剤を用いて取り付け、他端を金線75を介してリード74bに電気的に接続する。
その後、反射面72の凹部に透明エポキシ樹脂76をポッティング充填した後に加熱硬化させることによって発光素子を固定している。この種の発光ダイオードにおいては、反射面72と発光素子73とを透明エポキシ樹脂76で充填することによって、光学的位置関係が高精度となり、より優れた光学特性を持つ発光ダイオードが得られ、またポッティング法による成型方法を用いるので発光ダイオードを安価に提供できるなどの特徴があった。
さらに、あらかじめ製造された金属反射面を用いる第3の例として、特開昭55−118681号、米国特許公開2001/0024087などに開示された発光ダイオードが知られている。図8に示すように、この種の発光ダイオードにおいては、金属板からなる反射鏡85の凹面部にアルミニウムもしくは銀を蒸着し又はメッキ層を設け、その金属板からなる反射鏡85の焦点に位置するように発光素子81が配置されている。その発光素子81の一端はリード82a上に導電性接着剤等を用いて取り付けられ、他端は金線83を介してリード82bに電気的に接続されている点は上記の第1の例と同様である。
これらの発光ダイオードでは、リード82a,82b、発光素子81、金線83およびあらかじめ凹面部にアルミニウムもしくは銀を蒸着し又はメッキ層が設けられた金属板からなる反射鏡85を透明エポキシ樹脂84を用いたトランスファーモールド法によって一体化して加熱硬化させている。この種の発光ダイオードにおいても、反射鏡85と発光素子81とが透明エポキシ樹脂84で充填されるので、光学的位置関係が高精度となり、より優れた光学特性を持つ発光ダイオードが得られる特徴があった。
しかしながら、金属反射面がケースの外側に設けられる第1の例における構造を有する発光ダイオードでは、反射面が露出されたまま箱詰めする等の包装方法が取られるので、ハードコートによる保護層を設けたとはいえ、発光ダイオードの実装時または取扱い時において、反射面間の接触、反射面とリード先端との接触によって保護(ハードコート)層を貫通し反射面にキズが生じることがあった。このキズによって反射面の反射性能の低下や反射面の早期劣化等が発生しやすいといった問題が生じていた。
なお、一般的に電子部品を回路基板上に実装する場合、回路基板全体を250℃前後の雰囲気を有するリフロー炉を通過させ、回路基板の半田付けを行っている。上記のような金属反射面を有する発光ダイオードを回路基板上に実装し、リフロー炉を通過させると、発光ダイオードを含む回路基板全体が250°C程度まで温度が上昇する。そのために、透明エポキシ樹脂の熱膨張係数と反射面を構成する銀金属層またはアルミニウム金属層の熱膨張係数差によって反射面に皺や亀裂が発生し、反射面の反射率が低下して光学特性が低下するなどの問題が生じていた。
さらに、発光ダイオードの輸送時においても、各発光ダイオードの反射面が振動によりキズ付かないように特別な梱包をしなくてはならないのが現状であった。
また、従来のようなエポキシ樹脂のみで一体化成形する構造の発光ダイオードにおいては、基板への実装時に発光ダイオードから外部へ突出したリードを折り曲げる時に、エポキシ樹脂端面に異常な応力が加わることによって、エポキシ樹脂のリード部分にクラックが発生する等の問題もあった。
一方、金属反射面がケースの内側に設けられる第2の例においては、凹面反射体の凹部にポッティング法によって透明エポキシ樹脂を充填させ、発光素子と凹面反射面を固定している。しかしながら、透明エポキシ樹脂が硬化収縮するときに、透明エポキシ樹脂と凹面反射部の銀またはアルミニウム金属との熱膨張係数の差によって、凹面反射面に皺や亀裂が発生したりすることがある。著しい場合には、凹面反射面が剥がれエポキシ樹脂の中に破片として分散することもある。このような場合には、上述と同様に反射率が低下し、光学特性が損われ実用上大きな問題が発生していた。このような理由で実用上は、凹面反射部に金属を用いないで反射率の高い白色ABS樹脂等を使用することによって反射特性を確保しているが、充分な反射率が得られないのが現状である。
一方、あらかじめ製造された金属反射面を用いる第3の例においては、透明エポキシ樹脂で発光素子81と反射鏡85とを一体化することによって、発光素子と凹面反射面を固定している。しかしながら、この第3の例においては反射鏡85を別工程によって製造した後に透明エポキシ樹脂を用いて発光素子と一体化して硬化させるので、工程数が多くなり発光ダイオードの価格が高くなる欠点があった。
さらに、透明エポキシ樹脂を用いて発光素子と反射鏡とを一体化する従来の発光ダイオードにおいては、硬化収縮率が大きいために、図6の参照番号68、図7の参照番号78、図6の参照番号88で示すように、硬化後において放射面が平面でなく凹面になり実質的に放射面に凹レンズを付けたのと同様の効果となり反射面から光学設計通りの光が放射されなくなる欠点があった。
本発明は、上記の点に鑑みて発明されたものであり、発光素子と反射面とを透明エポキシ樹脂で一体化する構成の発光ダイオードにおいて、前記の透明エポキシ樹脂にカチオン重合型透明エポキシ樹脂を用いることによって、製造時に反射面に皺や亀裂が生じず、搬送時においても特別の包装を必要とせず取扱いが容易で、かつリフロー炉の高温雰囲気中を通過させた場合でも反射面に皺や亀裂が発生せず、さらに、硬化収縮率が小さいために硬化後において放射面の平面性が保たれ、そのために放射面から放射された光が放射面と外部の界面において屈折することなく外部へ放射される発光ダイオードを提供することにある。
本発明では上記の課題を解決するために、凹面を有するケースを形成する工程と、凹面上に金属層が形成された反射面を形成する工程と、反射面に対向して発光素子が取り付けられるリードを形成する工程とを備えた発光ダイオードを製造する発光ダイオード製造方法を提供する。この発光ダイオード製造方法においては、ケースの凹面を有する空洞中にカチオン重合型透明エポキシ樹脂を充填する工程と、前記カチオン重合型透明エポキシ樹脂と反射面とケースとをサンドイッチ構造に形成した状態でカチオン重合型透明エポキシ樹脂を80〜130℃の雰囲気下で反応率20%〜90%まで緩慢に硬化させる工程とを備える。本発明では、このように、カチオン重合型透明エポキシ樹脂をサンドイッチ構造を保ったまま緩慢に硬化させるので、硬化完了時において反射面に皺や亀裂が生じない利点がある。
さらに、カチオン重合型透明エポキシ樹脂は、硬化収縮率が小さいために硬化後において放射面の平面性が保たれ、そのために放射面から放射された光は放射面と外部の界面において屈折することなく外部へ放射される。
好ましくは、本発明の発光ダイオード製造方法におけるカチオン重合型透明エポキシ樹脂を充填する工程は、リードをケースの上端面に設けられた溝に嵌合させる工程と、リードが嵌合された溝に光硬化エポキシ樹脂をケースの上端面まで充填し、その光硬化エポキシ樹脂に紫外線を照射してリードをケースの溝に固定する工程と、カチオン重合型透明エポキシ樹脂をケースの上端面まで充填する工程とを備える。本発明では、これらの工程によって、樹脂漏れをさらに完全に防止することができる。
また、好ましくは、本発明の発光ダイオード製造方法におけるカチオン重合型透明エポキシ樹脂を充填する工程は、リードをケースの上端面に設けられた溝に嵌合させる工程と、ケースの上端面を覆い、ケースの溝に対応する部分に突起部を有する枠をケースに被せる工程と、カチオン重合型透明エポキシ樹脂をケースの上端面まで充填する工程とをさらに備える。これによって樹脂漏れを完全に防止することができる。
また、好ましくは、本発明の凹面を有するケースを形成する工程においては、その材料として、ポリカーボネート樹脂、PPCアロイ樹脂、ポリエーテルエーテルケトン樹脂等の耐熱性樹脂を用いることができる。さらに、充填工程は、前記樹脂にガラス繊維を含むように構成される。これらの耐熱性樹脂またはガラス繊維入りの樹脂を用いることによって、ハンダ・リフロー工程における高熱によっても反射面の表面の皺や亀裂のない耐熱性の高い発光ダイオードを提供できる。
さらに、好ましくは、本発明の凹面を有するケースを形成する工程においては、その材料として、樹脂にガラス繊維を含ませ、凹面の表面に耐熱性エポキシ樹脂の下地層を形成した後に、その下地層上に金属反射面を形成する工程をさらに含むようにすることができる。このような構成によって、凹面の平面性が良くなり、反射率の優れた発光ダイオードを得ることができる。
発明を実施するための最良の形態
以下に本発明の実施の形態を図1〜図5を参照して説明する。
図1は、本発明の発光ダイオードに用いられるリード上に実装された発光素子を説明する図である。発光素子11の一端はリード12aに導電性接着剤14を介して固定され、一方、発光素子11の他端は、金線13を介してリード12bに電気的に接続される。このように構成された発光素子が搭載されたリードを用意する。
図2は、本発明の発光ダイオードに用いられるケースの概略構造図である。図2(a)はケース22の全体図を示し、図2(b)は、側面図を示す。図2に示すように、全体が樹脂で構成され、内部が凹面に形成されたケース22を用意し、このケース22の凹面上にアルミニウムもしくは銀の蒸着またはメッキ層からなる反射面21を形成する。この時にケース22には前記リードを嵌合させるために、リード寸法に合わせた溝23をケース22の対向する辺に一対形成しておく。後述するように、図2(b)において、反射面21の内側にカチオン重合型透明エポキシ樹脂がケース22の上面まで充填されたときの表面28は反射面21で反射された反射光が外部に放射される放射面を構成する。
図3は、本発明の発光ダイオードに用いられるケースとリードとの関係を説明する図である。図3に示すように、発光素子を搭載したリードを、発光素子11が反射面21の方向を向くように、ケース22の溝23に嵌合させる。このとき、すなわち、リードをケース22の溝に嵌合させる際に、事前に溝に対応するリード部に光硬化性樹脂または接着性樹脂31をディスペンサーなどを用いて少量滴下した後に溝部分を硬化させてケース22とリードとを固着する。
次に、ケース22の凹部にカチオン重合型透明エポキシ樹脂をケース22の縁面まで充填させた後に、80〜130℃の雰囲気炉中で樹脂を硬化させる。本発明においては、透明エポキシ樹脂を硬化させるために、カチオン重合型透明エポキシ樹脂を用いることに特徴がある。
透明エポキシ樹脂を硬化させるためには、通常、エポキシ樹脂と硬化剤をケース22の凹部に充填する方法が用いられている。この硬化剤を用いる方法では、エポキシ樹脂と硬化剤の2液を所定の比率で撹拌混合させ、加熱することによって2液間の化学反応を促進させ熱硬化させる。ここで使用される透明エポキシ樹脂としては、ビスフェノールエポキシ樹脂が用いられ、硬化剤としてはメチルテトラヒドロ無水フタル酸(Me−THPA)等が用いられる。
しかしながら、このような硬化剤を使用する場合には、反応率が85%程度のところで透明エポキシ樹脂が急激に硬化するために、透明エポキシ樹脂と反射面21との境界で透明エポキシ樹脂の急激な収縮が起こり、反射面21が剥離したり皺が発生したりする。
一方、本発明のようにカチオン重合型透明エポキシ樹脂を用いた方法においては、反応率20%程度から反応率90%程度まで徐々に硬化が進行する。このために、カチオン重合型透明エポキシ樹脂を使用した場合においては、その硬化速度が緩慢であるために、硬化完了時において反射面に皺や亀裂が生じない。
さらに、カチオン重合型透明エポキシ樹脂は、硬化収縮率が小さいために硬化後において放射面の平面性が保たれ、そのために放射面から放射された光は放射面と外部の界面において屈折することなく外部へ放射される。
さらに、本発明の発光ダイオードにおいては、反射面が耐熱性樹脂で形成されたケース22によって外部からの機械的衝撃や熱衝撃から完全に保護されるので、取扱い時及び搬送時に、反射面にキズを付けないようにすることができる。
また、半田実装時におけるリフロー炉工程において、発光ダイオードがリフロー炉を通過するときに、発光ダイオードを含む回路基板全体が250°C程度まで温度が上昇する。しかしながら、本発明の発光ダイオードは、上述のように、カチオン重合型透明エポキシ樹脂と反射面とケースとをサンドイッチ構造を保ったままカチオン重合型透明エポキシ樹脂を硬化させているので、カチオン重合型透明エポキシ樹脂の熱膨張係数と反射面を構成する銀金属層またはアルミニウム金属層の熱膨張係数差によって反射面に皺や亀裂が発生することはなく、反射面の反射率が低下して光学特性が低下するなどの問題も生じない
図4は、本発明におけるリードをケースの溝に嵌合させたときの発光ダイオードの最終構造を示す図である。図4においては、リードは、ケース22の溝23に嵌合され、その溝部分に光硬化性樹脂または接着性樹脂31がディスペンサーなどを用いて少量滴下された後に、その溝部分が硬化されていた。その後に、リードをケース22の溝23の少し外部で曲げることによって電源供給端子を構成している。
図5は、本発明におけるリードをケースに嵌合させ、ケースに枠を被せるときの状態を説明する図である。図4における溝23の部分の樹脂漏れをさらに確実に防止するために、また、リードを曲げたときの強度を強くするために、図5に示すように、リードを溝23に嵌合させたときにできる凹部に対応した凸部52を持つ枠51をケース22の上に被せる。これによって樹脂漏れをさらに完全に防止することができ、リードを曲げるときの嵌合部の強度を強くすることができる。この時、枠51とケース22の張り合わせ面に接着剤を塗布しておくことによって、カチオン重合型透明エポキシ樹脂を充填する作業性が向上する。
上述の実施の形態においては、ケース22の材質としてポリカーボネート樹脂を使用したが、ガラス繊維入りのポリカーボネート樹脂やアートン樹脂とPPS(ポリフェニレンサルファイド)樹脂からなるアロイ樹脂やポリエーテルエーテルケトン樹脂を用いることによって、耐熱性を高めることができる。このように、ガラス繊維入りの樹脂を用いることによって、ハンダ・リフロー工程における耐熱性をさらに高め、高熱によっても反射面の表面の皺や亀裂のない耐熱性の高い実用上優れた特性を有する発光ダイオードを提供できることが可能となった。上記ケース22にガラス繊維入り樹脂を使用した場合には、表面の鏡面を確保するために低粘度の2液型エポキシ樹脂または光硬化性エポキシ樹脂を数μmコーティングし、ガラス繊維入り樹脂の表面を滑らかにした後に金属膜を蒸着法によって形成したものを使用することによって、さらに反射率の優れた発光ダイオードを得ることができる。
【図面の簡単な説明】
図1は、本発明の発光ダイオードに用いられるリード上に実装された発光素子を説明する図である。
図2は、本発明の発光ダイオードに用いられるケースの概略構造図である。
図3は、本発明の発光ダイオードに用いられるケースとリードとの関係を説明する図である。
図4は、本発明におけるリードをケースの溝に嵌合させたときの発光ダイオードの構造を示す図である。
図5は、本発明におけるリードをケースに嵌合させ、ケースに枠を被せるときの状態を説明する図である。
図6は、発光素子と半球体とをエポキシ樹脂で一体成形し、半球面体の外部に反射面を形成した従来の反射型発光ダイオードの断面構造図である。
図7は、発光素子とケースの凹面部に形成された反射面とをエポキシ樹脂で一体成形した従来の反射型発光ダイオードの断面構造図である。
図8は、反射鏡を用いた従来の反射型発光ダイオードの断面構造図である。
TECHNICAL FIELD The present invention relates to a light emitting diode having a reflective surface filled with a cationic polymerization type transparent epoxy resin which is a kind of curing accelerating epoxy resin, and a method for manufacturing the same.
Background Art Light emitting diode structures for effectively emitting light emitted from a light emitting element to the outside front through a metal reflecting surface have been disclosed in many prior arts. In these prior arts, there are three types according to whether the metal reflecting surface is deposited on the outside of the case, on the inside of the case, or using a pre-manufactured metal plate reflecting surface.
As a first example in which the metal reflecting surface is provided outside the case, light emitting diodes disclosed in Japanese Patent Laid-Open Nos. 49-82290 and 58-82290 are known. In the light emitting diode of this type shown in FIG. 6, the light emitting element 61 is mounted on the lead 62a by the conductive adhesive 63 and is electrically connected to the lead 62b by the gold wire 64. Thereafter, the light emitting element 61 attached to the leads 62a and 62b is put in a hemispherical or parabolic mold, and the leads 62a and 62b and the light emitting element 61 are integrated by a transfer molding method using a light transmitting resin 65. And solid molded. Thereafter, a surface coating treatment is performed on the outer surface of the hemispherical or parabolic convex surface by metal deposition or plating to form a concave reflecting surface 66, and an overcoat is formed to protect the concave reflecting surface 66. Layer 67 is applied. The concave reflecting surface 66 reflects the light emitted from the light emitting element 61 and emits the light from the emitting surface 68 to the outside. With such a structure, almost all of the light emitted from the light emitting element 61 can be once reflected by the reflecting surface 66 and emitted from the emitting surface 68 to the outside of the light emitting diode.
Further, as a second example in which the metal reflecting surface is provided inside the case, there are known light emitting diodes disclosed in Japanese Patent Laid-Open Nos. 62-269984, 01-143366, 55-113570, and the like. ing. As shown in FIG. 7, in this type of light emitting diode, the light emitting element 73 is disposed so as to be positioned at the focal point of the reflecting surface 72 in which aluminum or silver is vapor-deposited on the concave portion of the case 71 or a plating layer is provided. . The light emitting element 73 has one end attached to the lead 74a using a conductive adhesive, and the other end electrically connected to the lead 74b via a gold wire 75, as in the first example. It is.
In these light emitting diodes, first, aluminum or silver is vapor-deposited or a plated layer 72 is provided on the concave portion of the case 71. Thereafter, the leads 74a and 74b are inserted into the case 71, and then one end of the light emitting element 73 is attached onto the lead 74a using a conductive adhesive, and the other end is electrically connected to the lead 74b via the gold wire 75. To do.
Thereafter, the light-emitting element is fixed by potting and filling the concave portion of the reflecting surface 72 with the transparent epoxy resin 76 and then heat-curing. In this type of light emitting diode, by filling the reflective surface 72 and the light emitting element 73 with the transparent epoxy resin 76, the optical positional relationship becomes high accuracy, and a light emitting diode with more excellent optical characteristics can be obtained. Since the molding method by the potting method is used, the light emitting diode can be provided at a low cost.
Further, as a third example using a metal reflecting surface manufactured in advance, a light emitting diode disclosed in Japanese Patent Application Laid-Open No. 55-118682, US Patent Publication 2001/0024087, and the like is known. As shown in FIG. 8, in this type of light-emitting diode, aluminum or silver is vapor-deposited or a plating layer is provided on the concave surface portion of the reflecting mirror 85 made of a metal plate, and positioned at the focal point of the reflecting mirror 85 made of the metal plate. Thus, the light emitting element 81 is arranged. One end of the light emitting element 81 is attached to the lead 82a using a conductive adhesive or the like, and the other end is electrically connected to the lead 82b via the gold wire 83 as in the first example. It is the same.
In these light-emitting diodes, a transparent epoxy resin 84 is used for the lead 82a, 82b, the light-emitting element 81, the gold wire 83, and the reflecting mirror 85 made of a metal plate previously deposited with aluminum or silver on the concave surface portion or provided with a plating layer. It is integrated and heat-cured by the transfer molding method. Also in this type of light emitting diode, since the reflecting mirror 85 and the light emitting element 81 are filled with the transparent epoxy resin 84, the optical positional relationship is highly accurate, and a light emitting diode having more excellent optical characteristics can be obtained. there were.
However, in the light emitting diode having the structure in the first example in which the metal reflecting surface is provided on the outside of the case, a packaging method such as boxing while the reflecting surface is exposed is taken, so that a protective layer with a hard coat is provided. However, when the light emitting diode is mounted or handled, the reflective (hard coat) layer may be scratched by the contact between the reflective surfaces or the contact between the reflective surface and the lead tip. Due to this scratch, there has been a problem that the reflective performance of the reflective surface is degraded and the reflective surface is easily deteriorated.
In general, when an electronic component is mounted on a circuit board, the entire circuit board is passed through a reflow furnace having an atmosphere of about 250 ° C. to solder the circuit board. When the light emitting diode having the metal reflecting surface as described above is mounted on a circuit board and passed through a reflow furnace, the temperature of the entire circuit board including the light emitting diode rises to about 250 ° C. Therefore, wrinkles and cracks occur on the reflective surface due to the difference between the thermal expansion coefficient of the transparent epoxy resin and the thermal expansion coefficient of the silver metal layer or aluminum metal layer that constitutes the reflective surface, and the reflectivity of the reflective surface decreases, resulting in optical characteristics. There was a problem such as lowering.
Furthermore, even when the light emitting diodes are transported, the current situation is that special packaging must be provided so that the reflecting surface of each light emitting diode is not damaged by vibration.
In addition, in a light emitting diode having a structure integrally formed only with an epoxy resin as in the past, when bending a lead protruding outside from the light emitting diode when mounted on a substrate, abnormal stress is applied to the end surface of the epoxy resin, There were also problems such as cracks in the lead portion of the epoxy resin.
On the other hand, in the second example in which the metal reflection surface is provided inside the case, the concave portion of the concave reflector is filled with a transparent epoxy resin by a potting method, and the light emitting element and the concave reflection surface are fixed. However, when the transparent epoxy resin cures and shrinks, wrinkles and cracks may occur on the concave reflecting surface due to the difference in thermal expansion coefficient between the transparent epoxy resin and the silver or aluminum metal of the concave reflecting portion. In significant cases, the concave reflective surface may peel off and be dispersed as debris in the epoxy resin. In such a case, similar to the above, the reflectivity is lowered, the optical characteristics are impaired, and a large practical problem occurs. For this reason, in practice, the reflective characteristics are ensured by using a white ABS resin or the like having a high reflectance without using a metal for the concave reflecting portion, but a sufficient reflectance cannot be obtained. Currently.
On the other hand, in the third example using a metal reflecting surface manufactured in advance, the light emitting element and the concave reflecting surface are fixed by integrating the light emitting element 81 and the reflecting mirror 85 with a transparent epoxy resin. However, in this third example, since the reflecting mirror 85 is manufactured by a separate process and then integrated with the light emitting element using a transparent epoxy resin and cured, the number of processes increases and the price of the light emitting diode increases. It was.
Further, in the conventional light emitting diode in which the light emitting element and the reflecting mirror are integrated using a transparent epoxy resin, the curing shrinkage rate is large, so that reference numeral 68 in FIG. 6, reference numeral 78 in FIG. 7, and FIG. As indicated by reference numeral 88, after curing, the radiation surface is not a flat surface but becomes a concave surface, which is substantially the same effect as when a concave lens is attached to the radiation surface. there were.
The present invention was invented in view of the above points, and in a light emitting diode having a configuration in which a light emitting element and a reflective surface are integrated with a transparent epoxy resin, a cationic polymerization type transparent epoxy resin is added to the transparent epoxy resin. By using it, no wrinkles or cracks are produced on the reflecting surface during manufacturing, no special packaging is required during transportation, and handling is easy. Since cracks do not occur and the shrinkage of cure is small, the flatness of the radiation surface is maintained after curing, so that the light emitted from the radiation surface is not refracted at the interface between the radiation surface and the outside. It is to provide a light emitting diode to be emitted.
In the present invention, in order to solve the above problems, a step of forming a case having a concave surface, a step of forming a reflective surface having a metal layer formed on the concave surface, and a light emitting element attached to the reflective surface. There is provided a light emitting diode manufacturing method for manufacturing a light emitting diode including a step of forming a lead. In this light emitting diode manufacturing method, a cation polymerization type transparent epoxy resin is filled in a cavity having a concave surface of the case, and the cation polymerization type transparent epoxy resin, the reflection surface and the case are formed in a sandwich structure. And a step of slowly curing the polymerizable transparent epoxy resin in an atmosphere of 80 to 130 ° C. to a reaction rate of 20% to 90%. In the present invention, since the cationic polymerization type transparent epoxy resin is slowly cured while maintaining the sandwich structure in this way, there is an advantage that no wrinkles or cracks occur on the reflecting surface when the curing is completed.
Furthermore, since the cationic polymerization type transparent epoxy resin has a low curing shrinkage rate, the flatness of the radiation surface is maintained after curing, so that the light emitted from the radiation surface does not refract at the radiation surface and the external interface. Radiated to the outside.
Preferably, the step of filling the cationic polymerization type transparent epoxy resin in the light emitting diode manufacturing method of the present invention includes the step of fitting the lead into a groove provided on the upper end surface of the case, and the step of filling the groove into which the lead is fitted. Filling the cured epoxy resin to the upper end surface of the case, irradiating the photocured epoxy resin with ultraviolet rays to fix the leads in the groove of the case, and filling the cationic polymerization type transparent epoxy resin to the upper end surface of the case; Is provided. In the present invention, resin leakage can be more completely prevented by these steps.
Preferably, the step of filling the cationic polymerization type transparent epoxy resin in the light-emitting diode manufacturing method of the present invention includes a step of fitting a lead into a groove provided on the upper end surface of the case, and an upper end surface of the case, The method further includes a step of covering the case with a frame having a protrusion at a portion corresponding to the groove of the case, and a step of filling the cationic polymerization type transparent epoxy resin to the upper end surface of the case. As a result, resin leakage can be completely prevented.
Preferably, in the step of forming the case having a concave surface according to the present invention, a heat-resistant resin such as polycarbonate resin, PPC alloy resin, or polyether ether ketone resin can be used as the material. Furthermore, a filling process is comprised so that glass fiber may be included in the said resin. By using these heat-resistant resins or resins containing glass fibers, it is possible to provide a light-emitting diode with high heat resistance that is free from wrinkles and cracks on the surface of the reflecting surface even by high heat in the solder reflow process.
Furthermore, preferably, in the step of forming the case having a concave surface according to the present invention, as the material, glass fiber is included in the resin, and after the base layer of the heat-resistant epoxy resin is formed on the surface of the concave surface, the base layer The method may further include a step of forming a metal reflection surface thereon. With such a configuration, the planarity of the concave surface is improved, and a light emitting diode having excellent reflectance can be obtained.
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a diagram for explaining a light emitting device mounted on a lead used in the light emitting diode of the present invention. One end of the light emitting element 11 is fixed to the lead 12 a via the conductive adhesive 14, while the other end of the light emitting element 11 is electrically connected to the lead 12 b via the gold wire 13. A lead on which the light emitting element configured as described above is mounted is prepared.
FIG. 2 is a schematic structural diagram of a case used in the light emitting diode of the present invention. FIG. 2A shows an overall view of the case 22, and FIG. 2B shows a side view. As shown in FIG. 2, a case 22 that is entirely made of resin and has a concave surface inside is prepared. On the concave surface of the case 22, a reflective surface 21 made of aluminum or silver deposited or plated is formed. . At this time, in order to fit the lead into the case 22, a pair of grooves 23 corresponding to the lead dimensions are formed on opposite sides of the case 22. As will be described later, in FIG. 2B, the surface 28 when the cationic polymerization type transparent epoxy resin is filled up to the upper surface of the case 22 inside the reflection surface 21 is reflected light reflected by the reflection surface 21 to the outside. It constitutes the radiation surface to be emitted.
FIG. 3 is a diagram for explaining the relationship between a case and leads used in the light emitting diode of the present invention. As shown in FIG. 3, the lead on which the light emitting element is mounted is fitted in the groove 23 of the case 22 so that the light emitting element 11 faces the reflecting surface 21. At this time, that is, when the lead is fitted into the groove of the case 22, the groove portion is cured after a small amount of photo-curing resin or adhesive resin 31 is dropped on the lead portion corresponding to the groove in advance using a dispenser or the like. Then, the case 22 and the lead are fixed.
Next, after filling the concave portion of the case 22 with the cationic polymerization type transparent epoxy resin to the edge surface of the case 22, the resin is cured in an atmosphere furnace at 80 to 130 ° C. The present invention is characterized by using a cationic polymerization type transparent epoxy resin in order to cure the transparent epoxy resin.
In order to cure the transparent epoxy resin, a method of filling the recess of the case 22 with an epoxy resin and a curing agent is usually used. In this method using a curing agent, two liquids of an epoxy resin and a curing agent are mixed with stirring at a predetermined ratio, and heated to promote a chemical reaction between the two liquids and heat cure. A bisphenol epoxy resin is used as the transparent epoxy resin used here, and methyltetrahydrophthalic anhydride (Me-THPA) or the like is used as the curing agent.
However, when such a curing agent is used, since the transparent epoxy resin hardens rapidly when the reaction rate is about 85%, the sharpness of the transparent epoxy resin at the boundary between the transparent epoxy resin and the reflective surface 21 is increased. Shrinkage occurs, and the reflective surface 21 peels off or wrinkles occur.
On the other hand, in the method using a cationic polymerization type transparent epoxy resin as in the present invention, curing gradually proceeds from a reaction rate of about 20% to a reaction rate of about 90%. For this reason, when a cationic polymerization type transparent epoxy resin is used, since the curing speed is slow, no wrinkles or cracks occur on the reflecting surface when the curing is completed.
Furthermore, since the cationic polymerization type transparent epoxy resin has a low curing shrinkage rate, the flatness of the radiation surface is maintained after curing, so that the light emitted from the radiation surface does not refract at the radiation surface and the external interface. Radiated to the outside.
Furthermore, in the light emitting diode of the present invention, the reflective surface is completely protected from external mechanical shocks and thermal shocks by the case 22 formed of a heat-resistant resin. Can be avoided.
Further, in the reflow furnace process during solder mounting, when the light emitting diode passes through the reflow furnace, the temperature of the entire circuit board including the light emitting diode rises to about 250 ° C. However, as described above, the light-emitting diode of the present invention cures the cationic polymerization type transparent epoxy resin while maintaining the sandwich structure between the cationic polymerization type transparent epoxy resin, the reflecting surface, and the case. The difference between the thermal expansion coefficient of the epoxy resin and the thermal expansion coefficient of the silver metal layer or aluminum metal layer constituting the reflective surface does not cause wrinkles or cracks on the reflective surface, and the reflectivity of the reflective surface decreases and the optical characteristics are reduced. FIG. 4, which does not cause problems such as lowering, is a diagram showing the final structure of the light emitting diode when the lead in the present invention is fitted into the groove of the case. In FIG. 4, the lead is fitted into the groove 23 of the case 22, and the groove portion is cured after a small amount of photocurable resin or adhesive resin 31 is dropped on the groove portion using a dispenser or the like. It was. Thereafter, the lead is bent slightly outside the groove 23 of the case 22 to constitute a power supply terminal.
FIG. 5 is a diagram for explaining a state when the lead according to the present invention is fitted to the case and the case is covered with a frame. In order to further prevent resin leakage at the groove 23 in FIG. 4 and to increase the strength when the lead is bent, the lead is fitted into the groove 23 as shown in FIG. A frame 51 having a convex portion 52 corresponding to the concave portion that is sometimes formed is placed on the case 22. As a result, resin leakage can be more completely prevented, and the strength of the fitting portion when the lead is bent can be increased. At this time, the workability of filling the cationic polymerization type transparent epoxy resin is improved by applying an adhesive to the bonding surface of the frame 51 and the case 22.
In the above-described embodiment, a polycarbonate resin is used as the material of the case 22, but by using an alloy resin or a polyetheretherketone resin composed of a polycarbonate resin containing glass fibers or an Arton resin and a PPS (polyphenylene sulfide) resin. , Heat resistance can be increased. In this way, by using glass-filled resin, the heat resistance in the solder reflow process is further improved, and the light emission has high heat resistance and practically excellent characteristics without flaws and cracks on the reflective surface even with high heat. It became possible to provide a diode. When a resin containing glass fiber is used for the case 22, the surface of the resin containing glass fiber is coated with several μm of a low-viscosity two-component epoxy resin or a photocurable epoxy resin to secure a mirror surface. By using a metal film formed by a vapor deposition method after smoothing, a light emitting diode with further excellent reflectance can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a light emitting device mounted on a lead used in the light emitting diode of the present invention.
FIG. 2 is a schematic structural diagram of a case used in the light emitting diode of the present invention.
FIG. 3 is a diagram for explaining the relationship between a case and leads used in the light emitting diode of the present invention.
FIG. 4 is a view showing the structure of the light emitting diode when the lead according to the present invention is fitted in the groove of the case.
FIG. 5 is a diagram for explaining a state when the lead according to the present invention is fitted to the case and the case is covered with a frame.
FIG. 6 is a cross-sectional structure diagram of a conventional reflective light-emitting diode in which a light-emitting element and a hemisphere are integrally molded with an epoxy resin and a reflecting surface is formed outside the hemispherical body.
FIG. 7 is a cross-sectional structure diagram of a conventional reflective light-emitting diode in which a light-emitting element and a reflective surface formed on a concave portion of a case are integrally formed of epoxy resin.
FIG. 8 is a cross-sectional structure diagram of a conventional reflective light emitting diode using a reflecting mirror.

Claims (7)

凹面を有するケースを形成する工程と、前記凹面上に金属層が形成された反射面を形成する工程と、前記反射面に対向して発光素子が取り付けられるリードを形成する工程とを備えた発光ダイオードを製造する発光ダイオード製造方法において、
前記ケースの凹面を有する空洞中にカチオン重合型透明エポキシ樹脂を充填する工程と、
前記カチオン重合型透明エポキシ樹脂と反射面とケースとをサンドイッチ構造に形成した状態で前記カチオン重合型透明エポキシ樹脂を80〜130℃の雰囲気下で反応率20%〜90%まで緩慢に硬化させる工程と
を備えたことを特徴とする発光ダイオード製造方法。
A light emission comprising a step of forming a case having a concave surface, a step of forming a reflective surface having a metal layer formed on the concave surface, and a step of forming a lead to which a light emitting element is attached facing the reflective surface In a light emitting diode manufacturing method for manufacturing a diode,
Filling the cavity having a concave surface of the case with a cationic polymerization type transparent epoxy resin;
A step of slowly curing the cationic polymerization type transparent epoxy resin to a reaction rate of 20% to 90% in an atmosphere of 80 to 130 ° C. in a state where the cationic polymerization type transparent epoxy resin, the reflecting surface and the case are formed in a sandwich structure. A method for producing a light-emitting diode, comprising:
カチオン重合型透明エポキシ樹脂を充填する工程は、
前記リードを前記ケースの上端面に設けられた溝に嵌合させる工程と、
前記リードが嵌合された溝に光硬化エポキシ樹脂をケースの上端面まで充填し、その光硬化エポキシ樹脂に紫外線を照射して前記リードを前記ケースの溝に固定する工程と、
前記カチオン重合型透明エポキシ樹脂を前記ケースの上端面まで充填する工程と
を備えたことを特徴とする請求項記載の発光ダイオード製造方法。
The step of filling the cationic polymerization type transparent epoxy resin,
Fitting the lead into a groove provided on the upper end surface of the case;
Filling the groove into which the lead is fitted with a photocurable epoxy resin up to the upper end surface of the case, irradiating the photocurable epoxy resin with ultraviolet rays, and fixing the lead to the groove of the case;
Light emitting diode manufacturing method according to claim 1, characterized in that a step of filling the cationic polymerization type transparent epoxy resin to the upper end surface of the case.
前記凹面を有するケースを形成する工程においては、その材料として、ポリカーボネート樹脂、PPCアロイ樹脂、ポリエーテルエーテルケトン樹脂等の耐熱性樹脂を用いることを特徴とする請求項記載の発光ダイオード製造方法。 3. The light emitting diode manufacturing method according to claim 2, wherein in the step of forming the case having the concave surface, a heat resistant resin such as a polycarbonate resin, a PPC alloy resin, or a polyether ether ketone resin is used as a material thereof. 前記凹面を有するケースを形成する工程は、前記樹脂にガラス繊維を含ませ、前記凹面の表面に耐熱性エポキシ樹脂の下地層を形成した後に、前記下地層上に金属反射面を形成する工程をさらに含むことを特徴とする請求項記載の発光ダイオード製造方法。The step of forming the case having the concave surface includes a step of forming a metal reflective surface on the base layer after glass fiber is included in the resin and a base layer of a heat-resistant epoxy resin is formed on the surface of the concave surface. The light emitting diode manufacturing method according to claim 3, further comprising: 前記充填工程は、
前記リードを前記ケースの上端面に設けられた溝に嵌合させる工程と、
前記ケースの上端面を覆い、前記ケースの溝に対応する部分に突起部を有する枠を、前記ケースに被せる工程と、
前記カチオン重合型透明エポキシ樹脂を前記ケースの上端面まで充填する工程とを
備えたことを特徴とする請求項記載の発光ダイオード製造方法。
The filling step includes
Fitting the lead into a groove provided in the upper end surface of the case;
Covering the upper end surface of the case and covering the case with a frame having a protrusion on the portion corresponding to the groove of the case;
Light emitting diode manufacturing method according to claim 1, characterized in that a step of filling the cationic polymerization type transparent epoxy resin to the upper end surface of the case.
前記凹面を有するケースを形成する工程においては、その材料として、ポリカーボネート樹脂、PPCアロイ樹脂、ポリエーテルエーテルケトン樹脂等の耐熱性樹脂を用いることを特徴とする請求項記載の発光ダイオード製造方法。6. The light emitting diode manufacturing method according to claim 5, wherein in the step of forming the case having the concave surface, a heat resistant resin such as a polycarbonate resin, a PPC alloy resin, a polyether ether ketone resin is used as a material thereof. 前記凹面を有するケースを形成する工程は、前記樹脂にガラス繊維を含ませ、前記凹面の表面に耐熱性エポキシ樹脂の下地層を形成した後に、前記下地層上に金属反射面を形成する工程をさらに含むことを特徴とする請求項記載の発光ダイオード製造方法。The step of forming the case having the concave surface includes a step of forming a metal reflective surface on the base layer after glass fiber is included in the resin and a base layer of a heat-resistant epoxy resin is formed on the surface of the concave surface. The light emitting diode manufacturing method according to claim 6, further comprising:
JP2004501970A 2003-04-24 2003-04-24 Light emitting diode and manufacturing method thereof Expired - Fee Related JP4001347B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005341 WO2003092082A1 (en) 2002-04-25 2003-04-24 Light emitting diode and process for producing the same

Publications (2)

Publication Number Publication Date
JPWO2003092082A1 JPWO2003092082A1 (en) 2005-09-02
JP4001347B2 true JP4001347B2 (en) 2007-10-31

Family

ID=38683572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004501970A Expired - Fee Related JP4001347B2 (en) 2003-04-24 2003-04-24 Light emitting diode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4001347B2 (en)

Also Published As

Publication number Publication date
JPWO2003092082A1 (en) 2005-09-02

Similar Documents

Publication Publication Date Title
US7455461B2 (en) Optoelectronic component and method for the production thereof
TWI354111B (en) Optical element, manufacturing process for this an
US8008119B2 (en) Surface mount optoelectronic component with lens having protruding structure
JPH11274447A (en) Fully molded solid-state image pick up device and its manufacture
JP4001347B2 (en) Light emitting diode and manufacturing method thereof
WO2003092082A1 (en) Light emitting diode and process for producing the same
US20050077534A1 (en) Light-emitting diode and method of manufacturing the light-emitting diode
WO2022176574A1 (en) Light emitting device, method for manufacturing light emitting device, light source device, and lamp
JP2008060121A (en) Solid-state imaging element sealing structure, and solid-state imaging apparatus
JP2002299693A (en) Light-emitting diode and method of manufacturing the same
WO2005020336A1 (en) Process for producing light emitting diode
US20140159101A1 (en) Structural component and method for producing a structural component
JP2006165354A (en) Light emitting diode and manufacturing method thereof
JP2006049525A (en) Light emitting diode and its manufacturing method
JP4300500B2 (en) Light emitting diode and manufacturing method thereof
JP2006049526A (en) Light emitting diode and its manufacturing method
JP2009283829A (en) Reflection type light emitting diode, and its method for manufacturing
KR102064540B1 (en) Semiconductor light emitting device
TWI762071B (en) Light emitting diode structure, method of forming the same, and backlight module
JP2004014593A (en) Method for manufacturing light emitting diode
KR102121409B1 (en) Semiconductor light emitting device
KR102022460B1 (en) Semiconductor light emitting device and method of manufacturing the same
KR102051478B1 (en) Semiconductor light emitting device and method of manufacturing the same
KR102111642B1 (en) Semiconductor light emitting device
JPH0955540A (en) Light emitting apparatus

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A242764

Effective date: 20050315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4001347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees