JP4000349B2 - Glass member forming apparatus and glass member forming method - Google Patents

Glass member forming apparatus and glass member forming method Download PDF

Info

Publication number
JP4000349B2
JP4000349B2 JP2001371745A JP2001371745A JP4000349B2 JP 4000349 B2 JP4000349 B2 JP 4000349B2 JP 2001371745 A JP2001371745 A JP 2001371745A JP 2001371745 A JP2001371745 A JP 2001371745A JP 4000349 B2 JP4000349 B2 JP 4000349B2
Authority
JP
Japan
Prior art keywords
glass member
silica glass
holding
plate
holding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001371745A
Other languages
Japanese (ja)
Other versions
JP2003171129A (en
Inventor
英行 友光
直樹 辻
元男 八日市屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2001371745A priority Critical patent/JP4000349B2/en
Publication of JP2003171129A publication Critical patent/JP2003171129A/en
Application granted granted Critical
Publication of JP4000349B2 publication Critical patent/JP4000349B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/037Re-forming glass sheets by drawing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガラス部材の成形装置およびガラス部材の成形方法に係わり、特に大型フォトマスク用基板等の製造方法に適するガラス部材の成形装置およびガラス部材の成形方法に関する。
【0002】
【従来の技術】
特にシリカガラスは高純度で耐熱性、光透過性、化学的安定性等に優れているため、半導体産業等において種々の部材として使用されている。このシリカガラスの製造には四塩化珪素を高温の酸水素火炎中で加水分解して製造する方法が多く用いられている。
【0003】
このようにして製造されたシリカガラスインゴットは、成形体(成形インゴット)に成形されて用いられるが、従来用いられる成形方法は、上記のような酸水素火炎溶融で製造されたシリカガラスインゴットをカーボン製の成形型に入れ、電気溶融炉で溶融させて、成形体を製造し、この成形体は、スライス等の工程を経て、液晶用基板やフォトマスク用基板として用いられる。
【0004】
しかしながら、近年の液晶用基板やフォトマスク用基板の大型化に伴ない成形体の大形化が要求されているが、従来の成形方法では、シリカガラスが成形型の隅部に十分に到達せず、正確な矩形平板形状の成形体を製造することができなかった。このため成形体をスライスして大形の液晶用基板やフォトマスク用基板を製造する場合、材料歩留が極めて悪かった。
【0005】
また、特開平11−60264号公報に記載のように、予め大口径のシリカガラス管を製造し、このシリカガラス管を開き、これを加熱して平板形状にする大形合成シリカガラス平板の製造方法がある。しかし、この公報記載の製造方法は、一旦大口径のシリカガラス管を製造するために大形製管設備を必要とし、製造コストが高価になる。
【0006】
また、シリカガラスインゴットを円柱形状のシリカガラスブロックに製造し、これを加熱された金属棒により貫通孔を形成して中空形状の管母材を成形し、さらに、この管母材を加熱拡径してガラス管を製造管母材、このガラス管を用いて、上記公報記載と同様に開き、加熱して大形合成ガラス平板を製造する方法がある。しかし、この製造方法は、シリカガラス管成形のために加熱回数が増加し、シリカガラスの特性を劣化させ、また、シリカガラスが汚染されることが多かった。
【0007】
【発明が解決しようとする課題】
そこで、材料歩留がよく、製造コストが安く、特性を劣化させることがないガラス部材の成形装置およびガラス部材の成形方法が望されていた。本発明は上述した事情を考慮してなされたもので、材料歩留がよく、製造コストが安く、特性を劣化させることがないガラス部材の成形装置およびガラス部材の成形方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明の1つの態様によれば、垂直に配置された平板ガラス部材の上端を保持し上側保持板を備える上側降下手段により降下される上保持手段と、平板ガラス部材の下端を保持し下側保持板を備える下側降下手段により降下される下側保持手段と、この下側保持手段と上側降下手段間に配置され平板ガラス部材の水平方向全体を同時に加熱する加熱手段と、上側降下手段および下側降下手段の作動を制御する制御手段とを有し、前記上側降下手段は、前記下側保持板に設けた下側遊嵌孔を遊嵌する一対の上側ボールねじと、この上側ボールねじを回転させる上側ステッピングモータからなり、前記上側保持手段は、前記上側保持板により平板ガラス部材の上端部を保持し、かつ前記上側保持板の両端部近傍に設けられた上側螺孔によって前記上側ボールねじと螺合し、上側ステッピングモータが作動して上側ボールねじを回転させることにより、上側保持板が水平状態を保って昇降可能になっており、前記下側降下手段は、前記上側保持板に穿設されたねじ遊嵌孔を遊嵌する一対の下側ボールねじと、この下側ボールねじを回転させる下側ステッピングモータからなり、前記下側保持手段は、前記下側保持板により平板ガラス部材の下端部を保持し、前記下側保持板の両端部近傍に設けられた下側螺孔によって下側降下手段の下側ボールねじと螺合し、下側ステッピングモータが作動して下側ボールねじを回転させることにより、下側保持板が水平状態を保って昇降可能になっており、前記加熱手段は平板ガラス部材の両側に配された一対の火炎バーナであり、前記加熱手段により、平板ガラス部材の水平方向全体を同時に加熱しながら、前記下側保持手段の降下速度を前記上側保持手段の降下速度よりも速く制御して、平板ガラス部材を引き伸ばすことを特徴とするガラス部材の成形装置が提供される。これにより、材料歩留がよく、製造コストが安く、特性を劣化させることがなくガラスが成形される。
【0009】
好適な一例では、前記加熱手段は保温枠に囲われ、かつ水平方向の往復動装置により往復動される。
【0010】
また、上記目的を達成するため、本発明の他の態様によれば、請求項1または2に記載のガラス部材の成形装置を用いて、平板状ガラス部材を引き伸ばすことを特徴とするガラ ス部材の成形方法が提供される。これにより、材料歩留がよく、製造コストが安く、平板状ガラス部材の特性を劣化させることなく平板状ガラス部材を成形できる。
【0011】
【発明の実施の形態】
以下、本発明に係わるガラス部材の成形装置の実施形態について添付図面を参照して説明する。
【0012】
図1は本発明に係わるガラス部材の成形装置の保温部材の一部を切欠して示す概念図である。
【0013】
図1に示すように、本発明に係わるガラス部材の成形装置1は、垂直方向に配置された平板状ガラス部材例えばシリカガラス平板Gの上端部Guを保持し上側降下手段2により降下される上側保持手段3と、シリカガラス部材Gの下端部Gbを保持し下側降下手段4により降下される下側保持手段5とを有し、さらに、この下側保持手段5と上側降下手段2間に配置されシリカガラス平板Gの水平方向を均一に加熱する加熱手段6と、シリカガラス平板Gの厚さを測定する厚み計測手段7と、上側降下手段2および下側降下手段4の作動を制御する制御装置8とを有している。
【0014】
上側降下手段2は、下側遊嵌孔5eを遊嵌する一対の上側ボールねじ2a、2aと、この上側ボールねじ2a、2aを回転させる上側ステッピングモータ2b、2bからなる通常の回転移動機構によって形成されている。図2に示すように、この上側ステッピングモータ2b、2bは上側ステッピングモータ制御器2bcを介して制御装置8に接続され、その回転が制御されるようになっている。
【0015】
保持手段3は、中央部近傍に上側保持用凹部3aが設けられた上側保持板3bと、上側保持用凹部3aに対向し上側保持ねじ3c、3cによって上側保持板3bに着脱自在に螺着される上側保持部材3b1を有し、この上側保持部材3b1と上側保持用凹部3a間でシリカガラス平板Gの上端部Guで挟持するようになっており、さらに、上側保持板3bの両端部近傍に設けられた上側螺孔3d、3dによって上側降下手段2の上側ボールねじ2a、2aと螺合しており、上側ステッピングモータ2b、2b作動して上側ボールねじ2a、2aを回転させることにより、上側保持板3bが水平状態を保って昇降可能になっている。
【0016】
下側降下手段4も上記上側降下手段2と同様に、上側保持板3bに穿設されたねじ遊嵌孔3e、3eを遊嵌する一対の下側ボールねじ4a、4aと、この下側ボールねじ4a、4aを回転させる下側ステッピングモータ4b、4bからなり、図2に示すように、この下側ステッピングモータ4b、4bは下側ステッピングモータ制御器4bcを介して制御装置8に接続され、その回転が制御されるようになっている。
【0017】
また、下側保持手段5も上保持手段3と同様に、中央部近傍に下側保持用凹部5aが設けられた下側保持板5bと、下側保持用凹部5aに対向し下側保持ねじ5c、5cによって下側保持板5bに着脱自在に螺着される下側保持部材5b1を有し、この下側保持部材5b1と下側保持用凹部5a間でシリカガラス平板Gの下端部Gbで挟持するようになっており、さらに、下側保持板5bの両端部近傍に設けられた下側螺孔5d、5dによって下側降下手段4の下側ボールねじ4a、4aと螺合しており、下側ステッピングモータ4b、4bが作動して下側ボールねじ4a、4aを回転させることにより、下側保持板5bが水平状態を保って昇降可能になっている。なお、この上側保持手段3および下側保持手段5の昇降は、連続的な降下により行うが、当初のシリカガラス平板Gの板厚あるいは引き伸ばされた後の厚さ等の条件によっては、加熱手段6の加熱部位を送りピッチとする間歇送りにしてもよい。
【0018】
加熱手段6は、シリカガラス部材の成形装置1の高さのほぼ中央部近傍、例えば、シリカガラス平板Gが上側保持手段3と下側保持手段5間に保持された状態で、この両保持手段3、5間に配置され、シリカガラス平板Gの両面から加熱するように、一対の火炎バーナ6a、6aからなっており、さらに、火炎バーナ6a、6aは中空、長方形状の保温枠6bによって囲われ、シリカガラス平板Gがより均一に加熱されるようになっている。
【0019】
厚み計測手段7は、通常用いられるもので、被測定物であるシリカガラス平板Gの両側に配置された2個のレーザ変位計7a、7aが用いられ、このレーザ変位計7a、7aは、図3に示すように、発光素子ドライバー7bc、7bcに制御され、レーザ光を発振する発光素子7b、7bと、この発光素子7b、7bの光軸上に設けられた投光レンズ7c、7cと、上記光軸のシリカガラス平板Gに対する反射光軸上に設けられた結像レンズ7d、7dと、反射光軸上のポジションセンサ7e、7eと、このポジションセンサ7e、7eからの位置情報を処理する信号処理装置7f、7fとを有しており、図2に示すように、この信号処理装置7f、7fは上記制御装置8に接続されている。なお、発光素子7b、7b、投光レンズ7c、7c、結像レンズ7d、7d、ポジションセンサ7e、7eは、一体的にケーシングに収納されて検出ヘッド7g、7gを形成している。
【0020】
シリカガラス平板Gの測定部位の厚さ情報を基にして、制御装置8で測定部位の厚さを演算し、この演算結果により、上側ステッピングモータ制御器2bcを介して、上側降下手段2の下降速度を制御して、上側保持手段3の下降速度を制御するようになっている。また、下側ステッピングモータ制御器4bcを介して、下側降下手段4の下降速度を制御して、下側保持手段5の下降速度を制御するようになっている。
【0021】
制御装置8は、通常のパソコンが用いられ、ガラス部材の成形装置1によるシリカガラス平板G引き伸ばし工程中、制御装置8による上側ステッピングモータ制御器2bc、下側ステッピングモータ制御器4bc、信号処理装置7f、7fの制御は、事前に制御装置8にプログラムされた制御手順に従って行われ、また、必要に応じ制御装置8に設けられた入力手段(図示せず)からの入力により行われる。
【0022】
次に本発明に係わるガラス部材の成形装置を用いたガラスの成形方法を図4に示す成形工程図に沿って説明する。
【0023】
最初に通常の酸水素火炎溶融により製造されたシリカガラスインゴットGを電気溶融炉に収納された成形型に入れて加熱し矩形ブロックに成形する(S1)。
【0024】
この成形工程に用いられる電気溶融炉11は、図5に示すような構造を有しており、収納物の出入れが可能に形成された炉本体12と、この炉本体12を加熱するヒータ13と、載置台14を有している。また、炉本体12内の載置台14には成形型15が載置されており、この成形型15は成形型本体16と内張17から構成されている。成形型本体16は、多数の貫通孔16aが穿設された人造黒鉛質部材を嵌込み式で組立て形成されている。また、内張17は、例えば密度が0.1〜0.5g/cmで、通気性を有するカーボン成形断熱材で形成されており、ガスは内張17を通り、支障なく貫通孔16aから排出される。従って、シリカガラスインゴットGを電気溶融炉11に収納し、しかる後、ヒータ13を付勢し、所定の炉内温度に加熱する。所定温度で所定時間キープし、キープ後は、自然放冷で降温する。炉内温度がシリカガラスの軟化点以上の温度にキープされることによりシリカガラスインゴットは成形型に従って矩形ブロックGに成形される。
【0025】
この矩形ブロックGを切断装置によりスライスしてシリカガラス平板Gを製造する(S2)。
【0026】
このスライス工程は、矩形ブロックGが最終製品である液晶用基板やフォトマスク用基板の厚さに比べて厚く成形される場合には、液晶用基板やフォトマスク用基板に必要な厚さにスライスされる。矩形ブロックGが液晶用基板やフォトマスク用基板に必要な厚さである場合には、このスライス工程は省略される。
【0027】
スライスされたシリカガラス平板Gを上述した本発明に係わるガラス部材の成形装置1を用いて引き伸ばす(S3)。
【0028】
図1に示すようなガラス部材の成形装置1を用いたシリカガラス平板Gの引き伸ばし方法は次のように行われる。
【0029】
最上位に位置し、待機状態にある上側保持手段3の保持ねじ3c、3cを外して上側保持部材3b1を上側保持板3bから取り外し、シリカガラス平板Gの上端部Guを保持用凹部3aに収納した後、保持ねじ3c、3cを螺合させて、再び上側保持部材3b1を取り付け、上側保持用凹部3aと上側保持部材3b1間に強固に上端部Guを挟持、保持させて、上側保持手段3に強固に保持させる。
【0030】
また、下側保持手段5の下側保持ねじ5c、5cを外して下側保持板5bから下側保持部材5b1を取り外し、制御装置8、下側ステッピングモータ制御器4bcを介して、下側ボールねじ4a、4aを回転させて下側保持板4bを上昇させ、下側保持用凹部5aにシリカガラス平板Gの下端部Gb収納し、下側保持部材5b1を押し当て、下側螺孔5d、5dを貫通する下側保持ねじ5c、5cを用いて、強固に下端部Gbを下側保持用凹部5aと下側保持部材5b1に挟持する。
【0031】
しかる後、一対の火炎バーナ6a、6aを点火して、シリカガラス平板Gの両面から同時に加熱して、シリカガラス平板Gを水平方向において均一に加熱する。このとき、火炎バーナ6a、6aは中空、長方形状の保温枠6bによって囲われているので、シリカガラス平板Gがより均一に加熱される。この加熱を継続しながら、制御装置8により下側ステッピングモータ制御器4bcを介して、下側ステッピングモータ4b、4bを作動して下側ボールねじ4a、4aを回転させ、下側保持手段5を降下させる。このとき、上保持手段3は停止状態にあり、当初の位置を保つので、下側保持手段5の降下速度(Vb1)と上保持手段3の降下速度(Vu1=0)の差(ΔV)によって、シリカガラス平板Gに引張り応力が作用し、加熱されたシリカガラス平板Gは引き伸ばされて板厚は薄くなる。さらに、引き伸ばし工程が継続し、制御装置8により上側ステッピングモータ制御器2bcを介して、上側ステッピングモータ5b、5bが作動して上側ボールねじ2a、2aを回転させ、上側保持手段3を降下させる。上保持手段3が降下速度(Vu2)で降下することにより、シリカガラス平板G全体が降下するため、加熱手段6によるシリカガラス平板Gに対する相対的加熱位置は上昇する。下側保持手段5は引続き降下を継続しているが、制御装置8により下側ステッピングモータ制御器4bcを介して、下側ステッピングモータ4b、4bの回転数を増加させ、下側ボールねじ4a、4aの回転も増加させて、下側保持手段5の降下速度(Vb2)も増加させる。この場合、速度差(ΔV)は一定を保つように両降下速度、Vb2、Vu2は調整される。このようにしてシリカガラス平板Gは引き伸ばされるが、加熱手段6の下方に設けられた厚み計測手段7により引き伸ばされてシリカガラス平板Gの厚さが計測される。
【0032】
このシリカガラス平板Gの厚さの計測は、次のように行われる。
【0033】
図3に示すように、発光素子7b、7bから出射された光を投光レンズ7c、7cを介してシリカガラス平板Gに照射し、シリカガラス平板Gから反射してくる光を結像レンズ 7d、7dで結像させてポジションセンサ7e、7eにより検出し、この検出ヘッド7g、7g毎に制御装置8により演算処理してシリカガラス平板Gの測定部位の厚さが計測される。下側保持手段5の降下速度(Vb)と上保持手段3の降下速度(Vu1)の差(ΔV)は一定になるように制御されているので、シリカガラス平板Gには常に一定の応力が作用し、シリカガラス平板Gも一定になる。しかしながら、当初のシリカガラス平板Gの厚さの誤差などにより、厚み計測手段7が所定の厚みに対して差異を検知した場合、例えば、所定の厚さよりも厚い場合には、下側保持手段5の降下速度(Vb)を増加させ、一定に保たれている速度差(ΔV)を増加させて、シリカガラス平板Gに作用する応力を増加させ、引張り量を増加させ、シリカガラス平板Gの厚さを薄くし、所定の厚さにする。所定の厚さよりも薄い場合には、下側保持手段5の降下速度(Vb)を減少させ、一定に保たれている速度差(ΔV)を減少させて、シリカガラス平板Gに作用する応力を減少させ、引張り量を減少させ、シリカガラス平板Gの厚さを厚くし、所定の厚さにする。このように、シリカガラス平板Gの厚さを測定し、これに基づきシリカガラス平板Gに作用する応力を制御して、厚さを制御するので、シリカガラス平板Gを所定の厚さに引き伸ばすことができる。
【0034】
この引き伸ばし工程では、スライスされたシリカガラス平板Gを加熱しながら、上側保持手段3と下側保持手段5との降下速度差により生じる応力によってシリカガラス平板Gを引き伸ばして、所定の厚さ、大きさにするので、大形製管設備を必要とせず、安価に製造でき、また、シリカガラス管を用いる必要がなく、シリカガラスの加熱回数が減少し、シリカガラスの特性を劣化させることがなく、さらに、シリカガラスが汚染されることがない。また、比較的小さな矩形ブロックないしシリカガラス平板から大きなシリカガラス平板に引き伸ばすことができるので、従来ほど大きな矩形ブロックを用いる必要がないので、隅部までシリカガラスが行き届いた矩形ブロックを用いることが可能となり、材料歩留が向上する。
【0035】
なお、引き伸ばし工程では、当初のシリカガラス平板Gの板厚あるいは引き伸ばされた後の厚さ等の条件によっては、加熱手段の加熱部位を送りピッチとする間歇送りにしてもよい。
【0036】
この所定の厚さに引き伸ばされたシリカガラス平板Gをアニールする(S4)。
【0037】
所定の厚さに引き伸ばされたシリカガラス平板Gは、上端部Gu、下端部Gbを切除する等の整形を行った後、アニール炉を用いてアニールを行い歪を除去する。
【0038】
アニールは比較的長時間要するので、大量にアニールを行う場合には、アニール炉を用いて多数のシリカガラス平板Gを同時にアニールするのが好ましい。アニールするシリカガラス平板Gが少ない場合には、前工程S3で引き伸ばしが終了したシリカガラス平板Gを、上側保持手段3および下側保持手段5から取り外さず、取り付けられた状態のまま、加熱手段6の発熱量を低下させ、上側保持手段3および下側保持手段5をシリカガラス平板Gに応力がかからないように同上昇速度で上昇させ、アニールを行うようにしてもよい。アニール炉の操炉作業を省略できる。
【0039】
このアニールされたシリカガラス平板Gは研磨する(S5)。
【0040】
この研磨には通常の研磨装置が用いられ、所定の平坦度になるように研磨される。
【0041】
次に本発明に係わるガラス部材の成形装置の他の実施形態について説明する。
【0042】
本実施形態は、上記実施形態の加熱手段に発熱量を制御する手段を付加したものである。
【0043】
例えば、図6および図7に示すように、加熱手段6Aは保温枠6Abで囲われた火炎バーナ6Aaと、この火炎バーナ6Aaにガス管6Adを介して接続され、電磁絞り構造の加熱手段制御器6Aacを有しており、加熱手段制御器6Aacは制御装置8Aに接続されている。これにより、厚み計測手段による測定結果に基づき、制御装置8Aにより加熱手段制御器6Aacを介して加熱手段6Aを制御するようになっている。この加熱手段6Aには、応答性のよいカーボンヒータを用いるのが好ましい。他の構成は図1および図2に示す成形装置と異ならないので、同一符号を付して説明は省略する。
【0044】
従って、当初のシリカガラス平板Gの厚さの誤差などにより、厚み計測手段が所定の厚みに対して差異を検知した場合、例えば、所定の厚さよりも厚い場合には、制御装置8Aにより加熱手段制御器6Aacを介して加熱手段6Aの発熱量を増加させるように制御し、引き伸ばし量を増加させ、シリカガラス平板Gの厚さを薄くし、所定の厚さにする。所定の厚さよりも薄い場合には、加熱手段6Aの発熱量を減少させる引き伸ばし量を減少させ、シリカガラス平板Gの厚さを薄くし、所定の厚さにする。この加熱手段6Aの制御によるシリカガラス平板Gの板厚の制御は、単独で行ってもよいが、上記実施形態に示すように、上側保持手段の降下速度と下側保持手段の降下速度と速度差を利用した板厚制御方法と組み合わせて用いることにより、木目細かい板厚制御ができて好ましい。
【0045】
また、本発明に係わるガラス部材の成形装置に用いられる加熱手段の変形例を説明する。
【0046】
本変形例は、上記実施形態の加熱手段に往復動装置を付加したものである。
【0047】
例えば、図8に示すように、加熱手段としての火炎バーナ6Bには往復動装置6Bdが設けられており、この往復動装置6Bdは保温枠6Bbに水平方向に往復動自在に設けられた火炎バーナ6Bに連結されたコネクティングロッド6Bd1と、クランクウェブ6Bd2と、このクランクウェブ6Bd2を回転させてクランクピン6Bd3、コネクティングロッド6Bd1を介して往復動させるモータ6Bd4からなっている。また、火炎バーナ6Bには燃料ガス供給用の可撓性ガス管6Beが接続されている。
【0048】
上記往復動のストロークは火炎バーナ6Bのノズルピッチの1/2になるようになっている。従って、火炎バーナ6Bのシリカガラス平板Gと平行な進退運動によって、両ノズル6Bf間の部位であっても均一に加熱されるため、シリカガラス平板Gは均一に加熱される。
【0049】
【発明の効果】
本発明に係わるガラス部材の成形方法によれば、材料歩留がよく、製造コストが安く、特性を劣化させることがないガラス部材の成形方法を提供することができる。
【0050】
また、本発明に係わるガラス部材の成形装置によれば、材料歩留がよく、製造コストが安く、特性を劣化させることなくガラス部材を成形できるガラス部材の成形装置を提供することができる。
【図面の簡単な説明】
【図1】 本発明に係わるガラス部材の成形装置の保温部材の一部を切欠して示す概念図。
【図2】 本発明に係わるガラス部材の成形装置の制御回路図。
【図3】 本発明に係わるガラス部材の成形装置に用いられる厚み計測手段の概念図。
【図4】 本発明に係わるガラス部材の成形装置を用いたガラスの成形方法の成形工程図。
【図5】 本発明に係わるガラス部材の成形装置を用いたガラスの成形方法に用いられる電気溶融炉の概念図。
【図6】 本発明に係わるガラス部材の成形装置の他の実施形態の概念図。
【図7】 本発明に係わるガラス部材の成形装置の他の実施形態の制御回路図。
【図8】 本発明に係わるガラス部材の成形装置の実施形態の加熱手段の変形例を示す概念図。
【符号の説明】
1 ガラス部材の成形装置
2 上側降下手段
2a 上側ボールねじ
2b 上側ステッピングモータ
2bc 上側ステッピングモータ制御器
3 上側保持手段
3a 上側保持用凹部
3b 上側保持板
3b1 上側保持部材
3c 上側保持ねじ
3d 上側螺孔
3e 上側遊嵌孔
4 下側降下手段
4a 下側ボールねじ
4b 下側ステッピングモータ
4bc 下側ステッピングモータ制御器
5 下側保持手段
5a 下側保持用凹部
5b 下側保持板
5b1 下側保持部材
5c 下側保持ねじ
5d 下側螺孔
5e 下側遊嵌孔
6 加熱手段
6a 火炎バーナ
6b 保温枠
7 厚み計測手段
7a レーザ変位計
7b 発光素子
7bc 発光素子ドライバー
7c 投光レンズ
7d 結像レンズ
7e ポジションセンサ
7f 信号処理装置
7g 検出ヘッド
8 制御装置
G ガラス平板
Gu 上端部
Gb 下端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molding method for a molding apparatus and glass member of the glass member, and more particularly to a molding method for a molding apparatus and glass member of the glass member that Suitable for method of manufacturing a substrate such as a large-size photomask.
[0002]
[Prior art]
In particular, silica glass is used as various members in the semiconductor industry and the like because of its high purity and excellent heat resistance, light transmittance, chemical stability, and the like. For the production of this silica glass, a method is often used in which silicon tetrachloride is hydrolyzed in a high-temperature oxyhydrogen flame.
[0003]
The silica glass ingot produced in this way is used after being molded into a molded body (molded ingot). The conventionally used molding method is to use the silica glass ingot produced by oxyhydrogen flame melting as described above as carbon. The molded body is put into a mold and made to melt in an electric melting furnace to produce a molded body, and this molded body is used as a liquid crystal substrate or a photomask substrate through a process such as slicing.
[0004]
However, as the size of liquid crystal substrates and photomask substrates increases in size in recent years, it is required to increase the size of the molded body. However, with conventional molding methods, silica glass cannot reach the corners of the mold sufficiently. Therefore, an accurate rectangular flat plate-shaped molded body could not be manufactured. For this reason, when a large-sized liquid crystal substrate or photomask substrate is manufactured by slicing the molded body, the material yield is extremely poor.
[0005]
In addition, as described in JP-A-11-60264, a large-diameter silica glass tube is manufactured in advance, the silica glass tube is opened, and this is heated to form a flat synthetic silica glass plate. There is a way. However, the manufacturing method described in this publication requires a large-sized pipe manufacturing facility for manufacturing a large-diameter silica glass tube once, and the manufacturing cost is high.
[0006]
In addition, a silica glass ingot is manufactured into a cylindrical silica glass block, and a through-hole is formed with a heated metal rod to form a hollow tube base material. Then, there is a method of manufacturing a large synthetic glass flat plate by opening the glass tube in the same manner as described in the above publication, using the glass tube, and heating the glass tube. However, in this production method, the number of times of heating is increased for forming the silica glass tube, the characteristics of the silica glass are deteriorated, and the silica glass is often contaminated.
[0007]
[Problems to be solved by the invention]
Therefore, the material yield is good, low manufacturing cost, the molding method of the molding apparatus and the glass member of the glass member does not deteriorate the characteristics has been needed Nozomu. The present invention has been made in consideration of the above circumstances, aims to material yield is good, low manufacturing costs, provides a molding method for a molding apparatus and glass member of the glass member does not deteriorate the characteristics And
[0008]
[Means for Solving the Problems]
To achieve the above object, according to one aspect of the present invention, the upper-side holding means is lowered by the upper drop means comprising holding the upper end of the vertically disposed plate glass member upper retaining plate, flat glass A lower holding means that holds the lower end of the member and is lowered by a lower lowering means having a lower holding plate, and the entire horizontal direction of the flat glass member that is disposed between the lower holding means and the upper lowering means is simultaneously heated. A heating means and a control means for controlling the operation of the upper lowering means and the lower lowering means, wherein the upper lowering means loosely fits a lower loose fitting hole provided in the lower holding plate. The upper holding means holds the upper end portion of the flat glass member by the upper holding plate and is provided near both ends of the upper holding plate. The upper ball screw is engaged with the upper ball screw through the upper screw hole, and the upper stepping motor is operated to rotate the upper ball screw, so that the upper holding plate can be moved up and down while maintaining the horizontal state. The lowering means comprises a pair of lower ball screws loosely fitting a screw loose hole formed in the upper holding plate, and a lower stepping motor for rotating the lower ball screw, and the lower holding means The lower holding plate holds the lower end portion of the flat glass member, and is screwed with the lower ball screw of the lower lowering means by the lower screw holes provided in the vicinity of both end portions of the lower holding plate. By rotating the lower ball screw by operating the side stepping motor, the lower holding plate can be moved up and down while maintaining a horizontal state, and the heating means is a pair of flames disposed on both sides of the flat glass member. Burner There, by the heating means, while heating the entire horizontal plate glass members simultaneously, the lowering speed of the lower retaining means controls faster than lowering speed of the upper retaining means, the stretching of the plate glass member An apparatus for forming a glass member is provided. Thereby, the material yield is good, the manufacturing cost is low, and the glass is molded without deteriorating the characteristics.
[0009]
In a preferred example, the heating means is surrounded by a heat retaining frame and is reciprocated by a horizontal reciprocating device.
[0010]
In order to achieve the above object, according to another aspect of the present invention, using a molding apparatus for a glass member according to claim 1 or 2, glass member characterized by stretching a flat glass member A forming method is provided. Thereby, a material yield is good, a manufacturing cost is cheap, and a flat glass member can be shape | molded, without deteriorating the characteristic of a flat glass member.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a glass member forming apparatus according to the present invention will be described below with reference to the accompanying drawings.
[0012]
FIG. 1 is a conceptual view showing a part of a heat retaining member of a glass member forming apparatus according to the present invention.
[0013]
As shown in FIG. 1, a glass member forming apparatus 1 according to the present invention holds an upper end Gu of a flat glass member, for example, a silica glass flat plate G, which is vertically arranged, and is lowered by an upper descent means 2. The holding means 3 and the lower holding means 5 that holds the lower end Gb of the silica glass member G and is lowered by the lower lowering means 4 are further provided between the lower holding means 5 and the upper lowering means 2. The heating means 6 that uniformly heats the horizontal direction of the silica glass flat plate G, the thickness measuring means 7 that measures the thickness of the silica glass flat plate G, and the upper descent means 2 and the lower descent means 4 are controlled. And a control device 8.
[0014]
The upper lowering means 2 is a normal rotational movement mechanism comprising a pair of upper ball screws 2a, 2a that loosely fit the lower loose fitting holes 5e, and upper stepping motors 2b, 2b that rotate the upper ball screws 2a, 2a. Is formed. As shown in FIG. 2, the upper stepping motors 2b and 2b are connected to the control device 8 via the upper stepping motor controller 2bc, and the rotation thereof is controlled.
[0015]
Upper side holding means 3, the upper holding plate 3b of the upper storage recess 3a is provided in the vicinity the central portion, screw detachably upper retaining screw 3c opposite to the upper retaining recess 3a, and 3c in the upper holding plate 3b The upper holding member 3b1 is attached, and is sandwiched between the upper holding member 3b1 and the upper holding concave portion 3a by the upper end portion Gu of the silica glass flat plate G. Further, both end portions of the upper holding plate 3b The upper screw holes 3d and 3d provided in the vicinity are screwed into the upper ball screws 2a and 2a of the upper lowering means 2, and the upper stepping motors 2b and 2b are operated to rotate the upper ball screws 2a and 2a. Thus, the upper holding plate 3b can be moved up and down while maintaining a horizontal state.
[0016]
Similarly to the upper lowering means 2, the lower lowering means 4 also includes a pair of lower ball screws 4a and 4a that loosely fit into the screw loose holes 3e and 3e formed in the upper holding plate 3b, and the lower ball. The lower stepping motors 4b and 4b rotate the screws 4a and 4a. As shown in FIG. 2, the lower stepping motors 4b and 4b are connected to the controller 8 via the lower stepping motor controller 4bc. The rotation is controlled.
[0017]
Similarly to the upper holding means 3, the lower holding means 5 also has a lower holding plate 5b provided with a lower holding recess 5a in the vicinity of the center, and a lower holding screw facing the lower holding recess 5a. The lower holding member 5b1 is detachably screwed to the lower holding plate 5b by 5c and 5c, and the lower end Gb of the silica glass flat plate G is interposed between the lower holding member 5b1 and the lower holding recess 5a. Furthermore, it is screwed with the lower ball screws 4a and 4a of the lower lowering means 4 by lower screw holes 5d and 5d provided in the vicinity of both ends of the lower holding plate 5b. When the lower stepping motors 4b and 4b are operated to rotate the lower ball screws 4a and 4a, the lower holding plate 5b can be moved up and down while maintaining a horizontal state. The upper and lower holding means 3 and the lower holding means 5 are moved up and down continuously, but depending on conditions such as the original thickness of the silica glass flat plate G or the thickness after being stretched, the heating means You may make intermittent feed which makes 6 heating parts the feed pitch.
[0018]
The heating means 6 is formed in the vicinity of the center of the height of the silica glass member molding apparatus 1, for example, in a state where the silica glass flat plate G is held between the upper holding means 3 and the lower holding means 5. The flame burners 6a and 6a are disposed between the glass plates G and 3 so as to be heated from both sides of the silica glass flat plate G. Further, the flame burners 6a and 6a are surrounded by a hollow, rectangular heat retaining frame 6b. In other words, the silica glass flat plate G is heated more uniformly.
[0019]
The thickness measuring means 7 is normally used, and two laser displacement meters 7a and 7a arranged on both sides of a silica glass flat plate G which is an object to be measured are used. 3, light emitting elements 7b and 7b that are controlled by the light emitting element drivers 7bc and 7bc to oscillate laser light, and light projecting lenses 7c and 7c provided on the optical axes of the light emitting elements 7b and 7b, The imaging lenses 7d and 7d provided on the reflection optical axis of the optical axis with respect to the silica glass flat plate G, position sensors 7e and 7e on the reflection optical axis, and position information from the position sensors 7e and 7e are processed. The signal processing devices 7f and 7f are provided, and the signal processing devices 7f and 7f are connected to the control device 8 as shown in FIG. The light emitting elements 7b and 7b, the light projecting lenses 7c and 7c, the imaging lenses 7d and 7d, and the position sensors 7e and 7e are integrally housed in a casing to form detection heads 7g and 7g.
[0020]
Based on the thickness information of the measurement part of the silica glass flat plate G, the control unit 8 calculates the thickness of the measurement part, and the calculation result lowers the upper descent means 2 via the upper stepping motor controller 2bc. The lowering speed of the upper holding means 3 is controlled by controlling the speed. Further, the lowering speed of the lower lowering means 4 is controlled via the lower stepping motor controller 4bc to control the lowering speed of the lower holding means 5.
[0021]
As the control device 8, a normal personal computer is used, and during the silica glass flat plate G stretching process by the glass member forming device 1, the upper stepping motor controller 2bc, the lower stepping motor controller 4bc, and the signal processing device 7f by the control device 8 are used. 7f is performed in accordance with a control procedure programmed in advance in the control device 8, and is also performed by input from an input means (not shown) provided in the control device 8 as necessary.
[0022]
Next, a glass forming method using the glass member forming apparatus according to the present invention will be described with reference to a forming process diagram shown in FIG.
[0023]
First, a silica glass ingot G produced by ordinary oxyhydrogen flame melting is put into a mold housed in an electric melting furnace and heated to form a rectangular block (S1).
[0024]
An electric melting furnace 11 used in this molding process has a structure as shown in FIG. 5, a furnace main body 12 formed so that stored items can be taken in and out, and a heater 13 for heating the furnace main body 12. And a mounting table 14. A molding die 15 is placed on a mounting table 14 in the furnace body 12, and the molding die 15 is composed of a molding die body 16 and a lining 17. The mold body 16 is formed by assembling an artificial graphite member having a large number of through holes 16a. The lining 17 has a density of, for example, 0.1 to 0.5 g / cm 2 and is formed of an air-permeable carbon molded heat insulating material. The gas passes through the lining 17 and passes through the through-hole 16a without any problem. Discharged. Therefore, the silica glass ingot G is accommodated in the electric melting furnace 11, and then the heater 13 is energized and heated to a predetermined furnace temperature. Keep at a predetermined temperature for a predetermined time, and after the keep, it cools down naturally. By keeping the furnace temperature at a temperature equal to or higher than the softening point of the silica glass, the silica glass ingot is formed into a rectangular block G according to a mold.
[0025]
This rectangular block G is sliced with a cutting device to produce a silica glass flat plate G (S2).
[0026]
In the slicing step, when the rectangular block G is formed to be thicker than the thickness of the liquid crystal substrate or photomask substrate, which is the final product, it is sliced to a thickness required for the liquid crystal substrate or photomask substrate. Is done. When the rectangular block G has a thickness necessary for the liquid crystal substrate or the photomask substrate, this slicing step is omitted.
[0027]
The sliced silica glass flat plate G is stretched by using the glass member forming apparatus 1 according to the present invention described above (S3).
[0028]
The method for stretching the silica glass flat plate G using the glass member forming apparatus 1 as shown in FIG. 1 is performed as follows.
[0029]
The upper holding member 3b1 is removed from the upper holding plate 3b by removing the holding screws 3c and 3c of the upper holding means 3 in the uppermost position, which is in the standby state, and the upper end portion Gu of the silica glass flat plate G is stored in the holding recess 3a. After that, the holding screws 3c and 3c are screwed together, and the upper holding member 3b1 is attached again, and the upper holding portion 3 is firmly held and held between the upper holding concave portion 3a and the upper holding member 3b1. To hold firmly.
[0030]
Also, the lower holding screws 5c and 5c are removed from the lower holding means 5 to remove the lower holding member 5b1 from the lower holding plate 5b, and the lower ball is passed through the control device 8 and the lower stepping motor controller 4bc. The lower holding plate 4b is raised by rotating the screws 4a and 4a, the lower end Gb of the silica glass flat plate G is accommodated in the lower holding concave portion 5a, the lower holding member 5b1 is pressed, the lower screw hole 5d, Using the lower holding screws 5c and 5c penetrating 5d, the lower end Gb is firmly sandwiched between the lower holding recess 5a and the lower holding member 5b1.
[0031]
Thereafter, the pair of flame burners 6a and 6a are ignited and simultaneously heated from both sides of the silica glass flat plate G, and the silica glass flat plate G is uniformly heated in the horizontal direction. At this time, since the flame burners 6a and 6a are surrounded by the hollow and rectangular heat retaining frame 6b, the silica glass flat plate G is heated more uniformly. While continuing this heating, the lower stepping motors 4b and 4b are operated by the control device 8 via the lower stepping motor controller 4bc to rotate the lower ball screws 4a and 4a, and the lower holding means 5 is moved. Lower. At this time, the upper holding means 3 is in a stopped state and maintains the initial position, so that the difference (ΔV) between the lowering speed (Vb1) of the lower holding means 5 and the lowering speed (Vu1 = 0) of the upper holding means 3 A tensile stress acts on the silica glass flat plate G, and the heated silica glass flat plate G is stretched to reduce the plate thickness. Further, the stretching process continues, and the upper stepping motors 5b and 5b are operated by the control device 8 via the upper stepping motor controller 2bc to rotate the upper ball screws 2a and 2a, and the upper holding means 3 is lowered. When the upper holding means 3 is lowered at the lowering speed (Vu2), the entire silica glass flat plate G is lowered, and the relative heating position of the heating means 6 with respect to the silica glass flat plate G is raised. The lower holding means 5 continues to descend, but the controller 8 increases the number of rotations of the lower stepping motors 4b and 4b via the lower stepping motor controller 4bc, and the lower ball screw 4a, The rotation of 4a is also increased, and the lowering speed (Vb2) of the lower holding means 5 is also increased. In this case, both the descent speeds Vb2 and Vu2 are adjusted so that the speed difference (ΔV) is kept constant. Thus, the silica glass flat plate G is stretched, but is stretched by the thickness measuring means 7 provided below the heating means 6 to measure the thickness of the silica glass flat plate G.
[0032]
The thickness of the silica glass flat plate G is measured as follows.
[0033]
As shown in FIG. 3, the light emitted from the light emitting elements 7b and 7b is irradiated onto the silica glass flat plate G through the light projecting lenses 7c and 7c, and the light reflected from the silica glass flat plate G is irradiated with the imaging lens 7d. , 7d, and detected by the position sensors 7e, 7e, and the control unit 8 performs arithmetic processing for each of the detection heads 7g, 7g to measure the thickness of the measurement portion of the silica glass flat plate G. Since the difference (ΔV) between the lowering speed (Vb) of the lower holding means 5 and the lowering speed (Vu1) of the upper holding means 3 is controlled to be constant, a constant stress is always applied to the silica glass plate G. It acts and the silica glass flat plate G becomes constant. However, when the thickness measuring means 7 detects a difference with respect to the predetermined thickness due to an error in the thickness of the original silica glass flat plate G, for example, when it is thicker than the predetermined thickness, the lower holding means 5 Is increased, the difference in speed (ΔV) is kept constant, the stress acting on the silica glass plate G is increased, the amount of tension is increased, and the thickness of the silica glass plate G is increased. The thickness is reduced to a predetermined thickness. When the thickness is smaller than the predetermined thickness, the lowering speed (Vb) of the lower holding means 5 is reduced, the speed difference (ΔV) kept constant is reduced, and the stress acting on the silica glass flat plate G is reduced. The tensile amount is decreased, and the thickness of the silica glass flat plate G is increased to a predetermined thickness. In this way, the thickness of the silica glass flat plate G is measured, and the stress acting on the silica glass flat plate G is controlled based on this, so that the thickness is controlled. Therefore, the silica glass flat plate G is stretched to a predetermined thickness. Can do.
[0034]
In this stretching step, while heating the sliced silica glass flat plate G, the silica glass flat plate G is stretched by the stress generated by the difference in the descent speed between the upper holding means 3 and the lower holding means 5 to have a predetermined thickness and size. Therefore, it does not require large-sized pipe making equipment, can be manufactured at a low cost, and there is no need to use a silica glass tube, the number of heating times of the silica glass is reduced, and the characteristics of the silica glass are not deteriorated. Furthermore, the silica glass is not contaminated. In addition, since it can be stretched from a relatively small rectangular block or a silica glass plate to a large silica glass plate, it is not necessary to use a large rectangular block as in the past, so it is possible to use a rectangular block in which the silica glass reaches the corners. Thus, the material yield is improved.
[0035]
In the stretching process, intermittent feeding may be performed with the heating portion of the heating means as the feeding pitch depending on conditions such as the original thickness of the silica glass flat plate G or the thickness after the stretching.
[0036]
The silica glass flat plate G stretched to the predetermined thickness is annealed (S4).
[0037]
The silica glass flat plate G stretched to a predetermined thickness is shaped by cutting off the upper end Gu and the lower end Gb, and then annealed using an annealing furnace to remove strain.
[0038]
Since annealing takes a relatively long time, when a large amount of annealing is performed, it is preferable to anneal many silica glass flat plates G simultaneously using an annealing furnace. When the number of silica glass flat plates G to be annealed is small, the silica glass flat plate G that has been stretched in the previous step S3 is not removed from the upper holding means 3 and the lower holding means 5 and is attached to the heating means 6 while remaining attached. Then, the upper holding means 3 and the lower holding means 5 may be raised at the same ascending rate so that no stress is applied to the silica glass flat plate G, and annealing may be performed. The operation of the annealing furnace can be omitted.
[0039]
The annealed silica glass flat plate G is polished (S5).
[0040]
A normal polishing apparatus is used for this polishing, and polishing is performed so as to have a predetermined flatness.
[0041]
Next, another embodiment of the glass member forming apparatus according to the present invention will be described.
[0042]
In the present embodiment, a means for controlling the calorific value is added to the heating means of the above embodiment.
[0043]
For example, as shown in FIGS. 6 and 7, the heating means 6A is connected to a flame burner 6Aa surrounded by a heat retaining frame 6Ab, and connected to the flame burner 6Aa via a gas pipe 6Ad. The heating means controller 6Aac is connected to the control device 8A. Thereby, based on the measurement result by the thickness measuring means, the control device 8A controls the heating means 6A via the heating means controller 6Aac. As the heating means 6A, it is preferable to use a carbon heater with good response. Since the other configuration is not different from the molding apparatus shown in FIGS. 1 and 2, the same reference numerals are given and description thereof is omitted.
[0044]
Therefore, when the thickness measuring unit detects a difference with respect to the predetermined thickness due to an error in the thickness of the original silica glass flat plate G, for example, when the thickness is larger than the predetermined thickness, the heating unit is controlled by the control device 8A. Control is performed to increase the amount of heat generated by the heating means 6A via the controller 6Aac, the amount of stretching is increased, and the thickness of the silica glass plate G is reduced to a predetermined thickness. When the thickness is smaller than the predetermined thickness, the stretching amount for reducing the heat generation amount of the heating means 6A is decreased, and the thickness of the silica glass flat plate G is reduced to a predetermined thickness. The control of the thickness of the silica glass flat plate G by the control of the heating means 6A may be performed independently, but as shown in the above embodiment, the lowering speed of the upper holding means and the lowering speed and speed of the lower holding means. By using in combination with a plate thickness control method utilizing the difference, it is possible to achieve fine plate thickness control.
[0045]
Moreover, the modification of the heating means used for the shaping | molding apparatus of the glass member concerning this invention is demonstrated.
[0046]
In this modification, a reciprocating device is added to the heating means of the above embodiment.
[0047]
For example, as shown in FIG. 8, a flame burner 6B as a heating means is provided with a reciprocating device 6Bd, and this reciprocating device 6Bd is a flame burner provided in a heat retaining frame 6Bb so as to be reciprocally movable in the horizontal direction. A connecting rod 6Bd1 connected to 6B, a crank web 6Bd2, and a motor 6Bd4 that rotates the crank web 6Bd2 to reciprocate via a crank pin 6Bd3 and a connecting rod 6Bd1. In addition, a flexible gas pipe 6Be for supplying fuel gas is connected to the flame burner 6B.
[0048]
The reciprocating stroke is ½ of the nozzle pitch of the flame burner 6B. Accordingly, the silica glass flat plate G is heated uniformly by the reciprocating motion parallel to the silica glass flat plate G of the flame burner 6B even in the portion between both nozzles 6Bf .
[0049]
【The invention's effect】
According to the method for molding a glass member according to the present invention, it is possible to provide a method for molding a glass member that has a good material yield, is low in manufacturing cost, and does not deteriorate characteristics.
[0050]
Further, according to the glass member molding apparatus of the present invention, it is possible to provide a glass member molding apparatus that has a good material yield, is low in manufacturing cost, and can mold the glass member without deteriorating the characteristics.
[Brief description of the drawings]
FIG. 1 is a conceptual view showing a part of a heat retaining member of a glass member forming apparatus according to the present invention.
FIG. 2 is a control circuit diagram of a glass member forming apparatus according to the present invention.
FIG. 3 is a conceptual diagram of thickness measuring means used in a glass member forming apparatus according to the present invention.
FIG. 4 is a molding process diagram of a glass molding method using a glass member molding apparatus according to the present invention.
FIG. 5 is a conceptual diagram of an electric melting furnace used in a glass forming method using a glass member forming apparatus according to the present invention.
FIG. 6 is a conceptual diagram of another embodiment of a glass member forming apparatus according to the present invention.
FIG. 7 is a control circuit diagram of another embodiment of the glass member forming apparatus according to the present invention.
FIG. 8 is a conceptual diagram showing a modification of the heating means of the embodiment of the glass member forming apparatus according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass member shaping | molding apparatus 2 Upper descending means 2a Upper ball screw 2b Upper stepping motor 2bc Upper stepping motor controller 3 Upper holding means 3a Upper holding recessed part 3b Upper holding plate 3b1 Upper holding member 3c Upper holding screw 3d Upper screw hole 3e Upper loose fitting hole 4 Lower descent means 4a Lower ball screw 4b Lower stepping motor 4bc Lower stepping motor controller 5 Lower holding means 5a Lower holding recess 5b Lower holding plate 5b1 Lower holding member 5c Lower Holding screw 5d Lower screw hole 5e Lower loose fitting hole 6 Heating means 6a Flame burner 6b Heat retaining frame 7 Thickness measuring means 7a Laser displacement meter 7b Light emitting element 7bc Light emitting element driver 7c Projecting lens 7d Imaging lens 7e Position sensor 7f Signal Processing device 7g Detection head 8 Control device G Glass flat plate Gu Upper end Gb Lower end

Claims (3)

垂直に配置された平板ガラス部材の上端を保持し上側保持板を備える上側降下手段により降下される上保持手段と、
平板ガラス部材の下端を保持し下側保持板を備える下側降下手段により降下される下側保持手段と、
この下側保持手段と上側降下手段間に配置され平板ガラス部材の水平方向全体を同時に加熱する加熱手段と、
上側降下手段および下側降下手段の作動を制御する制御手段とを有し、
前記上側降下手段は、前記下側保持板に設けた下側遊嵌孔を遊嵌する一対の上側ボールねじと、この上側ボールねじを回転させる上側ステッピングモータからなり、
前記上側保持手段は、前記上側保持板により平板ガラス部材の上端部を保持し、かつ前記上側保持板の両端部近傍に設けられた上側螺孔によって前記上側ボールねじと螺合し、上側ステッピングモータが作動して上側ボールねじを回転させることにより、上側保持板が水平状態を保って昇降可能になっており、
前記下側降下手段は、前記上側保持板に穿設されたねじ遊嵌孔を遊嵌する一対の下側ボールねじと、この下側ボールねじを回転させる下側ステッピングモータからなり、
前記下側保持手段は、前記下側保持板により平板ガラス部材の下端部を保持し、前記下側保持板の両端部近傍に設けられた下側螺孔によって下側降下手段の下側ボールねじと螺合し、下側ステッピングモータが作動して下側ボールねじを回転させることにより、下側保持板が水平状態を保って昇降可能になっており、
前記加熱手段は平板ガラス部材の両側に配された一対の火炎バーナであり、前記加熱手段により、平板ガラス部材の水平方向全体を同時に加熱しながら、前記下側保持手段の降下速度を前記上側保持手段の降下速度よりも速く制御して、平板ガラス部材を引き伸ばすことを特徴とするガラス部材の成形装置。
The upper side holding means is lowered by the upper drop means comprising holding the upper end of the vertically disposed plate glass member upper retaining plate,
A lower holding means which holds the lower end of the flat glass member and is lowered by a lower lowering means provided with a lower holding plate ;
A heating means disposed between the lower holding means and the upper lowering means to simultaneously heat the entire horizontal direction of the flat glass member;
Control means for controlling the operation of the upper lowering means and the lower lowering means,
The upper descent means comprises a pair of upper ball screws loosely fitting a lower loose fitting hole provided in the lower holding plate, and an upper stepping motor for rotating the upper ball screw,
The upper holding means holds the upper end portion of the flat glass member by the upper holding plate and is screwed with the upper ball screw by upper screw holes provided in the vicinity of both end portions of the upper holding plate. Is operated and the upper ball screw is rotated, the upper holding plate can be moved up and down while maintaining the horizontal state,
The lower descent means comprises a pair of lower ball screws loosely fitting a screw loose hole formed in the upper holding plate, and a lower stepping motor for rotating the lower ball screw,
The lower holding means holds the lower end portion of the flat glass member by the lower holding plate, and a lower ball screw of the lower lowering means by lower screw holes provided in the vicinity of both end portions of the lower holding plate. And the lower stepping motor operates to rotate the lower ball screw, so that the lower holding plate can be moved up and down while maintaining the horizontal state.
The heating means is a pair of flame burners arranged on both sides of the flat glass member. The lowering means holds the lowering speed of the lower holding means while simultaneously heating the entire horizontal direction of the flat glass member by the heating means. An apparatus for forming a glass member , wherein the flat glass member is stretched by controlling it faster than the descending speed of the means .
前記加熱手段は保温枠に囲われ、かつ水平方向の往復動装置により往復動されることを特徴とする請求項1に記載のガラス部材の成形装置。The glass member forming apparatus according to claim 1, wherein the heating means is surrounded by a heat retaining frame and reciprocated by a horizontal reciprocating device. 請求項1または2に記載のガラス部材の成形装置を用いて、平板ガラス部材を引き伸ばすことを特徴とするガラス部材の成形方法 A flat glass member is stretched using the glass member molding apparatus according to claim 1 or 2, and a glass member molding method is provided .
JP2001371745A 2001-12-05 2001-12-05 Glass member forming apparatus and glass member forming method Expired - Fee Related JP4000349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001371745A JP4000349B2 (en) 2001-12-05 2001-12-05 Glass member forming apparatus and glass member forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001371745A JP4000349B2 (en) 2001-12-05 2001-12-05 Glass member forming apparatus and glass member forming method

Publications (2)

Publication Number Publication Date
JP2003171129A JP2003171129A (en) 2003-06-17
JP4000349B2 true JP4000349B2 (en) 2007-10-31

Family

ID=19180749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001371745A Expired - Fee Related JP4000349B2 (en) 2001-12-05 2001-12-05 Glass member forming apparatus and glass member forming method

Country Status (1)

Country Link
JP (1) JP4000349B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5128422B2 (en) * 2008-09-04 2013-01-23 古河電気工業株式会社 Method for measuring warpage of glass strip and method for manufacturing glass strip
WO2019081312A1 (en) 2017-10-27 2019-05-02 Schott Ag Apparatus and method for producing plate glass

Also Published As

Publication number Publication date
JP2003171129A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
JP4874341B2 (en) Method and apparatus for characterizing glass strips
TWI485447B (en) Forming method for optical transmission medium, forming apparatus therefor, and production method for optical transmission medium
KR100657196B1 (en) Scribe line forming device and scribe line forming method
JP2007528338A (en) Control method of horizontal movement of glass sheet in drawing glass production
CN102531350B (en) Method of manufacturing vitreous silica crucible
JP4000349B2 (en) Glass member forming apparatus and glass member forming method
JP4835162B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP2020111500A (en) Automated tipping method for preform with large external diameter, and obtained glass preform
JP4288413B2 (en) Quartz glass molding method and molding apparatus
US6928838B2 (en) Apparatus and method for forming silica glass elements
JP4465974B2 (en) Quartz glass molding equipment
JP2798208B2 (en) Glass gob molding method
CN111952157B (en) Laser annealing device
JPS62292635A (en) Molding method for glass lens
JP3071420B1 (en) Method and apparatus for stretching glass base material
JPH10167740A (en) Shaping of plate glass
JP2006169033A (en) Forming method and forming apparatus for quartz glass
JP3874637B2 (en) Glass element molding method and molding apparatus
JP4197990B2 (en) Optical element molding method and molding apparatus
JP4347005B2 (en) Mold apparatus, press apparatus, handling apparatus and method, and molding method
JP2008137835A (en) Molding apparatus and method for producing molded article
JPH08109033A (en) Apparatus for forming optical element and forming method
JP5868666B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP2000269241A (en) Chip-bonding device and calibration method thereof
JP2003137568A (en) Apparatus for molding glass element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees