JP4000758B2 - Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative - Google Patents

Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative Download PDF

Info

Publication number
JP4000758B2
JP4000758B2 JP2000239655A JP2000239655A JP4000758B2 JP 4000758 B2 JP4000758 B2 JP 4000758B2 JP 2000239655 A JP2000239655 A JP 2000239655A JP 2000239655 A JP2000239655 A JP 2000239655A JP 4000758 B2 JP4000758 B2 JP 4000758B2
Authority
JP
Japan
Prior art keywords
group
nitrophenyl
producing
fluoro
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000239655A
Other languages
Japanese (ja)
Other versions
JP2002053531A (en
Inventor
勝正 原田
繁栄 西野
健二 弘津
修司 横山
広行 小田
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000239655A priority Critical patent/JP4000758B2/en
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to CA002416397A priority patent/CA2416397A1/en
Priority to EP01951925A priority patent/EP1310486A4/en
Priority to AU2001272757A priority patent/AU2001272757A1/en
Priority to US10/333,316 priority patent/US6900335B2/en
Priority to PCT/JP2001/006260 priority patent/WO2002006228A1/en
Publication of JP2002053531A publication Critical patent/JP2002053531A/en
Priority to US11/093,603 priority patent/US7342040B2/en
Application granted granted Critical
Publication of JP4000758B2 publication Critical patent/JP4000758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2,4-ジハロゲノニトロベンゼン誘導体から、簡便な方法で2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体を製造する方法に関する。2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体は、医薬・農薬等の合成中間体として有用な化合物である。
【0002】
【従来の技術】
従来、2,4-ジハロゲノニトロベンゼン誘導体から2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体を製造する方法としては、水素化ナトリウムの存在下、ジメチルスルホキシド中で、2,4-ジハロゲノニトロベンゼンにマロン酸ジメチルを反応させて2-(5-ハロゲノ-2-ニトロフェニル)マロン酸ジメチルを合成する方法が開示されている(Synthesis,1993,51)。しかしながら、この方法では発火性が高い水素化ナトリウムを用いていることや反応により水素ガスが発生するため煩雑な操作が必要となり、工業的製法としては問題があった。
【0003】
【発明が解決しようとする課題】
本発明の課題は、上記問題点を解決し、簡便な方法にて2,4-ジハロゲノニトロベンゼン誘導体から2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体を製造することが出来る、工業的に好適な2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体の製造法を提供するものである。
【0004】
【課題を解決するための手段】
本発明の課題は、金属無機酸塩の存在下、一般式(1)
【0005】
【化4】

Figure 0004000758
【0006】
(式中、R1、R2及びR3は、反応に関与しない基を示し、X1及びX2は、ハロゲン原子を示す。)
で示される2,4-ジハロゲノニトロベンゼン誘導体に、一般式(2)
【0007】
【化5】
Figure 0004000758
【0008】
(式中、R4は、アルコキシカルボニル基、アラルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基又はシアノ基を示し、R5は、反応に関与しない基を示す。)
で示される2-モノ置換酢酸エステル誘導体を有機溶媒中で反応させることを特徴とする、一般式(3)
【0009】
【化6】
Figure 0004000758
【0010】
(式中、R1、R2、R3、R4、R5及びX2は、前記と同義である。)
で示される2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体の製造法によって解決される。
【0011】
【発明の実施の形態】
本発明の反応において使用する2,4-ジハロゲノニトロベンゼン誘導体は、前記の一般式(1)で示される。その一般式(1)において、R1、R2及びR3は、反応に関与しない基であり、具体的には、水素原子;ハロゲン原子;置換基を有していても良い、アルキル基、シクロアルキル基、アラルキル基、アリール基、アルコキシ基又はアリールオキシ基を示す。
【0012】
前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0013】
前記アルキル基としては、特に炭素数1〜10のアルキル基が好ましく、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。これらのアルキル基は、各種異性体を含む。
【0014】
前記シクロアルキル基としては、特に炭素数3〜7のシクロアルキル基が好ましく、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。これらのシクロアルキル基は、各種異性体も含む。
【0015】
前記アラルキル基としては、特に炭素数7〜10のアラルキル基が好ましく、例えば、ベンジル基、フェネチル基、フェニルプロピル基、フェニルブチル基等が挙げられる。これらのアラルキル基は、各種異性体を含む。
【0016】
前記アリール基としては、特に炭素数6〜14のアリール基が好ましく、例えば、フェニル基、トリル基、ナフチル基、アントラニル基等が挙げられる。これらのアリール基は、各種異性体を含む。
【0017】
前記アルコキシ基としては、特に炭素数1〜12のアルコキシ基が好ましく、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ベンジルオキシ基等が挙げられる。これらのアルコキシ基は、各種異性体を含む。
【0018】
前記アリールオキシ基としては、特に炭素数6〜14のアリールオキシ基が好ましく、例えば、フェノキシ基、トリルオキシ基等が挙げられる。これらのアリールオキシ基は、各種異性体を含む。
【0019】
前記のアルキル基、シクロアルキル基、アラルキル基、アリール基、アルコキシ基又はアリールオキシ基は、置換基を有していても良い。その置換基としては、炭素原子を介して出来る置換基、酸素原子を介して出来る置換基、窒素原子を介して出来る置換基の中から選ばれる少なくとも一つが挙げられる。
【0020】
前記炭素原子を介して出来る置換基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;ベンジル基等のアラルキル基;フェニル基等のアリール基;シアノ基が挙げられる。
【0021】
前記酸素原子を介して出来る置換基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ベンジルオキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;アセチルオキシ基、ベンゾイルオキシ基等のアシルオキシ基が挙げられる。
【0022】
前記窒素原子を介して出来る置換基としては、例えば、ニトロ基;アミノ基が挙げられる。
【0023】
又、一般式(1)において、X1及びX2は、ハロゲン原子を示し、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0024】
本発明の反応において使用する2-モノ置換酢酸エステル誘導体は、前記の一般式(2)で示される。その一般式(2)において、R4は、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基等のアルコキシカルボニル基;ベンジルオキシカルボニル基等のアラルキルオキシカルボニル基;フェノキシカルボニル基等のアリールオキシカルボニル基;アセチル基、プロピオニル基、ベンゾイル基等のアシル基;シアノ基が挙げられる。これらの基は、各種異性体も含む。R5は、反応に関与しない基であり、具体的には、メチル基、エチル基、プロピル基等のアルキル基;ベンジル基等のアラルキル基;フェニル基等のアリール基を示す。
【0025】
前記2-モノ置換酢酸エステル誘導体の使用量は、2,4-ジハロゲノニトロベンゼン誘導体に対して、好ましくは1.0〜5.0倍モル、更に好ましくは1.2〜3.0倍モルである。
【0026】
本発明の反応において使用する金属無機酸塩の金属原子としては、例えば、リチウム原子、ナトリウム原子、カリウム原子等のアルカリ金属原子;マグネシウム原子、カルシウム原子等のアルカリ土類金属原子が挙げられるが、好ましくはアルカリ金属原子、更に好ましくはナトリウム原子、カリウム原子である。
【0027】
本発明の反応において使用する金属無機酸塩の無機酸としては、例えば、炭酸、燐酸等が挙げられるが、好ましくは炭酸である。
【0028】
前記金属無機酸塩としては、例えば、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸マグネシム、炭酸カルシウム、リン酸ナトリウム、リン酸水素ナトリウムが挙げられるが、好ましくは炭酸ナトリウム、炭酸カリウムが使用される。
【0029】
前記金属無機酸塩の使用量は、2,4-ジハロゲノニトロベンゼン誘導体に対して、好ましくは1.0〜5.0倍モル、更に好ましくは1.2〜3.0倍モルである。これら金属アルコキシドは、単独又は二種以上を混合して使用しても良い。
【0030】
本発明の反応で使用する有機溶媒としては、反応を阻害しないものならば特に限定されず、例えば、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類;ヘキサン、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;N,N-ジメチルホルムアミド、N,N'-ジメチルイミダゾリジノン等のアミド類;アセトニトリル、プロピオニトリル等のニトリル類;ジメチルスルホキシド等が挙げられるが、好ましくは脂肪族炭化水素類、芳香族炭化水素類、アミド類、ニトリル類、ジメチルスルホキシド、更に好ましくはシクロへキサン、トルエン、アセトニトリル、N,N-ジメチルホルムアミドが使用される。
【0031】
前記有機溶媒の使用量は、反応溶液の均一性や攪拌性により適宜調節するが、2,4-ジハロゲノニトロベンゼン誘導体に対して、好ましくは1〜50重量倍、更に好ましくは1.5〜20重量倍である。これら有機溶媒は、単独又は二種以上を混合して使用しても良い。
【0032】
本発明の反応は、例えば、2,4-ジハロゲノニトロベンゼン誘導体、2-モノ置換酢酸エステル誘導体、金属無機酸塩及び有機溶媒を混合して反応させるが、本発明の好ましい態様としては、2-モノ置換酢酸エステル誘導体、金属無機酸塩及び有機溶媒を混合し、好ましくは20〜140℃、更に好ましくは40〜120℃にて、2,4-ジハロゲノニトロベンゼン誘導体を添加して反応させるものである。また、クラウンエーテルやポリエチレングリコール等を添加して、反応を促進させることも出来る。
【0033】
本発明の反応によって得られた目的とする2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体は、例えば、反応終了後に、カラムクロマトグラフィー、蒸留、再結晶等の一般的な方法によって分離・精製される。
【0034】
【実施例】
次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されない。
【0035】
実施例1
攪拌装置、温度計、還流冷却器及び滴下漏斗を備えた内容積200mlのガラス製フラスコに、アルゴン雰囲気下、炭酸カリウム6.51g(47.2mmol)、N,N-ジメチルホルムアミド20ml、純度99%のマロン酸ジメチル6.24g(46.7mmol)及び純度98%の2,4-ジフルオロニトロベンゼン5.00g(30.8mmol)を加え、攪拌しながら、室温にて1時間、更に70℃まで昇温して5時間反応させた。反応終了後、室温まで冷却した後、酢酸エチル100mlを加え、攪拌しながら6mol/l塩酸10.5ml(62.8mmol)をゆるやかに滴下した。次いで、水50mlを加えた後に有機層を分離し、水20ml、飽和食塩水20mlの順で洗浄して、無水硫酸マグネシウムを加えて乾燥させた。濾過後、減圧下で濃縮し、得られた濃縮液をシリカゲルカラムクロマトグラフィー(充填剤:Daisogel 1002W、展開溶媒:ヘキサン:酢酸エチル=9:1(容量比))で精製し、白色結晶として、純度98%(高速液体クロマトグラフィーの面積百分率)の2-(5-フルオロ-2-ニトロフェニル)マロン酸ジメチル6.22gを得た(単離収率73%)。
【0036】
実施例2
攪拌装置、温度計、還流冷却器及び滴下漏斗を備えた内容積100mlのガラス製フラスコに、アルゴン雰囲気下、炭酸カリウム8.29g(60.0mmol)、アセトニトリル30ml、純度99%のマロン酸ジメチル8.09g(60.0mmol)及び純度98%の2,4-ジフルオロニトロベンゼン5.00g(30.0mmol)を加え、攪拌しながら、70℃で10時間反応させた。反応終了後、室温まで冷却した後、トルエン50mlを加え、攪拌しながら12mol/l塩酸7.5ml(90mmol)をゆるやかに滴下した。次いで、有機層を分離し、水20ml、飽和食塩水20mlの順で洗浄して、無水硫酸マグネシウムを加えて乾燥させた。濾過後、この有機層を高速液体クロマトグラフィーで分析(絶対定量法)したところ、2-(5-フルオロ-2-ニトロフェニル)マロン酸ジメチルが6.61g(反応収率81%)生成していた。
【0037】
実施例3
実施例2において、有機溶媒をテトラヒドロフランに変えたこと以外は、実施例2と同様に反応を行った。その結果、2-(5-フルオロ-2-ニトロフェニル)マロン酸ジメチルが6.65g(反応収率82%)生成していた。
【0038】
実施例4
攪拌装置、温度計、還流冷却器及び滴下漏斗を備えた内容積500mlのガラス製フラスコに、アルゴン雰囲気下、炭酸カリウム55.3g(0.40mol)、N,N-ジメチルホルムアミド200ml、純度98%のマロン酸ジメチル54.0g(0.40mol)及び純度98%の2,4-ジフルオロニトロベンゼン32.5g(0.20mmol)を加え、攪拌しながら、70℃で3時間反応応させた。反応終了後、室温まで冷却した後、トルエン160mlを加え、攪拌しながら12mol/l塩酸50ml(0.60mol)をゆるやかに滴下した。次いで、有機層を分離し、水50ml、飽和食塩水50mlの順で洗浄して、無水硫酸マグネシウムを加えて乾燥させた。濾過後、この有機層を高速液体クロマトグラフィーで分析(絶対定量法)したところ、2-(5-フルオロ-2-ニトロフェニル)マロン酸ジメチルが45.3g(反応収率84%)生成していた。
【0039】
実施例5
攪拌装置、温度計、還流冷却器及び滴下漏斗を備えた内容積100mlのガラス製フラスコに、アルゴン雰囲気下、炭酸カリウム3.03g(21.9mmol)、N,N-ジメチルホルムアミド5.0ml、純度99%のシアノ酢酸メチル2.17g(21.7mmol)及び純度98%の2,4-ジフルオロニトロベンゼン1.45g(8.94mmol)を加え、攪拌しながら、60℃で6時間反応させた。反応終了後、室温まで冷却した後、酢酸エチル50mlを加え、攪拌しながら12mol/l塩酸2.9ml(34.8mmol)をゆるやかに滴下した。次いで、有機層を分離し、水20ml、飽和食塩水30mlの順で洗浄して、無水硫酸マグネシウムを加えて乾燥させた。濾過後、減圧下で濃縮し、得られた濃縮液をシリカゲルカラムクロマトグラフィー(充填剤:Daisogel 1002W、展開溶媒:トルエン)で精製し、黄色油状物として、純度99%(高速液体クロマトグラフィーの面積百分率)の2-(5-フルオロ-2-ニトロフェニル)-2-シアノ酢酸メチル1.81gを得た(単離収率84%)。
【0040】
実施例6
攪拌装置、温度計、還流冷却器及び滴下漏斗を備えた内容積100mlのガラス製フラスコに、アルゴン雰囲気下、炭酸カリウム8.68g(62.9mmol)、N,N-ジメチルホルムアミド20ml、純度99%のアセト酢酸メチル7.30g(62.2mmol)及び純度98%の2,4-ジフルオロニトロベンゼン5.00g(30.8mmol)を加え、攪拌しながら、25℃で5時間反応させた。反応終了後、室温まで冷却した後、酢酸エチル100mlを加え、攪拌しながら6mol/l塩酸15.7ml(94.2mmol)をゆるやかに滴下した。次いで、水50mlを加えた後に有機層を分離し、水20ml、飽和食塩水30mlの順で洗浄して、無水硫酸マグネシウムを加えて乾燥させた。濾過後、減圧下で濃縮し、得られた濃縮液をシリカゲルカラムクロマトグラフィー(充填剤:Daisogel 1002W、展開溶媒:ヘキサン:酢酸エチル=9:1(容量比))で精製し、黄色油状物として、純度98%(高速液体クロマトグラフィーの面積百分率)の2-(5-フルオロ-2-ニトロフェニル)-2-アセト酢酸メチル6.08gを得た(単離収率76%)。
【0041】
実施例7
攪拌装置、温度計、還流冷却器及び滴下漏斗を備えた内容積200mlのガラス製フラスコに、アルゴン雰囲気下、炭酸カリウム7.13g(51.6mmol)、N,N-ジメチルホルムアミド20ml、純度99%のシアノ酢酸メチル5.06g(50.6mmol)及び純度99%の2,4-ジクロロニトロベンゼン5.00g(25.8mmol)を加え、攪拌しながら、45℃で4時間反応させた。反応終了後、室温まで冷却した後、酢酸エチル100mlを加え、攪拌しながら6mol/l塩酸12.9ml(77.4mmol)をゆるやかに滴下した。次いで、水50mlを加えた後に有機層を分離し、飽和食塩水50mlで洗浄して、無水硫酸マグネシウムを加えて乾燥させた。濾過後、減圧下で濃縮し、得られた濃縮液をシリカゲルカラムクロマトグラフィー(充填剤:Daisogel 1002W、展開溶媒:ヘキサン:酢酸エチル=20:1(容量比))で精製し、白色結晶として、純度95%(高速液体クロマトグラフィーの面積百分率)の2-(5-クロロ-2-ニトロフェニル)-2-シアノ酢酸メチル5.76gを得た(単離収率83%)。
【0042】
実施例8
攪拌装置、温度計、還流冷却器及び滴下漏斗を備えた内容積200mlのガラス製フラスコに、アルゴン雰囲気下、炭酸カリウム7.13g(51.6mmol)、N,N-ジメチルホルムアミド20ml、純度99%のアセト酢酸メチル6.05g(51.6mmol)及び純度99%の2,4-ジクロロニトロベンゼン5.00g(25.8mmol)を加え、攪拌しながら、70℃で3時間反応させた。反応終了後、室温まで冷却した後、酢酸エチル100mlを加え、攪拌しながら6mol/l塩酸12.9ml(77.4mmol)をゆるやかに滴下した。次いで、水30mlを加えた後に有機層を分離し、飽和食塩水30mlで洗浄して、無水硫酸マグネシウムを加えて乾燥させた。濾過後、減圧下で濃縮し、得られた濃縮液をシリカゲルカラムクロマトグラフィー(充填剤:Daisogel 1002W、展開溶媒:ヘキサン:酢酸エチル=40:1(容量比))で精製し、黄色油状物として、純度98%(高速液体クロマトグラフィーの面積百分率)の2-(5-クロロ-2-ニトロフェニル)-2-アセト酢酸メチル4.33gを得た(単離収率61%)。
【0043】
【発明の効果】
本発明により、簡便な方法にて2,4-ジハロゲノニトロベンゼン誘導体から2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体を製造することが出来る、工業的に好適な2-(5-ハロゲノ-2-ニトロフェニル)-2-置換酢酸エステル誘導体の製造法を提供することが出来る。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative from a 2,4-dihalogenonitrobenzene derivative by a simple method. 2- (5-Halogeno-2-nitrophenyl) -2-substituted acetate derivatives are useful compounds as intermediates for the synthesis of pharmaceuticals and agricultural chemicals.
[0002]
[Prior art]
Conventionally, as a method for producing a 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative from a 2,4-dihalogenonitrobenzene derivative, 2 in dimethyl sulfoxide in the presence of sodium hydride is used. A method of synthesizing dimethyl 2- (5-halogeno-2-nitrophenyl) malonate by reacting dimethyl 4-monohalogenonitrobenzene with dimethyl malonate has been disclosed (Synthesis, 1993 , 51). However, in this method, sodium hydride having high ignitability is used, and hydrogen gas is generated due to the reaction, so that complicated operation is required, and there is a problem as an industrial production method.
[0003]
[Problems to be solved by the invention]
The object of the present invention is to solve the above problems and to produce a 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative from a 2,4-dihalogenonitrobenzene derivative by a simple method. An industrially suitable method for producing a 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative is provided.
[0004]
[Means for Solving the Problems]
The subject of this invention is general formula (1) in presence of a metal inorganic acid salt.
[0005]
[Formula 4]
Figure 0004000758
[0006]
(In the formula, R 1 , R 2 and R 3 represent groups not involved in the reaction, and X 1 and X 2 represent halogen atoms.)
A 2,4-dihalogenonitrobenzene derivative represented by the general formula (2)
[0007]
[Chemical formula 5]
Figure 0004000758
[0008]
(In the formula, R 4 represents an alkoxycarbonyl group, an aralkyloxycarbonyl group, an aryloxycarbonyl group, an acyl group, or a cyano group, and R 5 represents a group that does not participate in the reaction.)
Wherein the 2-mono-substituted acetic acid ester derivative is reacted in an organic solvent.
[0009]
[Chemical 6]
Figure 0004000758
[0010]
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and X 2 are as defined above.)
This is solved by a method for producing a 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative represented by the following formula.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The 2,4-dihalogenonitrobenzene derivative used in the reaction of the present invention is represented by the above general formula (1). In the general formula (1), R 1 , R 2 and R 3 are groups that do not participate in the reaction, specifically, a hydrogen atom; a halogen atom; an alkyl group which may have a substituent, A cycloalkyl group, an aralkyl group, an aryl group, an alkoxy group or an aryloxy group;
[0012]
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
[0013]
As the alkyl group, an alkyl group having 1 to 10 carbon atoms is particularly preferable, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, etc. Is mentioned. These alkyl groups include various isomers.
[0014]
The cycloalkyl group is particularly preferably a cycloalkyl group having 3 to 7 carbon atoms, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group. These cycloalkyl groups include various isomers.
[0015]
As the aralkyl group, an aralkyl group having 7 to 10 carbon atoms is particularly preferable, and examples thereof include a benzyl group, a phenethyl group, a phenylpropyl group, and a phenylbutyl group. These aralkyl groups include various isomers.
[0016]
As the aryl group, an aryl group having 6 to 14 carbon atoms is particularly preferable, and examples thereof include a phenyl group, a tolyl group, a naphthyl group, and an anthranyl group. These aryl groups include various isomers.
[0017]
As said alkoxy group, a C1-C12 alkoxy group is especially preferable, for example, a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a benzyloxy group etc. are mentioned. These alkoxy groups include various isomers.
[0018]
As the aryloxy group, an aryloxy group having 6 to 14 carbon atoms is particularly preferable, and examples thereof include a phenoxy group and a tolyloxy group. These aryloxy groups include various isomers.
[0019]
The alkyl group, cycloalkyl group, aralkyl group, aryl group, alkoxy group or aryloxy group may have a substituent. Examples of the substituent include at least one selected from a substituent formed through a carbon atom, a substituent formed through an oxygen atom, and a substituent formed through a nitrogen atom.
[0020]
Examples of the substituent formed through the carbon atom include an alkyl group such as a methyl group, an ethyl group, and a propyl group; an aralkyl group such as a benzyl group; an aryl group such as a phenyl group; and a cyano group.
[0021]
Examples of the substituent formed through the oxygen atom include an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and a benzyloxy group; an aryloxy group such as a phenoxy group; an acetyloxy group, a benzoyloxy group, and the like And acyloxy groups.
[0022]
Examples of the substituent formed through the nitrogen atom include a nitro group and an amino group.
[0023]
Moreover, in General formula (1), X < 1 > and X < 2 > show a halogen atom and a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
[0024]
The 2-monosubstituted acetate derivative used in the reaction of the present invention is represented by the above general formula (2). In the general formula (2), R 4 represents an alkoxycarbonyl group such as a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group or a butoxycarbonyl group; an aralkyloxycarbonyl group such as a benzyloxycarbonyl group; an aryl such as a phenoxycarbonyl group An oxycarbonyl group; an acyl group such as an acetyl group, a propionyl group, and a benzoyl group; and a cyano group. These groups include various isomers. R 5 is a group not involved in the reaction, and specifically represents an alkyl group such as a methyl group, an ethyl group, or a propyl group; an aralkyl group such as a benzyl group; and an aryl group such as a phenyl group.
[0025]
The amount of the 2-mono-substituted acetic acid ester derivative used is preferably 1.0 to 5.0 times mol, more preferably 1.2 to 3.0 times mol, relative to the 2,4-dihalogenonitrobenzene derivative.
[0026]
Examples of the metal atom of the metal inorganic acid salt used in the reaction of the present invention include alkali metal atoms such as lithium atom, sodium atom and potassium atom; alkaline earth metal atoms such as magnesium atom and calcium atom, Preferred are alkali metal atoms, more preferred are sodium atoms and potassium atoms.
[0027]
Examples of the inorganic acid of the metal inorganic acid salt used in the reaction of the present invention include carbonic acid and phosphoric acid, and carbonic acid is preferred.
[0028]
Examples of the metal inorganic acid salt include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, magnesium carbonate, calcium carbonate, sodium phosphate, sodium hydrogen phosphate, preferably sodium carbonate, potassium carbonate. Is used.
[0029]
The amount of the metal inorganic acid salt used is preferably 1.0 to 5.0 times mol, more preferably 1.2 to 3.0 times mol, with respect to the 2,4-dihalogenonitrobenzene derivative. These metal alkoxides may be used alone or in combination of two or more.
[0030]
The organic solvent used in the reaction of the present invention is not particularly limited as long as it does not inhibit the reaction. For example, ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane; aliphatic hydrocarbons such as hexane and cyclohexane Aromatic hydrocarbons such as benzene, toluene and xylene; amides such as N, N-dimethylformamide and N, N′-dimethylimidazolidinone; nitriles such as acetonitrile and propionitrile; dimethyl sulfoxide and the like Preferably, aliphatic hydrocarbons, aromatic hydrocarbons, amides, nitriles, dimethyl sulfoxide, more preferably cyclohexane, toluene, acetonitrile, N, N-dimethylformamide are used.
[0031]
The amount of the organic solvent used is appropriately adjusted depending on the uniformity and stirrability of the reaction solution, but is preferably 1 to 50 times by weight, more preferably 1.5 to 20 times by weight with respect to the 2,4-dihalogenonitrobenzene derivative. It is. These organic solvents may be used alone or in combination of two or more.
[0032]
In the reaction of the present invention, for example, a 2,4-dihalogenonitrobenzene derivative, a 2-monosubstituted acetate derivative, a metal inorganic acid salt, and an organic solvent are mixed and reacted. A mono-substituted acetic acid ester derivative, a metal inorganic acid salt and an organic solvent are mixed, and preferably reacted at 20 to 140 ° C., more preferably at 40 to 120 ° C., by adding a 2,4-dihalogenonitrobenzene derivative. is there. Moreover, crown ether, polyethylene glycol, or the like can be added to promote the reaction.
[0033]
The target 2- (5-halogeno-2-nitrophenyl) -2-substituted acetic acid ester derivative obtained by the reaction of the present invention is, for example, a common product such as column chromatography, distillation, recrystallization and the like after completion of the reaction. Separated and purified by various methods.
[0034]
【Example】
Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.
[0035]
Example 1
In a 200 ml glass flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 6.51 g (47.2 mmol) potassium carbonate, 20 ml N, N-dimethylformamide, 99% pure malon under argon atmosphere 6.24 g (46.7 mmol) of dimethyl acid and 5.00 g (30.8 mmol) of 2,4-difluoronitrobenzene with a purity of 98% were added, and the mixture was allowed to react for 1 hour at room temperature with stirring and further to 70 ° C for 5 hours It was. After completion of the reaction, the reaction mixture was cooled to room temperature, 100 ml of ethyl acetate was added, and 10.5 ml (62.8 mmol) of 6 mol / l hydrochloric acid was slowly added dropwise with stirring. Next, 50 ml of water was added, and then the organic layer was separated. The organic layer was washed with 20 ml of water and 20 ml of saturated saline in this order, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting concentrate was purified by silica gel column chromatography (filler: Daisogel 1002W, developing solvent: hexane: ethyl acetate = 9: 1 (volume ratio)) to give white crystals, 6.22 g of dimethyl 2- (5-fluoro-2-nitrophenyl) malonate having a purity of 98% (area percentage of high performance liquid chromatography) was obtained (isolation yield 73%).
[0036]
Example 2
To a glass flask having an internal volume of 100 ml equipped with a stirrer, thermometer, reflux condenser and dropping funnel, in an argon atmosphere, potassium carbonate 8.29 g (60.0 mmol), acetonitrile 30 ml, purity 99% dimethyl malonate 8.09 g ( 60.0 mmol) and 98% purity 2,4-difluoronitrobenzene (5.00 g, 30.0 mmol) were added, and the mixture was reacted at 70 ° C. for 10 hours with stirring. After completion of the reaction, the reaction mixture was cooled to room temperature, 50 ml of toluene was added, and 7.5 ml (90 mmol) of 12 mol / l hydrochloric acid was slowly added dropwise with stirring. Subsequently, the organic layer was separated, washed with water (20 ml) and saturated brine (20 ml) in that order, and dried over anhydrous magnesium sulfate. After filtration, the organic layer was analyzed by high performance liquid chromatography (absolute quantitative method). As a result, 6.61 g (reaction yield 81%) of dimethyl 2- (5-fluoro-2-nitrophenyl) malonate was formed. .
[0037]
Example 3
In Example 2, the reaction was performed in the same manner as in Example 2 except that the organic solvent was changed to tetrahydrofuran. As a result, 6.65 g (reaction yield 82%) of dimethyl 2- (5-fluoro-2-nitrophenyl) malonate was produced.
[0038]
Example 4
In a glass flask with an internal volume of 500 ml equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 55.3 g (0.40 mol) of potassium carbonate, 200 ml of N, N-dimethylformamide, 98% pure malon under argon atmosphere 54.0 g (0.40 mol) of dimethyl acid and 32.5 g (0.20 mmol) of 2,4-difluoronitrobenzene having a purity of 98% were added and reacted at 70 ° C. for 3 hours with stirring. After completion of the reaction, the mixture was cooled to room temperature, 160 ml of toluene was added, and 50 ml (0.60 mol) of 12 mol / l hydrochloric acid was slowly added dropwise with stirring. Next, the organic layer was separated, washed with water (50 ml) and saturated brine (50 ml) in that order, and dried over anhydrous magnesium sulfate. After filtration, the organic layer was analyzed by high performance liquid chromatography (absolute quantitative method). As a result, 45.3 g (reaction yield: 84%) of dimethyl 2- (5-fluoro-2-nitrophenyl) malonate was produced. .
[0039]
Example 5
In a glass flask having an internal volume of 100 ml equipped with a stirrer, thermometer, reflux condenser and dropping funnel, under an argon atmosphere, 3.03 g (21.9 mmol) of potassium carbonate, 5.0 ml of N, N-dimethylformamide, purity 99% 2.17 g (21.7 mmol) of methyl cyanoacetate and 1.45 g (8.94 mmol) of 2,4-difluoronitrobenzene having a purity of 98% were added and reacted at 60 ° C. for 6 hours with stirring. After completion of the reaction, the reaction mixture was cooled to room temperature, 50 ml of ethyl acetate was added, and 2.9 ml (34.8 mmol) of 12 mol / l hydrochloric acid was slowly added dropwise with stirring. Next, the organic layer was separated, washed with water (20 ml) and saturated brine (30 ml) in that order, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting concentrated solution was purified by silica gel column chromatography (filler: Daisogel 1002W, developing solvent: toluene) to give a yellow oily substance with a purity of 99% (high-performance liquid chromatography area) 1.81 g of methyl 2- (5-fluoro-2-nitrophenyl) -2-cyanoacetate (isolation yield 84%).
[0040]
Example 6
Into a 100 ml glass flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, an argon atmosphere, potassium carbonate 8.68 g (62.9 mmol), N, N-dimethylformamide 20 ml, purity 99% acetoacetate 7.30 g (62.2 mmol) of methyl acetate and 5.00 g (30.8 mmol) of 2,4-difluoronitrobenzene having a purity of 98% were added and reacted at 25 ° C. for 5 hours with stirring. After completion of the reaction, the reaction mixture was cooled to room temperature, 100 ml of ethyl acetate was added, and 15.7 ml (94.2 mmol) of 6 mol / l hydrochloric acid was slowly added dropwise with stirring. Next, after adding 50 ml of water, the organic layer was separated, washed with water (20 ml) and saturated brine (30 ml) in that order, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting concentrate was purified by silica gel column chromatography (filler: Daisogel 1002W, developing solvent: hexane: ethyl acetate = 9: 1 (volume ratio)) as a yellow oil. Thus, 6.08 g of methyl 2- (5-fluoro-2-nitrophenyl) -2-acetoacetate having a purity of 98% (area percentage of high performance liquid chromatography) was obtained (isolation yield 76%).
[0041]
Example 7
In a 200 ml glass flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 7.13 g (51.6 mmol) potassium carbonate, 20 ml N, N-dimethylformamide, 99% purity cyano under argon atmosphere Methyl acetate (5.06 g, 50.6 mmol) and 99% pure 2,4-dichloronitrobenzene (5.00 g, 25.8 mmol) were added, and the mixture was reacted at 45 ° C. for 4 hours with stirring. After completion of the reaction, the reaction mixture was cooled to room temperature, 100 ml of ethyl acetate was added, and 12.9 ml (77.4 mmol) of 6 mol / l hydrochloric acid was slowly added dropwise with stirring. Next, 50 ml of water was added, and then the organic layer was separated, washed with 50 ml of saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting concentrate was purified by silica gel column chromatography (filler: Daisogel 1002W, developing solvent: hexane: ethyl acetate = 20: 1 (volume ratio)) to give white crystals. 5.76 g of methyl 2- (5-chloro-2-nitrophenyl) -2-cyanoacetate having a purity of 95% (area percentage of high performance liquid chromatography) was obtained (isolation yield 83%).
[0042]
Example 8
In a 200 ml glass flask equipped with a stirrer, thermometer, reflux condenser and dropping funnel, 7.13 g (51.6 mmol) potassium carbonate, 20 ml N, N-dimethylformamide, 99% purity acetoacetate under argon atmosphere 6.05 g (51.6 mmol) of methyl acetate and 5.00 g (25.8 mmol) of 2,4-dichloronitrobenzene having a purity of 99% were added and reacted at 70 ° C. for 3 hours with stirring. After completion of the reaction, the reaction mixture was cooled to room temperature, 100 ml of ethyl acetate was added, and 12.9 ml (77.4 mmol) of 6 mol / l hydrochloric acid was slowly added dropwise with stirring. Next, 30 ml of water was added, and then the organic layer was separated, washed with 30 ml of saturated brine, and dried over anhydrous magnesium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting concentrate was purified by silica gel column chromatography (filler: Daisogel 1002W, developing solvent: hexane: ethyl acetate = 40: 1 (volume ratio)) as a yellow oil. Thus, 4.33 g of methyl 2- (5-chloro-2-nitrophenyl) -2-acetoacetate having a purity of 98% (area percentage of high performance liquid chromatography) was obtained (isolation yield 61%).
[0043]
【The invention's effect】
According to the present invention, a 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative can be produced from a 2,4-dihalogenonitrobenzene derivative by a simple method. A method for producing a-(5-halogeno-2-nitrophenyl) -2-substituted acetate derivative can be provided.

Claims (5)

無機酸が炭酸である金属無機酸塩の存在下、一般式(1)
Figure 0004000758
(式中、R1、R2及びR3は、水素原子を示し、X1及びX2は、フッ素原子を示す。)
で示される2,4−ジフルオロニトロベンゼンに、一般式(2)
Figure 0004000758
(式中、R4は、アシル基又はシアノ基を示し、R5は、アルキル基、アラルキル基又はアリール基を示す。)
で示される2−モノ置換酢酸エステル誘導体を有機溶媒中で反応させることを特徴とする、一般式(3)
Figure 0004000758
(式中、R1、R2、R3、R4、R5及びX2は、前記と同義である。)
で示される2−(5−フルオロ−2−ニトロフェニル)−2−置換酢酸エステル誘導体の製造法。
In the presence of a metal inorganic acid salt in which the inorganic acid is carbonic acid, the general formula (1)
Figure 0004000758
(In the formula, R 1 , R 2 and R 3 represent a hydrogen atom, and X 1 and X 2 represent a fluorine atom.)
And 2,4-difluoronitrobenzene represented by the general formula (2)
Figure 0004000758
(In the formula, R 4 represents an acyl group or a cyano group, and R 5 represents an alkyl group, an aralkyl group, or an aryl group.)
A 2-mono-substituted acetic acid ester derivative represented by the general formula (3) is reacted in an organic solvent.
Figure 0004000758
(Wherein R 1 , R 2 , R 3 , R 4 , R 5 and X 2 are as defined above.)
A method for producing a 2- (5-fluoro-2-nitrophenyl) -2-substituted acetate derivative represented by the formula:
無機酸が炭酸である金属無機酸塩の金属原子が、アルカリ金属原子である、請求項1に記載の2−(5−フルオロ−2−ニトロフェニル)−2−置換酢酸エステル誘導体の製造法。  The method for producing a 2- (5-fluoro-2-nitrophenyl) -2-substituted acetate derivative according to claim 1, wherein the metal atom of the metal inorganic acid salt whose inorganic acid is carbonic acid is an alkali metal atom. 無機酸が炭酸である金属無機酸塩が、炭酸ナトリウム又は炭酸カリウムである、請求項1又は2に記載の2−(5−フルオロ−2−ニトロフェニル)−2−置換酢酸エステル誘導体の製造法。  The method for producing a 2- (5-fluoro-2-nitrophenyl) -2-substituted acetate derivative according to claim 1 or 2, wherein the metal inorganic acid salt whose inorganic acid is carbonic acid is sodium carbonate or potassium carbonate. . 4が、アシル基である、請求項1〜3のいずれか1項に記載の2−(5−フルオロ−2−ニトロフェニル)−2−置換酢酸エステル誘導体の製造法。The method for producing a 2- (5-fluoro-2-nitrophenyl) -2-substituted acetate derivative according to any one of claims 1 to 3, wherein R 4 is an acyl group. 4が、シアノ基である、請求項1〜3のいずれか1項に記載の2−(5−フルオロ−2−ニトロフェニル)−2−置換酢酸エステル誘導体の製造法。The method for producing a 2- (5-fluoro-2-nitrophenyl) -2-substituted acetate derivative according to any one of claims 1 to 3, wherein R 4 is a cyano group.
JP2000239655A 2000-07-19 2000-08-08 Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative Expired - Fee Related JP4000758B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000239655A JP4000758B2 (en) 2000-08-08 2000-08-08 Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative
EP01951925A EP1310486A4 (en) 2000-07-19 2001-07-19 Process for producing 5-fluorooxyindole and for producing intermediate therefor
AU2001272757A AU2001272757A1 (en) 2000-07-19 2001-07-19 Process for producing 5-fluorooxyindole and for producing intermediate therefor
US10/333,316 US6900335B2 (en) 2000-07-19 2001-07-19 Process for producing 5-fluorooxindole and for producing intermediates therefor
CA002416397A CA2416397A1 (en) 2000-07-19 2001-07-19 Process for producing 5-fluorooxyindole and for producing intermediate therefor
PCT/JP2001/006260 WO2002006228A1 (en) 2000-07-19 2001-07-19 Process for producing 5-fluorooxyindole and for producing intermediate therefor
US11/093,603 US7342040B2 (en) 2000-07-19 2005-03-30 5-fluorooxindole-3-carboxylic acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000239655A JP4000758B2 (en) 2000-08-08 2000-08-08 Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006298546A Division JP2007070362A (en) 2006-11-02 2006-11-02 Production method for 2-(5-chloro-2-nitrophenyl)-2-substituted acetate derivative

Publications (2)

Publication Number Publication Date
JP2002053531A JP2002053531A (en) 2002-02-19
JP4000758B2 true JP4000758B2 (en) 2007-10-31

Family

ID=18731155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000239655A Expired - Fee Related JP4000758B2 (en) 2000-07-19 2000-08-08 Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative

Country Status (1)

Country Link
JP (1) JP4000758B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042580A (en) * 2007-12-20 2011-03-03 Kuraray Co Ltd Method for producing 1,1,3,4-butane tetracarboxylate

Also Published As

Publication number Publication date
JP2002053531A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
US7342040B2 (en) 5-fluorooxindole-3-carboxylic acid ester
JPH0489464A (en) Production of methoxyiminoacetamide compound and intermediate used therein
JP4000758B2 (en) Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivative
JPH0583550B2 (en)
JP4173599B2 (en) Process for producing 6-hydroxy-2-oxo-1,2,3,4-tetrahydroquinoline
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP3864657B2 (en) Process for producing aromatic acrylonitrile
JP2005154420A (en) Method for producing akloxy-5-(5-trifluoromethyl-tetrazol-1-yl)benzaldehyde
JP3952670B2 (en) Process for producing 2- (5-halogeno-2-nitrophenyl) -2-substituted acetate derivatives
JP3855686B2 (en) 3,3-dialkoxy-2-hydroxyimino derivative and process for producing the same
JP2007070362A (en) Production method for 2-(5-chloro-2-nitrophenyl)-2-substituted acetate derivative
JP4030289B2 (en) Process for producing β-ketonitriles
JP4123709B2 (en) Preparation of aromatic acrylonitrile derivatives
JPWO2005058859A1 (en) Process for producing 3- (4-tetrahydropyranyl) -3-oxopropanoic acid alkyl compound and 4-acyltetrahydropyran
JP4013772B2 (en) 2-Hydroxyimino-3-oxopropionitrile and process for producing the same
JP4518065B2 (en) Novel dialkoxyamidooxime derivatives and their production
JP3918468B2 (en) 3,3-bis (alkoxycarbonyl-methylthio) propionitrile and process for producing the same
JP4032593B2 (en) Method for producing 4-aminotetrahydropyran derivative
WO1999041214A1 (en) Halogenating agent and process for halogenating hydroxyl group
JP4937442B2 (en) Process for producing 5-fluorooxindole
JP4518066B2 (en) Dialkoxynitrile derivative and process for producing the same
JP3873796B2 (en) 3-hydrazono-2-hydroxyiminopropionitrile derivative and process for producing the same
WO2000053575A1 (en) SYNTHESIS OF α-AMINO-α&#39;,α&#39;-DIHALOKETONES AND PROCESS FOR THE PREPARATION OF β-AMINO ACID DERIVATIVES BY THE USE OF THE SAME
JP2007063294A (en) Process for producing 2-(5-chloro-2-nitrophenyl)-2-substituted acetate derivative
JP2002363171A (en) Method of producing 4-substituted-3-amino-isoxazole derivative

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees