JP4000713B2 - Self-temperature control sheet heating element - Google Patents

Self-temperature control sheet heating element Download PDF

Info

Publication number
JP4000713B2
JP4000713B2 JP11566199A JP11566199A JP4000713B2 JP 4000713 B2 JP4000713 B2 JP 4000713B2 JP 11566199 A JP11566199 A JP 11566199A JP 11566199 A JP11566199 A JP 11566199A JP 4000713 B2 JP4000713 B2 JP 4000713B2
Authority
JP
Japan
Prior art keywords
heating element
self
temperature
electrodes
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11566199A
Other languages
Japanese (ja)
Other versions
JP2000306656A (en
Inventor
豊 衣笠
雅也 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP11566199A priority Critical patent/JP4000713B2/en
Publication of JP2000306656A publication Critical patent/JP2000306656A/en
Application granted granted Critical
Publication of JP4000713B2 publication Critical patent/JP4000713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、PTC特性(抵抗率が温度と共に上昇する正温度特性)を有する自己温度制御面状発熱体に関するものである。
【0002】
【従来の技術】
面状発熱体は、従来から、床暖房用ヒータや融雪ヒータ、鏡の曇り止めヒータ等に適用されており、例えば、図11に示す如く、面基材10にニクロム線11を埋設してなるものが一般に知られている。しかしながら、この場合、過電流や過熱に対しての保護回路を別途に設けなければならず構造が複雑となり、又、線が途中で断線すると、全体的に通電発熱しなくなるという不都合を生じていた。
【0003】
ところで、図12に示す如く、PTC特性(抵抗率が温度と共に上昇する正温度特性)を有する樹脂を面状発熱体として使用することも知られており、これが自己温度制御面状発熱体と称されるものである。この場合、発熱体は導電性粒子を含有する高分子組成物で面状に形成され、面全体が過電流/過熱保護機能を備えたものとなって、構造が単純化する他、形状の形成自由度が広がり、昇温速度も向上し、更に、断線の心配も無くなって、各種ヒータに適用される有益な面状発熱体となる。
【0004】
しかしながら、この場合、PTC特性を有する樹脂を面状発熱体として温度制御領域(抵抗率が急激に上昇し始める温度領域)で使用すると、局所的な発熱を生じ、面全体を均熱化することができなくなってしまうという問題があった。これを図13に例示して説明すると、次の如くである。
【0005】
図13(a)に示す如く、PTC特性を有する樹脂で面状に形成された発熱体1は、縦寸法L1=60mm、横寸法L2=70mm、厚さ寸法=2mm であり、該発熱体1の縦方向に沿った両側端部全長に、巾寸法L3=15mmの電極2が相対向するよう対に配設されている。該自己温度制御面状発熱体において、対の電極2間の発熱体1が通電によって発熱された際の温度分布を、該発熱体1の三つのスポット((1)〜(3))で熱電対によって測定すると、図13(b)に示す如くとなる。これを見ると、60℃付近までは面全体が均一に発熱しているものの、それ以降は一部分のみが局所的な発熱を始め(スポット(2) が局所発熱部位3となり、該局所発熱部位3の温度を3Tで示す)、他の部分では温度が低下している。その結果、通電開始から200sec後には、温度分布差が30℃にも達することとなる。
【0006】
この場合、図14に示す如く、発熱により生じる温度分布は電流の流れ(通電方向)と垂直な方向(電流経路を遮る方向)で帯状に分布していることが温度測定の結果から判っており、そのため、局所発熱部位3となる帯状部分のみの電気抵抗が上昇し、面全体としての電流が急減して、該局所発熱部位3以外の部分は温度が低下する。又、同局所発熱部位3は、放熱係数の差や樹脂の内部構造の不均一性が影響して、必ず、ある初期発熱位置を起点として帯状に分布していくのであるが、見かけ上均一形状である面状の発熱体1のどの位置を起点として発生するかを事前に予測する(均熱対策を施すべき部位を特定する)ことは極めて困難であった。
【0007】
【発明が解決しようとする課題】
上記従来の技術における問題を解決する方法、すなわち、自己温度制御面状発熱体において発熱により生じる温度分布を均一化する方法として、図15(a)に示す如く、発熱体1の発熱面となる表裏両面を電極2として形成したり、或いは、図15(b)に示す如く、相対向する両電極2の構造を櫛形状としたりするといった方法はあるが、このような方法を採用した場合には、次のような問題が発生する。
【0008】
すなわち、いずれの場合にも、両電極2間の距離が短くなって、電気の短絡の危険性が増大し、しかも、発熱体1となる樹脂の発熱による膨張のため、該樹脂と電極2との間に熱応力が発生して、両者間の界面が剥離したり破損してしまったりする可能性がある。又、発熱体1の発熱面に電極2が大きく現出するため、該発熱体1の発熱面をそのまま利用する形態には不向きとなる。
【0009】
又、特開平1−151191号公報、特開平1−154484号公報にも、自己温度制御面状発熱体の発熱により生じる温度分布を均一化する技術が開示されている。特開平1−151191号公報のものでは、図16に示す如く、両側端部に電極2が配設される発熱体1の厚みが、中央部に向かって順次厚くなるように形成されている。又、特開平1−154484号公報のものでは、図17に示す如く、両側端部に電極2が配設される発熱体1に多数の透孔12が穿設され、中央部に近い同透孔12ほどその孔径が小さく形成されている。
【0010】
前記二つの自己温度制御面状発熱体は、均一形状の面状発熱体において、その周囲より放熱する際に放熱量の不均一化が避けられず、一般的には、電極間の中央部付近における放熱量が最小となるために、該中央部付近に局所的発熱が発生することに鑑みて提案されたものである。しかしながら、完全に均一な材料組成の発熱体であっても、発熱周囲の雰囲気が一定の場合には、上記形状で良いのであるが、実際には、材料組成も周囲の雰囲気も完全に均一とはなり得ない。しかも、通電電流量によっては、放熱係数の差異よりも電流密度の差異による発熱への影響が大きくなり、上記形状であっても、最も電流密度の集中する(通電断面積の小さい)電極2付近が局所的に発熱することもあり得る。
【0011】
したがって、前記いずれの自己温度制御面状発熱体においても、発熱により生じる温度分布を確実に均一化することは困難である。更に、図16に示したものにおいては、発熱体1の発熱面が傾斜して平坦とならず、図17に示したものにおいては、発熱体1の発熱面積が透孔12の分だけ小さくなって、有効な発熱作用を得ることができず、又、いずれのものにおいても、発熱体1は形状が特殊で製作し難く、各種ヒータに適用し難いものともなる。
【0012】
本発明は、上記従来の技術における問題を悉く解決するために発明されたもので、その課題は、面全体の均熱化を確実に図ることができる自己温度制御面状発熱体を提供することである。
【0013】
【課題を解決するための手段】
本発明の請求項1記載の自己温度制御面状発熱体は、導電性粒子を含有する高分子組成物で面状に形成された発熱体の端部に対の電極が配設され、該対の電極間の発熱体が通電によって発熱される自己温度制御面状発熱体であって、通電方向が相互に交差するよう複数対の電極を発熱体の端部に配設してなる。
【0014】
したがって、この場合、通電方向が相互に交差するよう複数対の電極を発熱体の端部に配設しているため、電極間の発熱体に通電させる際、複数の通電方向を相違させることができ、全体がある一定の温度(温度制御領域:図12参照)に上昇するまで電流(ここでの電流は交流/直流のいずれでも良い)の流れを減少させないようにようにすることができ、これによって、面全体の均熱化を確実に図ることができる。すなわち、図14で説明したように、PTC特性を有する樹脂で面状に形成された発熱体は、通電発熱時、電流方向を遮る向きで帯状に局所発熱が生じて、電流を急減させてしまうものであるが、通電方向を一方向ではなく複数方向とすることでこれを防止し、面全体を均一に発熱させることができるものである。
【0015】
本発明の請求項2記載の自己温度制御面状発熱体は、上記請求項1記載の自己温度制御面状発熱体において、発熱体を矩形状に形成し、該発熱体の端部四辺各々に電極を配設したことを特徴とする。
【0016】
したがって、この場合は特に、矩形状の発熱体の端部四辺各々に電極を配設しているため、複数の通電方向を相互に異なる方向にして確実に交差させることができて、帯状の局所発熱を防止し易くなり、矩形状の発熱体の面全体を広く有効に発熱させることができる。
【0017】
本発明の請求項3記載の自己温度制御面状発熱体は、上記請求項1又は2記載の自己温度制御面状発熱体において、対となる電極の一方を複数にして配設し、一つの電極と複数の電極との間で通電されるようになしたことを特徴とする。
【0018】
したがって、この場合は特に、一つの電極と複数の電極との間で通電されるようになっているため、一つの電極と複数の電極との間で相互に平行とならない通電方向にすることにより、帯状の局所発熱は確実に防止されて、発熱体を効率的に発熱させることができる。
【0019】
本発明の請求項4記載の自己温度制御面状発熱体は、上記請求項1〜3のいずれか一つに記載の自己温度制御面状発熱体において、通電方向が経時的に変化制御されるようになしたことを特徴とする。
【0020】
したがって、この場合は特に、通電方向が経時的に変化制御されるようになっているため、複数の通電方向を順次に切り替え変化させることができ、異なる多くの通電方向パターンを得ることができて、これにより、帯状の局所発熱は確実に防止されて、面全体の均熱化をより確実に図ることができる。
【0021】
本発明の請求項5記載の自己温度制御面状発熱体は、上記請求項1又は2記載の自己温度制御面状発熱体において、通電方向が相互に略直交するよう各電極を配設したことを特徴とする。
【0022】
したがって、この場合は特に、複数の通電方向が相反して相互に略直交するため、通電の方向性に偏りがなくなり、帯状の局所発熱は確実に防止されて、面全体の均熱化をより確実に図ることができる。
【0023】
本発明の請求項6記載の自己温度制御面状発熱体は、上記請求項1又は2記載の自己温度制御面状発熱体において、発熱体の電気抵抗が局所的に大きくなり高温となって発熱する該局所発熱部位を特定し、同特定された局所発熱部位の位置情報に基づいて通電方向や各電極間の通電電流、通電時間等の発熱要因が変化制御されるようになしたことを特徴とする。
【0024】
したがって、この場合は特に、局所発熱部位が特定され、該特定された局所発熱部位の位置情報に基づいて通電方向や各電極間の通電電流、通電時間等の発熱要因が変化制御されるようになっているため、局所発熱部位が発生しても、該局所発熱部位がそれ以上は高温とならないように、特定された同局所発熱部位の位置情報に基づき発熱要因を簡単に変化制御することができて、面全体の均熱化をより確実に図ることができ、発熱体の長寿命化を図ることもできる。
【0025】
【発明の実施の形態】
図1、2は、本発明の請求項1〜4に対応する一実施形態を示し、該実施形態の自己温度制御面状発熱体は、導電性粒子を含有する高分子組成物で面状に形成された発熱体1の端部に対の電極2が配設され、該対の電極2間の発熱体1が通電によって発熱される自己温度制御面状発熱体であって、通電方向が相互に交差するよう複数対の電極2を発熱体1の端部に配設してなる。
【0026】
該自己温度制御面状発熱体においては、発熱体1を矩形状に形成し、該発熱体1の端部四辺各々に電極2を配設している。この場合、対となる電極2の一方を複数にして配設し、一つの電極2と複数の電極2との間で通電されるようになしており、又、通電方向が経時的に変化制御されるようにもなしている。
【0027】
発熱体1は導電性粒子と高分子組成物とからなり、PTC特性(抵抗率が温度と共に上昇する正温度特性)を有していて、高分子組成物である樹脂の温度が上昇すると抵抗値も増大するものである。ここで、導電性粒子としては、鉄、アルミニウム、銅、銀、カーボン等の粉末状の物質が挙げられるが、これに限定されるものではない。又、高分子組成物は単一の高分子材料から構成されるものだけではなく、複数の物質から構成されるものであっても良く、その基本構成としては熱可塑性樹脂、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、メタクリル樹脂、ポリアミド、ポリカーボネート、ポリアセタール、PET樹脂、PBT樹脂、ポリフェニレンスルフィド、ポリイミド、フッ素樹脂等が挙げられるが、これに限定されるものではない。
【0028】
発熱体1は縦寸法L1=80mm、横寸法L2=80mmの正方形状で、その厚さ寸法tは2mm であり、該発熱体1の周囲四辺各々に4個づつ、計16個で8対の電極2が配設されている。この場合の電極2は、一辺が 5mmの正方形状で厚さが 2mmの高導電性樹脂(抵抗率が 1×10E-4Ω-cm 以下)を発熱体1のPTC樹脂と一体に成形したものであるが、電極2としては、このようなものに限られるものではなく、例えば、導電性ペーストを塗布した上から金属(銅、アルミニウム、銀、鉄等)の薄板を貼着したものであっても良い。
【0029】
又、この場合、図2に示す如く、電極2(+と−)に関して、その対となる電極2の数が異なるように通電されるのもであり、すなわち、対となる電極2の一方が複数にして配設され、一つの電極2と複数の電極2との間で通電されるものである。ここでは、S1に対してT1〜T4に通電できるように回路が制御され、その後、T5に対してS5〜S8、T1に対してS1〜S4、S5に対してT5〜T8、・・・というように、順次通電方向が経時的に変化制御される。なお、この場合には、S1とT1〜T4との間、T1とS1〜S4との間、・・・の各間における通電方向と、T5とS5〜S8との間、S5とT5〜T8との間、・・・の各間における通電方向と、が相互に交差することになる。
【0030】
したがって、該実施形態の自己温度制御面状発熱体においては、複数対の電極2が発熱体1の周囲端部に配設されて、その間の通電方向は相互に交差するようになっているので、電極2間にある発熱体1に通電させる際、複数の通電方向を相違させることができ、全体がある一定の温度(温度制御領域)に上昇するまで電流の流れを減少させないようにようにすることができ、これによって、発熱体1の発熱面全体の均熱化を確実に図ることができる。すなわち、PTC特性を有する樹脂で面状に形成された発熱体1は、通電発熱時、電流方向を遮る向きで帯状に局所発熱が生じて、電流を急減させてしまうものであるが、通電方向を一方向ではなく複数方向とすることでこれを防止し、発熱体1の発熱面全体を均一に発熱させることができるものである。
【0031】
又、該実施形態の自己温度制御面状発熱体においては、正方形状の発熱体1の端部四辺各々に電極2が配設されているので、複数の通電方向を相互に異なる方向にして確実に交差させることができ、帯状の局所発熱を防止し易くなり、同発熱体1の発熱面全体を広く有効に発熱させることができる。しかも、一つの電極2と複数の電極2との間で通電されるようになっているので、一つの電極2と複数の電極2との間で相互に平行とならない通電方向となり、帯状の局所発熱は確実に防止されて、発熱体1を効率的に発熱させることができる。更には、通電方向が経時的に変化制御されるようになっているので、複数の通電方向を順次に切り替え変化させることができ、異なる多くの通電方向パターンを得ることができて、これにより、帯状の局所発熱は確実に防止されて、発熱体1の発熱面全体の均熱化をより確実に図ることができる。
【0032】
図3は、本発明の請求項1、2、4、5に対応する別の実施形態を示し、該実施形態の自己温度制御面状発熱体においては、一つの電極2と複数の電極2との間で通電されるのでなく、電極2(+と−)とが1対1に対応して通電されるものであり、それ故に、通電方向が相互に略直交するよう各電極2は配設されている。この場合、T4−S4間とT7−S1間とでは、電極2間の距離が5〜6倍程度異なるため、それぞれの通電時間、通電電流値を変化させて発熱が制御されるものである。
【0033】
したがって、この場合は特に、複数の通電方向が相反して相互に略直交するので、通電の方向性に偏りがなくなって発熱体1全体にバランス良く通電され、帯状の局所発熱は確実に防止されて、発熱体1の発熱面全体の均熱化をより確実に図ることができる。なお、それ以外は、上記図1に示した実施形態と同様に構成されており、同上記実施形態におけると同様の作用効果が奏される。
【0034】
図4、5は、本発明の請求項1、2、4、5に対応する更に別の実施形態を示し、該実施形態の自己温度制御面状発熱体においては、通電のパターンがシーケンサ等で制御されるものである。この場合には、次の1-step〜8-stepのサイクルが繰り返し実行されるように制御される。
【0035】
・1−step : S8−S8=OFF、S1−S1=ON
・2−step : S1−S1=OFF、S2−S2=ON
・3−step : S2−S2=OFF、S3−S3=ON
・4−step : S3−S3=OFF、S4−S4=ON
・5−step : S4−S4=OFF、S5−S5=ON
・6−step : S5−S5=OFF、S6−S6=ON
・7−step : S6−S6=OFF、S7−S7=ON
・8−step : S7−S7=OFF、S8−S8=ON
この場合の各ステップ(step)を、図4(a)で通電方向の矢印上に1〜8の数字で示し、図5のタイムチャートでは、各ステップにおける通電時間をT1として示している。なお、それ以外は、上記図3に示した実施形態と同様に構成されており、同上記実施形態におけると同様の作用効果が奏される。
【0036】
図6、7は、本発明の請求項1、2、4〜6に対応する更に別の実施形態を示し、該実施形態の自己温度制御面状発熱体においては、発熱体1の電気抵抗が局所的に大きくなり高温となって発熱する該局所発熱部位3を特定し、同特定された局所発熱部位3の位置情報に基づいて通電方向や各電極2間の通電電流、通電時間等の発熱要因が変化制御されるようになっている。この場合、通電位により局所発熱部位3の位置が変化してきたら、その都度、通電方向や通電電流(電極間印加電圧)を変えていく。例えば、図6(a)において、A部〜D部まで同時に通電させて、或いは、順次に通電させて、均熱化を図ったり、又、通電距離に対応させて印加電圧を変えたりする。
【0037】
又、局所発熱部位3を特定する手段としては、図7に示す如く、周囲の電極2からの抵抗値測定によるものを採用している。この場合、各リード線4に流れる電流を電流計5によって測定し(各電極2への電圧印加はリード線4を介しリレー6によって制御される)、印加電圧との関係からオームの法則より各電極2間での電気抵抗を計算する(抵抗=印加電圧/電流)。このとき、局所発熱部位3を挟む電極2間には、高抵抗値となるため電流がほとんど流れず、局所発熱部位3以外の部分における電極2間には、低抵抗値となるため電流が流れ、これによって、局所発熱部位3の位置を特定することができる。
【0038】
したがって、この場合は特に、局所発熱部位3が特定され、該特定された局所発熱部位3の位置情報に基づいて通電方向や各電極2間の通電電流、通電時間等の発熱要因が変化制御されるようになっているため、局所発熱部位3が発生しても、該局所発熱部位3がそれ以上は高温とならないように、特定された同局所発熱部位3の位置情報に基づき発熱要因を簡単に変化制御することができて、発熱体1の発熱面全体の均熱化をより確実に図ることができ、発熱体1の長寿命化を図ることもできる。なお、それ以外は、上記図3に示した実施形態と同様に構成されており、同上記実施形態におけると同様の作用効果が奏される。
【0039】
図8は、本発明の請求項1、2、4〜6に対応する更に別の実施形態を示し、該実施形態の自己温度制御面状発熱体においては、局所発熱部位3を特定する手段として、発熱体1の発熱表面の温度分布を測定する赤外線カメラ7を採用している。この場合、図8(a)に示す赤外線カメラ7で撮影した写真の概略を、図8(b)に示しており、該赤外線カメラ写真から局所発熱部位3(写真では3Mとして現出)を特定することができる。なお、それ以外は、上記図6に示した実施形態と同様に構成されており、同上記実施形態におけると同様の作用効果が奏される。
【0040】
図9は、本発明の請求項1、2、4〜6に対応する更に別の実施形態を示し、該実施形態の自己温度制御面状発熱体においては、局所発熱部位3を特定する手段として、発熱体1の発熱表面に取り付けられて同表面の温度分布を測定する熱電対8を採用している。この場合、図9(a)に示す熱電対8で測定される温度変化データを、図9(b)のグラフに示している(図9(a)に示される多数のスポットのうち所定方向における三つのスポット (1)〜(3) で測定される温度のみを一例として表示)。ここでは、60℃付近まではスポット (1)〜(3) の全てが均一に発熱しているものの、それ以降は一部分のみが局所的な発熱を始め(スポット(2) が局所発熱部位3となり、該局所発熱部位3の温度を3Tで示す)、他の部分では温度が低下しており、それ故、スポット(2) を局所発熱部位3として特定することができる。なお、それ以外は、上記図6に示した実施形態と同様に構成されており、同上記実施形態におけると同様の作用効果が奏される。
【0041】
図10は、本発明の請求項1、2、4〜6に対応する更に別の実施形態を示し、該実施形態の自己温度制御面状発熱体においては、局所発熱部位3を特定する手段として、発熱体1の密度を検知測定する超音波発信/受信装置9を採用している。この場合、局所発熱部位3は発熱による相変化(固相〜液相)により膨張して密度が小さくなるので、該変化を超音波を当てて返ってくる信号の長短で判断することによって、同局所発熱部位3を特定することができる。例えば、PTC樹脂がポリプロピレンやポリエチレンをベースとして構成されているとき、超音波周波数を5MHz程度に設定して測定する。なお、それ以外は、上記図6に示した実施形態と同様に構成されており、同上記実施形態におけると同様の作用効果が奏される。
【0042】
【発明の効果】
上述の如く、本発明の請求項1記載の自己温度制御面状発熱体においては、複数の通電方向を相違させることができ、全体がある一定の温度に上昇するまで電流の流れを減少させないようにようにすることができて、面全体の均熱化を確実に図ることができる。
【0043】
又、本発明の請求項2記載の自己温度制御面状発熱体においては、特に、複数の通電方向を相互に異なる方向にして確実に交差させることができて、帯状の局所発熱を防止し易くなり、矩形状の発熱体の面全体を広く有効に発熱させることができる。
【0044】
又、本発明の請求項3記載の自己温度制御面状発熱体においては、特に、電極間で相互に平行とならない通電方向にすることにより、帯状の局所発熱は確実に防止されて、発熱体を効率的に発熱させることができる。
【0045】
又、本発明の請求項4記載の自己温度制御面状発熱体においては、特に、複数の通電方向を順次に変化制御することができ、異なる多くの通電方向パターンを得ることができて、これにより、帯状の局所発熱は確実に防止されて、面全体の均熱化をより確実に図ることができる。
【0046】
又、本発明の請求項5記載の自己温度制御面状発熱体においては、特に、複数の通電方向が相互に略直交して、通電の方向性に偏りがなくなり、帯状の局所発熱は確実に防止されて、面全体の均熱化をより確実に図ることができる。
【0047】
又、本発明の請求項6記載の自己温度制御面状発熱体においては、特に、局所発熱部位が発生しても、該局所発熱部位がそれ以上は高温とならないように、発熱要因を簡単に変化制御することができて、面全体の均熱化をより確実に図ることができ、発熱体の長寿命化を図ることもできる。
【図面の簡単な説明】
【図1】本発明の一実施形態である自己温度制御面状発熱体を示し、(a)はその平面図、(b)はその側面図。
【図2】同自己温度制御面状発熱体の通電状態を表した平面図。
【図3】別の実施形態である自己温度制御面状発熱体の通電状態を表した平面図。
【図4】更に別の実施形態である自己温度制御面状発熱体を示し、(a)はその通電状態を表した平面図、(b)はその側面図。
【図5】同自己温度制御面状発熱体における制御通電時間を示すタイムチャート。
【図6】更に別の実施形態である自己温度制御面状発熱体を示し、(a)はその通電状態を表した平面図、(b)はその側面図。
【図7】同自己温度制御面状発熱体の局所発熱部位を特定する手段を表した平面図。
【図8】更に別の実施形態である自己温度制御面状発熱体を示し、(a)はその局所発熱部位を特定する手段を表した斜視図、(b)は同手段で得られた赤外線カメラ写真を示す概略図。
【図9】更に別の実施形態である自己温度制御面状発熱体を示し、(a)はその局所発熱部位を特定する手段を表した斜視図、(b)は同手段で得られた温度変化データを示すグラフ。
【図10】更に別の実施形態である自己温度制御面状発熱体の局所発熱部位を特定する手段を表した斜視図。
【図11】従来例である面状発熱体を示す斜視図。
【図12】PTC特性を説示するグラフ。
【図13】従来例である自己温度制御面状発熱体を示し、(a)はその平面図、(b)はその温度変化を示すグラフ。
【図14】同自己温度制御面状発熱体の通電状態を表した平面図。
【図15】別の従来例である(a)(b)各々異なった自己温度制御面状発熱体を示す斜視図。
【図16】更に別の従来例である自己温度制御面状発熱体を示し、(a)はその平面図、(b)はその側面図。
【図17】更に別の従来例である自己温度制御面状発熱体を示し、(a)はその平面図、(b)はその側面図。
【符号の説明】
1 発熱体
2 電極
3 局所発熱部位
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a self-temperature-controlled planar heating element having PTC characteristics (positive temperature characteristics in which resistivity increases with temperature).
[0002]
[Prior art]
Conventionally, the planar heating element has been applied to a floor heating heater, a snow melting heater, a mirror anti-fogging heater, and the like. For example, as shown in FIG. Things are generally known. However, in this case, a protection circuit against overcurrent and overheating must be provided separately, and the structure becomes complicated. In addition, if the wire is disconnected in the middle, there is an inconvenience that the current does not generate heat. .
[0003]
Incidentally, as shown in FIG. 12, it is also known to use a resin having a PTC characteristic (a positive temperature characteristic in which the resistivity increases with temperature) as a planar heating element, which is called a self-temperature-controlled planar heating element. It is what is done. In this case, the heating element is formed into a planar shape with a polymer composition containing conductive particles, and the entire surface has an overcurrent / overheat protection function, which simplifies the structure and forms the shape. The degree of freedom is widened, the temperature raising rate is improved, and further, there is no fear of disconnection, so that it becomes a useful planar heating element applied to various heaters.
[0004]
However, in this case, if a resin having PTC characteristics is used as a planar heating element in the temperature control region (temperature region where the resistivity starts to increase rapidly), local heat generation occurs and the entire surface is soaked. There was a problem that would be impossible. This will be described with reference to FIG. 13 as follows.
[0005]
As shown in FIG. 13 (a), the heating element 1 formed in a planar shape with a resin having PTC characteristics has a vertical dimension L1 = 60 mm, a horizontal dimension L2 = 70 mm, and a thickness dimension = 2 mm. The electrodes 2 having a width dimension L3 = 15 mm are arranged in pairs so as to face each other over the entire length of both end portions along the vertical direction. In the self-temperature-controlled planar heating element, the temperature distribution when the heating element 1 between the pair of electrodes 2 is heated by energization is determined by the three spots ((1) to (3)) of the heating element 1. When measured in pairs, the result is as shown in FIG. As seen from this, the entire surface is uniformly heated up to around 60 ° C., but after that, only a part starts local heat generation (spot (2) becomes the local heat generation site 3 and the local heat generation site 3 The temperature is indicated by 3T), and the temperature is lowered in other parts. As a result, after 200 seconds from the start of energization, the temperature distribution difference reaches 30 ° C.
[0006]
In this case, as shown in FIG. 14, it is known from the results of temperature measurement that the temperature distribution caused by heat generation is distributed in a strip shape in a direction perpendicular to the current flow (energization direction) (direction that blocks the current path). For this reason, the electrical resistance of only the belt-like portion that becomes the local heat generating portion 3 is increased, the current of the entire surface is rapidly reduced, and the temperature of the portion other than the local heat generating portion 3 is decreased. In addition, the local heat generation site 3 is always distributed in a band shape starting from a certain initial heat generation position due to the difference in the heat dissipation coefficient and the non-uniformity of the internal structure of the resin. It is extremely difficult to predict in advance which position of the planar heating element 1 is the starting point (specify a part to be subjected to heat equalization measures).
[0007]
[Problems to be solved by the invention]
As a method for solving the above problems in the prior art, that is, a method for equalizing the temperature distribution caused by heat generation in the self-temperature control planar heating element, the heating surface of the heating element 1 is formed as shown in FIG. There are methods such as forming both the front and back surfaces as electrodes 2 or making the structure of both electrodes 2 facing each other into a comb shape as shown in FIG. 15B. The following problems occur:
[0008]
That is, in any case, the distance between the electrodes 2 is shortened, the risk of an electrical short circuit is increased, and the resin and the electrode 2 Thermal stress is generated between the two, and the interface between them may be peeled off or damaged. Moreover, since the electrode 2 appears largely on the heat generating surface of the heat generating element 1, it is not suitable for a form in which the heat generating surface of the heat generating element 1 is used as it is.
[0009]
Japanese Patent Application Laid-Open No. 1-151191 and Japanese Patent Application Laid-Open No. 1-154484 also disclose a technique for uniformizing the temperature distribution generated by the heat generation of the self-temperature control planar heating element. In JP-A-1-151191, as shown in FIG. 16, the thickness of the heating element 1 in which the electrodes 2 are arranged at both end portions is formed so as to gradually increase toward the center. Moreover, in the thing of Unexamined-Japanese-Patent No. 1-154484, as shown in FIG. 17, many through-holes 12 are drilled in the heat generating body 1 in which the electrode 2 is arrange | positioned at both ends, and the same penetration near a center part is carried out. The hole 12 has a smaller hole diameter.
[0010]
The two self-temperature-controlled planar heating elements are uniform in the shape of the planar heating element. In view of the fact that local heat generation occurs in the vicinity of the central portion in order to minimize the amount of heat released in the case. However, even if the heating element has a completely uniform material composition, the above-mentioned shape may be used when the ambient atmosphere around the heat generation is constant. In practice, however, the material composition and the surrounding atmosphere are completely uniform. Cannot be. In addition, depending on the amount of energization current, the effect on heat generation due to the difference in current density is greater than the difference in heat dissipation coefficient, and even in the above shape, the vicinity of the electrode 2 where the current density is most concentrated (the current cross-sectional area is small). May generate heat locally.
[0011]
Therefore, in any of the above self-temperature-controlled planar heating elements, it is difficult to ensure uniform temperature distribution caused by heat generation. Further, in the structure shown in FIG. 16, the heat generating surface of the heat generating element 1 is not inclined and flat, and in the structure shown in FIG. 17, the heat generating area of the heat generating element 1 is reduced by the amount of the through holes 12. Therefore, an effective heat generating action cannot be obtained, and in any case, the heating element 1 has a special shape and is difficult to manufacture and is difficult to apply to various heaters.
[0012]
The present invention was invented in order to solve the above-described problems in the prior art, and the problem is to provide a self-temperature-controlled planar heating element that can ensure uniform temperature distribution over the entire surface. It is.
[0013]
[Means for Solving the Problems]
The self-temperature-controlled planar heating element according to claim 1 of the present invention has a pair of electrodes disposed at the end of the heating element formed in a planar shape with a polymer composition containing conductive particles, The heating element between the electrodes is a self-temperature-controlled planar heating element that generates heat by energization, and a plurality of pairs of electrodes are arranged at the end of the heating element so that the energization directions cross each other.
[0014]
Therefore, in this case, since a plurality of pairs of electrodes are arranged at the end of the heating element so that the energization directions cross each other, when energizing the heating element between the electrodes, the plurality of energization directions may be different. It is possible to prevent the flow of current (current can be either AC / DC) from decreasing until the temperature rises to a certain temperature (temperature control region: see FIG. 12). As a result, it is possible to reliably achieve uniform temperature over the entire surface. That is, as described with reference to FIG. 14, the heating element formed in a planar shape with a resin having PTC characteristics causes local heat generation in a strip shape in the direction that interrupts the current direction during energization heat generation, and suddenly reduces the current. However, this is prevented by setting the energization direction to a plurality of directions instead of one direction, and the entire surface can be heated uniformly.
[0015]
The self-temperature control planar heating element according to claim 2 of the present invention is the self-temperature control planar heating element according to claim 1, wherein the heating element is formed in a rectangular shape, and is formed on each of the four end portions of the heating element. An electrode is provided.
[0016]
Therefore, in this case, in particular, since the electrodes are disposed on each of the four sides of the end of the rectangular heating element, a plurality of energization directions can be reliably crossed in directions different from each other. Heat generation can be easily prevented, and the entire surface of the rectangular heating element can be widely and effectively heated.
[0017]
The self-temperature control planar heating element according to claim 3 of the present invention is the self-temperature control planar heating element according to claim 1 or 2, wherein one of a pair of electrodes is arranged in plural, It is characterized in that current is passed between the electrode and the plurality of electrodes.
[0018]
Therefore, in this case, in particular, since electricity is supplied between one electrode and a plurality of electrodes, the current supply directions are not parallel to each other between the one electrode and the plurality of electrodes. The belt-like local heat generation is reliably prevented, and the heating element can efficiently generate heat.
[0019]
The self-temperature control planar heating element according to claim 4 of the present invention is the self-temperature control planar heating element according to any one of claims 1 to 3, wherein the energization direction is controlled to change over time. It is characterized by that.
[0020]
Therefore, especially in this case, since the energization direction is controlled to change over time, a plurality of energization directions can be sequentially switched and many different energization direction patterns can be obtained. As a result, the band-like local heat generation is surely prevented, and the uniform heating of the entire surface can be achieved more reliably.
[0021]
The self-temperature control planar heating element according to claim 5 of the present invention is the self-temperature control planar heating element according to claim 1 or 2, wherein the electrodes are arranged so that the energization directions are substantially orthogonal to each other. It is characterized by.
[0022]
Therefore, especially in this case, since a plurality of energization directions are mutually contradictory and substantially orthogonal to each other, there is no bias in the direction of energization, and the belt-like local heat generation is reliably prevented, so that the entire surface is more uniformly heated. It can be done reliably.
[0023]
The self-temperature control planar heating element according to claim 6 of the present invention is the self-temperature control planar heating element according to claim 1 or 2, wherein the electrical resistance of the heating element is locally increased to generate a high temperature. The local heat generation site is specified, and the heat generation factors such as the energization direction, the energization current between the electrodes, and the energization time are changed and controlled based on the position information of the specified local heat generation site. And
[0024]
Therefore, in this case, in particular, the local heat generation part is specified, and the heat generation factors such as the energization direction, the energization current between the electrodes, and the energization time are changed and controlled based on the position information of the specified local heat generation part. Therefore, even if a local heat generation site occurs, it is possible to easily change and control the heat generation factor based on the positional information of the specified local heat generation site so that the local heat generation site does not become any higher temperature. In addition, it is possible to more reliably achieve uniform temperature over the entire surface, and to extend the life of the heating element.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show an embodiment corresponding to claims 1 to 4 of the present invention, and the self-temperature-controlled planar heating element of the embodiment is planar with a polymer composition containing conductive particles. A pair of electrodes 2 is disposed at the end of the formed heating element 1, and the heating element 1 between the pair of electrodes 2 is a self-temperature-controlled planar heating element that generates heat by energization, and the energization directions are mutually A plurality of pairs of electrodes 2 are arranged at the end of the heating element 1 so as to intersect with each other.
[0026]
In the self-temperature control planar heating element, the heating element 1 is formed in a rectangular shape, and an electrode 2 is disposed on each of the four sides of the end part of the heating element 1. In this case, one of the pair of electrodes 2 is arranged in plural so that electricity is passed between one electrode 2 and the plurality of electrodes 2, and the energization direction is controlled to change over time. It is also being done.
[0027]
The heating element 1 is composed of conductive particles and a polymer composition, has PTC characteristics (a positive temperature characteristic in which the resistivity increases with temperature), and has a resistance value when the temperature of the resin that is the polymer composition increases. Will also increase. Here, examples of the conductive particles include powdery substances such as iron, aluminum, copper, silver, and carbon, but are not limited thereto. Further, the polymer composition may be composed of not only a single polymer material but also a plurality of substances, and the basic composition thereof is a thermoplastic resin such as polyethylene or polypropylene. , Polystyrene, ABS resin, methacrylic resin, polyamide, polycarbonate, polyacetal, PET resin, PBT resin, polyphenylene sulfide, polyimide, fluororesin and the like, but are not limited thereto.
[0028]
The heating element 1 has a square shape with a vertical dimension L1 = 80 mm and a horizontal dimension L2 = 80 mm, and the thickness dimension t is 2 mm. Eight pairs of four on each of the four sides of the heating element 1, a total of 16 pairs. An electrode 2 is provided. In this case, the electrode 2 is formed by integrally molding a highly conductive resin (with a resistivity of 1 × 10E-4 Ω-cm or less) having a square shape with a side of 5 mm and a thickness of 2 mm, together with the PTC resin of the heating element 1. However, the electrode 2 is not limited to this, and for example, a thin plate of metal (copper, aluminum, silver, iron, etc.) is attached after applying a conductive paste. Also good.
[0029]
Further, in this case, as shown in FIG. 2, the electrodes 2 (+ and-) are energized so that the number of the paired electrodes 2 is different, that is, one of the paired electrodes 2 is A plurality of electrodes are arranged and energized between one electrode 2 and a plurality of electrodes 2. Here, the circuit is controlled so that T1 to T4 can be energized to S1, then S5 to S8 for T5, S1 to S4 for T1, T5 to T8 for S5, and so on. As described above, the energization direction is sequentially controlled to change over time. In this case, the energization direction between S1 and T1 to T4, between T1 and S1 to S4,..., Between T5 and S5 to S8, and between S5 and T5 to T8. , And the energization direction between each of... Cross each other.
[0030]
Therefore, in the self-temperature control planar heating element of the embodiment, a plurality of pairs of electrodes 2 are arranged at the peripheral end of the heating element 1 and the energization directions therebetween intersect each other. When energizing the heating element 1 between the electrodes 2, a plurality of energizing directions can be made different so as not to decrease the current flow until the whole rises to a certain temperature (temperature control region). As a result, it is possible to ensure the uniform temperature of the entire heat generating surface of the heat generating element 1. That is, the heating element 1 formed in a planar shape with a resin having PTC characteristics causes local heat generation in a strip shape in a direction that interrupts the current direction during energization heat generation, and the current is suddenly reduced. This is prevented by setting the direction to a plurality of directions instead of one direction, and the entire heating surface of the heating element 1 can be uniformly heated.
[0031]
Further, in the self-temperature control planar heating element of this embodiment, since the electrodes 2 are disposed on each of the four sides of the square heating element 1, it is ensured that a plurality of energization directions are different from each other. It is easy to prevent the belt-like local heat generation, and the entire heat generating surface of the heating element 1 can generate heat widely and effectively. In addition, since current is passed between one electrode 2 and a plurality of electrodes 2, the current-carrying directions are not parallel to each other between one electrode 2 and the plurality of electrodes 2. Heat generation is reliably prevented, and the heating element 1 can efficiently generate heat. Furthermore, since the energization direction is controlled to change over time, a plurality of energization directions can be sequentially switched and changed, and many different energization direction patterns can be obtained. The band-shaped local heat generation is reliably prevented, and the heat generation of the entire heat generating surface of the heat generating element 1 can be more reliably achieved.
[0032]
FIG. 3 shows another embodiment corresponding to claims 1, 2, 4, and 5 of the present invention. In the self-temperature control planar heating element of the embodiment, one electrode 2 and a plurality of electrodes 2 are provided. The electrodes 2 (+ and-) are energized in a one-to-one correspondence, and therefore the electrodes 2 are arranged so that the energizing directions are substantially orthogonal to each other. Has been. In this case, since the distance between the electrodes 2 differs between T4 and S4 and between T7 and S1 by about 5 to 6 times, heat generation is controlled by changing each energization time and energization current value.
[0033]
Therefore, in this case, in particular, since a plurality of energization directions are opposite to each other and are substantially orthogonal to each other, there is no bias in the direction of energization, and the entire heating element 1 is energized in a well-balanced manner, and belt-like local heat generation is reliably prevented. Thus, it is possible to more reliably achieve uniform temperature over the entire heating surface of the heating element 1. Other than that, the configuration is the same as that of the embodiment shown in FIG. 1, and the same operational effects as in the above-described embodiment can be obtained.
[0034]
4 and 5 show still another embodiment corresponding to claims 1, 2, 4, and 5 of the present invention. In the self-temperature control planar heating element of the embodiment, the energization pattern is a sequencer or the like. It is to be controlled. In this case, control is performed so that the following 1-step to 8-step cycles are repeatedly executed.
[0035]
・ 1-step: S8-S8 = OFF, S1-S1 = ON
・ 2-step: S1-S1 = OFF, S2-S2 = ON
・ 3-step: S2-S2 = OFF, S3-S3 = ON
・ 4-step: S3-S3 = OFF, S4-S4 = ON
・ 5-step: S4-S4 = OFF, S5-S5 = ON
・ 6-step: S5-S5 = OFF, S6-S6 = ON
・ 7-step: S6-S6 = OFF, S7-S7 = ON
・ 8-step: S7-S7 = OFF, S8-S8 = ON
Each step (step) in this case is indicated by numerals 1 to 8 on the energization direction arrow in FIG. 4A, and in the time chart of FIG. 5, the energization time in each step is indicated as T1. The rest of the configuration is the same as that of the embodiment shown in FIG. 3, and the same effects as those of the embodiment described above can be achieved.
[0036]
6 and 7 show still another embodiment corresponding to claims 1, 2, 4 to 6 of the present invention. In the self-temperature control planar heating element of the embodiment, the electric resistance of the heating element 1 is as follows. The local heat generation part 3 that generates locally high temperature and generates heat is identified, and heat generation such as the energization direction, the energization current between the electrodes 2 and the energization time based on the positional information of the identified local heat generation part 3 The factor is controlled to change. In this case, whenever the position of the local heat generating portion 3 changes due to the electric potential, the energization direction and the energization current (interelectrode applied voltage) are changed each time. For example, in FIG. 6 (a), the A part to the D part are energized at the same time or sequentially energized so as to equalize the temperature, or the applied voltage is changed in accordance with the energization distance.
[0037]
Further, as a means for specifying the local heat generating portion 3, as shown in FIG. 7, a method based on measuring a resistance value from the surrounding electrode 2 is adopted. In this case, the current flowing through each lead wire 4 is measured by an ammeter 5 (the voltage application to each electrode 2 is controlled by the relay 6 via the lead wire 4), and each of the currents is applied according to Ohm's law from the relationship with the applied voltage. The electric resistance between the electrodes 2 is calculated (resistance = applied voltage / current). At this time, since the resistance value is high between the electrodes 2 sandwiching the local heat generating portion 3, almost no current flows. Between the electrodes 2 other than the local heat generating portion 3, the current flows because the resistance value is low. Thereby, the position of the local heat generation part 3 can be specified.
[0038]
Therefore, in this case, in particular, the local heat generation part 3 is specified, and the heat generation factors such as the energization direction, the energization current between the electrodes 2 and the energization time are changed and controlled based on the positional information of the specified local heat generation part 3. Therefore, even if a local heat generation site 3 is generated, the heat generation factor can be easily determined based on the specified location information of the local heat generation site 3 so that the local heat generation site 3 does not become any higher temperature. Therefore, the temperature of the entire heat generating surface of the heat generating element 1 can be more uniform, and the life of the heat generating element 1 can be extended. The rest of the configuration is the same as that of the embodiment shown in FIG. 3, and the same effects as those of the embodiment described above can be achieved.
[0039]
FIG. 8 shows still another embodiment corresponding to claims 1, 2, 4 to 6 of the present invention, and in the self-temperature control planar heating element of the embodiment, as means for specifying the local heat generating portion 3 An infrared camera 7 that measures the temperature distribution of the heating surface of the heating element 1 is employed. In this case, the outline of the photograph taken with the infrared camera 7 shown in FIG. 8A is shown in FIG. 8B, and the local heat generation part 3 (appears as 3M in the photograph) is specified from the infrared camera photograph. can do. Other than that, the configuration is the same as that of the embodiment shown in FIG. 6, and the same effects as those of the embodiment are achieved.
[0040]
FIG. 9 shows still another embodiment corresponding to claims 1, 2, 4 to 6 of the present invention, and in the self-temperature control planar heating element of the embodiment, as means for specifying the local heat generating portion 3 A thermocouple 8 that is attached to the heat generating surface of the heating element 1 and measures the temperature distribution on the surface is employed. In this case, the temperature change data measured by the thermocouple 8 shown in FIG. 9 (a) is shown in the graph of FIG. 9 (b) (among a number of spots shown in FIG. 9 (a) in a predetermined direction). Only the temperatures measured at the three spots (1) to (3) are shown as an example). Here, all of the spots (1) to (3) are uniformly heated up to around 60 ° C, but after that, only a part starts local heating (spot (2) becomes the local heating area 3). The temperature of the local exothermic part 3 is indicated by 3T), and the temperature is lowered in other parts. Therefore, the spot (2) can be specified as the local exothermic part 3. Other than that, the configuration is the same as that of the embodiment shown in FIG. 6, and the same effects as those of the embodiment are achieved.
[0041]
FIG. 10 shows still another embodiment corresponding to claims 1, 2, 4 to 6 of the present invention. In the self-temperature-controlled planar heating element of the embodiment, as a means for specifying the local heating portion 3 An ultrasonic transmission / reception device 9 that detects and measures the density of the heating element 1 is employed. In this case, the local heat generating portion 3 expands due to a phase change (solid phase to liquid phase) due to heat generation, and the density becomes small. Therefore, by judging the change based on the length of the signal returned by applying ultrasonic waves, The local exothermic part 3 can be specified. For example, when the PTC resin is configured based on polypropylene or polyethylene, the measurement is performed with the ultrasonic frequency set to about 5 MHz. Other than that, the configuration is the same as that of the embodiment shown in FIG. 6, and the same effects as those of the embodiment are achieved.
[0042]
【The invention's effect】
As described above, in the self-temperature control planar heating element according to claim 1 of the present invention, a plurality of energization directions can be made different so as not to reduce the current flow until the whole rises to a certain temperature. Thus, it is possible to reliably achieve uniform temperature over the entire surface.
[0043]
In the self-temperature-controlled planar heating element according to claim 2 of the present invention, in particular, a plurality of energizing directions can be reliably crossed in different directions, and it is easy to prevent belt-like local heat generation. Thus, the entire surface of the rectangular heating element can be widely and effectively heated.
[0044]
Further, in the self-temperature control planar heating element according to claim 3 of the present invention, in particular, by making the energizing directions not parallel to each other between the electrodes, the band-like local heating is reliably prevented, and the heating element Can efficiently generate heat.
[0045]
Further, in the self-temperature control planar heating element according to claim 4 of the present invention, in particular, a plurality of energization directions can be sequentially controlled and many different energization direction patterns can be obtained. Thus, the band-like local heat generation is surely prevented, and the uniform heating of the entire surface can be achieved more reliably.
[0046]
Further, in the self-temperature control planar heating element according to claim 5 of the present invention, in particular, a plurality of energization directions are substantially orthogonal to each other, there is no bias in the direction of energization, and the belt-like local heat generation is ensured. It is prevented, so that the entire surface can be more uniformly heated.
[0047]
Further, in the self-temperature-controlled planar heating element according to claim 6 of the present invention, in particular, even if a local heat generation site is generated, the heat generation factor can be simplified so that the local heat generation site does not become further hot. It is possible to control the change, so that the temperature of the entire surface can be equalized more reliably, and the life of the heating element can be extended.
[Brief description of the drawings]
FIG. 1 shows a self-temperature control planar heating element according to an embodiment of the present invention, wherein (a) is a plan view thereof and (b) is a side view thereof.
FIG. 2 is a plan view showing an energization state of the self-temperature control planar heating element.
FIG. 3 is a plan view showing an energized state of a self-temperature control planar heating element according to another embodiment.
4A and 4B show a self-temperature control planar heating element according to still another embodiment, in which FIG. 4A is a plan view showing an energized state, and FIG. 4B is a side view thereof.
FIG. 5 is a time chart showing a control energization time in the self-temperature control planar heating element.
6A and 6B show a self-temperature control planar heating element according to still another embodiment, in which FIG. 6A is a plan view showing the energized state, and FIG. 6B is a side view thereof.
FIG. 7 is a plan view showing a means for specifying a local heat generation portion of the self-temperature control planar heating element.
8A and 8B show a self-temperature-controlled planar heating element according to still another embodiment, in which FIG. 8A is a perspective view showing a means for specifying a local heat generation site, and FIG. 8B is an infrared ray obtained by the means. Schematic which shows a camera photograph.
9A and 9B show a self-temperature-controlled planar heating element according to still another embodiment, in which FIG. 9A is a perspective view showing a means for specifying a local heat generation site, and FIG. 9B shows a temperature obtained by the means. A graph showing change data.
FIG. 10 is a perspective view showing a means for specifying a local heat generation portion of a self-temperature control planar heating element according to still another embodiment.
FIG. 11 is a perspective view showing a conventional planar heating element.
FIG. 12 is a graph illustrating PTC characteristics.
FIG. 13 shows a conventional self-temperature control planar heating element, in which (a) is a plan view thereof and (b) is a graph showing its temperature change.
FIG. 14 is a plan view showing an energization state of the self-temperature control planar heating element.
FIGS. 15A and 15B are perspective views showing different self-temperature control planar heating elements, which are different conventional examples. FIG.
FIGS. 16A and 16B show another conventional example of a self-temperature control planar heating element, in which FIG. 16A is a plan view and FIG. 16B is a side view thereof.
FIGS. 17A and 17B show another conventional example of a self-temperature control planar heating element, in which FIG. 17A is a plan view and FIG. 17B is a side view thereof.
[Explanation of symbols]
1 Heating element 2 Electrode 3 Local heating part

Claims (6)

導電性粒子を含有する高分子組成物で面状に形成された発熱体の端部に対の電極が配設され、該対の電極間の発熱体が通電によって発熱される自己温度制御面状発熱体であって、通電方向が相互に交差するよう複数対の電極を発熱体の端部に配設してなる自己温度制御面状発熱体。A self-temperature-controlled planar shape in which a pair of electrodes is disposed at the end of a heating element formed in a planar shape with a polymer composition containing conductive particles, and the heating element between the pair of electrodes generates heat when energized A self-temperature-controlled planar heating element, which is a heating element, wherein a plurality of pairs of electrodes are arranged at the end of the heating element so that energization directions intersect each other. 発熱体を矩形状に形成し、該発熱体の端部四辺各々に電極を配設したことを特徴とする請求項1記載の自己温度制御面状発熱体。2. The self-temperature-controlled planar heating element according to claim 1, wherein the heating element is formed in a rectangular shape, and an electrode is disposed on each of the four ends of the heating element. 対となる電極の一方を複数にして配設し、一つの電極と複数の電極との間で通電されるようになしたことを特徴とする請求項1又は2記載の自己温度制御面状発熱体。3. The self-temperature-controlled planar heat generation according to claim 1, wherein a plurality of pairs of electrodes are arranged so as to be energized between one electrode and the plurality of electrodes. body. 通電方向が経時的に変化制御されるようになしたことを特徴とする請求項1〜3のいずれか一つに記載の自己温度制御面状発熱体。The self-temperature-controlling sheet heating element according to any one of claims 1 to 3, wherein the energization direction is controlled to change over time. 通電方向が相互に略直交するよう各電極を配設したことを特徴とする請求項1又は2記載の自己温度制御面状発熱体。3. The self-temperature-controlling sheet heating element according to claim 1, wherein the electrodes are arranged so that the energization directions are substantially orthogonal to each other. 発熱体の電気抵抗が局所的に大きくなり高温となって発熱する該局所発熱部位を特定し、同特定された局所発熱部位の位置情報に基づいて通電方向や各電極間の通電電流、通電時間等の発熱要因が変化制御されるようになしたことを特徴とする請求項1又は2記載の自己温度制御面状発熱体。The local heat generation part that generates heat when the electric resistance of the heating element is locally increased and becomes high temperature is identified, and the energization direction, the energization current between the electrodes, the energization time based on the positional information of the identified local heat generation part The self-temperature-controlled planar heating element according to claim 1 or 2, wherein a heat generation factor such as is controlled to change.
JP11566199A 1999-04-23 1999-04-23 Self-temperature control sheet heating element Expired - Fee Related JP4000713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11566199A JP4000713B2 (en) 1999-04-23 1999-04-23 Self-temperature control sheet heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11566199A JP4000713B2 (en) 1999-04-23 1999-04-23 Self-temperature control sheet heating element

Publications (2)

Publication Number Publication Date
JP2000306656A JP2000306656A (en) 2000-11-02
JP4000713B2 true JP4000713B2 (en) 2007-10-31

Family

ID=14668182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11566199A Expired - Fee Related JP4000713B2 (en) 1999-04-23 1999-04-23 Self-temperature control sheet heating element

Country Status (1)

Country Link
JP (1) JP4000713B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656182B1 (en) * 2015-04-16 2016-09-09 서울과학기술대학교 산학협력단 An arbitrary temperature distribution control apparatus for a plate heater

Also Published As

Publication number Publication date
JP2000306656A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
US4317027A (en) Circuit protection devices
US4352083A (en) Circuit protection devices
KR970003210B1 (en) Electrical device comprising conductive polymers
US4845343A (en) Electrical devices comprising fabrics
EP1795048B1 (en) Adaptable layered heater system
US4795870A (en) Conductive member having integrated self-regulating heaters
JPH0529067A (en) Structure of heating element and heater for office automation equipment
JP2777488B2 (en) Structure of heating body and heating device of OA equipment
JPH048557A (en) Heater
JP4000713B2 (en) Self-temperature control sheet heating element
JPS63281375A (en) Electric heating cable and assembly of the same
JP2600835B2 (en) Fixing heating element, fixing device, and image forming apparatus
KR20060081486A (en) Plane heater
CN210381343U (en) Electric heating film and electric heater provided with same
US5010227A (en) Soldering apparatus and method of using the same
US20090223946A1 (en) Comb powering conductors based flexible thermal radiator
JPS6230793Y2 (en)
JPH0611981A (en) Construction of line type heating body
KR200372489Y1 (en) Plane heater
JP2002334769A (en) Sheet heating element and thermal equipment using this
CN211019258U (en) Electric heating piece for generator
JP2005116481A (en) Flat heater
JPS58162356A (en) Thermal printer head
JPH0527829Y2 (en)
JPH0964528A (en) Heating jig for soldering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees