JP3999147B2 - Silver halide emulsion, process for producing the same and photographic light-sensitive material - Google Patents

Silver halide emulsion, process for producing the same and photographic light-sensitive material Download PDF

Info

Publication number
JP3999147B2
JP3999147B2 JP2003057156A JP2003057156A JP3999147B2 JP 3999147 B2 JP3999147 B2 JP 3999147B2 JP 2003057156 A JP2003057156 A JP 2003057156A JP 2003057156 A JP2003057156 A JP 2003057156A JP 3999147 B2 JP3999147 B2 JP 3999147B2
Authority
JP
Japan
Prior art keywords
silver halide
particles
halide emulsion
grains
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003057156A
Other languages
Japanese (ja)
Other versions
JP2004004586A (en
Inventor
光雄 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2003057156A priority Critical patent/JP3999147B2/en
Publication of JP2004004586A publication Critical patent/JP2004004586A/en
Application granted granted Critical
Publication of JP3999147B2 publication Critical patent/JP3999147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は写真の分野で有用なハロゲン化銀(以下、「AgX」と記す)乳剤とその製造方法とそれを用いた写真感光材料に関する。
【0002】
【従来の技術】
1)従来のAgI粒子形成とAgIの特性に関しては後記文献1、4と下記5)に記載の文献でレヴューされているが、単分散なAgI粒子や、特定の形状の粒子の作り分けは行われていない。
2)AgIの青光固有吸収はエネルギーバンド間の直接許容遷移に基づく為に、400〜430nm波長光の吸収係数がAgBrに比べて、約100倍大きい。これは入射した青光を効率良く吸収するという利点を有する。しかし、その後の感光過程、現像処理過程に非効率がある為にAgI粒子上に低AgI含率のエピタキシャルAgX部(「エピ部」と略称)を形成し、該エピ部に化学増感核を形成し、潜像を形成する態様が提案されている。これに関しては後記文献2の記載を参考にでき、該青光吸収係数に関しては文献3の記載を参考にできる。
3)AgI粒子の写真感光材料への利用に関しては多くの文献があり、文献4に記載の文献を参考にする事ができる。しかし、AgI粒子は室温近傍でβ型とγ型の結晶構造が存在する事、多くの粒子形状が存在する事、I-濃度の少しのバラツキで反応溶液の銀電位が大きく変化する為に銀電位制御のCDJ(Controlled-double-jet)添加で銀電位が大きくハンチングする事、等から、1種類の粒子形状粒子のみを単分散なサイズで作り分ける事が難しく、それを実現した実施例報告はない。単分散化を実現する事により、その感光材料への利用が期待されている。
4)AgI粒子形成をAg+過剰(Ag+濃度>I-濃度)下で行うと面心立方晶構造(以下「γ構造」と記す)含率の高いAgI粒子が得られ、I-過剰下で行うと六方晶構造(以下「β構造と記す」含率の高いAgI粒子が得られる事が文献1に記載されている。
5)アスペクト比が8以上のAgI平板粒子乳剤に関しては特開昭59−119350号の記載を、γ型含率が90モル%以上でアスペクト比が8以上のAgI平板粒子乳剤に関しては特開昭59−119344号の記載を参考にできる。
6)固有光吸収端が480nm近傍にある黄色AgI乳剤粒子(体心立方晶であるα型構造含率が高い)に関しては後記文献1と米国特許第4672026号に記載されている。
7)カラー写真のUVフィルター層へUV吸収剤としてAgI微粒子を用いる事に関しては米国特許第2327764号の記載を参考にできる。
8)高被覆率で分光増感したAgX平板粒子(AgCl、AgBr、AgBrIおよびその2種以上の混晶)の近傍に高AgI含率微粒子を存在させて、現像処理時のdye stain発生量を抑制する事に関しては米国特許第4520098号の記載を参考にできる。
9)感光材料の分散媒層に高屈折率微粒子および/または原子、分子、イオン、錯体の1種以上を混入して分散媒層の屈折率を上げて、AgX粒子の光散乱強度を減少させる事に関しては文献5に記載されている。
10)14面体で、互いに平行な六角形面の面積が等しい対称型14面体AgI粒子に関しては特公昭63−30616号、米国特許第4094684号に記載されている。
【0003】
【発明が解決しようとする課題】
従来のAgX乳剤に対し、より高感度、高画質を与えるAgX乳剤を提供する。
【0004】
【課題を解決するための手段】
本発明の目的は次の手段によって達成された。
(1)少なくとも分散媒と水とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該粒子の投影面積の合計の88〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に6コの長方形の面を有する八面体、またはその角および/または稜が丸みを帯びた形状の単一種であり、粒子の円相当投影直径(μm)が0.002〜20である事を特徴とするハロゲン化銀乳剤
(2)少なくとも分散媒と水とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該粒子の投影面積の合計の88〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に12コの台形状の面が互いに鏡像関係で有し、前記六角形状の面と合せて14面体の単一種であり、粒子の円相当投影直径(μm)が0.002〜20である事を特徴とするハロゲン化銀乳剤。
(3)該2つの六角形状の面の大きさが、1つの粒子中において異なり、(小さい六角形の面積/大きい六角形の面積)=Aが0.1〜0.92である事を特徴とする()記載のハロゲン化銀乳剤
(4)Agを含む水溶液とXを含む水溶液を、親水性分散媒を含む水溶液中へ、該溶液の銀電位を一定に保ちながら同時混合添加する事により、少なくとも分散媒と水とハロゲン化銀粒子を有し、該粒子の投影面積の合計の40〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に6コの長方形の面を有する八面体、またはその角および/または稜が丸みを帯びた形状の単一種であり、粒子の円相当投影直径(μm)が0.002〜20であるハロゲン化銀乳剤を製造する方法において、該添加時間の30〜100%において、該銀電位の振幅(mV)が、指定値に対し、−50〜+50であることを特徴とするハロゲン化銀乳剤の製造方法
(5)Ag を含む水溶液とX を含む水溶液を、親水性分散媒を含む水溶液中へ、該溶液の銀電位を一定に保ちながら同時混合添加する事により、少なくとも分散媒と水とハロゲン化銀粒子を有し、該粒子の投影面積の合計の40〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に12コの台形状の面が互いに鏡像関係で有し、前記六角形状の面と合せて14面体の単一種であり、粒子の円相当投影直径(μm)が0.002〜20であるハロゲン化銀乳剤を製造する方法において、該添加時間の30〜100%において、該銀電位の振幅(mV)が、指定値に対し、−50〜+50であることを特徴とするハロゲン化銀乳剤の製造方法。
(6)該Ag溶液とX溶液の少なくとも一方が、中空管を通して反応溶液中に直接に添加される事、(反応溶液中の中空管長/反応容器の内直径)比=Cが0.5〜50である(4)または(5)記載のハロゲン化銀乳剤の製造方法。
)該銀電位の振幅が指定値に対し、−30〜+30であることを特徴とする(4)または(5)記載のハロゲン化銀乳剤の製造方法。
)該銀電位の振幅が指定値に対し、−15〜+15であることを特徴とする(4)または(5)記載のハロゲン化銀乳剤の製造方法。
)粒子の投影面積の合計が88〜100%であることを特徴とする(4)または(5)記載のハロゲン化銀乳剤の製造方法。
10)粒子の投影面積の合計が95〜100%であることを特徴とする(4)または(5)記載のハロゲン化銀乳剤の製造方法。
11)支持体の一方もしくは両方の面上に1層以上のハロゲン化銀乳剤層を塗布した写真感光材料において、少なくとも1層のハロゲン化銀乳剤層が(1)または(2)記載の感光性ハロゲン化銀乳剤を含有することを特徴とする写真感光材料。
本発明をさらに詳細に説明するために必要な事項を下記(1)〜(123)に記載する。
なお、下記(1)〜(123)の中でも(10)および(13)、ならびに(10)および(13)と引用関係にあるものが、本発明に関係するものである。
(1)少なくとも分散媒と水とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該粒子の投影面積の合計の88〜100、好ましくは95〜100%の粒子がAgI含率(モル%)が85〜100、好ましくは90〜100、より好ましくは95〜100で、粒子の形状は、粒子の大きさ以外の外形形状が単一種であり、粒子の円相当投影直径(μm)が0.002〜20、好ましくは0.02から10である事を特徴とするハロゲン化銀乳剤。
(2)該粒子の該直径分布の変動係数(標準偏差/平均直径)が0.01〜0.5、好ましくは0.01〜0.3、より好ましくは0.01〜0.2、更に好ましくは0.01〜0.1である事を特徴とする(1)記載のハロゲン化銀乳剤。
(3)該粒子の少なくとも1つの表面の形状が平行四辺形またはそのエッジが丸味を帯びた形状である事を特徴とする(1)、又は(2)記載のハロゲン化銀乳剤。
(4)該少なくとも1つの面が六方晶系AgI結晶構造(以下、β構造と記す)の(001)面、または(002)面である事を特徴とする(3)記載のハロゲン化銀乳剤。
(5)該少なくとも1つの面がβ構造の(101)面である事を特徴とする(3)記載のハロゲン化銀乳剤。
(6)該少なくとも1つの面がβ構造の(1−10)面である事を特徴とする(3)記載のハロゲン化銀乳剤。
(7)該平行四辺形、またはエッジの直線部を延長する事により形成される該平行四辺形の2組の頂角の角度が約60°と約120°である事を特徴とする(3)記載のハロゲン化銀乳剤。
(8)該平行四辺形、またはエッジの直線部を延長する事により形成される該平行四辺形の2組の頂角の角度が約73°と約107°である事を特徴とする(3)記載のハロゲン化銀乳剤。
(9)該粒子の外形が12コの平行四辺形面からなる12面体型粒子、またはその角および/または稜が丸みを帯びた形状である事を特徴とする(1)〜(3)記載のハロゲン化銀乳剤。
(10)該粒子の形状が、2つの互いに平行な六角形状の面と、側面に6コの長方形の面を有する八面体、またはその角および/または稜が丸みを帯びた形状である事を特徴とする(1)記載のハロゲン化銀乳剤。
(11)該六角形状の面がβ構造の(001)面または(002)面である事を特徴とする(10)記載のハロゲン化銀乳剤。
(12)該長方形の面がβ構造の(100)面または(100)面と等価な面である事を特徴とする(10)記載のハロゲン化銀乳剤。
(13)該粒子の形状が、2つの互いに平行な六角形状の面と、側面に12コの台形状の面が互いに鏡像関係で有し、前記六角形状の面と合せて14面体であり、またはその角および/または稜が丸みを帯びた形状である事を特徴とする(1)記載のハロゲン化銀乳剤。
(14)該六角形状の面がβ構造の(001)面または(002)面である事を特徴とする(13)記載のハロゲン化銀乳剤。
(15)該台形状の面が(101)面、または(101)面と等価な面〔(101)類面とよぶ〕である事を特徴とする(13)記載のハロゲン化銀乳剤。
(16)該粒子の投影面積の合計の60〜100、好ましくは80〜100%の粒子の該直径(μm)が0.002〜0.15、好ましくは0.002〜0.1、より好ましくは0.002〜0.05である事を特徴とする(1)記載のハロゲン化銀乳剤。
(17)該乳剤中の全粒子のモル量の40〜100、好ましくは70〜100、より好ましくは90〜100%がβ構造である事を特徴とする(1)記載のハロゲン化銀乳剤。
(18)該乳剤中の全粒子のモル量の0.1〜90、好ましくは1〜80、より好ましくは10〜70%が面心立方晶型AgIの結晶構造(以下、γ構造と記す)である事を特徴とする(1)記載のハロゲン化銀乳剤。
(19)該粒子を新たな結晶欠陥(双晶面、転位線)が生じない条件で更に成長させた時の粒子形状が、(3)〜(15)のいずれかに記載の粒子形状である事を特徴とする(1)記載のハロゲン化銀乳剤。
(20)該粒子が粒子内に双晶面を含有しない事を特徴とする(1)〜(18)のいずれかに記載のハロゲン化銀乳剤。
(21)該粒子が粒子表面上(平面、角、稜の1つ以上の部位を指す)に、AgI含率(モル%)が0〜40、好ましくは0〜30、より好ましくは0〜20のハロゲン化銀エピタキシャル部を有する事を特徴とする(1)記載のハロゲン化銀乳剤。
(22)該エピタキシャル部のAgCl含率(mol%)が0〜100、好ましくは30〜100、より好ましくは60〜100である事を特徴とする(21)記載のハロゲン化銀乳剤。
(23)該エピタキシャル部のAgBr含率(mol%)が0〜100、好ましくは30〜100、より好ましくは60〜100である事を特徴とする(21)記載のハロゲン化銀乳剤。
(24)(該エピタキシャル部のAgXモル量/ホスト粒子のAgXモル量)が10−5〜2、好ましくは10−5〜0.5、より好ましくは10−3〜0.3である事を特徴とする(21)記載のハロゲン化銀乳剤。
(25)該粒子が粒子内および/または該エピタキシャル相内に、銀、ハロゲン以外に原子番号が1〜92の原子の単体または化合物の1種以上をドープ剤として合計量で10−9〜10−1、好ましくは10−8〜10−2(mol/molAgX)だけ含有する事を特徴とする(1)、又は(21)記載のハロゲン化銀乳剤。
(26)該ドープ剤が金属原子〔元素の長周期表においてホウ素BとAtを結ぶ線よりも左側にある原子〕の単体、または該金属原子含有化合物の中性体またはイオン体である事、より好ましくは遷移金属原子の単体または化合物の中性体またはイオン体である事を特徴とする(25)記載のハロゲン化銀乳剤。
(27)該化合物が該金属原子を1〜3個と配位子を2〜20個含有する金属錯体で、該配位子の1個〜全部が無機配位子および/または炭素数1〜30個を含有する有機配位子である事を特徴とする(26)記載のハロゲン化銀乳剤。
(28)該金属錯体がテトラまたはヘキサ配位錯体である事を特徴とする(27)記載のハロゲン化銀乳剤。
(29)該金属錯体が該有機配位子を1または2コ有し、残りの配位子が無機配位子である事を特徴とする(27)、又は (28)記載のハロゲン化銀乳剤。
(30)該粒子が粒子内にカルコゲン原子(S、Se、Teの1種以上)を10−2〜10−8、より好ましくは10−3〜10−7(モル/モルAgX)および/または還元銀を10−2〜10−8、好ましくは10−3〜10−7(モル/モルAgX)だけ含有する事を特徴とする(1)記載のハロゲン化銀乳剤。
(31)該粒子の(001)面において〔Agからなる面の合計面積/(001)面の合計面積〕=Aが0.70〜1.0または0.301〜0.699、または0.0〜0.30である事を特徴とする(4)〜(14)のいずれかに記載のハロゲン化銀乳剤。
(32)該粒子の(101)類面において、〔Xからなる面の合計面積/(101)類面の合計面積〕=Aが0.0〜0.30、または0.301〜0.699、または0.70〜1.0である事を特徴とする(5)〜(15)のいずれかに記載のハロゲン化銀乳剤。
(33)該粒子形状が平坦な結晶面を有しない楕円球状体であり、その〔最長軸の長さ/最短軸の長さ〕=Aが1.02〜1.6、好ましくは1.05〜1.5である事を特徴とする(1)記載のハロゲン化銀乳剤。
(35)該長方形の面が、くぼみを有しない平坦面である事を特徴とする(10)記載のハロゲン化銀乳剤。
(36)該長方形の面が、面中にくぼみ(非平担部)を有する事を特徴とする(10)記載のハロゲン化銀乳剤。
(37)該2つの六角形状の面の大きさが、1つの粒子中において異なり、(小さい六角形の面積/大きい六角形の面積)=Aが0.01〜0.92、好ましくは0.1〜0.8、より好ましくは0.2〜0.7、更に好ましくは0.3〜0.6である事を特徴とする(13)〜(15)のいずれかに記載のハロゲン化銀乳剤。
(38)該粒子が〔(Agの濃度(モル/L)/Iの濃度(モル/L))=Aが3〜∞、好ましくは10〜∞、より好ましくは100〜∞の反応溶液中で形成され、かつ、該粒子のβ構造含率(モル%)が77〜100、好ましくは80〜100、より好ましくは85〜100である事を特徴とする(1)記載のハロゲン化銀乳剤。
(39)該A値のバラツキの変動係数が0.01〜0.3、好ましくは0.01〜0.2、より好ましくは0.01〜0.1である事を特徴とする(37)記載のハロゲン化銀乳剤。
(40)該粒子が粒子内に双晶面を1枚から3枚、好ましくは(001)面に平行に含有する事を特徴とする(1)〜(17)のいずれかに記載のハロゲン化銀乳剤。
(41)該乳剤粒子がAgを含む水溶液とXを含む水溶液を、分散媒を含む水溶液中への同時混合添加する事により形成され、該分散媒水溶液の温度が45〜99、好ましくは50〜90℃である事を特徴とする(3)〜(9)のいずれかに記載のハロゲン化銀乳剤。
(42)(1)または(16)記載の乳剤を、Agを含む水溶液とXを含む水溶液を、親水性水溶液中へ同時混合添加する事により形成する方法において、添加するAgNOの総量の1〜90、好ましくは1〜70、より好ましくは1〜40%を添加した時点で、1種以上の吸着剤を添加する事、該添加により、粒子の臨界成長速度が10−4〜0.9、好ましくは10−4〜0.7、より好ましくは10−4〜0.3に減少する態様で添加する事を特徴とするハロゲン化銀乳剤の製造方法。
(43)該吸着剤がシアニン色素、かぶり防止剤、前記(25)〜(29)記載のドープ剤、晶癖制御剤、水溶性分散媒の1種以上である事を特徴とする(42)記載のハロゲン化銀乳剤。
(44)該添加により新粒子が発生する事、(発生した新粒子数/該添加前の粒子数)=0.05〜10、好ましくは0.2〜10である事を特徴とする(42)記載のハロゲン化銀乳剤。
(45)(1)記載の乳剤を分散媒を0.1〜20、好ましくは0.3〜5質量%含有する水溶液(反応溶液)中にAgを含む溶液とXを含む溶液を同時混合添加する事により形成する事を特徴とする(1)記載のハロゲン化銀乳剤の製造方法。
(46)該分散媒の30〜100、好ましくは80〜100質量%がゼラチンのアミノ基の総数の1〜100、好ましくは50〜100%、より好ましくは70〜100%が炭素数1〜50、好ましくは1〜10の有機化合物により化学修飾されたゼラチンである事を特徴とする(45)記載のハロゲン化銀乳剤。
(47)該分散媒の30〜100、好ましくは70〜100質量%がフタル化率0.1〜93、好ましくは10〜87%のフタル化ゼラチンであり、生成乳剤粒子が(9)に記載の粒子である事を特徴とする(45)記載のハロゲン化銀乳剤。
(48)(46)または(47)で生成したAgX乳剤の脱塩が、乳剤のpHを2〜5、好ましくは3〜4.5に調節し、乳剤をフロック化させる事によりなされる事を特徴とする(45)〜(47)のいずれかに記載のAgX乳剤。
(49)該乳剤が支持体上に塗布される時、または該乳剤に化学増感剤を添加して化学熟成する時、または増感色素を添加し、分光増感する時の該乳剤のpAgが3〜8、好ましくは3.5〜6.5である事を特徴とする(1)記載のハロゲン化銀乳剤。
(50)該乳剤に該粒子の格子間銀イオン(Agi)濃度低下剤を添加し、粒子に吸着させる事により、粒子のAgi濃度を、添加前の0.8〜0.001、好ましくは0.5〜0.01倍に減少させた事を特徴とする(1)〜(40)のいずれかに記載のハロゲン化銀乳剤。
(51)該乳剤がカルコゲン化学増感剤(イオウ増感剤、Se増感剤、Te増感剤の1種以上を指す)を合計量で10−2〜10−8、好ましくは10−3〜10−7(モル/モルAgX)だけ添加され、化学増感された乳剤であり、該乳剤粒子がカルコゲン原子(S、Se、Te)を合計量で10−2〜10−8、好ましくは10−3〜10−7(モル/モルAgX)だけ含有する事、および/または該乳剤が金増感剤を10−2〜10−8、好ましくは10−3〜10−7(モル/モルAgX)だけ添加され、化学増感された乳剤であり、該乳剤粒子が金原子を10−2〜10−8、好ましくは10−3〜10−7(モル/モルAgX)だけ含有する事を特徴とする(1)記載のハロゲン化銀乳剤。
(52)該エピタキシャル部が化学増感され、カルコゲン原子(S、Se、Te)を合計量で10−2〜10−8、好ましくは10−3〜10−7(モル/モルAgX)だけ含有する事、および/または金原子を10−2〜10−8、好ましくは10−3〜10−7(モル/モルAgX)だけ含有する事を特徴とする(21)記載のハロゲン化銀乳剤。
(53)該乳剤が1種以上のシアニン色素が添加され、分光増感された乳剤であり、該色素の添加量が、飽和吸着量の10〜150、好ましくは30〜100である事を特徴とする(1)記載のハロゲン化銀乳剤。
(54)該乳剤への1種以上のシアニン色素の添加量が飽和吸着量の0〜9.9、好ましくは0〜3である事を特徴とする(1)記載のハロゲン化銀乳剤。
(55)Agを含む水溶液とXを含む水溶液を、親水性分散媒を含む水溶液中へ、該溶液の銀電位を一定に保ちながら同時混合添加する事により(1)記載の乳剤を製造する方法において、該形成時間の30〜100、好ましくは60〜100、より好ましくは90〜100%において、該銀電位の振幅(mV)が、指定値に対し、−50〜+50、好ましくは−30〜+30、より好ましくは−15〜+15であることを特徴とするハロゲン化銀乳剤の製造方法。
(56)該同時添加法が、Agを含む水溶液(Ag−1)とXを含む水溶液(X−1)を指定の流量で添加する事、更に、Xを含む水溶液(X−2)を、該銀電位を指定値に保つように流量を制御しながら添加する事から成る添加法である事、更に、〔X−2液の添加速度(モル/秒)/Ag−1液の添加速度(モル/秒)〕=Aが10−4〜0.8、好ましくは10−3〜0.4、より好ましくは10−3〜0.2である事を特徴とする(55)記載のハロゲン化銀乳剤の製造方法。
(57)該同時添加法がAgを含む水溶液(Ag−1)とXを含む水溶液(X−1)を指定の流量で添加する事、更に、Agを含む水溶液(Ag−2)を、該銀電位を指定値に保つように流量を制御しながら添加する事、から成る添加法である事、更に、〔Ag−2液の添加速度(モル/秒)/X−1液の添加速度(モル/秒)〕=Aが10−4〜0.8、好ましくは10−3〜0.4、より好ましくは10−3〜0.2である事を特徴とする(55)記載のハロゲン化銀乳剤の製造方法。
(58)該銀電位の応答速度〔ハンチングの周期(秒)〕が、好ましくは1〜300、より好ましくは4〜100である事を特徴とする(55)〜(57)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(59)該同時添加法がAgを含む水溶液(Ag−1)を指定の流量で添加し、Xを含む水溶液(X−1)を、該銀電位を指定電位に保つように流量を制御しながら添加する方法である事を特徴とする(55)、又は(58)記載のハロゲン化銀乳剤の製造方法。
(60)該同時添加法がXを含む水溶液(X−1)を指定の流量で添加し、Agを含む水溶液(Ag−1)を、該銀電位を指定電位に保つように流量を制御しながら添加する方法である事を特徴とする(55)、又は(58)記載のハロゲン化銀乳剤の製造方法。
(61)該測定銀電位が指定電位よりも、高電位である場合には、両電位差の大きさに比例して該Xを含む水溶液の添加速度を大きくする事、測定銀電位が指定電位よりも低電位である場合には、両電位差の大きさに比例して該Xを含む水溶液の添加速度を小さくする事を特徴とする(56)、(58)、(59)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(62)該測定銀電位が指定電位よりも、高電位である場合には、両電位差の大きさに比例して該Agを含む水溶液の添加速度を小さくする事、測定銀電位が指定電位よりも低電位である場合には、両電位差の大きさに比例して該Agを含む水溶液の添加速度を大きくする事を特徴とする(55)、(57)、(60)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(63)〔該Xを含む水溶液の添加速度の制御幅(モル/秒)/(Ag−1)の添加速度(モル/秒)〕=A10が10−4〜0.3、好ましくは10−4〜0.1である事を特徴とする(61)記載のハロゲン化銀乳剤の製造方法。
(64)〔該Agを含む水溶液の添加速度の制御幅(モル/秒)/(X−1)の添加速度(モル/秒)〕=A11が10−4〜0.3、好ましくは10−4〜0.1である事を特徴とする(62)記載のハロゲン化銀乳剤の製造方法。
(65)〔該(X−2)液の濃度(モル/L)/該(Ag−1)液の濃度(モル/L)=A12が10−5〜0.8、好ましくは10−4〜0.4、より好ましくは10−4〜0.2である事を特徴とする(56)記載のハロゲン化銀乳剤の製造方法。
(66)〔該(Ag−2)液の濃度(モル/L)/該(X−1)液の濃度(モル/L)=A13が10−5〜0.8、好ましくは10−4〜0.4、より好ましくは10−4〜0.2である事を特徴とする(57)記載のハロゲン化銀乳剤の製造方法。
(67)該Ag−1、Ag−2、X−1、X−2液の1液以上、好ましくは2液以上が、添加孔数が2〜1010、好ましくは5〜1010コの多孔から直接に反応溶液中(液面下)に添加される事を特徴とする(55)〜(66)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(68)該粒子の核形成が、Agを含む水溶液とXを含む水溶液の同時混合添加法により行われる事、〔該添加開始時のAgの添加速度(モル/秒)〕=A14に対し、〔続く10分間、好ましくは5分間以内にAgの添加速度(モル/秒)〕=A15を1.5〜∞、好ましくは2〜10倍に加速させる事を特徴とする(1)または(45)記載のハロゲン化銀乳剤の製造方法。
(69)該粒子形成が攪拌羽根による激しい攪拌条件下で行われ、攪拌羽根の回転数(rpm)が30〜10、好ましくは300〜10、より好ましくは1000〜10である事を特徴とする(1)、(45)、(55)、(68)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(70)該結晶欠陥を生じない条件が、60〜95℃、pH5〜9、I濃度(モル/L)が好ましくは10−2〜10−6、より好ましくは10−3〜10−4である事を特徴とする(19)記載のハロゲン化銀乳剤の製造方法。
(71)該粒子形成時に添加されるAgを含有する溶液および/またはXを含有する溶液が、該攪拌羽根近傍に添加される事、該近傍が、攪拌羽根により生じる液の流速が最高流速の1〜0.1、好ましくは1〜0.3、より好ましくは1〜0.7倍である場所である事を特徴とする(69)記載のハロゲン化銀乳剤の製造方法。
(72)該粒子の種晶形成時とその粒子成長時の反応溶液の条件が、下記の1つ以上で異なる事、(粒子成長時の添加銀量/種晶形成時の添加銀量)=A16が2〜1010、好ましくは3〜10である事を特徴とする(1)または(55)記載のハロゲン化銀乳剤の製造方法。
a)温度(℃)が5〜95、好ましくは10〜95、より好ましくは15〜95だけ異なる事。
b)pHが0.3〜12、好ましくは1〜11だけ異なる事。
c)pAg、またはpIが0.2〜12、好ましくは0.5〜6だけ異なる事。
(73)該多孔添加孔または該多孔添加孔を有する多孔添加系がゴム弾性体で構成され、該ゴム弾性体が使用温度領域で元の長さの1.05〜20、好ましくは1.1〜20、より好ましくは1.3〜10倍の長さにまで可逆的な弾性変形をする物質であり、そのゴム弾性率〔ヤング率(N/m)〕が10〜10、好ましくは10〜10である事を特徴とする(67)記載のハロゲン化銀乳剤の製造方法。
(74)該添加孔が添加停止の時は閉じていて、添加液と反応液は非接触の状態にあることを特徴とする(67)又は(73)記載のハロゲン化銀乳剤の製造方法。
(75)該粒子形成中および/または粒子形成後に該乳剤が限外濾過され、乳剤のNO 含量(モル/モルAgX)が該限外濾過前の0〜90、好ましくは0.01〜40、より好ましくは0.01〜10%に減じられる事を特徴とする(1)、(45)、(55)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(76)該限外濾過が濾過膜面に平行な方向に液を送液するクロスフロー方式によりなされる事を特徴とする(75)記載のハロゲン化銀乳剤の製造方法。
(77)該AgおよびXの添加がシリンジとピストンを有するプランジャーポンプにより添加される事、該ピストンの駆動が、(添加液量mL/パルス)が予め定められたパルスモーターにより駆動され、制御系から(A17パルス/秒)のパルスを受取り(A17パルスの添加量/秒)の流量で添加される方式である事を特徴とする(45)、(55)〜(74)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(78)該添加が、1つの溶液の添加に対し、2つ以上の往復動プランジャーポンプが用いられ、一方のポンプで添加している間に、他方のポンプで新たな溶液をそのシリンダー内に吸引し、交互に添加する方式である事を特徴とする(77)記載のハロゲン化銀乳剤の製造方法。
(79)該ピストンがネジ釘の如く、回転しながら前進する物体により押出される事、予め設定された(該回転角度/パルス)に従って該物体が回転して前進する事を特徴とする(77)、又は(78)記載のハロゲン化銀乳剤の製造方法。
(80)前記(1)記載の乳剤が支持体上に1層以上塗布された写真感光材料。
(81)前記(16)記載の微粒子乳剤が、(支持体上に1層以上のAgX乳剤層を有する感光材料)中で、UV光除去用フィルター材料として用いられ、該感材に入射した350〜370nm波長光の10〜100、好ましくは30〜100、より好ましくは60〜100%を吸収する態様である事を特徴とする写真感光材料。
(82)該感光材料が少なくとも青光に感光して黄色色素を形成する青感層、緑光に感光してマゼンタ色素を形成する緑感層、赤光に感光してシアン色素を形成する赤感層を有するカラー感光材料である事を特徴とする(80)、又は(81)記載の写真感光材料。
(83)該粒子を含有する層が非感光層であり、該感光層よりも被写体側に設置されている事を特徴とする(81)記載の写真感光材料。
(84)前記(16)記載の微粒子乳剤が、支持体上に1層以上の感光層と非感光層を有する感光材料の少なくとも1層に混入され、混入された層の520nm光に対する屈折率を混入前に対して0.05〜1.0、好ましくは0.1〜0.9、より好ましくは0.2〜0.9だけ増加させた事を特徴とする写真感光材料。
(85)該混入により該混入前に対して、感材の520nm波長光に対する光散乱濃度が0.01〜0.95、好ましくは0.01〜0.6、より好ましくは0.01〜0.3に減少した態様である事を特徴とする(84)記載の写真感光材料。
(86)(16)記載の微粒子を、〔飽和吸着量の20〜100、好ましくは60〜100%の色素を吸着させて分光増感されたAgCl、AgBr、AgBrI、またはそれらの2種以上の混晶組成の感光性平板粒子(アスペクト比が2〜500、好ましくは4〜500)〕の近傍に、該平板粒子の存在モル量の0.01〜10、好ましくは0.1〜10モル%で存在させた写真感光材料。
(87)(16)記載の微粒子乳剤が(水と分散媒とAgX粒子A18を含有する)他のAgX乳剤A19に添加され、A19中で該微粒子が溶解し、A18上に沈積する事、A18の投影面積の合計の60〜100、好ましくは90〜100%の粒子が、平均AgI含率(モル%)が0〜35、好ましくは0〜20であり、円相当投影直径が0.05〜20である事を特徴とするハロゲン化銀乳剤の製造方法。
(88)該A18の投影面積の合計の60〜100、好ましくは90〜100%の粒子が、アスペクト比(円相当投影直径/厚さ)が2〜500で厚さ(μm)が0.01〜0.5、好ましくは0.01〜0.3である事を特徴とする(87)記載のハロゲン化銀乳剤の製造方法。
(89)少なくとも分散媒と水とハロゲン化銀粒子を有するハロゲン化銀乳剤であり、該ハロゲン化銀がAgBr、AgCl、AgIおよびそれらの2種以上のあらゆる組成比の混晶であり、該粒子の平均直径が0.01〜20μmであり、該乳剤が銀電位(vs.25℃飽和カロメル電極)を−10〜300mV領域内の指定銀電位に保ちながらAgを含む溶液とXを含む溶液を同時混合添加法で形成された乳剤である事を特徴とするハロゲン化銀乳剤。
(90)該粒子が粒子表面上に、(001)面に平行に1〜3枚、好ましくは1枚の凹部を有する事を特徴とする(13)〜(15)、(37)、(40)のいずれかに記載のハロゲン化銀乳剤。
(91)該粒子が、まず(9)記載の粒子が形成され、次にその粒子成長時に粒子形状が変化して得られた粒子である事を特徴とする(10)〜(17)のいずれかに記載のハロゲン化銀乳剤。
(92)該粒子が、まず図5記載の平板粒子が形成され、次にその粒子成長時に粒子形状が変化して得られた粒子である事を特徴とする(10)、又は(11)記載のハロゲン化銀乳剤。
(93)該粒子がまず該粒子の種晶を形成した後、(9)記載の粒子の生成条件下で、または(19)、または(70)記載の条件下で、該種晶を元の1.3×1010、好ましくは2〜10倍モル量に成長させる事により得られた粒子である事を特徴とする(13)記載のハロゲン化銀乳剤。
(94)該種晶がまず、0〜60℃の分散媒水溶液中で形成される事、該成長が、該種晶形成温度よりも3〜98、好ましくは10〜90℃だけ高温で行われる事を特徴とする(13)記載のハロゲン化銀乳剤。
(95)該微粒子乳剤の他にAgI含率(モル%)が0〜30、好ましくは0〜15で直径(μm)が0.01〜0.15、好ましくは0.02〜0.1のAgX微粒子が添加され、それがA19中で溶解され、A18上に沈積する事、A18上に沈積されるAgX層のAgI含率(モル%)が0.1〜30、好ましくは0.5〜20である事を特徴とする(87)記載のハロゲン化銀乳剤の製造方法。
(96)該微粒子乳剤の他にAgを含む水溶液とXを含む水溶液が添加され、それがA18上に沈積する事、A18上に沈積されるAgX層のAgI含率(モル%)が0.1〜30、好ましくは0.5〜20である事を特徴とする(87)記載のハロゲン化銀乳剤の製造方法。
(97)該粒子が主平面が{001}面で、アスペクト比〔粒子の投影直径/粒子の厚さ〕が1.7〜100、好ましくは2〜100である平板粒子である事を特徴とする(1)記載のハロゲン化銀乳剤。
(98)該粒子の側面の少なくとも1つが{101}面または{101}面と等価な面である事を特徴とする(97)記載のハロゲン化銀乳剤。
(99)該粒子のγ構造含率(モル%)が1〜70、好ましくは5〜60、より好ましくは10〜55である事を特徴とする(97)記載のハロゲン化銀乳剤。
(100)該粒子形成が核形成過程、熟成過程、成長過程の順に行われ、核形成と成長の過程が該反応溶液中への該同時混合添加法で行われる事を特徴とする(45)記載のハロゲン化銀乳剤の製造方法。
(101)該粒子形成が核形成過程、成長過程の順に行われ、各過程が該反応溶液中への該同時混合添加法で行われる事を特徴とする(45)記載のハロゲン化銀乳剤の製造方法。
(102)該熟成過程において、目的としない粒子を溶解させ、目的の粒子上に沈積させる事により目的とする粒子の投影面積比率(%)を2〜10、好ましくは5〜10倍に増加させる事を特徴とする(100)記載のハロゲン化銀乳剤の製造方法。
(103)該核形成過程と成長過程のAgとXの同時混合添加速度(モル/分)が反応溶液1Lあたり、各々10−5〜1.0、好ましくは10−4〜0.5の範囲内である事を特徴とする(100)又は(101)記載のハロゲン化銀乳剤の製造方法。
(104)該粒子形成開始時の該AgとXの同時混合添加速度(モル/分)が反応溶液1Lあたり、各々10−2〜0.7、好ましくは0.03〜0.5である事を特徴とする(100)又は(101)記載のハロゲン化銀乳剤の製造方法。
(105)該粒子形成スタート時の該AgとXの同時混合添加速度(モル/分)が反応溶液1Lあたり、各々10−5〜9.9×10−3、好ましくは10−5〜3×10−3である事を特徴とする(100)又は(101)記載のハロゲン化銀乳剤の製造方法。
(106)該Ag溶液とX溶液の少なくとも一方、又は両方が分散媒を0.01〜10、好ましくは0.1〜5質量%含有する事を特徴とする(45)、(100)〜(105)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(107)該分散媒の30〜100質量%がゼラチンのアミノ基の総数の0〜1%が、炭素数1〜50の有機化合物により化学修飾されたゼラチンである事を特徴とする(45)又は(106)記載のハロゲン化銀乳剤の製造方法。
(108)該分散媒の30〜100質量%が、ヒドロキシプロリン(Hyp)含量(アミノ酸100残基あたりのHyp基数)が0〜100、好ましくは0.1〜60、より好ましくは1〜30であるゼラチンである事を特徴とする(45)又は(106)記載のハロゲン化銀乳剤の製造方法。
(109)該分散媒の30〜100質量%が、温度(℃)が−50〜25、好ましくは−50〜15の寒帯または寒海に住む動物の、より好ましくは寒海の海に住む魚の骨、皮、ウロコの1種、または1種以上より抽出したゼラチンである事を特徴とする(45)、(106)、(108)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(110)該粒子形成の開始から終了までの時間(分)が0.2〜3000、好ましくは1〜1000、より好ましくは2〜100である事を特徴とする(45)、(100)、(101)のいずれかに記載のハロゲン化銀乳剤の製造方法。
(111)該Ag溶液とX溶液の少なくとも一方、好ましくは両方が、中空管を通して反応溶液中に直接に添加される事、(反応溶液中の中空管長/反応容器の内直径)比=Cが0.5〜50、好ましくは0.8〜20、より好ましくは1.5〜20である事を特徴とする(45)記載のハロゲン化銀乳剤の製造方法。
(112)該反応溶液中の中空管から添加される添加溶液の温度と反応溶液の温度との差(℃)が0〜30、好ましくは20、より好ましくは0〜10℃である事を特徴とする(111)記載のハロゲン化銀乳剤の製造方法。
(113)該反応溶液のpAgが2以上、好ましくは2.4以上であり、かつ、pIが2以上、好ましくは2.4以上である事を特徴とする(45)記載のハロゲン化銀乳剤の製造方法。
(114)該反応溶液の温度(℃)が0.1〜99、好ましくは1〜90であり、pHが1〜12である事を特徴とする(45)記載のハロゲン化銀乳剤の製造方法。
(115)該六角形または辺の直線部を延長する事により形成される六角形の最大隣接辺比率〔1つの六角形で(最大辺長/最小辺長)〕=Cが1.0〜3.0、好ましくは1.0〜2.0、より好ましくは1.0〜1.4である事を特徴とする(10)、又は(13)に記載のハロゲン化銀乳剤。
(116)該主平面の形状が六角形または六角形の角が丸くなった形状であり、該六角形または辺の直線部を延長する事により形成される六角形の最大隣接辺比率〔1つの六角形で(最大辺長/最小辺長)〕=Cが1.0〜3.0、好ましくは1.0〜2.0、より好ましくは1.0〜1.4である事を特徴とする(97)記載のハロゲン化銀乳剤。
(117)該六角形の各頂角が約120°である事を特徴とする(10)、(13)、(116)のいずれかに記載のハロゲン化銀乳剤。
(118)該主平面の形状が三角形または六角形、またはそれらの角が丸くなった形状であり、該六角形または辺の直線部を延長する事により形成される六角形の最大隣接辺比率〔1つの六角形で(最大辺長/最小辺長)〕=Cが3.1〜∞、好ましくは4〜∞である事を特徴とする(97)記載のハロゲン化銀乳剤。
(119)該平板粒子の側面が主平面に平行なトラフ〔桶状の凹部〕を1〜5本有する事を特徴とする(97)記載のハロゲン化銀乳剤。
(120)該平板粒子の側面が主平面に平行で明確なトラフを1本も有しない事を特徴とする(97)記載のハロゲン化銀乳剤。
(122)支持体の一方もしくは両方の面上に1層以上のハロゲン化銀乳剤層を塗布した写真感光材料において、少なくとも1層のハロゲン化銀乳剤層が(1)に記載の感光性ハロゲン化銀乳剤を含有する事を特徴とする写真感光材料。
(123)該少なくとも1層のハロゲン化銀乳剤層が該感光性ハロゲン化銀乳剤、非感光性有機銀塩、熱現像剤及びバインダーを含有する熱現像感光材料である事を特徴とする(122)記載の写真感光材料。
【0005】
【発明の実施の形態】
次に本発明を更に詳細に説明する。なお、本発明に関する図面は、図2〜5、図6のd〜h、図7、図8の(b)〜(c)、図11、図12、図13及び図14であり、その他の図面ならびに図面の説明は参考のために記載したものである。
(II−1)乳剤粒子の粒子構造についての説明。
前記(1)記載の粒子(以下、「粒子1」と記す)は、AgI以外に、AgCl、AgBrを前記(1)記載の含量で含有する事もできる。その場合、(AgCl/AgBr)の含有モル比はあらゆる比率(0〜∞)を選ぶ事ができる。
該(3)〜(9)記載の粒子構造例として、図1と図6a,bに示した12面体形粒子があり、該(10)〜(12)記載の粒子構造例とした図2と図6d,eに示した六角柱状粒子があり、該(13)〜(15)記載の粒子構造例として図3〜図4に示した14面体形粒子がある。該粒子表面の結晶面指数は図1〜5中に示した態様と考えられる。それは粒子を平坦なガラス基板面上に配向沈降させ、乾燥後にX線回折測定すると、(基板面に平行な面の回折強度/基板面に非平行な面の回折強度)比=B1が約100倍以上に大きくなる事と、既知のAgIの結晶構造図とX線回折データを利用して求めたものである。
晶癖のはっきりした粒子はサイコロのようなものである。乳剤を遠心分離し、上ずみ液を除去し、分散媒を除去した後に、水を加え、再分散させ、次に粒子を自然沈降させると、平坦な基板面と結晶面が密着平行の状態で着地するので、これを利用すればよい。粉末粒子の場合、ごく一部の粒子がBragg条件を満して回折強度に寄与するのに対し、基板面に平行な結晶面はすべて、該回折強度に寄与する為である。
その他、粒子を導電性基板上にのせ、−120℃以下に冷却し、上部と斜め上からSEM電顕写真を撮り、厚紙で作ったモデル粒子と比較する事により、粒子の外形形状を正確に求め、単位胞構造と比較する事を併用する事も有効である。
図1のeの粒子は、該12面体形粒子の角が丸くなり、楕円球状化した粒子を表わす。この粒子を(19)、(70)項の条件で更に成長させると、該12面体粒子が得られる事から、該粒子は(3)〜(9)項に該当する粒子である。
14面体粒子には図3に示す如く、上部7面部と下部7面部が鏡映対称である粒子と、図4に示す如くそれが非対称である粒子がある。非対称な粒子は、(37)、(39)で規定され、好ましく用いる事ができる。
粒子1は約147℃以上の温度ではα型結晶構造であるが、約146℃以下では(β型、γ型、両者の混合物)として存在する。従って、通常の室温環境下では146℃以下の該態様で存在する。混合物の場合、両者の存在モル量比率は、混合物の粉末X線回折データから求める事ができる。その方法に関しては Physical Review 161巻、848〜851(1967年)の記載も参考にできる。β型とγ型の粉末法X線回折データに関しては JCPDSカード(CD-ROM化され、日本では例えば理学電気社から購入でき、検索できる)のデータを参考にできる。
その他、次の方法が有効である。100%がβ型であるAgI乳剤粒子は調製できる。その粉末X線回折を測定し、回折角度2θ=20.14°の強度をβ(20.14)とし、2θ=21.39°の強度をβ(21.39)とすると〔β(21.39)/β(20.14)〕=B2≒0.758である。
次にそのままの状態で試料を約250℃に加熱し、次に室温まで急冷し、X線回折を測定する。するとγ型含率が増加し、β型特有の20.14°の回折強度が減少する。例えばその減少率からβ型含率が約37%でγ型含率が約63%である事が分る。この時、該21.39°の回折強度は増加する。その成分は該含率のβ型からの寄与分〔これはB2値より求める〕と該含率のγ型からの寄与分である。これからγ型含率100%の時の21.39°の回折強度〔γ(21.39)〕が求まり、〔γ(21.39)/β(21.39)〕=B3≒4が求まる。B2とB3値を利用すれば試料中のβ、γ型含率の概略値が求まる。この方法は粒子をガラス基板上に沈降配向させた試料で行う方がより好ましい。粒子配向が固定されており、測定バラツキが少なくなる。
なお、該冷却速度を下げると、β型含率が高くなり、ついにはβ型100%含率になる。従って加熱温度を200〜400℃域、冷却速度(℃/秒)を0.1〜103領域で好ましい組合せを選ぶ事によりγ型含率(モル%)が0.1〜68、好ましくは1〜66、より好ましくは10〜65の粒子1が形成する事ができる。但し、該加熱温度を260〜400℃領域で変化させても、該γ型含率が70%を越える事はなかった。
その他、粉末法X線回折測定を行ない、γ型特有の2θ=50.795°や55.703°とβ型特有の2θ=38.356°や53.113°や59.389°の回折面積を比較する事によっても求まる。表1のβ、γ含率はその単純な面積比で該50.795°と53.113°の比で示した。γ含率は粒子形成時のpAgのみに依存するのではなく、pH、温度、粒子形成時間にも依存した。例えば粒子形成の最初にγ型が多く形成されても、それに続く過程で溶解し、大きいβ型粒子上にβ型として沈積すると、粒子形成時間で該含率は変化した。
図2〜6の粒子の六角形の面の六角形は対向辺が互いに平行で、その頂角はいずれも約120°である。これは図7のβ型AgI結晶の六角柱状単位格子の(001)面の形状を反映したものである。図1aの菱形(001)面は図7の菱形柱状単位格子の(001)面の形状を反映したものである。(10)、(13)の六角形状も、該単位胞の上面の六角形状を反映したものと考えられる。
ここで例えば(001)面は、図7の単位格子の最上面のI-のみからなる面のみを指すのではない。I-の面とAg+の面が交互に積層されて粒子が成長する為、I-が積層された所で粒子成長を終えれば、I-からなる(001)面になる。一方、Ag+が積層された所で粒子成長を終えればAg+からなる(001)面になる。また、粒子成長後に、AgNO3を乳剤に添加し、I-からなる(001)面上にAg+層を積層させると、Ag+からなる(001)面に変る。従って図1〜5中の(001)面は、図7の(001)面に平行な面を表わす。即ち、(001)面は(002)面をも含む表現である。他の面についても同様であり、該当面に平行な面をすべて含む表現である。なお、本発明で「面」は、結晶表面を表わす。
前記(7)と(8)で、約とは誤差が好ましくは5°以内、より好ましくは3°以内、更に好ましくは1.5°以内を指す。結晶学的には面の各頂角は一定であるが、測定誤差が入る事、エッジが溶解して不明瞭になり、測定誤差が大きくなる事がある。(12)の「直角平行四辺形状」の直角も、同じである。(13)と図3、図4記載の14面体粒子の台形面の角度は約73°と約107°であるが、ここでいう約も同じである。
(1)でいう外形形状は、(3)〜(15)で示される如くに、結晶面の形状や結晶面の数、1つの粒子内での結晶面間の面積比、面角が規定された形状を指す。また、角が丸みを帯びた粒子の場合は、辺の直線部を延長する事により形成される面の形状が規定される。また、丸み部分の曲率半径が規定される。実施態様で丸味をおびた粒子の丸味はその曲率直径が粒子の投影直径の好ましくは0.1〜30倍、より好ましくは0.2〜10倍である。そのバラツキの変動係数が0.01〜0.3が好ましく、0.01〜0.2がより好ましい。
(1)記載の単一種AgX乳剤の2〜5種をあらゆる比率で混合して用いる事もできる。
【0006】
(II−2)該乳剤の調製方法
(II−2−1)粒子形成中のpH、pAg、温度依存性。分散媒を含む水溶液中にAg+を含む水溶液とI-を含む水溶液を同時混合添加して粒子1を調製する。この時、該水溶液のpH(1〜12)とAg+濃度(pAg1〜17)、I-濃度(pI1〜17)を種々変化させると、種々の形状の粒子が生成する。例えば60〜90℃で通常のアルカリ処理牛骨ゼラチンの3質量%水溶液1200ml中に、Ag−1液(AgNO3の0.2N水溶液)とKI−1水溶液(KIの0.2N水溶液)を用い、pAgを一定に保ちながらAg−1液を4ml/分で10分間添加し、種晶を形成する。次にAg−2液(AgNO3の1N水溶液)とX−2液(KIの1N水溶液)を用い、pAgを同一に保ちながらAg−2液を初期流量2.4ml/分、加速流量0.16ml/分で100分間添加し、種晶を成長させた場合、粒子形成条件(C1〜C9)と生成粒子の特性の関係は表1のように示される。β型含率とγ型含率はモル%単位である。従って前記実施態様は表1の記載を参考にする事ができる。
【0007】
【表1】

Figure 0003999147
【0008】
更により細かく、pH、pAgを変化させた時の結果から判断すると、該12面体粒子の好ましい生成領域は、(pAg≧2.4でかつ、PI≧2.4)が好ましく、(pAg≧2.7で、かつPI≧2.7)がより好ましい。pHは1〜12が好ましく、pH3〜9がより好ましく、pH4〜8が更に好ましい。pH3以下では図2cに示した粒子が個数で0.1〜10%の割合で混入し易い。ここでpI=−log〔I-mol/L〕で、pAg=−log〔Ag+mol/L〕である。
該粒子が丸みを帯びた図1eと図6cの態様の粒子の好ましい生成領域は、(pAg=1〜2.7)が好ましく、(pAg=1〜2.4)がより好ましい。pHは7〜12が好ましく、8〜11がより好ましい。
図2b、cに記載の六角柱状粒子の好ましい生成領域は、pH1〜9が好ましく、pH1〜7がより好ましく、1〜5が更に好ましい。pAgは1〜2.7が好ましく、1〜2.4がより好ましい。
該直角平行四辺形状の面が平担である図2のcやd、図6dに示した粒子はpH1〜3.9で生じ易く、該面が平担でない図2bや図6eの粒子はpH4〜8.5で生じ易い。一方の粒子の数比率(%)を60〜100、好ましくは80〜100、より好ましくは90〜100%で作り分けする事ができる。
図3、4および(13)、(14)に記載の14面体粒子の好ましい生成領域はpH1〜9、好ましくは1〜6で、pI1〜2.7、好ましくは1.5〜2.5である。その他、前記12面体粒子を該領域で成長させると、12面体粒子が該14面体粒子化し、(13)、(14)記載の乳剤が得られる。
pH5〜12、好ましくは9〜11(表1のC9の条件)で形成すると、平板状粒子が生成する。その粒子構造例を図5、図6hに示した。全AgX粒子の投影面積の合計の50〜100、好ましくは70〜100、より好ましくは90〜100%がアスペクト比(粒子の円相当投影直径/粒子の厚さ)が1.6〜100、好ましくは2〜100で、厚さ(μm)が0.02〜0.5、好ましくは0.02〜0.3の平板粒子乳剤が得られる。
該12面体粒子生成のpH、pAg条件下で、種晶形成時の温度を5〜50℃領域で行ない、成長を60〜95℃で行った場合、即ち、種晶形成の温度を下げると、14面体型粒子の生成確率が増す。
一度14面体粒子を形成すると、該種晶を、該12面体粒子生成条件下で成長させても、14面体粒子のまま成長する事から、14面体粒子は、該粒子特有の結晶欠陥を有していると考えられる。即ち、双晶面、転位線(刃状転位線、ラセン転位線)の枚数、本数、入り方が特定の態様と考えられる。
これらの特性から判断すると、これらの粒子を該結晶欠陥含量の少ない順に書けば、〔該12面体粒子>該対称14面体粒子、該非対称14面体粒子>平板粒子〕と考えられる。また、(2)〜(9)記載の12面体粒子は50℃以上、好ましくは60℃以上の高温領域で生成し易い粒子といえる。ここで該結晶欠陥は双晶面、刃状転位線、ラセン転位線を指す。
通常の粒子形成でβ含率がほぼ100モル%のAgI粒子を形成する事ができる。これは、そのX線回折測定で、2θ=50.795°や55.703°のγ型特有のピーク強度が、他のβ型の2θ=53.113°や42.449°のピーク強度の1%以下である事から結論される。また、250℃からゆっくり冷却させると(最も安定な構造をとる)、β含率100%の結晶が得られる事、通常の粒子形成条件でγ含率が70モル%以上の粒子は得られない事、前記の高温から急冷という特殊手法でγ含率が高くなる事等から、室温近傍でβ型が最も安定と考えられる。しかし、青光吸収端波長は(α>γ>β)の順であり、γ型の方がより長波長光まで吸収できる利点がある。この点で、γ含率が高い粒子が好ましい。
γ含率の高い粒子は、表1のC2、C4、C6、C9の領域で得られる。
これらの粒子は、pH1〜12、pAg=1〜10又は、pI=1〜10、温度(℃)0〜100、好ましくは2〜90の領域内で最も好ましい組合せを選んで形成する事が好ましい。
該楕円球状粒子は表1のC3の条件で粒子成長させると得られる事から、先ず該12面体の種晶を形成し、次にAgNO3とアルカリを添加してC3の条件にもってゆき、該条件下で成長させても得られるし、その方がより好ましい。
粒子形成用分散媒は質量平均分子量が3000〜106、好ましくは104〜3×105の従来公知のあらゆる水溶性分散媒を0.1〜15、好ましくは0.3〜10質量%域で用いる事ができ、分散媒の具体例に関しては文献4、6、特願2001−297023号の記載を参考にできる。ゼラチンとしてはアルカリ処理、酸処理ゼラチン、メチオニン含率(μmol/g)が0〜60のゼラチンと0〜20の低Met含率ゼラチン、H22で酸化処理した該低Met含率ゼラチン;質量平均分子量が3000〜70,000、好ましくは5000〜40,000の該ゼラチン;アミノ基、カルボキシル基、イミダゾール基、アルコール基、アミジノ基、チオエーテル基の1〜6種の基の0.1〜100、好ましくは10〜100%を化学修飾したゼラチンを用いる事ができる。化学修飾として炭素数1〜50、好ましくは1〜20の有機化合物が好ましい。
例えばフタル化、ベンゾイル化、アセチル化、トリメリト化、コハク化、メチルエステル化ゼラチンを挙げる事ができる。
例えば表1のC5の条件で、AgI粒子を形成した場合、用いる分散媒種がフタル化ゼラチンであり、フタル化率が95〜100%の時に、(37)に記載の粒子が形成されるが0.1〜90%の場合には(9)に記載の粒子が得られる。しかし、アミノ基をアセチル化、ベンゾイル化、トリメリト化したゼラチンや、酸基をエステル化したゼラチンの場合はいずれも、修飾率0.1〜100%において(9)に記載の粒子が得られる。
その他、後述のゼラチンが好ましい。
なお表1で右端の例えば〔<2.3、(≧3)〕はpAg<2.3、pI≧3を表わす。
(13)〜(15)、(37)記載の14面体粒子は粒子表面に凹部(トラフ、溝部ともいう)を有する態様と有しない態様がある。凹部を有する態様例を図4のdに示した。凹部は(001)面に平行に入っている。これは(001)面に平行に双晶面が入った為と考えられる。図7において、一方の原子のみに注目した積層順序で、ABABの積層順序にABC積層であるγ型層が積層エラーで積層されたものと考えられる。直線状の凹部は図4dに示す如く、(001)面に平行な外表面の1つおきの面に現れる。これを1枚の凹部と呼ぶ。凹部を2枚有する粒子は、2枚が互いに平行で異なる位置に含有される。
図5、図6hに記載態様の平板粒子C9はエッジ面に成長促進の結晶欠陥を有する為に、平板粒子となる。該欠陥にはラセン転位線欠陥と、双晶面が形成する凹部がある。該凹部が観察される平板粒子の実在は確認された。該粒子では、それが成長を促進する。該凹部が観察されない粒子は、凹部が小さくて観察され難い粒子であるか、またはラセン転位欠陥含有の粒子であろう。
表1に示したように、該平板粒子のγ型含率が高くなっている。これは多くの双晶面を含有している為であろう。
(97)〜(99)記載の平板粒子や(10)〜(12)記載の粒子の形成途中を調べると、核形成時に種々の種類の粒子が形成され、それに続く過程で、(102)記載の熟成が起っている。これは(10)〜(12)や(97)〜(99)記載の粒子が速く成長して大きくなる為である。該熟成は該同時添加を停止させた状態、または熟成が起る程度の低速度の添加状態(Ag+および/またはX-溶液の添加)で行う事もできる。
(10)、(11)記載の粒子はまずC9の条件で平板状種晶C91を形成し、次に、これを表1のC2の条件で成長させる事により、形成する事もできる。この場合、C91を高アスペクト比化しておくと、最終的に得られる(10)、(11)記載の平板粒子も、高アスペクト比になる。
(10)、(11)記載の平板粒子C2、およびC91の各平板粒子のアスペクト比(円相当の投影直径/厚さ)は1.5〜300が好ましく、2〜300がより好ましい。厚さ(μm)は0.01〜0.5が好ましく、0.02〜0.3がより好ましい。
【0009】
(II−3)粒子表面構造。
前記結果から判断すると、Ag+過剰域での生成平衡晶癖は図2の粒子で見られる(100)類面〔(100)、(010)、(1−10)面〕である。図7で見られる如く、この面はAg+とX-が交互に配置された面であり、AgBr系の(100)面に該当する。表1のC1、C2の条件で生成した図2の形状の粒子の六角形状表面はA2値が0.6〜1.0、好ましくは0.9〜1.0であると考えられる。
一方X-過剰域で調製した14面体粒子の六角形状の(001)面は、〔X-からなる表面の合計面積/(001)表面の合計面積〕=A4値が0.6〜1.0、好ましくは0.70〜1.0であると考えられる。14面体粒子の(101)類面〔(101)、(011)、(01−1)面〕はA3が0.6〜1.0、好ましくは0.70〜1.0と考えられる。従って14面体粒子の外表面はX-のみが配置された面が大部分を占め、AgBr系の(111)面に該当する。
12面体粒子の外表面は(100)面と(001)面と(101)面である。これはAgBr系の(100)面と(111)面からなる14面体粒子に該当する。該(001)面はAg+のみからなる面とX-のみからなる面が存在し、そのA2値は該粒子の成長条件に依存する。
該粒子の生成条件内で、〔Ag+濃度(モル/L)/X-濃度(モル/L)〕=B4が大きくなればなる程、A2値が大きくなる。従って(3)〜(9)記載の粒子ではA2が0.70〜1.0である該粒子と、0.301〜0.699である該粒子と0.0〜0.30である該粒子を調製できる。B4値は0.01〜100が好ましい。
なお、これらの粒子のA2〜A4値は、粒子形成後に乳剤にAg+やX-を添加し、乳剤のpAgやpI値を変化させる事によりB4を変化させて変える事ができる。従って(3)〜(15)記載の粒子では、A2〜A4値が0.70〜1.0である粒子と、0.301〜0.699である粒子と、0.0〜0.30である粒子を調製できる。粒子形成時にB4を大きく変化させると、生成粒子の形状が変化するので、大きく変化できない。一方、粒子を形成した後にAg+またはI-を添加し、B4を変化させる方式の方が、粒子変形を殆んど伴わずにA2〜A4を大きく変化させる事ができるのでより好ましい。
ここで、粒子上に積層されるX-は、I-モル%含率が0〜100、好ましくは50〜100、より好ましくは80〜100のハロゲンイオン(Cl-、Br-、I-)を指す。
これらの粒子は各々目的に応じて好ましく用いる事ができる。例えば化学増感剤に対して反応性の高い面に優先的に化学増感核を形成し、潜像分散を抑制する事。優先的にとは、〔化学増感核の生成量=カルコゲン原子のモル量/cm2〕が他の面の1.5〜106、好ましくは3〜106倍、より好ましくは10〜106倍である事を指す。
互いに異なる結晶面上に選択的に形成する事が好ましい。(3)〜(9)記載の粒子では(−110)面上に優先的に化学増感核を形成する事がより好ましい。化学増感剤の反応性の大きさは通常(Ag+のみが配置された面>Ag+とX-が配置された面>X-が配置された面)の順である。
また、増感色素の吸着特性はA2〜A4値に依存するのでそれらを好ましい値に調節した後に増感色素を添加し、吸着させればよい。また、増感色素を添加し、粒子に吸着させ、飽和吸着量の10〜100、好ましくは40〜100%、より好ましくは70〜100%だけ吸着させた後に、化学増感剤を添加し、増感色素が吸着していない場所に優先的に化学増感核を形成する事が好ましい。優先的にとは前記規定に従う。
また、異なる結晶面に対する増感色素の吸着特性の差を利用して、該色素の被覆率の低い結晶面上に、化学増感核を優先的に形成する事ができる。即ち、増感色素の吸着量(モル/cm2)比=B5=〔B6結晶面上の吸着量/B7結晶面上の吸着量〕が0.0〜0.9、好ましくは0.0〜0.4、より好ましくは0.0〜0.2の状態に色素を吸着させた後に、化学増感剤を添加し、B6面上に化学増感核を優先的に形成する。
【0010】
(II−4)粒子形成中のAg+、I-濃度の調節方法。
粒子1を形成する場合、粒子形成中の反応溶液のAg+とI-の濃度を精密に制御する必要がある。その為に(55)〜(79)に記載の方法を用いる事が好ましい。一般にイオン選択電極を溶液中に入れ、比較電極との電位差を測定すると、特定のイオン濃度と該電位差の大きさが相関する。その相関性を利用して、溶液中のイオン濃度を電気信号として検知する方法が化学の分野で多用されている。AgX粒子形成の場合は、Ag+および/またはX-に選択的に感応する電極が用いられる。具体例を挙げると、金属銀、AgX電極(AgI、AgBr、AgClおよびそれらの2種以上の混晶)、金属銀上に該AgX電極を積層させた態様、カルコゲン銀電極(Ag2S、Ag2Se、Ag2Teおよびそれらの2種以上の混晶)があり、金属銀、AgI、Ag2S電極が好ましい。本発明で銀電位とは比較電極に対するこれらの電極電位を指す。
比較電極としては、10〜60℃域で安定な電位を示す電極が用いられる。具体例としてカンコウ電極、(Ag/ハロゲン化銀)電極、〔例えば(Ag/AgCl)、(Ag/AgBr)、(Ag/AgI)電極〕があり、(Ag/AgCl)電極がより好ましい。その詳細に関しては文献9の第12章の記載を参考にできる。
比較電極と反応溶液を塩橋で接合し、電気的導通をとる事により、両電極電位差を測定できる。比較電極を反応溶液中に入れて該電位差を測定する方法と、比較電極を反応溶液の外に置き、測定する方法があり、後者の方がより好ましい。
比較電極の温度を一定に保つ事が好ましく、20〜30、好ましくは23〜27℃に保つ事が好ましい。比較電極電位が常に安定した電位を示す。この状態で予め、反応溶液中のAg+とI-濃度を種々変化させた時の該電位差を種々の温度に対して求めておく。その関係を利用して、粒子形成中の反応溶液の銀電位を測定し、該値を指定値に保つように、添加するAg+またはX-を含む溶液の流量を(55)〜(78)記載の方法で制御する。
反応溶液の銀電位を測定し、(該電位―指定電位)差S1を求め、その差に比例した信号(k1S1)を添加系に送り、該流量を制御する。これは従来公知のPID制御のP法に該当する。この場合、制御液の添加速度は平衡添加速度S10〔例えばAg+を指定の添加速度S11(モル/秒)で添加すると、X-の平衡添加速度はS11になる〕を基準とし、それに対する増減量が該信号と対応する態様が好ましい。該信号は0.01〜100、好ましくは0.03〜30、より好ましくは0.03〜5秒毎に送られる。しかし、該差に比例してX-液の流量を上げると、流量の上げすぎにより、電位が指定電位を通りすぎて大きく下りすぎる事、これを修正する為に流量を下げると、電位が指定電位を通りすぎて大きく上りすぎる事、この事がくり返し起る事(これを電位ハンチングと称する)がある。これを防止する為に次の方法が有効である。
1)この現象は添加するAg+、X-の平衡添加速度に比例して大きくなる。また、制御すべき反応溶液中のイオン種の濃度S12(モル/L)に比例して小さくなる。また、反応溶液量(S13リットル)に比例して小さくなる。その他、反応溶液の温度、pHにも依存する。これらの基本因子を変化させた時のCDJ制御の信号量の好ましい値(k121)を求めておく。粒子形成開始前に、(粒子形成時間vsk2)の関係を制御器にメモリーさせておき、(k121)の信号で該流量の増減を行う。従ってk11の信号でハンチングが生じる粒子形成条件の場合は、|k2|は10-6〜0.98、好ましくは10-6〜0.7、より好ましくは10-4〜0.3が選ばれる。該ハンチングが大きい程、|k2|はより小さい値が選ばれる。該ハンチングに対して、その他、分散媒、添加剤、AgX溶剤の種類や添加量も影響するが、それらの効果を|k2|に含ませる事もできる。
2)該ハンチングの大きさは(該電位差vs.経時時間)の積分値の絶対値S2に比例するので、S2を求め、(k3=1.0+k42)を求める。そしてCDJ信号として(k121/k3)を送信する。
3)該ハンチングの周期S3秒を求め〔k5=1+k6/S3〕を求めて、CDJ信号としてk121/(k35)を送信する。周期が短くなる程、k5は大ききなり、流量の増減幅が抑制される。その他、例えば(S3>S4)秒に制御したい場合に、実測値がそれに反して(S3<S4)の場合には〔k5=1−k6(S4−S3)/S4〕の信号が形成され、CDJ信号としてk121/(k35)を送信する態様がある。ここで周期は前記くり返しの1周期間を指す。該信号値は、1〜1000、好ましくは3〜100秒毎に求められ、制御系にフィードバックされる。
4)その他、従来公知のPID制御法のIとDの機能を用いる事もできる。即ち、IはS1が経時時間に対していつまでも減少しない態様を避ける為に、(S1対経時時間)積分値に比例して、添加速度の増減量を増す方法である。DはS1値の経時時間に対する変化(dS1/dt)が大きすぎる場合に、該増減量を減らし、ゆっくりすぎる場合には増す方法である。
5)2液の指定流量添加法。
Ag−1液とX−1液の添加精度が良ければ、Ag−1液とX−1液を指定の流量で同時混合添加し、溶液のAg+とI-の濃度を精密に制御する事ができる。
6)3液添加方法、例えばAg−1液とX−1液を指定流量で添加し、別のX−2液を用いてCDJ制御添加する方法。X−2液の添加速度(モル/秒)が(56)の態様であれば、X−2液の添加速度が小さくなり、より制御精度が増す。また、(X−2)液が(65)記載の希薄溶液であれば更に、該制御精度が増す。
該PID制御、パルスモーターの詳細に関して、また、前記の制御に関して、文献8の記載を参考にできる。
【0011】
(II−5)エピタキシャル粒子。
高AgI含率粒子の欠点は次の通り。1)化学増感を施しても、有効な化学増感核が形成され難い。それはAgIがAgBrよりも難溶性であり、カルコゲン銀との溶解度差が小さい為にハロゲン変換作用を受けにくい事が関係する。2)化学増感核の電子捕獲効率が小さい。3)潜像の現像促進作用が小さい。4)現像速度、定着速度が遅い。これらはAgBrに比べてAgIの特性(例えば水に対する溶解性、イオン結合性比率)がAg2Sの特性に近い為と考えられる。
粒子1を(21)〜(25)、(52)記載のエピタキシャル型態様で用いた時、これらの欠点が抑制される。低AgI含率のエピ部に化学増感核が形成され、該核が電子を捕獲し、潜像を形成し、現像開始点となる為である。現像と定着処理の終了までの時間はその処理温度(℃)を20〜60、好ましくは30〜60域で高くする事により、短縮化される。
該エピ粒子の形成は、(1)記載の乳剤(以下乳剤1と記す)にAg+とXa-液を添加して粒子1の表面上の一部にエピ層AgXbを沈積させればよい。この時粒子1に特別の吸着剤を吸着させた状態で該添加する方法と、該吸着なしの状態で添加する方法がある。該吸着剤としてはシアニン色素、かぶり防止剤、オニウム塩化合物、界面活性剤があり、化合物例とその詳細に関しては後述の文献4、6、11の記載を参考にできる。該吸着量は飽和吸着量の10〜100が好ましく、30〜100%がより好ましい。該エピ形成に関しては、文献2の記載を参考にできる。吸着剤を吸着させた方が、エピ形成場所が限定され、好ましい。
粒子1の粒子内に、および/または該エピ相内に(25)〜(30)記載の態様でドープ剤をドープする事ができる。該ドープ剤の存在下にAg+とX-を添加し、粒子またはエピ相を成長させると、ドープ剤がドープされる。ドープ剤に関しては後記文献4、6の記載を参考にできる。ドープ剤の存在(モル/L)は10-1〜10-8、好ましくは10-2〜10-7が好ましい。
該ドープ剤が効率良くドープされる為には、まずドープ剤が粒子表面に優先的に強く吸着され、表面から離れない事である。その為にはドープ剤自身が強い吸着特性を有するか、強い吸着基を有するドープ剤(例えば金属錯体では配位子が該特性を有する態様)を用いればよい。強く吸着した状態で、その上にAgXが沈積すればドープされる。ドープ剤がAgI結晶格子中に効率的に組込まれる為にはAgIと同じ4配位型構造のドープ剤が好ましい。
該エピ形成時または該ドープ時のpX=−log〔X-モル/L〕は0.5〜10、好ましくは1〜7、pHは1〜12、好ましくは2〜10、温度(℃)は5〜95、好ましくは10〜85、分散媒濃度(g/L)は1〜100、好ましくは5〜40で、最も好ましい組合せを選ぶ事ができる。
【0012】
(II−6)化学増感、分光増感等。
本発明の乳剤に化学増感剤を添加し、化学増感する事ができる。化学増感剤としてカルコゲン増感剤(イオウ、セレン、テルル増感剤)、貴金属増感剤(金、第8族金属化合物)、還元増感剤の単独、その2種以上のあらゆる比率での併用で用いる事ができる。(50)のAgi+濃度低下剤としてかぶり防止剤が有効である。
粒子表面のAg+と結合し、〔Ag+(表面)⇔Agi+〕の化学平衡を左へシフトさせ、Agi+濃度を減少させる。これらの化合物、使用法等の詳細に関しては、文献4、6、11の記載を参考にできる。
粒子1は430nmより短波長の青光吸収係数は大きいが、それよりも長波長の青光吸収係数は小さい。従って乳剤1を感材の青感層に用いる場合には、1種以上の青感層用増感色素を添加し、粒子に吸着させ、分光増感する事が好ましい。
緑感層に用いる場合には1種以上の緑感層用増感色素を添加し、赤感層に用いる場合には1種以上の赤感層用増感色素を添加し、分光増感する、それぞれ(53)記載の態様で用い、粒子に色素を飽和吸着量の10〜100、好ましくは30〜100%だけ吸着させた態様で用いる。
その他、(54)記載の態様で用いる事もできる。360〜440nm波長域の光を照射して感光させる感光材料に用いる事もできる。光はあらゆる光を用いる事ができ、自然光、LED光、レーザー光、蛍光、放電光、高温物質光等がある。光源に関しては文献7の記載を、該シアニン色素の化合物例と使用方法の詳細に関しては文献4、6、11の記載を参考にできる。前記色素種は1〜10種を好ましく用いる事ができ、互いに吸収スペクトル波形の異なる色素や吸着配向の異なる色素を2種以上併用し、好ましい吸収スペクトル波形と吸着配向を形成する事が好ましい。
また、乳剤粒子に吸着させ光を照射した時に、1光子を吸収して2〜4コの電子をAgX粒子に与える化合物を10-8〜10-1、好ましくは10-6〜10-2モル/モルAgXの添加量で添加する事が好ましい。該化合物の詳細に関しては文献12の記載を参考にできる。
【0013】
(II−7)粒子1のその他の利用。
粒子1は水に対する溶解度が低い為、可視光に対して透明性が高い超微粒子を形成する事ができる。この為、次の態様で写真感材に利用する事ができる。1)感光層および/または非感光層の分散媒層に粒子1の超微粒子乳剤を添加し、分散させ、分散媒層の可視光に対する屈折率を上げる。感光性AgX粒子とその周りの分散媒層との屈折率差を小さくし、AgX粒子の光散乱強度を減少させ、現像処理して得られる写真像の鮮鋭度が増す。酸化チタンの如き他の屈折率上昇剤とあらゆる比率〔(粒子1/粒子1以外の他の屈折率上昇剤)のモル量比=10-5〜105、好ましくは10-3〜103〕で併用して用いる事もできる。これらの詳細および実施態様に関しては文献5の記載を参考できる。
2)紫外線吸収剤として感光層および/または非感光層の分散媒層に該超微粒子を分散させる。粒子1の固有吸収端は直接許容遷移であり、吸収係数が大きい事から、約420nm波長以下の紫外線吸収材料として有効である。この場合、他の紫外線吸収剤とあらゆるモル比率〔(粒子1/粒子1以外の他の紫外線吸収剤)のモル量比が10-5〜105、好ましくは10-3〜103〕で併用して用いる事もできる。他の紫外線吸収剤に関しては文献4、5の記載を参考にできる。
(16)記載の微粒子を形成する為には粒子1を低溶解度の条件で形成する事が好ましい。その為にはAgX溶剤(Ag+と可溶性錯体を形成する化合物)が実質的に存在しない条件、即ち、その濃度(モル/L)は0〜10-1が好ましく、0〜10-3がより好ましく、0〜10-6が更に好ましい。また、粒子1の溶解度曲線〔銀の溶解濃度(モル/L)、対、pAgの関係を表わす曲線〕で、溶解度が最低溶解度の1.0〜6、好ましくは1.0〜3倍のpAgの条件が好ましい。
該条件ではAgnmの錯体濃度も低い為、粒子に結晶欠陥も入り難い為、より小さい微粒子が形成される。
具体的には(113)に記載の条件を用いる事が好ましい。
また、核形成時のAg+とX-のダブルジェット添加速度を大きくし、多くの核を形成し、短時間で粒子形成を終了すればよい。即ち、(104)記載の方法を用いればよい。しかし、高速添加すると、無制御な欠陥を有する粒子の生成比率が増す。この場合は、(106)記載の方法を用い、核の保護コロイド性を高くする事が好ましい。更には低温で核形成すればよく、下記条件を用いればよい。
欠陥ができるだけ少ない核や種晶を形成する為には、核形成時の該Ag+とX-の添加速度(モル/分)を遅くすればよく、(105)の条件を用いればよい。(106)の方法を併用する事がより好ましい。但し生成核数は少なくなる。必要に応じて(74)、(75)の方法を用いて乳剤を濃縮する事が好ましい。
また、反応溶液の温度の他、pHとpAg、pIの前記組合せを選ぶ事により、生成粒子サイズが変化するので、最も好ましい組合せを選ぶ事が好ましい。分散媒とAgX粒子の相互作用が変化し、該サイズが変化する。
(111)、(112)の態様で添加すると、添加溶液が反応溶液と同等の温度で添加される為に、特定の粒子の作り分けが良くなり、より均一な性能の単分散な粒子が形成され、好ましい。図14にその装置例を示した。
温度(℃)は低い方が溶解度が低く、0〜70が好ましく、1〜40がより好ましく、1〜30が更に好ましい。この場合、分散媒は該低温でゲル化しない分散媒が好ましく、1〜20℃で、2.0質量%溶液を15分間静止した時の粘度(Pa・秒)が10-4〜0.2、好ましくは10-4〜0.1、より好ましくは10-4〜0.05である分散媒が好ましい。前記ゼラチンの場合は、質量平均分子量が3000〜50,000が好ましく、3000〜30,000がより好ましい。また(107)、(108)記載の分散媒も好ましい。
【0014】
(II−8)その他。
平坦なガラス基板上に該12面体AgI粒子を沈降配向させ、乾燥後にCuKβ線でX線回折を測定すると図8の(a)の回折パターンが得られ、(001)面と(100)面と(101)面の回折ピークが残る。従って、基板に平行に配向した結晶面は(001)面と(100)面と(101)面である。該六角柱粒子を同様に配向させ、X線回折を測定すると、図8の(b)の回折パターンが得られ、(100)と(001)面の回折パターンが残る。従って、基板に平行に配向した結晶面は(100)面と(001)面である。図4に記載の14面体粒子を同様に配向させ、X線回折を測定すると、図8の(c)の回折パターンが得られ、(001)面と(101)面の回折パターンが残る。従って、基板に平行に配向した結晶面は(001)面と(101)面である。
粒子が平坦な結晶面を有すれば、その面積に比例して、該結晶面が基板面上に平行密着する確立を有する為、それに比例した強度の結晶面の回折ピークが残る。
【0015】
【表2】
Figure 0003999147
【0016】
(9)〜(15)記載の乳剤粒子のゼラチン分散物の乾膜の誘電損失測定を行ない、粒子の暗電導度(σ)特性を調べると、次の事がいえる。25℃で約0.2μm直径の12面体粒子C5は2つの損失ピークを与え、低周波数側の大きいピーク(fL)は約106Hzにあり、高周波数側の小さいピーク(fH)は108あたりにあると推定される。この挙動は同一サイズの八面体AgBr粒子の特性に近い。該粒子にかぶり防止剤1〜3を吸着させるとfLとfHは低周波数側にシフトする事と、後記の該粒子サイズ依存性の結果から、fLに該当する暗電導度成分は、粒子表面サイトのAg+が粒子内に入り込んで生じた格子間銀イオンAgi+と考えられる。
表3の(3−1)〜(3−7)記載の12面体粒子のfLの温度(T°K)変化を測定し、図9にlog(σT)vs.1000/Tをプロットした。その直線の勾配から σT=Aexp(−△E/kT)の△Eを求め、表3に示した。但し、〔fLのピーク周波数=1011σ〕と近似した。250°K以上の領域と250°K以下の領域で、該傾きが少し異なったので、両方の△E値を記載した。かぶり防止剤添加によるfLの低下幅がAgBr系に比べで小さかった。AgIは軟らかい酸原子と軟らかい塩基原子間の結合であり、硬い酸原子と硬い塩基原子間の結合に比べて軟らかい結合である。結合自由エネルギー△GもAgBrより小さい。この為結晶内でAgiが生成し易く、かつ動き易い。それを反映した現象であろう。これに対しては(26)〜(36)の手法を併用し、更にfL値を10-3〜0.9倍に低下させる事が好ましい。〔△E=△Gi(Agi+の生成エネルギー)+U(Agi+の移動の活性化エネルギー)〕であり、AgIではU=0であるから、△E≒△Giを表わす。
粒子サイズが大きくなるにつれ、fL、fHはより低周波数にシフトした。例えば約1.1μm直径の粒子ではfLは105.24であった。実施例6の6角柱粒子C1(平均直径0.65μm、平均厚さ0.26μm)ではfLは104.5、fHは106.05であり、これにかぶり防止剤2を吸着させると、fLは減少して消失し、fHが105.1の1つのピークになる。この挙動は表1のC9の条件で得られた平板粒子C9(平均厚さ0.25μm、平均直径2μm)の挙動と似ている。粒子C9のfLは104.8で、fHは105.8であり、これに該防止剤2を吸着させると、該2つの周波数は殆んど同じで、(fL/fH)のピーク強度比が逆転(1/0.95→0.94/1)した。
両粒子では、主平面に平行に双晶面が入っており、それがAgi+の移動を防げ、fLの周波数を下げていると考えられる。粒子C1やC9の主平面が電極面と平行に配向した場合、主平面の表面伝導度は誘電損失に寄与しない。側面や、一部の該非平行に配向した主平面の表面伝導が寄与するだけの為に、fHの周波数が低下していると考えられる。
前記かぶり防止剤の添加量はいずれも約3×10-3モル/モルAgX(表3参照)である。
【0017】
【化1】
Figure 0003999147
【0018】
該C5の乳剤のpH、pAgを変化させた時のfLの変化をAgBr粒子の場合と比較して表3(fL値10XのX値を記した)に示した。表3はタイプ乳剤とタイプ乳剤にHNO3液を加えてpH3にしたもの、NaOH液を加えてpH10.4にしたもの、AgNO3液を加えてpAg2.2にしたもの、AgBrにはBr-を、AgIにはI-液を加えてpX=2.0としたもの、かぶり防止剤1又は2を(3×10-3モル/モルAgX)添加したものの該結果を表わす。立方体AgBr、B6と八面体AgBr、B7と12面体AgI、C5ではタイプよりもpH↑でAgi+濃度が↓した。これはGelの−NH3 +がAgs+(粒子表面のAg+)を不安定にしていたが、pH↑で−NH2に変化し、これがAgs+に配位結合してAgs+を安定化し、Ags+⇔Agi+の平衡を左側に移動させた為と解される。B6とB7はタイプよりもpH↓でその逆の現象が生じてAgi+濃度が↑した。これはGelの−COO-がAgs+を安定化していたが、pH↓で−COOHに変化し、Ags+の安定化作用が減少し、該平衡が右に移動した為と解される。しかしC5では該濃度が減少した。これはAgIの疎水性が高く、有機化合物に近い為に、−COO-の該安定化効果よりも、−COOHとの分子間力による安定化効果の方が大きい為であろう。pH↑の場合も非イオン性の−NH2の分子間力による安定化効果と考えられる。分散媒が粒子表面の原子を安定化させる機構として次の機構がある。1)クーロン相互作用、2)電子対を有するS、N、O原子とAg+との配位結合による安定化作用。H2Oの配位結合も含まれる。3)−COOHやπ共役結合を有する有機化合物と表面のAgXとの分子間力による相互作用。それぞれの作用の寄与率がAgBr系とAgI系で異なる為と解せる。分子間力に関しては、化学辞典、分子間力、東京化学同人(1994年)の記載を参考にできる。
6とB7ではAg+濃度↑でAgi+濃度↓した。これは粒子表面にAg+が吸着し、粒子全体が+帯電化することにより、粒子内のAgi+の電気的エネルギーレベルが△EeVだけ高くなり、Agi+濃度が減少する為であろう。該表面電荷による粒子内の電位はGaussの法則によるとほぼ等電位であり(従って電位勾配は存在しない)、Agi+濃度は粒子内のすべての場所で減少する。該減少量は通常、exp(-ΔE/KT)に比例する。ここでKはBoltzman定数、Tは絶対温度を表わし、単位はKTeVである。
一方、C5ではAg+濃度↑でAgi+濃度は逆に増加した。その理由は次の通り。AgI粒子とAg+とのイオン的相互作用が小さい(AgIは疎水性)為、該レベル↑が小さい。この為、吸着したAg+はAgi+となり、(Ags+⇔Agi+)の平衡を右側へ移動させ、該濃度を増すという機構。またはAgIの格子間隔が大きい為に、Ag+がその空隙部に直接入り込む機構。または、AgIは4配位結合で、共有結合性が大きい(結合電子の局在性が大きい)為に、有機高分子の一種と見なす事ができる。従って、溶液中のAg+がその高分子の分子間隙間にしみ込んだ態様とも考えられる。但し、Agi+の動きはI-との相互作用で束縛されている為にその動きは誘電損失特性も示す。Br-濃度↑でAgi+濃度が↑した。これは上記と逆の効果であろう。
5ではI-濃度↑でAgi+濃度が少し減少した。これはI-が粒子表面のAgs+に吸着し、Ags+濃度を下げる効果。該I-が溶液中のAg+の濃度を下げ、(溶液中のAg+⇔Ags++Agi+)の化学平衡を左側にシフトさせた効果が考えられる。
AgIは該有機高分子に近い特性を有する為に電子の局在性が高く、電気伝導度性が低い。その為、結晶内での光電導度がAgCl、AgBrと比べて低いという特徴も有する。
従って、AgI系はAgBr系とは異なる感性で、乳剤のpH、pAg、pIの最適組合せを選ぶ必要がある。但し、表3のタイプ乳剤のpHは6.4、pAgは中性(pAg=pX)である。
【0019】
【表3】
Figure 0003999147
【0020】
β型含率が約100%のAgI 12面体粒子を、ガラス板上に配向させ、X線回折を測定する。次に該試料をそのまま250〜300℃でアニールした後、急冷し、γ型化させた後にX線回折を測定すると、最大の21.3°の回折ピークが増大する。この事から、β型の(001)面がγ型の(111)面に変化した事が分る。即ち、β型の〔001〕ベクトル方向がγ型の〔111〕方向に変化した事が分る。
これは1つの結晶内においてβ型とγ型が互いに前記積層欠陥として共存できる事を示している。またその実例はZnS結晶で見られ、例えばPhilosophical Magazine B,279〜297(2001年)の記載を参考に出来る。図7の〔001〕方向でAg+層の積層位置が(ABABAB/CBABA)や(ABABAB/CBACBA)となれば、/の所が双晶面になる。
本発明のAgX乳剤、およびその応用に関し、その他、特開2000−201810号の(0067)〜(0087)と、特開2001−255611号の(I−8)項の記載を採用する事ができる。
本発明の乳剤の熱現像感材への適用に関しては後記文献13の記載を、他の感材への適用に関しては文献14の記載を参考にできる。
(123)記載の非感光性有機銀塩、熱現像剤、バインダー、支持体に関しては文献13の記載を参考にできる。
(文献)
1.B.L.J.Byerleyら Journal of Photographic Science, 18巻、53〜59(1970 年)。米国特許第4672026号、同第4414310号、同418487 8号。
J.E.Maskasky, Physical Review,B43巻 5769〜5772(1991年)。
2.J.E.Maskasky, Phot. Sci.Eng. 25巻, 96〜101(1981年)、米国特許第40 94084号、第4142900号、第4459353号。
3.G.C.Farnell, Journal of Photographic Science, 22巻、228〜237(1974年 )。
4.Research Disclosure 誌、item 17643(1978年12月)、同item 38957(1996 年9月)。
5.欧州特許第930532A、特開平2000−347336号。
6.特願2001−297023号、特開2001−201810号、特開2001−255611号、特開2000−347336号、特開平8−69069号、US5,360,712号。
7.久保田広ら編、光学技術ハンドブック、朝倉書店(1975年)。南茂夫ら編、分光技術ハンドブック、朝倉書店(1990年)。
8.化学工業協会編、化学装置便覧、第21章、丸善(1989年)。
9.日本化学会編、化学便覧、基礎編、丸善(1984年)。
10. T.H.James and W.Vanslow Phot.Sci.Eng.,5巻,21〜29(1961年)。
11.T.H.James編、The Theory of the Photographic Process, 第4版、Macmil lan(1977年)。
12.特願2001−800号、同86161号、特開2000−22162号、米国特許第5747235号、同5747236号、同6054260号、同5994051号。
13.特願2001−349031号、同2001−342983号、同2001−335613号、特開2001−33911号。
14.特開昭59−119350号、同59−119344号、米国特許第4672026号。
【0021】
【実施例】
以下の「実施例1」、「実施例2」、「実施例3」、「実施例4」、「実施例5」及び「実施例12」を、それぞれ「参考実施例1」、「参考実施例2」、「参考実施例3」、「参考実施例4」、「参考実施例5」及び「参考実施例12」と読み替えるものとする。
実施例1.
分散媒溶液1(ゼラチン1を25g、水1200ml、KI 0.1gを含みpH6.0)を反応容器に入れ、温度を75℃に保ち、攪拌しながらAg−1液(AgNO3を100ml中に3.4g含む)とX−1液(KIを100ml中に3.36g)を4ml/分で10分間、同時混合添加し、種晶形成した。2分間熟成した後に、75℃でAg−2液(AgNO3を100ml中に17g含む)とX−2液(KIを100ml中に16.7g含む)を用いて、銀電位(金属銀電極、対、25℃飽和カロメル比較電極、が示す電位。両者はKNO3含有のカンテン橋で結合されている)を−40mVに保つCDJ添加をした。Ag−2液のスタート流量は2.4ml/分、加速流量0.16ml/分で98分間添加した。
この時点で乳剤を1ml採取し、増感色素1を飽和吸着させた後に遠心分離してゼラチンを除去した。水を添加して再分散させ、コロジオン膜を張ったメッシュ板上に1滴をのせ、乾燥させた。カーボン蒸着、Au−Pdシャドーイング、定着を行ない、レプリカ膜の透過型電顕像(TEM像)を撮影した。粒子の該直径のばらつきの変動係数は0.065であり、平均直径は0.24μmであった。粒子形は(9)と図2に示した12面体粒子が、粒子の投影面積の合計の99%以上を占めた。
X−2液の添加速度(モル/秒)は、Ag−2液の添加速度(モル/秒)と同一速度である事を基準とし、銀電位が−40mVより高くなればその電位差に比例して添加速度を増し、低くなればその電位差に比例して下げる方式でCDJ添加した。(II−4)の1)で記載した如く、予備実験で求めたk2を入れたCDJ添加により、CDJ中の電位の振れ幅は、−40mVを基準として−14〜+14mV内であった。また、全実施例の各添加液は孔数800の中空管型ゴム多孔膜を通して、直接液中に添加した。これはゴム管に0.5mm直径の針を刺して孔を開けたもので、添加しない時は、孔は閉状態である。
溶液添加は1つの溶液の添加に対し、2つのプランジャーポンプを用いて、(78)記載の交互添加方式の態様で添加した。
【0022】
実施例2.
実施例1でCDJ添加成長を次の如くにする以外は同じにした。該Ag−2の添加態様は同じだが、X−2液の添加は初期流量2.2ml/分、加速流量0.147ml/分で98分間、Ag−2と同時混合添加した。この時X−21液(100ml中にKI4.15g含む)の添加速度を制御して同時混合添加する事により、銀電位を−40mVに制御した。スタート流量は0.8ml/分で、添加開始の10秒後から制御した。この制御法による該電位の振れ幅は−40mVを基準として−14〜+14mV内であった。
得られた乳剤粒子の該TEM像を撮影し、図10に示した。平均直径は0.24μmで、変動係数は0.058であった。該12面体粒子が粒子の投影面積の合計の99%以上を占めた。
【0023】
実施例3.
分散媒溶液3(ゼラチン1を35g、水1500ml、KIを0.05g含み、pH6.0)を反応容器に入れ、温度を62℃に保ち、攪拌しながら、Ag−31液(100ml中にAgNO3を30g含む)とX−31液(100ml中にKIを29.4gとゼラチン2を1g含む)を25ml/分で8分間、直接に液中に、該多孔膜を通して同時混合添加した。
次にスタート流量25ml/分、加速流量3ml/分で4分間、同時混合添加した。いずれも添加は該交互添加方式を用いた。
得られた乳剤粒子の該TEM像を撮影した。平均直径が0.04μmで、直径分布の変動係数は0.10であった。該乳剤の80mlを採取し、分散媒溶媒3に添加し、75℃でAg−2液とX−2液を用いて、初期流量3.4ml/分、加速流量0.24ml/分で50分間、実施例1と同様にして、−40mVのCDJ添加した。得られた乳剤粒子の該TEM像を撮影した所、投影面積の98%以上は該12面体粒子であった。
【0024】
実施例4.
実施例3で次の事以外は同じにした。Ag−31液とX−31液の添加速度を12ml/分で8分間、同時混合添加した。次にスタート流量12ml/分、加速流量1.2ml/分で12分間、同時混合添加した。得られた乳剤粒子の平均直径は0.06μmで、直径分布の変動係数は0.09であった。該粒子を実施例3と同様に成長させた所、投影面積の99%以上は該12面体粒子であった。
【0025】
実施例5.
分散媒溶液5(ゼラチン1を25g、水1200mlを含み、NaOHでpH10.0に調節した溶液にAgNO3を1.2g溶解させた液)を反応容器に入れ、温度を75℃に保ち、攪拌しながらAg−1液とX−41液(100ml中にKIを3.3g含む)を4ml/分で10分間、同時混合添加した。次にAg−2液とX−42液(100ml中にKIを16.56g含む)を用いて、実施例1と同様にして、銀電位を360mVに保つCDJ添加をした。Ag−2の添加は初期流量2.4ml/分、加速流量0.16ml/分で98分間添加した。
得られた乳剤粒子の該TEM像を撮影し、図11に示した。粒子構造は、(33)のA5値の平均値が約1.16の楕円球状であった。平均直径が0.34μmで、その直径分布の変動係数は0.08であった。(33)記載の該粒子が粒子の投影面積の合計の97%以上を占めた。
該粒子を実施例3と同様に、表1のC5の条件でCDJ-40mVで成長させた所、投影面積の合計の96%以上が該12面体粒子であった。
【0026】
実施例6.
分散媒溶液6(ゼラチン1を25g、水1200mlを含み、HNO3でpH2.0に調節した溶液にAgNO31.2g溶解させた液)を反応容器に入れ、温度を75℃に保ち、攪拌しながらAg−1液とX−41液を4ml/分で10分間、同時混合添加した。次にAg−2液とX−42液を用いて、実施例1と同様にして、銀電位391mVに保つCDJ添加をした。Ag−2の添加は初期流量2.4ml/分、加速流量0.16ml/分で98分間添加した。
得られた乳剤粒子のTEM像を撮影した所、粒子形状は図6のdに示した六角柱状粒子であった。平均直径0.65μm、平均厚さ0.26μm、直径分布の変動係数は0.14であり、該粒子が全粒子の投影面積の合計の96%以上を占めた。
【0027】
実施例7.
分散媒溶液1を反応容器に入れ、温度を40℃に保ち、終始攪拌しながら、Ag−1液とX−1液を4ml/分で8分間、同時混合添加した。次に温度を75℃に上げ、Ag−2とX−2を用い、実施例1と同じ方法で90分間、−40mVのCDJ添加した。Ag−2のスタート流量は2.4ml/分、直線加速流量0.24ml/分で行った。乳剤を1ml採取し、粒子の該レプリカ膜のTEM像をとり、図12に示した。粒子直径のばらつきの変動係数は0.06であり、平均直径は0.21μmであり、粒子形は図4に示した非対称14面体粒子であった。該直径分布の変動係数は0.087であった。(37)のA6の平均値は約0.27であり、そのばらつきの分布の変動係数は0.12であった。
後は実施例1と同様に乳剤の水洗、再分散、化学増感、分光増感、添加剤の添加を行ない、PETベース上に塗布し、試料を得た。
【0028】
実施例8.
分散媒溶液8(ゼラチン1を30g、水1300ml、KI0.05gを含み、pH6.0)を反応容器に入れ、温度を40℃に保ち、攪拌しながらAg−2液とX−2液を8ml/分で8分間、同時混合添加した。次に温度を75℃に上げ、Ag−2液とX−2液を実施例1と同じ方法で18分間、−40mVのCDJ添加した。スタート流量は24ml/分で直線加速流量は2.4ml/分であった。
乳剤を1ml採取し、粒子の該レプリカ膜のTEM像をとり、図13に示した。非対称型の14面体粒子であった。平均直径は0.12μmで、直径分布の変動係数は0.11で、A6の平均値は約0.32であり、そのばらつきの分布の変動係数は0.14であった。
【0029】
実施例9.
分散媒溶液9(ゼラチン2を25g、KIを0.05gを含み、pH6.0)を反応容器に入れ、温度を18℃に保ち、攪拌しながらAg−2液とX−2液を5ml/分で5分間添加した。次にAg−2液とX−2液を用いて、実施例1と同態様の銀電位−40mVのCDJ添加をした。Ag−2液のスタート流量は5ml/分、加速流量は0.7ml/分で28分間の添加をした。
この時点で乳剤を1ml採取し実施例1と同様にゼラチンと可溶性塩を除去し、コロジオン膜をはり、カーボン蒸着したメッシュ上に粒子を載せた。乾燥させた後、約−130℃に冷却し、TEM像を撮像した。粒子の平均直径は0.026μm、直径分布の変動係数は0.11であった。
【0030】
実施例10.
分散媒溶液9を反応容器に入れ、温度を18℃に保ち、攪拌しながら、Ag−1液とX−3液(100ml中にKIを3.36gとゼラチン2を1g含み、pH6.0)をスタート流量1ml/分、加速流量12ml/分で2分間添加した。続いて25ml/分で5分間同時混合添加した。次にAg−2液とX−2液を用いて、実施例1と同態様の銀電位−40mVのCDJ添加をした。Ag−2液のスタート流量は5ml/分、加速流量は0.7ml/分で28分間の添加をした。
実施例9と同様に、生成粒子のTEM像を撮影した。粒子の平均直径は0.024μm、直径分布の変動係数は0.09であった。
但し、ゼラチン1=アルカリ処理牛骨ゼラチンをイオン交換樹脂を通して脱塩処理したemptyゼラチン。ゼラチン2=〔ゼラチン1を含む水溶液にHNO3を添加し、pH0.7とし、温度90℃で加水分解し、質量平均分子量15000とした。限外濾過で脱塩し、添加した酸の95%を除去した後、NaOHでpH6.0に中和した。H2O2を添加し、混合した後、40℃で15時間静置した。Metの100%がスルフィニル基に変化した。〕
【0031】
比較例1.
分散媒溶液11(ゼラチン1を25g、水1200ml、KIを2g含みpH6.0)を反応容器に入れ、温度を75℃に保ち、Ag−1液とX−1液を4ml/分で10分間、同時混合添加した。次にAg−2液とX−2液を用い、従来法で銀電位を−40mVに保つCDJ添加を行った。Ag−2のスタート流量は2.4ml/分、加速流量0.16ml/分で98分間添加した。CDJ中の銀電位の振れ幅は、設定値に対し、常時70mV以上の振れ幅(合計で140mV以上)であった。
生成した粒子の該レプリカ膜のTEM像を撮影した所、平均直径0.6μm、直径分布の変動係数が0.4、3種類以上の多種の形状の粒子を含む多分散粒子であった。
実施例1〜10と、比較例1で得られた各乳剤に対して、凝集沈降剤1を添加し、温度を30℃に下げ、pHを4.0近傍に下げ、乳剤をフロック化し、沈降させた。上澄み液を除去し、乳剤を3回水洗した後、pHを6.4に上げ、温度を40℃に上げて再分散した。AgNO3液とKI液を用いて乳剤のpAgを5.5に調節した。40℃で増感色素1を飽和吸着量の85%量で添加し、吸着平衡にした後、温度を60℃に上げ、化学増感剤1を3.5×10-4モル/モルAgX量で添加し、50分間熟成した。温度を40℃に下げ、かぶり防止剤3を3×10-3モル/モルAgXだけ添加し、同様にpH6.4、pAg5.5に調節し、30分間攪拌した。
該乳剤を硬膜剤1含有(0.01g/gゼラチン)の保護層と共にPETベース上に塗布し、乾燥させた。密閉容器に入れ、40℃で15時間保持し、硬膜反応を促進した。実施例1〜10の各乳剤の塗布物を試料1〜10とし、比較例1の乳剤の塗布物を比較1とした。
【0032】
実施例11.
実施例3と4で使用するゼラチンをゼラチン3におきかえる以外は同じにしてAgI乳剤B11、B12を形成した。B11の生成粒子は平均直径0.05μm、直径分布の変動係数は0.10であった。B12では生成粒子は平均直径0.08μm、該変動係数は0.09であった。該乳剤の80mlを採取し、分散媒溶液3に添加し、実施例3と同様に成長させた所、両者ともに、投影面積の99%以上は該12面体粒子であった。
ゼラチン3=ゼラチン1に無水フタル酸を作用させ、フタル化率83%としたもの。
11、B12にHNO3を添加し、pH4とし、乳剤をフロック化させ、沈降させ、上澄み液を除去し、3回水洗した。乳剤の水洗後は、前記同様に再分散等の処置を施し、塗布試料B11、B12を得た。
塗布試料を光学ウェッジを通して10-2秒間の青光(450nm以下の波長光)露光した試料と−blue光(500nm以上の波長光)露光した試料を作り、文献10に記載のピロガロール現像液で40℃で50分間現像した。停止液に1分間浸した後、定着液(Super Fuji Fix)に30分間浸し、定着し、次に水洗し、乾燥した。そのセンシトメトリーを行ない、(感度/粒状度)比の結果を表4に示した。比較試料に対し、本発明の試料が(感度/粒状度)で優れている事が確認された。
感度は(カブリ+0.2)の濃度を与える露光量(ルックス・秒)の逆数で表わし、粒状度は試料を(カブリ+0.2)の濃度を与える光量で10-2秒間一様に露光し、現像処理を行ない、直径48μmの円形開口を用い、ミクロデンシトメーターで濃度のバラツキを測定し、rms粒状度σを求めた。その詳細は前記文献11の第21章E節に記載されている。
【0033】
実施例12.
図14に示したタイプの反応容器(C1=3)に分散媒水溶液(ゼラチン1を30g、水1500ml、KI 0.05gを含みpH6.5)を入れ、70℃に保ち、激しく撹拌しながらAg−12液(100ml中にAgNO3を3gとゼラチン4を0.6g含む)を160ml/分で、X−12液(100ml中にKIを29.3gとゼラチン4を1g含みpH6.5)を157ml/分で4分間、定流量添加した。この時、同時にX−120液(100ml中にKIを30gとゼラチン0.6g含み、pH6.5)を添加する事により銀電位を−10mVに一定に保った。電位の振れ幅は指定値に対し、20mV以内であった。添加終了直後から恒湿槽に冷水を入れ、1分間で該温度を30℃に急冷した。これを乳剤12aとした。
乳剤1mlを採取し、該色素1を飽和吸着量の約130%だけ添加し、20℃に冷却した。該粒子を実施例9と同様にしてTEM像を撮影した。粒子の平均直径は約30nmであり、サイズ分布の変動係数は0.12であった。
次に該乳剤の27mlを採取し、反応容器中〔ゼラチン1を25g、KIを0.05g、H2O 1250mlを有し、pH6.3、60℃)に入れ、該微粒子を新核が発生しない速度で成長させた。具体的にはAg−121液(100ml中にAgNO3を5g含有する)とX−121液(100ml中にKIを4.9g含む)を用いて、銀電位を150mVに保ちながら、実施例1と同様のCDJ添加を12分間行った。Ag−121液の添加流量はスタート流量3ml/分、加速流量0.3ml/分であった。この添加の最初の5分間中に温度を75℃に昇温した。次にAg−2液とX−2液を用いて、銀電位を150mVに保ちながら同様のCDJ添加した。Ag−2液の初期流量は2.6ml/分で加速流量は0.24ml/分で、87分間添加した。1分後に冷却を開始し、2分間で温度を30℃に下げた。これを乳剤12bとした。
乳剤を1ml採取し、色素1を該飽和吸着量の約130%量だけ添加した。該粒子のレプリカ膜のTEM像を撮影した。約3000コの粒子を観察した所、99%の粒子が該12面体であり、その平均直径は約0.155μmで、サイズ分布の変動係数は0.08であった。従って、該微粒子は成長させると12面体になる微粒子であり、(19)項に該当する粒子である。ゼラチン4はゼラチン1を分解酵素で分解し、平均分子量15000としたゼラチンである。
【0034】
実施例13.
実施例12と同じ反応容器に分散媒水溶液(ゼラチン4を30g、水1500mlを含み、pH6.5)を入れ、20℃に保ち、激しく撹拌しながらAg−12液を160ml/分で、X−12液を157ml/分で4分間、同時混合添加した。この時、同時にX−120液を添加する事により銀電位を120mVに保った。電位の振れ幅は指定値に対し20mV以内であった。約15nmであり、サイズ分布の変動係数は約0.12であった。これを乳剤13aとした。
次に該乳剤の29mlを採取し、反応容器中〔ゼラチン1を25g、KIを0.05g、H2O 1250mlを有し、pH6.3、57℃〕に入れ、該微粒子を新核が発生しない速度で成長させた。具体的にはAg−2液とX−2液を用いて、銀電位を150mVに保ちながら同様のCDJ添加した。Ag−2液のスタート流量は1.8ml/分、加速流量0.13ml/分で105分間添加した。1分後に乳剤を1ml採取し、色素1を添加し、20℃に冷却した。該粒子のレプリカ膜のTEM像を撮影した。約3000コの粒子を観察した所、99%の粒子がA6値が0.18〜0.25の該14面体粒子であった。A6の平均値は0.21であった。平均直径が0.14μm、変動係数0.08であった。これを乳剤13bとした。
【0035】
実施例14.
実施例12と同じ反応容器に分散媒水溶液14(ゼラチン1を25g、KIを1.2g、H2O 1200ml含み、NaOHでpH10.2に調節)を入れ、65℃に保ちながら、Ag−1液とX−14液(100ml中にKIを3.56g含む)を12ml/分で10分間添加した。温度を75℃に5分間で上げ、10分間熟成した後、Ag−2液とX−14液(100ml中にKIを16.84g含む)を用いて、−190mVのCDJ添加を35分間行った。スタート流量は7.2ml/分、加速流量は0.64ml/分であった。添加終了後、5分間熟成した後、温度を30℃に下げた。
乳剤を1ml採取し、色素1を該飽和吸着量の約130%量だけ添加した。該粒子のレプリカ膜のTEM像を撮影した。約1000コの粒子を観察した所、約93%の粒子が図5bに示した形状で、C2値が1.0〜3.0、アスペクト比が2〜30の平板粒子であった。平均投影直径は0.8μm、平均C2=1.7、平均アスペクト比=7.5、直径分布の変動係数は約0.2であった。また、表1と同じ手法で求めたγ型の含率は約45%であった。該乳剤を乳剤14とした。
実施例12〜13で得られた各乳剤に増感色素1を飽和吸着量の85%量だけ添加し、吸着平衡させた後、沈降剤1を添加し、前記同様に乳剤を水洗した。温度を40℃に上げ、フタル化率96%のフタル化牛骨ゼラチンを添加し、乳剤を再分散させ、pH6.4、pAg5とした。化学増感剤2のメタノール溶液を乳剤12a、13aには3×10-4、乳剤12b、13b、14には10-4(モル/モルAgX)だけ添加し、47℃で60分間熟成した。温度を40℃に下げ、潜像形成効率向上剤1を乳剤12a、13aには2×10-3、乳剤12b、14には5×10-4(モル/モルAgX)だけ添加し、30分間攪拌した。かぶり防止剤3を3×10-3モル/モルAgXだけ添加し、pH6.4、pAg5.3に調節した。
各乳剤を硬膜剤1含有の前記保護層と共にPETベース上に塗布し、乾燥させ、前記同様に処理し、試料を順に12a、12b、13a、13b、14とした。塗布試料を前記と同様に露光し、現像処理し、センシトメトリーを行ない、(感度/粒状度)比の結果を表4に示した。比較試料に対し本発明の試料が(感度/粒状度)で優れている事が確認された。
【0036】
【化2】
Figure 0003999147
【0037】
【化3】
Figure 0003999147
【0038】
【表4】
Figure 0003999147
【0039】
【発明の効果】
本発明のAgX乳剤および該乳剤含有の写真感光材料を用いる事により、(感度/粒状度)比の優れたAgX写真感光材料が得られた。
【図面の簡単な説明】
【図1】粒子構造の概略図を表わす。aは粒子の上面図を表わし、bはそれを右横から見た側面図を表わし、cは(101)面を上面に配置した時の上面を表わす。dはaの粒子を斜め上から見た時の粒子構造を表わす。eは楕円球状粒子の上面図を表わす。
【図2】粒子構造の概略図を表わす。aは上面図を、bはaの側面矢印方向から見た側面図を、cは粒子を斜め上から見た時の粒子構造を表わす。dはCとは異なる構造の粒子を斜め上から見た時の構造例を表わす。
【図3】粒子構造の概略図を表わす。aは上面図を表わし、bはaの矢印方向から見た側面図を表わし、cは粒子を斜め上から見た時の粒子構造を表わす。
【図4】粒子構造の概略図を表わす。aは粒子を斜め上から見た時の粒子構造を表わし、bはその側面図を表わし、cは別の例の粒子を斜め上から見た時の粒子構造を表わす。dは凹部を有する14面体粒子の例を表わす。
【図5】a、cは平板粒子の上面図を表わし、bはaを斜め上から見た時、dはcを斜め上から見た時の粒子構造を表わす。
【図6】aは図1のaに、bは図1のcに、cは図1のeに、dは図2のcに、eは図2のbに、fは図4のaに、f、gは図4のaに、hは図5のb、dに該当する粒子のより詳細な粒子構造例を表わす。
【図7】β型AgI結晶の単位格子模型を表わす。
【図8】AgI粒子のCuKβ線のX線回折パターン図(X線回折強度と2θの関係図)を表わす。aは該12面体粒子の、bは該六角柱粒子の、cは該14面体粒子の該パターンを表わす。
【図9】12面体粒子のfLの温度(T°K)変化を表す図。
【図10】乳剤粒子の粒子構造を表わす粒子のTEM像。
【図11】乳剤粒子の粒子構造を表わす粒子のTEM像。
【図12】乳剤粒子の粒子構造を表わす粒子のTEM像。
【図13】乳剤粒子の粒子構造を表わす粒子のTEM像。
【図14】反応装置の横面断面図を表わす。
【符号の説明】
1.a1、a2、a3は結晶構造を表わす3つの結晶軸を表わす。
2.θは入射X線ビームと基板面間の角度を表わす。
3.41は凹部を表わす。
4.6−1は反応溶液を表わす。
5.6−2は中空送液管を表わす。
6.6−3は恒温ジャケットを表わす。
7.6−4は恒温水循環装置を表わす。
8.6−5は混合箱を表わす。[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a silver halide (hereinafter referred to as “AgX”) emulsion useful in the field of photography and a method for producing the same.And photographic photosensitive material using the sameAbout.
[0002]
[Prior art]
1) The conventional AgI particle formation and AgI characteristics are reviewed in the references 1 and 4 and 5) below. However, monodispersed AgI particles and particles with a specific shape are made separately. I have not been told.
2) Since the blue light intrinsic absorption of AgI is based on a direct allowable transition between energy bands, the absorption coefficient of light having a wavelength of 400 to 430 nm is about 100 times larger than that of AgBr. This has the advantage of efficiently absorbing incident blue light. However, due to inefficiency in the subsequent photosensitivity process and development process, an epitaxial AgX part (abbreviated as “epi part”) having a low AgI content is formed on the AgI grains, and a chemical sensitization nucleus is formed in the epi part. An aspect in which a latent image is formed is proposed. Regarding this, reference can be made to the description in Reference 2 below, and reference to the description in Reference 3 for the blue light absorption coefficient.
3) There are many documents regarding the use of AgI particles in photographic light-sensitive materials, and the documents described in Document 4 can be referred to. However, AgI particles have β-type and γ-type crystal structures near room temperature, and many particle shapes exist.-Since the silver potential of the reaction solution changes greatly with slight variations in concentration, hunting of the silver potential is greatly increased by adding a CDJ (Controlled-Double-jet) for controlling the silver potential. It is difficult to make a monodisperse size, and there is no report of an embodiment that has realized it. Realization of monodispersion is expected to be used for photosensitive materials.
4) AgI particle formation is changed to Ag+Excess (Ag+Concentration> I-Concentration), AgI particles having a high content of face-centered cubic structure (hereinafter referred to as “γ structure”) are obtained.-It is described in Document 1 that AgI particles having a high content of a hexagonal crystal structure (hereinafter referred to as “β structure”) can be obtained when carried out in excess.
5) Regarding the AgI tabular grain emulsion having an aspect ratio of 8 or more, refer to JP-A-59-119350. Regarding the AgI tabular grain emulsion having an γ-type content of 90 mol% or more and an aspect ratio of 8 or more, JP The description of 59-119344 can be referred to.
6) Yellow AgI emulsion grains having a natural light absorption edge near 480 nm (a body-centered cubic α-type structure content is high) are described in Reference 1 and US Pat. No. 4,672,026.
7) Regarding the use of AgI fine particles as a UV absorber in the UV filter layer of a color photograph, the description in US Pat. No. 2,327,764 can be referred to.
8) In the vicinity of AgX tabular grains (AgCl, AgBr, AgBrI and two or more mixed crystals thereof) spectrally sensitized at a high coverage, high AgI content fine particles are present, and the amount of dye stain generated during development processing is reduced. Regarding suppression, reference can be made to the description in US Pat. No. 4,520,0098.
9) Increasing the refractive index of the dispersion medium layer by mixing one or more of high refractive index fine particles and / or atoms, molecules, ions, and complexes into the dispersion medium layer of the photosensitive material to reduce the light scattering intensity of the AgX particles. This is described in Reference 5.
10) Symmetrical tetrahedral AgI particles having the same area of hexagonal surfaces parallel to each other are described in Japanese Patent Publication No. 63-30616 and US Pat. No. 4,094,684.
[0003]
[Problems to be solved by the invention]
An AgX emulsion that provides higher sensitivity and higher image quality than a conventional AgX emulsion is provided.
[0004]
[Means for Solving the Problems]
  The object of the present invention has been achieved by the following means.
(1) In a silver halide emulsion having at least a dispersion medium, water, and silver halide grains, 88 to 100% of the total projected area of the grains has an AgI content (mol%) of 85 to 100. As for the shape, the outer shape other than the size of the particle isAn octahedron having two parallel hexagonal surfaces and six rectangular surfaces on its side surface, or a shape whose corners and / or ridges are roundedA silver halide emulsion that is a single type and has a circle equivalent projected diameter (μm) of 0.002 to 20.
(2) In a silver halide emulsion having at least a dispersion medium, water, and silver halide grains, 88-100% of the total projected area of the grains has an AgI content (mol%) of 85-100. The external shape other than the size of the particles has two parallel hexagonal surfaces and 12 trapezoidal surfaces in a mirror image relationship with each other. A silver halide emulsion which is a single type of tetrahedron and has a circle equivalent projected diameter (μm) of 0.002 to 20.
(3) The sizes of the two hexagonal faces are different in one particle, (small hexagon area / large hexagon area) = A6Is 0.1 to 0.92. (2) Silver halide emulsions.
(4) Ag+Solution containing X and XThe aqueous solution containing the aqueous dispersion medium is added to the aqueous dispersion medium containing the hydrophilic dispersion medium at the same time while keeping the silver potential of the solution constant, thereby having at least the dispersion medium, water, and silver halide grains. Particles of 40 to 100% of the total area have an AgI content (mol%) of 85 to 100, and the shape of the particles is an outer shape other than the size of the particles.An octahedron having two parallel hexagonal surfaces and six rectangular surfaces on its side surface, or a shape whose corners and / or ridges are roundedIn a method for producing a silver halide emulsion of a single type and having a grain equivalent projected diameter (μm) of 0.002 to 20, the silver potential amplitude (mV) at 30 to 100% of the addition time Is a method of producing a silver halide emulsion, wherein the specified value is -50 to +50.
(5) Ag + Solution containing X and X The aqueous solution containing the aqueous dispersion medium is added to the aqueous dispersion medium containing the hydrophilic dispersion medium at the same time while keeping the silver potential of the solution constant, thereby having at least the dispersion medium, water, and silver halide grains. Particles with a total area of 40 to 100% have an AgI content (mol%) of 85 to 100, and the shape of the particles is that the outer shapes other than the size of the particles are two parallel hexagonal surfaces, Twelve trapezoidal surfaces are mirror images of each other on the side surface, and are a single type of tetradecahedron combined with the hexagonal surface, and the equivalent circular projected diameter (μm) of the particles is 0.002 to 20. In the method for producing a silver halide emulsion, the silver potential emulsion has an amplitude (mV) of silver potential of -50 to +50 with respect to a specified value at 30 to 100% of the addition time. Manufacturing method.
(6) The Ag+Solution and XAt least one of the solutions is directly added to the reaction solution through the hollow tube, (the hollow tube length in the reaction solution / the inner diameter of the reaction vessel) ratio = C1Is 0.5-50 (4) or (5)A method for producing the silver halide emulsion as described.
(7) The silver potential has an amplitude of −30 to +30 with respect to a specified value (4) or (5)A method for producing the silver halide emulsion as described.
(8) The amplitude of the silver potential is −15 to +15 with respect to the specified value (4) or (5)A method for producing the silver halide emulsion as described.
(9) The total projected area of the particles is 88 to 100% (4) or (5)A method for producing the silver halide emulsion as described.
(10) The total projected area of the particles is 95-100% (4) or (5)A method for producing the silver halide emulsion as described.
(11) In a photographic material in which one or both surfaces of a support are coated with one or more silver halide emulsion layers, at least one silver halide emulsion layer is (1)Or (2)A photographic light-sensitive material comprising the photosensitive silver halide emulsion described above.
  The present invention will be described in further detail.(1) to (123) belowDescribe.
  Of the following (1) to (123), those having a citation relationship with (10) and (13), and (10) and (13) are related to the present invention.
  (1) In a silver halide emulsion having at least a dispersion medium, water, and silver halide grains, the AgI content (mol%) is 88 to 100, preferably 95 to 100% of the total projected area of the grains. 85 to 100, preferably 90 to 100, more preferably 95 to 100. The particle shape is a single type of outer shape other than the particle size, and the circle equivalent projected diameter (μm) of the particle is 0.002. A silver halide emulsion characterized by being from -20, preferably from 0.02 to 10.
(2) The coefficient of variation (standard deviation / average diameter) of the diameter distribution of the particles is 0.01 to 0.5, preferably 0.01 to 0.3, more preferably 0.01 to 0.2, The silver halide emulsion as described in (1), which is preferably from 0.01 to 0.1.
(3) The silver halide emulsion as described in (1) or (2), wherein the shape of at least one surface of the grain is a parallelogram or a rounded edge.
(4) The silver halide emulsion as described in (3), wherein the at least one face is a (001) face or a (002) face of a hexagonal AgI crystal structure (hereinafter referred to as β structure) .
(5) The silver halide emulsion as described in (3), wherein the at least one surface is a (101) surface having a β structure.
(6) The silver halide emulsion as described in (3), wherein the at least one surface is a (1-10) surface having a β structure.
(7) The vertex angle of two sets of the parallelogram or the parallelogram formed by extending the straight portion of the edge is about 60 ° and about 120 ° (3) ) Silver halide emulsions as described.
(8) The vertical angles of two sets of the parallelogram or the parallelogram formed by extending the straight portion of the edge are about 73 ° and about 107 ° (3) ) Silver halide emulsions as described.
(9) Description of (1) to (3), wherein the outer shape of the particle is a dodecahedron type particle having 12 parallelogram faces, or the corners and / or ridges thereof are rounded. Silver halide emulsion.
(10) The shape of the particle is two parallel hexagonal surfaces and sixRectangleThe silver halide emulsion as described in (1), which is an octahedron having the following surface or a shape with rounded corners and / or edges.
(11) The silver halide emulsion as described in (10), wherein the hexagonal surface is a (001) surface or a (002) surface having a β structure.
(12) TheRectangleThe silver halide emulsion according to (10), wherein the surface is a (100) plane having a β structure or a plane equivalent to the (100) plane.
(13) The shape of the particles has two parallel hexagonal surfaces and 12 trapezoidal surfaces in a mirror image relationship with each other, and is a tetrahedron combined with the hexagonal surfaces, Or the silver halide emulsion according to (1), wherein the corners and / or ridges are rounded.
(14) The silver halide emulsion as described in (13), wherein the hexagonal surface is a (001) surface or a (002) surface having a β structure.
(15) The silver halide emulsion as described in (13), wherein the trapezoidal surface is a (101) surface or a surface equivalent to the (101) surface [referred to as (101) surface].
(16) The diameter (μm) of 60 to 100, preferably 80 to 100% of the total projected area of the particles is 0.002 to 0.15, preferably 0.002 to 0.1, and more preferably. The silver halide emulsion as described in (1), wherein is from 0.002 to 0.05.
(17) The silver halide emulsion as described in (1), wherein 40 to 100, preferably 70 to 100, more preferably 90 to 100% of the molar amount of all grains in the emulsion is β structure.
(18) The crystal structure of face-centered cubic AgI in the range of 0.1 to 90, preferably 1 to 80, more preferably 10 to 70% of the molar amount of all grains in the emulsion (hereinafter referred to as γ structure). (1) The silver halide emulsion as described in (1) above.
(19) The particle shape when the particles are further grown under the condition that no new crystal defects (twin planes, dislocation lines) are generated is the particle shape according to any one of (3) to (15). The silver halide emulsion as described in (1) above,
(20) The silver halide emulsion as described in any one of (1) to (18), wherein the grain does not contain a twin plane in the grain.
(21) The particle has an AgI content (mol%) of 0 to 40, preferably 0 to 30, more preferably 0 to 20 on the particle surface (refers to one or more sites of a plane, corner, and ridge). (1) The silver halide emulsion as described in (1) above, which has a silver halide epitaxial portion.
(22) The silver halide emulsion as described in (21), wherein the content of AgCl (mol%) in the epitaxial portion is 0 to 100, preferably 30 to 100, more preferably 60 to 100.
(23) The silver halide emulsion as described in (21), wherein the content of AgBr (mol%) in the epitaxial portion is 0 to 100, preferably 30 to 100, more preferably 60 to 100.
(24) (AgX molar amount of the epitaxial portion / AgX molar amount of the host particle) is 10-5~ 2, preferably 10-5~ 0.5, more preferably 10-3The silver halide emulsion according to (21), wherein the silver halide emulsion is -0.3.
(25) A total amount of 10 or more of a single element or a compound having an atomic number of 1 to 92 in addition to silver and halogen in the grains and / or the epitaxial phase.-9-10-1, Preferably 10-8-10-2The silver halide emulsion as described in (1) or (21), which contains only (mol / mol AgX).
(26) The dopant is a simple substance of a metal atom [atom on the left side of a line connecting boron B and At in the element long periodic table], or a neutral or ionic substance of the metal atom-containing compound, The silver halide emulsion as described in (25), which is more preferably a transition metal atom or a neutral or ionic compound of a compound.
(27) The compound is a metal complex containing 1 to 3 metal atoms and 2 to 20 ligands, wherein one to all of the ligands are inorganic ligands and / or carbon atoms 1 to The silver halide emulsion as described in (26), which is an organic ligand containing 30.
(28) The silver halide emulsion as described in (27), wherein the metal complex is a tetra or hexa coordination complex.
(29) The silver halide according to (27) or (28), wherein the metal complex has one or two organic ligands and the remaining ligand is an inorganic ligand. emulsion.
(30) The particles contain 10 chalcogen atoms (one or more of S, Se, Te) in the particles.-2-10-8, More preferably 10-3-10-7(Mol / mol AgX) and / or reduced silver 10-2-10-8, Preferably 10-3-10-7The silver halide emulsion as described in (1), which contains only (mol / mol AgX).
(31) In the (001) plane of the particles, [Ag+The total area of the surfaces / total area of the (001) surface] = A2The silver halide emulsion as described in any one of (4) to (14), which is from 0.70 to 1.0, from 0.301 to 0.699, or from 0.0 to 0.30.
(32) In the (101) surface of the particle, [XThe total area of the surfaces consisting of / (101) the total area of the similar surfaces] = A3The silver halide emulsion according to any one of (5) to (15), characterized in that is 0.0 to 0.30, 0.301 to 0.699, or 0.70 to 1.0 .
(33) The particle shape is an ellipsoidal body having no flat crystal face, and [the length of the longest axis / the length of the shortest axis] = A5The silver halide emulsion as described in (1), wherein is 1.02 to 1.6, preferably 1.05 to 1.5.
(35) TheRectangleThe silver halide emulsion as described in (10), wherein the surface is a flat surface having no depressions.
(36) TheRectangleThe silver halide emulsion as described in (10) above, wherein the surface has a depression (non-flat portion) in the surface.
(37) The sizes of the two hexagonal surfaces are different in one particle, and (small hexagonal area / large hexagonal area) = A6Is 0.01 to 0.92, preferably 0.1 to 0.8, more preferably 0.2 to 0.7, and still more preferably 0.3 to 0.6 (13) -The silver halide emulsion in any one of (15).
(38) The particles are [(Ag+Concentration (mol / L) / IConcentration (mol / L)) = A7Is formed in a reaction solution of 3 to ∞, preferably 10 to ∞, more preferably 100 to ∞, and the β structure content (mol%) of the particles is 77 to 100, preferably 80 to 100, and more. The silver halide emulsion as described in (1), which is preferably from 85 to 100.
(39) A6(37) The silver halide according to (37), wherein the coefficient of variation of the value variation is 0.01 to 0.3, preferably 0.01 to 0.2, more preferably 0.01 to 0.1. emulsion.
(40) The halogenation according to any one of (1) to (17), wherein the grain contains from 1 to 3 twin planes, preferably parallel to the (001) plane. Silver emulsion.
(41) The emulsion grains are Ag+Solution containing X and X(3) to (3), wherein the aqueous solution containing a dispersion medium is added by simultaneous mixing and adding to an aqueous solution containing a dispersion medium, and the temperature of the aqueous dispersion medium solution is 45 to 99, preferably 50 to 90 ° C. The silver halide emulsion according to any one of (9).
(42) An emulsion as described in (1) or (16) is added to Ag+Solution containing X and XIn a method of forming an aqueous solution containing selenium by simultaneously mixing and adding to a hydrophilic aqueous solution, AgNO to be added3When 1 to 90, preferably 1 to 70, more preferably 1 to 40% of the total amount of the catalyst is added, one or more adsorbents are added.-4~ 0.9, preferably 10-4~ 0.7, more preferably 10-4A method for producing a silver halide emulsion, which is characterized in that the addition is carried out in such a manner that it is reduced to -0.3.
(43) The adsorbent is one or more of a cyanine dye, an antifoggant, the dopant described in the above (25) to (29), a crystal habit controlling agent, and a water-soluble dispersion medium (42) The silver halide emulsion as described.
(44) New particles are generated by the addition, (number of new particles generated / number of particles before the addition) = 0.05 to 105, Preferably 0.2 to 105(42) The silver halide emulsion as described in (42) above.
(45) Ag in an aqueous solution (reaction solution) containing 0.1 to 20, preferably 0.3 to 5% by weight of a dispersion medium of the emulsion described in (1).+Solution containing X and(1) The method for producing a silver halide emulsion according to (1), wherein the silver halide emulsion is formed by simultaneously mixing and adding a solution containing.
(46) 30 to 100, preferably 80 to 100% by mass of the dispersion medium is 1 to 100, preferably 50 to 100%, more preferably 70 to 100% of the total number of amino groups of gelatin. The silver halide emulsion as described in (45), characterized in that the gelatin is preferably chemically modified with 1 to 10 organic compounds.
(47) 30 to 100, preferably 70 to 100% by mass of the dispersion medium is phthalated gelatin having a phthalation rate of 0.1 to 93, preferably 10 to 87%, and the resulting emulsion grains are described in (9). (45) The silver halide emulsion as described in (45) above.
(48) The desalting of the AgX emulsion produced in (46) or (47) is carried out by adjusting the pH of the emulsion to 2 to 5, preferably 3 to 4.5, and flocking the emulsion. The AgX emulsion according to any one of (45) to (47),
(49) pAg of the emulsion when the emulsion is coated on a support, or when chemical ripening is performed by adding a chemical sensitizer to the emulsion, or when a sensitizing dye is added and spectrally sensitized The silver halide emulsion as described in (1), wherein is from 3 to 8, preferably from 3.5 to 6.5.
(50) In the emulsion, interstitial silver ions (Agi) of the grains+) By adding a concentration reducing agent and adsorbing it to the particles, the particle Agi+The silver halide emulsion according to any one of (1) to (40), wherein the concentration is reduced to 0.8 to 0.001 before addition, preferably 0.5 to 0.01 times .
(51) The emulsion contains 10 chalcogen chemical sensitizers (one or more of sulfur sensitizers, Se sensitizers and Te sensitizers) in a total amount of 10-2-10-8, Preferably 10-3-10-7(Mol / mol AgX) added and chemically sensitized emulsion, wherein the emulsion grains contain chalcogen atoms (S, Se, Te) in a total amount of 10-2-10-8, Preferably 10-3-10-7(Mol / mol AgX) only and / or the emulsion contains 10 gold sensitizers.-2-10-8, Preferably 10-3-10-7(Mol / mol AgX) added and chemically sensitized emulsion, wherein the emulsion grains contain 10 atoms of gold.-2-10-8, Preferably 10-3-10-7The silver halide emulsion as described in (1), which contains only (mol / mol AgX).
(52) The epitaxial portion is chemically sensitized, and chalcogen atoms (S, Se, Te) are added in a total amount of 10-2-10-8, Preferably 10-3-10-7(Mol / mol AgX) and / or 10 gold atoms-2-10-8, Preferably 10-3-10-7The silver halide emulsion as described in (21), which contains only (mol / mol AgX).
(53) The emulsion is a spectrally sensitized emulsion to which one or more cyanine dyes are added, and the added amount of the dye is 10 to 150, preferably 30 to 100, of the saturated adsorption amount. The silver halide emulsion according to (1).
(54) The silver halide emulsion as described in (1), wherein the addition amount of one or more cyanine dyes to the emulsion is from 0 to 9.9, preferably from 0 to 3, of the saturated adsorption amount.
(55) Ag+Solution containing X and XIn the method for producing an emulsion as described in (1), an aqueous solution containing 1 to 30 is added to an aqueous solution containing a hydrophilic dispersion medium while keeping the silver potential of the solution constant. The silver potential amplitude (mV) is preferably −50 to +50, preferably −30 to +30, more preferably −15 to +15 with respect to the specified value at 60 to 100, more preferably 90 to 100%. A method for producing a silver halide emulsion, wherein
(56) The simultaneous addition method is Ag+Aqueous solution (Ag-1) and XAdding an aqueous solution containing X (X-1) at a specified flow rate;And an aqueous solution (X-2) containing an aqueous solution (X-2), which is added while controlling the flow rate so as to keep the silver potential at a specified value. ) / Ag-1 solution addition rate (mol / sec)] = A810-4~ 0.8, preferably 10-3~ 0.4, more preferably 10-3The method for producing a silver halide emulsion as described in (55), wherein the silver halide emulsion is .about.0.2.
(57) The simultaneous addition method is Ag+Aqueous solution (Ag-1) and XAdding an aqueous solution (X-1) containing, at a specified flow rate, and further Ag+An aqueous solution containing Ag (Ag-2) is added while controlling the flow rate so as to keep the silver potential at a specified value, and the addition rate of Ag-2 solution (mol / m Sec) / X-1 solution addition rate (mol / sec)] = A910-4~ 0.8, preferably 10-3~ 0.4, more preferably 10-3The method for producing a silver halide emulsion as described in (55), wherein the silver halide emulsion is .about.0.2.
(58) The response speed of the silver potential [hunting cycle (seconds)] is preferably 1 to 300, more preferably 4 to 100, according to any one of (55) to (57) A method for producing a silver halide emulsion.
(59) The simultaneous addition method is Ag+An aqueous solution containing Ag (Ag-1) is added at a specified flow rate, and XAn aqueous solution (X-1) containing a silver halide emulsion according to (55) or (58), wherein the silver potential is added while controlling the flow rate so as to keep the silver potential at a specified potential. Production method.
(60) The simultaneous addition method is XAn aqueous solution (X-1) containing is added at a specified flow rate, and Ag is added.+An aqueous solution (Ag-1) containing a silver halide emulsion according to (55) or (58), wherein the silver halide emulsion is added by controlling the flow rate so as to keep the silver potential at a specified potential. Production method.
(61) When the measured silver potential is higher than the specified potential, the X is proportional to the magnitude of the difference between both potentials.When the measured silver potential is lower than the specified potential, the rate of addition of the aqueous solution containingThe method for producing a silver halide emulsion as described in any one of (56), (58) and (59), wherein the addition rate of the aqueous solution containing is reduced.
(62) When the measured silver potential is higher than the specified potential, the Ag is proportional to the magnitude of the difference between both potentials.+If the measured silver potential is lower than the specified potential, the Ag is proportional to the magnitude of the potential difference.+The method for producing a silver halide emulsion as described in any one of (55), (57) and (60), wherein the addition rate of the aqueous solution containing is increased.
(63) [the XOf control of addition rate of aqueous solution containing (mol / sec) / addition rate of (Ag-1) (mol / sec)] = A1010-4~ 0.3, preferably 10-4The method for producing a silver halide emulsion as described in (61), wherein the silver halide emulsion is .about.0.1.
(64) [The Ag+Of control of addition rate of aqueous solution containing (mol / sec) / addition rate of (X-1) (mol / sec)] = A1110-4~ 0.3, preferably 10-4The method for producing a silver halide emulsion according to (62), wherein the silver halide emulsion is .about.0.1.
(65) [Concentration of the (X-2) solution (mol / L) / Concentration of the (Ag-1) solution (mol / L) = A1210-5~ 0.8, preferably 10-4~ 0.4, more preferably 10-4The method for producing a silver halide emulsion as described in (56), wherein the silver halide emulsion is .about.0.2.
(66) [Concentration of the (Ag-2) solution (mol / L) / Concentration of the (X-1) solution (mol / L) = A1310-5~ 0.8, preferably 10-4~ 0.4, more preferably 10-4The method for producing a silver halide emulsion as described in (57), wherein the silver halide emulsion is -0.2.
(67) One or more, preferably two or more of the Ag-1, Ag-2, X-1, and X-2 solutions have an added pore number of 2 to 1010, Preferably 5-1010The method for producing a silver halide emulsion as described in any one of (55) to (66), wherein the silver halide emulsion is added directly into the reaction solution (under the liquid surface) from the pores of the core.
(68) Nucleation of the particles is caused by Ag+Solution containing X and XIs carried out by the simultaneous mixing addition method of an aqueous solution containing [Ag at the start of the addition+Addition rate (mol / sec)] = A14In the following 10 minutes, preferably within 5 minutes.+Addition rate (mol / sec)] = A151.5 to ∞, preferably 2 to 105The method for producing a silver halide emulsion as described in (1) or (45), wherein the method is accelerated twice.
(69) The particle formation is performed under vigorous stirring conditions with a stirring blade, and the rotation speed (rpm) of the stirring blade is 30 to 105, Preferably 300-105, More preferably 1000-105(1), (45), (55), (68) The method for producing a silver halide emulsion according to any one of the above.
(70) Conditions under which the crystal defect does not occur are 60 to 95 ° C., pH 5 to 9, IThe concentration (mol / L) is preferably 10-2-10-6, More preferably 10-3-10-4(19) The method for producing a silver halide emulsion as described in (19) above.
(71) Ag added during the formation of the particles+Containing solution and / or XIs added to the vicinity of the stirring blade, the flow rate of the liquid generated by the stirring blade is 1 to 0.1, preferably 1 to 0.3, more preferably 1 to the maximum flow rate. (69) The method for producing a silver halide emulsion as described in (69), wherein the location is 0.7 times.
(72) The condition of the reaction solution during the seed crystal formation and the grain growth of the particle is different by one or more of the following, (addition silver amount during grain growth / addition silver amount during seed crystal formation) = A162-1010, Preferably 3-107The method for producing a silver halide emulsion as described in (1) or (55), wherein
a) The temperature (° C.) is different by 5 to 95, preferably 10 to 95, more preferably 15 to 95.
b) The pH is different by 0.3-12, preferably 1-11.
c) pAg or pI differ by 0.2 to 12, preferably 0.5 to 6.
(73) The porous addition hole or the porous addition system having the porous addition hole is composed of a rubber elastic body, and the rubber elastic body has an original length of 1.05 to 20, preferably 1.1 in the operating temperature range. -20, more preferably 1.3 to 10 times the length of the elastically deformable substance, its rubber modulus [Young's modulus (N / m2)] Is 104-109, Preferably 105-108(67) The method for producing a silver halide emulsion as described above.
(74) The method for producing a silver halide emulsion as described in (67) or (73), wherein the addition hole is closed when addition is stopped and the additive solution and the reaction solution are in a non-contact state.
(75) The emulsion is ultrafiltered during and / or after the grain formation,3 The content (mol / mol AgX) is reduced to 0 to 90, preferably 0.01 to 40, more preferably 0.01 to 10% before the ultrafiltration (1), (45) (55) The manufacturing method of the silver halide emulsion in any one of.
(76) The method for producing a silver halide emulsion as described in (75), wherein the ultrafiltration is performed by a cross-flow method in which a liquid is fed in a direction parallel to the filter membrane surface.
(77) The Ag+And XIs added by a plunger pump having a syringe and a piston, and the driving of the piston is driven by a pulse motor whose (added liquid amount mL / pulse) is determined in advance, and (A17Pulse (sec / sec) (A17The method for producing a silver halide emulsion according to any one of (45) and (55) to (74), wherein the addition is performed at a flow rate of (pulse addition amount / second).
(78) For the addition of one solution, two or more reciprocating plunger pumps are used, and while adding with one pump, a new solution is added to the cylinder with the other pump. (77) The method for producing a silver halide emulsion according to (77), wherein the silver halide emulsion is alternately sucked and added alternately.
(79) The piston is pushed out by an object that advances while rotating, such as a screw nail, and the object rotates and advances according to a preset (the rotation angle / pulse) (77). ) Or (78).
(80) A photographic material comprising one or more layers of the emulsion described in (1) above coated on a support.
(81) The fine particle emulsion described in (16) is used as a filter material for removing UV light in (photosensitive material having one or more AgX emulsion layers on a support), and 350 incident on the photosensitive material A photographic light-sensitive material characterized by absorbing 10 to 100, preferably 30 to 100, more preferably 60 to 100% of light having a wavelength of 370 nm.
(82) a blue-sensitive layer in which the photosensitive material is at least sensitive to blue light to form a yellow dye, a green-sensitive layer to be sensitive to green light to form a magenta dye, and a red feeling to be sensitive to red light to form a cyan dye The photographic light-sensitive material according to (80) or (81), which is a color photographic material having a layer.
(83) The photographic light-sensitive material as described in (81), wherein the layer containing the particles is a non-photosensitive layer and is disposed closer to the subject than the photosensitive layer.
(84) The fine-grain emulsion described in (16) is mixed in at least one photosensitive material having at least one photosensitive layer and a non-photosensitive layer on a support, and the refractive index of the mixed layer with respect to 520 nm light is changed. A photographic light-sensitive material characterized in that it is increased by 0.05 to 1.0, preferably 0.1 to 0.9, more preferably 0.2 to 0.9 with respect to before mixing.
(85) The light scattering density of the light-sensitive material with respect to light having a wavelength of 520 nm is 0.01 to 0.95, preferably 0.01 to 0.6, more preferably 0.01 to 0. The photographic light-sensitive material as described in (84), wherein the photographic light-sensitive material has an aspect reduced to .3.
(86) The fine particles according to (16) are [AgCl, AgBr, AgBrI, or two or more kinds thereof spectrally sensitized by adsorbing a dye having a saturated adsorption amount of 20 to 100, preferably 60 to 100%. In the vicinity of the photosensitive tabular grains having a mixed crystal composition (the aspect ratio is 2 to 500, preferably 4 to 500)], 0.01 to 10 mol, preferably 0.1 to 10 mol% of the molar amount of the tabular grains. Photosensitive materials made to exist in
(87) The fine grain emulsion described in (16) is (water, dispersion medium and AgX grain A18Other AgX Emulsions A19Added to the19The fine particles are dissolved in18Sinking on top, A1860 to 100, preferably 90 to 100% of the total projected area of the particles has an average AgI content (mol%) of 0 to 35, preferably 0 to 20, and a circle equivalent projected diameter of 0.05 to A method for producing a silver halide emulsion, wherein the silver halide emulsion is 20.
(88) A1860 to 100, preferably 90 to 100% of the total projected area of the particles has an aspect ratio (equivalent circular projected diameter / thickness) of 2 to 500 and a thickness (μm) of 0.01 to 0.5, Preferably, it is 0.01-0.3, The manufacturing method of the silver halide emulsion as described in (87) characterized by the above-mentioned.
(89) A silver halide emulsion having at least a dispersion medium, water, and silver halide grains, wherein the silver halide is a mixed crystal of any composition ratio of AgBr, AgCl, AgI and two or more thereof. The average diameter of the emulsion is 0.01 to 20 μm, and the emulsion is Ag while maintaining the silver potential (vs. 25 ° C. saturated calomel electrode) at the specified silver potential in the range of −10 to 300 mV.+Solution containing X andA silver halide emulsion characterized by being an emulsion formed by a simultaneous mixing addition method.
(90) (13) to (15), (37), (40) characterized in that the particle has 1 to 3, preferably 1 recess, parallel to the (001) plane on the particle surface. ). The silver halide emulsion according to any one of
(91) Any one of (10) to (17), wherein the particle is a particle obtained by first forming the particle according to (9) and then changing the particle shape during the particle growth. A silver halide emulsion according to any one of the above.
(92) (10) or (11), wherein the grains are grains obtained by first forming the tabular grains shown in FIG. 5 and then changing the grain shape during the grain growth. Silver halide emulsion.
(93) After the particles first form seed crystals of the particles, the seed crystals are converted into the original crystals under the generation conditions of the particles according to (9) or under the conditions of (19) or (70). 1.3 × 1010, Preferably 2-106The silver halide emulsion as described in (13), which is a grain obtained by growing to a double molar amount.
(94) The seed crystal is first formed in a dispersion medium aqueous solution at 0 to 60 ° C., and the growth is performed at a temperature 3 to 98, preferably 10 to 90 ° C. higher than the seed crystal formation temperature. (13) The silver halide emulsion as described above,
(95) In addition to the fine grain emulsion, the AgI content (mol%) is 0 to 30, preferably 0 to 15, and the diameter (μm) is 0.01 to 0.15, preferably 0.02 to 0.1. AgX3Fine particles are added, which is A19Dissolved in A18Sinking on top, A18The method for producing a silver halide emulsion as described in (87), wherein the AgI content (mol%) of the AgX layer deposited thereon is from 0.1 to 30, preferably from 0.5 to 20.
(96) In addition to the fine grain emulsion, Ag+Solution containing X and XAn aqueous solution containing18Sinking on top, A18The method for producing a silver halide emulsion as described in (87), wherein the AgI content (mol%) of the AgX layer deposited thereon is from 0.1 to 30, preferably from 0.5 to 20.
(97) The grains are tabular grains having a {001} plane as a main plane and an aspect ratio (grain projected diameter / grain thickness) of 1.7 to 100, preferably 2 to 100. The silver halide emulsion according to (1).
(98) The silver halide emulsion as described in (97), wherein at least one of the side surfaces of the grain is a {101} plane or a plane equivalent to the {101} plane.
(99) The silver halide emulsion as described in (97), wherein the grain content (mol%) of the grains is from 1 to 70, preferably from 5 to 60, more preferably from 10 to 55.
(100) The particle formation is performed in the order of a nucleation process, an aging process, and a growth process, and the process of nucleation and growth is performed by the simultaneous mixing addition method to the reaction solution (45) A method for producing the silver halide emulsion as described.
(101) The silver halide emulsion as described in (45), wherein the grain formation is performed in the order of a nucleation process and a growth process, and each process is performed by the simultaneous mixing and adding method to the reaction solution. Production method.
(102) In the ripening process, undesired particles are dissolved and deposited on the target particles, whereby the projected area ratio (%) of the target particles is 2 to 10%.6, Preferably 5-106(100) The manufacturing method of the silver halide emulsion as described in (100) characterized by making it increase to 2 times.
(103) Ag in the nucleation process and growth process+And XThe simultaneous mixing addition rate (mol / min) was 10 for each liter of reaction solution.-5-1.0, preferably 10-4The method for producing a silver halide emulsion as described in (100) or (101), which is within a range of .about.0.5.
(104) The Ag at the start of the particle formation+And XThe simultaneous mixing addition rate (mol / min) was 10 for each liter of reaction solution.-2The method for producing a silver halide emulsion according to (100) or (101), characterized in that it is -0.7, preferably 0.03-0.5.
(105) The Ag at the start of the grain formation+And XThe simultaneous mixing addition rate (mol / min) was 10 for each liter of reaction solution.-5~ 9.9 × 10-3, Preferably 10-5~ 3x10-3The method for producing a silver halide emulsion as described in (100) or (101), wherein
(106) The Ag+Solution and X(45), (100) to (105), characterized in that at least one or both of the solutions contain a dispersion medium of 0.01 to 10, preferably 0.1 to 5% by mass. A method for producing a silver halide emulsion.
(107) 30 to 100% by mass of the dispersion medium is characterized in that 0 to 1% of the total number of amino groups of gelatin is gelatin that is chemically modified with an organic compound having 1 to 50 carbon atoms (45) Or the manufacturing method of the silver halide emulsion of (106) description.
(108) 30-100% by mass of the dispersion medium has a hydroxyproline (Hyp) content (the number of Hyp groups per 100 amino acid residues) of 0-100, preferably 0.1-60, more preferably 1-30. The method for producing a silver halide emulsion as described in (45) or (106), which is a gelatin.
(109) 30 to 100% by mass of the dispersion medium is an animal living in a cold zone or cold sea having a temperature (° C.) of −50 to 25, preferably −50 to 15, more preferably a fish living in the sea of the cold sea. (45), (106), (108) The method for producing a silver halide emulsion according to any one of (45), (108), which is gelatin extracted from one or more of bone, skin and scale.
(110) The time (min) from the start to the end of the particle formation is 0.2 to 3000, preferably 1 to 1000, more preferably 2 to 100, (45), (100), (101) The method for producing a silver halide emulsion according to any one of (101).
(111) The Ag+Solution and XAt least one, preferably both of the solutions are added directly into the reaction solution through the hollow tube, (Hollow tube length in reaction solution / inner diameter of reaction vessel) ratio = C1The method of producing a silver halide emulsion as described in (45), wherein is from 0.5 to 50, preferably from 0.8 to 20, more preferably from 1.5 to 20.
(112) The difference (° C.) between the temperature of the additive solution added from the hollow tube in the reaction solution and the temperature of the reaction solution is 0 to 30, preferably 20 and more preferably 0 to 10 ° C. A method for producing a silver halide emulsion as described in (111).
(113) The silver halide emulsion as described in (45), wherein the reaction solution has a pAg of 2 or more, preferably 2.4 or more, and a pI of 2 or more, preferably 2.4 or more. Manufacturing method.
(114) The method for producing a silver halide emulsion as described in (45), wherein the temperature (° C.) of the reaction solution is 0.1 to 99, preferably 1 to 90, and the pH is 1 to 12. .
(115) The maximum adjacent side ratio of a hexagon formed by extending the hexagon or the straight part of the side [in one hexagon (maximum side length / minimum side length)] = C2The silver halide according to (10) or (13), characterized in that is 1.0 to 3.0, preferably 1.0 to 2.0, more preferably 1.0 to 1.4 emulsion.
(116) The shape of the main plane is a hexagon or a shape with rounded corners of the hexagon, and the hexagonal or adjacent side ratio of the hexagon formed by extending the straight portion of the side [one Hexagon (maximum side length / minimum side length)] = C2The silver halide emulsion according to (97), wherein is 1.0 to 3.0, preferably 1.0 to 2.0, more preferably 1.0 to 1.4.
(117) The silver halide emulsion as described in any one of (10), (13) and (116), wherein each apex angle of the hexagon is about 120 °.
(118) The shape of the main plane is a triangle or hexagon, or a shape with rounded corners thereof, and the maximum adjacent side ratio of the hexagon formed by extending the straight part of the hexagon or side [ One hexagon (maximum side length / minimum side length)] = C2The silver halide emulsion according to (97), characterized in that is 3.1 to ∞, preferably 4 to ∞.
(119) The silver halide emulsion as described in (97), wherein the side surface of the tabular grain has 1 to 5 troughs (ridge-shaped recesses) parallel to the main plane.
(120) The silver halide emulsion as described in (97), wherein the side surface of the tabular grain is parallel to the main plane and has no clear trough.
(122) In a photographic light-sensitive material in which at least one silver halide emulsion layer is coated on one or both sides of a support, at least one silver halide emulsion layer is the photosensitive halogenation described in (1). A photographic light-sensitive material containing a silver emulsion.
(123) The at least one silver halide emulsion layer is a photothermographic material containing the photosensitive silver halide emulsion, a non-photosensitive organic silver salt, a thermal developer and a binder (122). ) The photosensitive material described in the above.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
  Next, the present invention will be described in more detail.The drawings relating to the present invention are FIGS. 2 to 5, d to h in FIG. 6, FIGS. 7 (b) to 8 (c), FIGS. 11, 12, 13, and 14. The drawings and the description of the drawings are for reference only.
(II-1) Description of the grain structure of emulsion grains.
  The particles described in (1) (hereinafter referred to as “particle 1”) may contain AgCl and AgBr in the content described in (1) in addition to AgI. In this case, any ratio (0 to ∞) can be selected as the molar ratio of (AgCl / AgBr).
  Examples of the particle structure described in (3) to (9) include the dodecahedral particles shown in FIG. 1 and FIGS. 6a and 6b, and FIG. 2 as the particle structure example described in (10) to (12). There are hexagonal columnar particles shown in FIGS. 6d and 6e, and examples of the particle structure described in (13) to (15) include tetrahedral particles shown in FIGS. The crystal plane index of the particle surface is considered to be the embodiment shown in FIGS. That is, when particles are oriented and settled on a flat glass substrate surface and measured by X-ray diffraction after drying, (diffraction intensity of a plane parallel to the substrate surface / diffraction intensity of a plane non-parallel to the substrate surface) ratio = B1Is obtained by using a known crystal structure diagram of AgI and X-ray diffraction data.
  Particles with a clear crystal habit are like dice. Centrifuge the emulsion, remove the supernatant, remove the dispersion medium, add water, re-disperse, and then let the particles settle spontaneously. Since it will land, you can use this. This is because, in the case of powder particles, only a part of the particles satisfy the Bragg condition and contribute to the diffraction intensity, whereas all crystal planes parallel to the substrate surface contribute to the diffraction intensity.
  In addition, by placing particles on a conductive substrate, cooling them to -120 ° C or lower, taking SEM electron micrographs from the top and diagonally, and comparing them with model particles made of cardboard, the shape of the particles can be accurately determined. It is also effective to use it together with comparing with the unit cell structure.
  The particle of e of FIG. 1 represents a particle in which the corners of the dodecahedron-shaped particle are rounded to be elliptical. When these particles are further grown under the conditions of (19) and (70), the dodecahedron particles can be obtained, so that the particles are particles corresponding to the items (3) to (9).
  As shown in FIG. 3, the tetrahedral particles include a particle in which the upper 7-face portion and the lower 7-face portion are mirror-symmetrical, and a particle in which it is asymmetric as shown in FIG. 4. Asymmetrical particles are defined by (37) and (39) and can be preferably used.
  Particle 1 has an α-type crystal structure at a temperature of about 147 ° C. or higher, but exists as (β-type, γ-type, a mixture of both) at about 146 ° C. or lower. Therefore, it exists in this mode of 146 ° C. or lower under a normal room temperature environment. In the case of a mixture, the molar ratio of both can be determined from the powder X-ray diffraction data of the mixture. Regarding the method, Physical Review 161, 848-851 (1967) can be referred to. For β-type and γ-type powder X-ray diffraction data, JCPDS card data (CD-ROM, which can be purchased and searched from Rigaku Denki Co., Ltd. in Japan, for example) can be referenced.
  In addition, the following method is effective. AgI emulsion grains with 100% beta form can be prepared. The powder X-ray diffraction was measured, and the intensity at the diffraction angle 2θ = 2.14 ° was β (20.14) and the intensity at 2θ = 21.39 ° was β (21.39) [β (21. 39) / β (20.14)] = B2≈ 0.758.
  Next, the sample is heated to about 250 ° C. as it is, then rapidly cooled to room temperature, and X-ray diffraction is measured. Then, the content of γ-type increases, and the diffraction intensity of 20.14 ° peculiar to β-type decreases. For example, it can be seen from the decrease rate that the β-type content is about 37% and the γ-type content is about 63%. At this time, the diffraction intensity of 21.39 ° increases. Its component is the contribution of the content from β-form [this is B2Calculated from the value] and the contribution of the content from the γ-type. From this, the diffraction intensity [γ (21.39)] of 21.39 ° when the γ-type content is 100% is obtained, and [γ (21.39) / β (21.39)] = BThree≈4 is obtained. B2And BThreeIf the values are used, approximate values of β and γ type contents in the sample can be obtained. This method is more preferably performed on a sample in which particles are sedimented and oriented on a glass substrate. The particle orientation is fixed, and measurement variation is reduced.
  When the cooling rate is lowered, the β-type content increases, and finally the β-type content becomes 100%. Therefore, the heating temperature is 200 to 400 ° C., and the cooling rate (° C./second) is 0.1 to 10ThreeBy selecting a preferred combination in the region, particles 1 having a γ-type content (mol%) of 0.1 to 68, preferably 1 to 66, more preferably 10 to 65 can be formed. However, even when the heating temperature was changed in the range of 260 to 400 ° C., the γ-type content did not exceed 70%.
  In addition, powder method X-ray diffraction measurement was performed, and diffraction areas of 2θ = 50.595 ° and 55.703 ° peculiar to γ type and 2θ = 38.356 °, 53.113 ° and 59.389 ° peculiar to β type It is also found by comparing The β and γ contents in Table 1 are shown as a simple area ratio between the ratios of 50.95 ° and 53.113 °. The γ content depended not only on pAg at the time of particle formation but also on pH, temperature, and particle formation time. For example, even if a large amount of γ-type was formed at the beginning of particle formation, the content changed with particle formation time when it dissolved in the subsequent process and deposited as β-type on large β-type particles.
  The hexagons of the hexagonal faces of the particles of FIGS. 2-6 are parallel to each other on the opposite sides, and their apex angles are about 120 °. This reflects the shape of the (001) plane of the hexagonal columnar unit cell of the β-type AgI crystal of FIG. The rhombus (001) plane of FIG. 1a reflects the shape of the (001) plane of the rhomboid columnar unit cell of FIG. The hexagonal shapes of (10) and (13) are also considered to reflect the hexagonal shape of the upper surface of the unit cell.
  Here, for example, the (001) plane is the uppermost I of the unit cell of FIG.-It does not refer only to the surface consisting of only. I-Side and Ag+Since the surfaces of the layers are alternately stacked and the particles grow,-When the grain growth is finished at the place where-(001) plane consisting of Meanwhile, Ag+If the grain growth is finished at the place where the layers are stacked, Ag+(001) plane consisting of In addition, after particle growth, AgNOThreeIs added to the emulsion and I-Ag on the (001) plane consisting of+When layers are stacked, Ag+(001) plane consisting of Accordingly, the (001) plane in FIGS. 1 to 5 represents a plane parallel to the (001) plane in FIG. That is, the (001) plane is an expression including the (002) plane. The same applies to the other surfaces, and the expression includes all surfaces parallel to the corresponding surface. In the present invention, the “plane” represents the crystal surface.
  In the above (7) and (8), “about” means that the error is preferably within 5 °, more preferably within 3 °, and even more preferably within 1.5 °. Crystallographically, each apex angle of the surface is constant, but a measurement error may occur, the edge may melt and become unclear, and the measurement error may increase. The same applies to the right angle of the “right-angled parallelogram” in (12). The angles of the trapezoidal faces of the tetrahedral particles described in (13) and FIGS. 3 and 4 are about 73 ° and about 107 °, and the same is true here.
  As shown in (3) to (15), the outer shape in (1) defines the shape of the crystal face, the number of crystal faces, the area ratio between crystal faces in one particle, and the face angle. Refers to the shape. In the case of particles with rounded corners, the shape of the surface formed by extending the straight part of the side is defined. In addition, the radius of curvature of the rounded portion is defined. In the embodiment, the roundness of the rounded particles has a curvature diameter of preferably 0.1 to 30 times, more preferably 0.2 to 10 times the projected diameter of the particles. The variation coefficient of the variation is preferably 0.01 to 0.3, and more preferably 0.01 to 0.2.
  (1) 2 to 5 kinds of the single-type AgX emulsions described can be mixed at any ratio and used.
[0006]
(II-2) Preparation method of the emulsion
(II-2-1) pH, pAg, temperature dependency during particle formation. Ag in an aqueous solution containing a dispersion medium+An aqueous solution containing I-Particles 1 are prepared by simultaneously mixing and adding an aqueous solution containing. At this time, pH (1-12) of the aqueous solution and Ag+Concentration (pAg 1-17), I-When the concentration (pI1 to 17) is changed variously, particles having various shapes are generated. For example, in 1200 ml of a 3% by weight aqueous solution of normal alkali-treated beef bone gelatin at 60 to 90 ° C., Ag-1 solution (AgNOThree0.2N aqueous solution) and KI-1 aqueous solution (KI 0.2N aqueous solution), while keeping pAg constant, Ag-1 solution is added at 4 ml / min for 10 minutes to form seed crystals. Next, Ag-2 solution (AgNOThree1N aqueous solution) and X-2 solution (KI 1N aqueous solution), while maintaining the same pAg, Ag-2 solution was added at an initial flow rate of 2.4 ml / min and an acceleration flow rate of 0.16 ml / min for 100 minutes. When seed crystals are grown, the particle formation conditions (C1~ C9) And the characteristics of the generated particles are shown in Table 1. The β-type content and the γ-type content are in mol% units. Therefore, the embodiment can be referred to the description in Table 1.
[0007]
[Table 1]
Figure 0003999147
[0008]
Judging from the results when the pH and pAg were changed more finely, the preferred production region of the dodecahedron particles is preferably (pAg ≧ 2.4 and PI ≧ 2.4), and (pAg ≧ 2). And PI ≧ 2.7) are more preferred. The pH is preferably 1 to 12, more preferably 3 to 9, and still more preferably 4 to 8. Below pH 3, the particles shown in FIG. 2c are likely to be mixed at a ratio of 0.1 to 10%. Where pI = −log [I-mol / L], pAg = −log [Ag+mol / L].
(PAg = 1 to 2.7) is preferable, and (pAg = 1 to 2.4) is more preferable as a preferable generation region of the particles of the embodiment of FIGS. 1e and 6c in which the particles are rounded. The pH is preferably 7-12, more preferably 8-11.
The preferable production | generation area | region of the hexagonal columnar particle as described in FIG. 2 b and c is preferably pH 1-9, more preferably pH 1-7, and still more preferably 1-5. The pAg is preferably 1 to 2.7, more preferably 1 to 2.4.
The particles shown in FIGS. 2c and d and FIG. 6d in which the plane of the right parallelogram is flat are likely to occur at pH 1 to 3.9, and the particles in FIG. 2b and FIG. It is likely to occur at -8.5. The number ratio (%) of one of the particles can be divided into 60 to 100, preferably 80 to 100, and more preferably 90 to 100%.
Preferred production regions of the tetrahedral particles described in FIGS. 3, 4 and (13), (14) are pH 1-9, preferably 1-6, and pI 1-2.7, preferably 1.5-2.5. is there. In addition, when the dodecahedron grains are grown in this region, the dodecahedron grains are converted into the dodecahedron grains, and the emulsions described in (13) and (14) are obtained.
pH 5-12, preferably 9-11 (C in Table 1)9Tabular grains are formed. Examples of the particle structure are shown in FIGS. 5 and 6h. 50 to 100, preferably 70 to 100, more preferably 90 to 100% of the total projected area of all AgX grains has an aspect ratio (grain equivalent projected diameter / grain thickness) of 1.6 to 100, preferably Is a tabular grain emulsion having a thickness (μm) of 0.02 to 0.5, preferably 0.02 to 0.3.
Under the pH and pAg conditions for the formation of the dodecahedron particles, when the temperature at the seed crystal formation is 5 to 50 ° C. and the growth is performed at 60 to 95 ° C., that is, when the seed crystal formation temperature is lowered, The generation probability of tetrahedral particles is increased.
Once the tetrahedral particles are formed, even if the seed crystals are grown under the conditions for generating the dodecahedron particles, they grow as tetrahedral particles. Therefore, the tetrahedral particles have crystal defects peculiar to the particles. It is thought that. That is, the number of twin planes, dislocation lines (edge dislocation lines, helical dislocation lines), the number, and how to enter are considered as specific aspects.
Judging from these characteristics, if these grains are written in ascending order of the crystal defect content, it is considered that [the dodecahedron grains> the symmetric tetrahedral grains, the asymmetric tetrahedral grains> tabular grains]. Further, the dodecahedron particles described in (2) to (9) can be said to be particles that are easily generated in a high temperature region of 50 ° C. or higher, preferably 60 ° C. or higher. Here, the crystal defects indicate twin planes, edge dislocation lines, and helical dislocation lines.
AgI particles having a β content of approximately 100 mol% can be formed by normal particle formation. The X-ray diffraction measurement shows that the peak intensity peculiar to γ type at 2θ = 50.795 ° and 55.703 ° is different from that of other β types at 2θ = 53.113 ° and 42.449 °. It is concluded from the fact that it is 1% or less. Further, when cooled slowly from 250 ° C. (takes the most stable structure), crystals with a β content of 100% can be obtained, and particles with a γ content of 70 mol% or more cannot be obtained under normal particle formation conditions. In addition, the β type is considered to be most stable near room temperature because the γ content is increased by the special method of rapid cooling from the high temperature described above. However, the blue light absorption edge wavelength is in the order of (α> γ> β), and the γ type has an advantage of absorbing even longer wavelength light. In this respect, particles having a high γ content are preferred.
Particles with a high γ content are shown in Table 12, CFour, C6, C9Obtained in the region of
These particles are preferably formed by selecting the most preferable combination within the range of pH 1 to 12, pAg = 1 to 10 or pI = 1 to 10, temperature (° C.) 0 to 100, preferably 2 to 90. .
The elliptical spherical particles are represented by C in Table 1.ThreeFirst, the dodecahedron seed crystal is formed, and then AgNO is obtained.ThreeAnd alkali to add CThreeIt can be obtained by growing under these conditions, and it is more preferable.
The particle-forming dispersion medium has a mass average molecular weight of 3000 to 106, Preferably 10Four~ 3x10FiveAny conventionally known water-soluble dispersion medium can be used in the range of 0.1 to 15, preferably 0.3 to 10% by mass. For specific examples of the dispersion medium, References 4 and 6, Japanese Patent Application No. 2001-297023 can be used. You can refer to the description. Examples of gelatin include alkali-treated, acid-treated gelatin, gelatin having a methionine content (μmol / g) of 0 to 60, gelatin having a low Met content of 0 to 20, H2O2The low Met content gelatin oxidized with a gelatin having a mass average molecular weight of 3000 to 70,000, preferably 5000 to 40,000; amino group, carboxyl group, imidazole group, alcohol group, amidino group, thioether group Gelatin obtained by chemically modifying 0.1 to 100, preferably 10 to 100%, of 1 to 6 kinds of groups can be used. As the chemical modification, an organic compound having 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms is preferable.
Examples thereof include phthalated, benzoylated, acetylated, trimellitated, succinated, and methyl esterified gelatin.
For example, C in Table 1FiveWhen the AgI particles are formed under the above conditions, when the dispersion medium used is phthalated gelatin and the phthalation rate is 95 to 100%, the particles described in (37) are formed. In the case of%, the particles described in (9) are obtained. However, in the case of gelatin in which amino groups are acetylated, benzoylated or trimellitated, or gelatin in which acid groups are esterified, the particles described in (9) can be obtained at a modification rate of 0.1 to 100%.
In addition, gelatin described below is preferable.
In Table 1, for example, [<2.3, (≧ 3)] at the right end represents pAg <2.3 and pI ≧ 3.
The tetradecahedral particles described in (13) to (15) and (37) have an embodiment having a recess (also referred to as a trough or a groove) on the particle surface and an embodiment having no recess. An embodiment having a recess is shown in FIG. The recess is in parallel with the (001) plane. This is thought to be because twin planes entered parallel to the (001) plane. In FIG. 7, it is considered that a γ-type layer, which is an ABC stack, is stacked with a stacking error in the stacking order of ABAB in a stacking order focusing on only one atom. As shown in FIG. 4d, straight concave portions appear on every other surface of the outer surface parallel to the (001) plane. This is called a single recess. The particles having two recesses are contained at different positions in parallel with each other.
Tabular grains C of the embodiment described in FIGS. 5 and 6h9Has crystal grains for promoting growth on the edge surface, and therefore becomes tabular grains. The defects include a helical dislocation line defect and a recess formed by a twin plane. The existence of tabular grains in which the concave portions were observed was confirmed. For the particles, it promotes growth. The particle in which the recess is not observed may be a particle having a small recess and difficult to be observed, or a particle containing a helical dislocation defect.
As shown in Table 1, the γ-type content of the tabular grains is high. This is probably because it contains many twin planes.
When examining the formation of the tabular grains described in (97) to (99) and the grains described in (10) to (12), various types of grains are formed during nucleation, and in the subsequent process, (102) The aging of has occurred. This is because the particles described in (10) to (12) and (97) to (99) grow faster and become larger. In the ripening, the simultaneous addition is stopped, or the addition state is low enough to cause ripening (Ag+And / or X-(Addition of a solution).
The particles described in (10) and (11) are first C9Plate-like seed crystal C91This is then converted to C in Table 12It can also be formed by growing under the following conditions. In this case, C91When the aspect ratio is increased, the tabular grains described in (10) and (11) finally obtained also have a high aspect ratio.
(10) Tabular grains C described in (11)2And C91The aspect ratio (projected diameter / thickness equivalent to a circle) of each tabular grain is preferably 1.5 to 300, more preferably 2 to 300. The thickness (μm) is preferably 0.01 to 0.5, and more preferably 0.02 to 0.3.
[0009]
(II-3) Particle surface structure.
Judging from the results, Ag+The formation equilibrium crystal habit in the excess region is the (100) surface [(100), (010), (1-10) plane] seen in the particles of FIG. As can be seen in FIG.+And X-Are alternately arranged surfaces, which correspond to the (100) surface of the AgBr system. C in Table 11, C2The hexagonal surface of the particle having the shape shown in FIG.2The value is considered to be 0.6 to 1.0, preferably 0.9 to 1.0.
Meanwhile X-The hexagonal (001) plane of the tetrahedral particles prepared in the excess region is [X-Total area of the surface consisting of / (001) total area of the surface] = AFourThe value is considered to be 0.6 to 1.0, preferably 0.70 to 1.0. The (101) surface of the tetrahedral particles [(101), (011), (01-1) plane] is AThreeIs considered to be 0.6 to 1.0, preferably 0.70 to 1.0. Therefore, the outer surface of the tetrahedral particle is X-Most of the surface on which only is arranged corresponds to the (111) surface of the AgBr system.
The outer surfaces of the dodecahedron particles are the (100) plane, the (001) plane, and the (101) plane. This corresponds to a tetrahedral particle composed of an AgBr (100) face and a (111) face. The (001) plane is Ag+X consisting of only and-There is a plane consisting of only A2The value depends on the growth conditions of the grains.
Within the formation conditions of the particles, [Ag+Concentration (mol / L) / X-Concentration (mol / L)] = BFourThe larger the is, the more A2The value increases. Therefore, in the particles described in (3) to (9), A2Can be prepared such that the particle is 0.70 to 1.0, the particle is 0.301 to 0.699, and the particle is 0.0 to 0.30. BFourThe value is preferably from 0.01 to 100.
In addition, A of these particles2~ AFourThe value is the Ag value in the emulsion after grain formation.+Or X-By changing the pAg and pI values of the emulsion.FourYou can change by changing. Therefore, in the particles described in (3) to (15), A2~ AFourParticles having a value of 0.70 to 1.0, particles of 0.301 to 0.699, and particles of 0.0 to 0.30 can be prepared. B during particle formationFourIf the value is greatly changed, the shape of the generated particles changes, so that it cannot be changed greatly. On the other hand, after forming the particles, Ag+Or I-And add BFourThe method of changing the A is almost without particle deformation.2~ AFourCan be changed greatly, which is more preferable.
Here, X stacked on the particle-I-Halogen ion (Cl) having a mol% content of 0 to 100, preferably 50 to 100, more preferably 80 to 100-, Br-, I-).
These particles can be preferably used depending on the purpose. For example, chemical sensitization nuclei are formed preferentially on surfaces that are highly reactive with chemical sensitizers, and latent image dispersion is suppressed. Preferentially, [the amount of chemically sensitized nuclei produced = the amount of moles of chalcogen atoms / cm2] Is 1.5 to 10 on the other side6, Preferably 3-106Times, more preferably 10 to 106It means that it is double.
It is preferable to selectively form on different crystal planes. In the particles described in (3) to (9), it is more preferable to form chemical sensitization nuclei preferentially on the (−110) plane. The magnitude of reactivity of chemical sensitizers is usually (Ag+Surface on which only is placed> Ag+And X-Where X is placed> X-Is the order of the plane on which the
The adsorption property of the sensitizing dye is A2~ AFourSince it depends on the value, a sensitizing dye may be added and adsorbed after adjusting to a preferred value. Further, after adding a sensitizing dye, adsorbing to the particles, adsorbing 10 to 100% of the saturated adsorption amount, preferably 40 to 100%, more preferably 70 to 100%, adding a chemical sensitizer, It is preferable to form a chemical sensitization nucleus preferentially in a place where no sensitizing dye is adsorbed. Preferentially follows the above provisions.
Further, by utilizing the difference in the adsorption property of the sensitizing dye to different crystal planes, chemical sensitization nuclei can be preferentially formed on the crystal plane with a low coverage of the dye. That is, the amount of adsorption of the sensitizing dye (mol / cm2) Ratio = BFive= [B6Adsorption amount on crystal face / B7The amount of adsorption on the crystal plane] is 0.0 to 0.9, preferably 0.0 to 0.4, and more preferably 0.0 to 0.2. And add B6A chemical sensitization nucleus is preferentially formed on the surface.
[0010]
(II-4) Ag during particle formation+, I-How to adjust the concentration.
When forming the particles 1, Ag of the reaction solution during particle formation+And I-It is necessary to precisely control the concentration of. Therefore, it is preferable to use the method described in (55) to (79). In general, when an ion selective electrode is placed in a solution and the potential difference from the reference electrode is measured, the specific ion concentration correlates with the magnitude of the potential difference. A method of detecting the ion concentration in a solution as an electric signal by utilizing the correlation is frequently used in the chemical field. In the case of AgX particle formation, Ag+And / or X-An electrode is used that is selectively sensitive to. Specific examples include metallic silver, an AgX electrode (AgI, AgBr, AgCl and mixed crystals of two or more thereof), an embodiment in which the AgX electrode is laminated on metallic silver, a chalcogen silver electrode (Ag2S, Ag2Se, Ag2Te and mixed crystals of two or more thereof), metallic silver, AgI, Ag2S electrodes are preferred. In the present invention, the silver potential refers to these electrode potentials with respect to the reference electrode.
As the reference electrode, an electrode that exhibits a stable potential in the range of 10 to 60 ° C. is used. As specific examples, there are kangkou electrode, (Ag / silver halide) electrode, [for example, (Ag / AgCl), (Ag / AgBr), (Ag / AgI) electrode], and (Ag / AgCl) electrode is more preferable. For details, refer to the description in Chapter 12 of Document 9.
The potential difference between the two electrodes can be measured by joining the reference electrode and the reaction solution with a salt bridge to establish electrical continuity. There are a method of measuring the potential difference by putting a reference electrode in the reaction solution and a method of measuring the potential difference by placing the reference electrode outside the reaction solution, the latter being more preferable.
It is preferable to keep the temperature of the reference electrode constant, preferably 20 to 30, preferably 23 to 27 ° C. The reference electrode potential always shows a stable potential. In this state, Ag in the reaction solution+And I-The potential difference when the concentration is variously changed is obtained for various temperatures. Using this relationship, the silver potential of the reaction solution during grain formation is measured, and Ag added to keep the value at the specified value.+Or X-The flow rate of the solution containing is controlled by the method described in (55) to (78).
The silver potential of the reaction solution is measured, and (the potential−specified potential) difference S1And a signal proportional to the difference (k1S1) To the addition system to control the flow rate. This corresponds to the P method of conventionally known PID control. In this case, the addition rate of the control liquid is equal to the equilibrium addition rate S.Ten[Eg Ag+Specified addition rate S11(Mol / sec), X-The equilibrium addition rate of S is S11It is preferable that the amount of increase / decrease with respect to the signal corresponds to the signal. The signal is sent every 0.01-100, preferably 0.03-30, more preferably 0.03-5 seconds. However, in proportion to the difference, X-Increasing the flow rate of the liquid causes the potential to pass too much and falls too much due to the increase in the flow rate.If the flow rate is lowered to correct this, the potential passes too much too much because it passes the specified potential. This may occur repeatedly (this is called potential hunting). In order to prevent this, the following method is effective.
1) This phenomenon is caused by adding Ag+, X-Increases in proportion to the equilibrium addition rate. Also, the concentration S of ionic species in the reaction solution to be controlled12It becomes smaller in proportion to (mol / L). Also, the amount of reaction solution (S13In proportion to the liter). In addition, it depends on the temperature and pH of the reaction solution. Preferred value of signal amount of CDJ control when these basic factors are changed (k1k2S1) Before the start of particle formation, (particle formation time vsk2) Is stored in the controller and (k1k2S1) To increase or decrease the flow rate. Therefore k1S1In the case of particle formation conditions where hunting occurs with the signal of | k2| Is 10-6~ 0.98, preferably 10-6~ 0.7, more preferably 10-Four~ 0.3 is selected. The larger the hunting, the more | k2A smaller value is selected for |. In addition to this, the type and amount of the dispersion medium, additive, and AgX solvent also affect the hunting.2It can also be included in |.
2) The magnitude of the hunting is the absolute value S of the integrated value of (the potential difference vs. time elapsed).2Is proportional to2(KThree= 1.0 + kFourS2) And as a CDJ signal (k1k2S1/ kThree).
3) Hunting cycle SThreeFind the second [kFive= 1 + k6/ SThree] As the CDJ signal1k2S1/ (KThreekFive). The shorter the period, kFiveBecomes larger and the increase / decrease width of the flow rate is suppressed. Other, for example (SThree> SFour) If you want to control in seconds, the measured value is contrary (SThree<SFour) [KFive= 1-k6(SFour-SThree) / SFour] Is formed, and the CDJ signal is k1k2S1/ (KThreekFive) Is transmitted. Here, the period refers to one cycle of the repetition. The signal value is obtained every 1 to 1000, preferably 3 to 100 seconds, and fed back to the control system.
4) In addition, the functions I and D of the conventionally known PID control method can be used. That is, I is S1In order to avoid an aspect where the time does not decrease indefinitely over time, (S1This is a method of increasing the increase / decrease amount of the addition rate in proportion to the integral value. D is S1Change in value over time (dS1This is a method of decreasing the increase / decrease amount when / dt) is too large and increasing it when it is too slow.
5) Method of adding specified flow rate of two liquids.
If the addition accuracy of Ag-1 solution and X-1 solution is good, Ag-1 solution and X-1 solution are mixed and added at the specified flow rate at the same time.+And I-The concentration of can be precisely controlled.
6) A three-liquid addition method, for example, a method in which Ag-1 liquid and X-1 liquid are added at a specified flow rate, and CDJ control addition is performed using another X-2 liquid. If the addition rate (mol / sec) of X-2 liquid is the aspect of (56), the addition speed of X-2 liquid will become small and control accuracy will increase more. Further, when the (X-2) solution is a dilute solution described in (65), the control accuracy is further increased.
Regarding the details of the PID control and the pulse motor, and the above control, the description in Document 8 can be referred to.
[0011]
(II-5) Epitaxial particles.
The disadvantages of high AgI content particles are as follows. 1) Even if chemical sensitization is performed, it is difficult to form effective chemical sensitization nuclei. This is because AgI is less soluble than AgBr and is less susceptible to halogen conversion due to its small solubility difference from chalcogen silver. 2) The electron capture efficiency of chemically sensitized nuclei is small. 3) The latent image development promoting action is small. 4) Development speed and fixing speed are slow. These have AgI characteristics (for example, solubility in water, ionic bond ratio) compared to AgBr.2This is considered to be close to the characteristics of S.
When the particles 1 are used in the epitaxial mode described in (21) to (25) and (52), these defects are suppressed. This is because chemical sensitization nuclei are formed in an epi part having a low AgI content, the nuclei capture electrons, form a latent image, and serve as a development starting point. The time until the end of development and fixing processing is shortened by increasing the processing temperature (° C.) in the range of 20 to 60, preferably 30 to 60.
The formation of the epi-grains was achieved by adding Ag to the emulsion described in (1) (hereinafter referred to as emulsion 1)+And Xa-An epilayer AgXb may be deposited on a part of the surface of the particle 1 by adding a liquid. At this time, there are a method of adding the particles 1 with the adsorbent adsorbed on the particles 1 and a method of adding the particles 1 without the adsorption. Examples of the adsorbent include a cyanine dye, an antifoggant, an onium salt compound, and a surfactant. Regarding examples of the compound and details thereof, the descriptions in Documents 4, 6, and 11 described later can be referred to. The adsorption amount is preferably 10 to 100, more preferably 30 to 100% of the saturated adsorption amount. Regarding the epi formation, the description in Document 2 can be referred to. It is preferable to adsorb the adsorbent because the epi-forming site is limited.
The dopant can be doped in the particles 1 and / or in the epiphase in the manner described in (25) to (30). Ag in the presence of the dopant+And X-Is added to grow the grain or epi phase, the dopant is doped. Regarding the doping agent, the descriptions in References 4 and 6 below can be referred to. The presence of the dopant (mol / L) is 10-1-10-8, Preferably 10-2-10-7Is preferred.
In order for the dopant to be doped efficiently, first, the dopant is strongly adsorbed preferentially on the particle surface and does not leave the surface. For that purpose, the dopant itself has a strong adsorption characteristic or a dopant having a strong adsorption group (for example, a mode in which a ligand has such a characteristic in a metal complex) may be used. If AgX is deposited on the strongly adsorbed state, it is doped. In order for the dopant to be efficiently incorporated into the AgI crystal lattice, the same four-coordinate structure dopant as AgI is preferred.
PX = -log [X at the time of epi formation or doping-Mol / L] is 0.5 to 10, preferably 1 to 7, pH is 1 to 12, preferably 2 to 10, temperature (° C) is 5 to 95, preferably 10 to 85, and dispersion medium concentration (g / L). L) is 1 to 100, preferably 5 to 40, and the most preferable combination can be selected.
[0012]
(II-6) Chemical sensitization, spectral sensitization, etc.
Chemical sensitization can be carried out by adding a chemical sensitizer to the emulsion of the present invention. As chemical sensitizers, chalcogen sensitizers (sulfur, selenium, tellurium sensitizers), noble metal sensitizers (gold, Group 8 metal compounds), reduction sensitizers alone, in any ratio of two or more of them Can be used in combination. (50) Agi+An antifoggant is effective as a concentration reducing agent.
Particle surface Ag+Combined with [Ag+(Surface) ⇔Agi+) Shift the chemical equilibrium to the left, Agi+Reduce concentration. Regarding details of these compounds, usage, etc., the descriptions in Documents 4, 6, and 11 can be referred to.
The particle 1 has a large blue light absorption coefficient at a wavelength shorter than 430 nm, but has a smaller blue light absorption coefficient at a longer wavelength. Therefore, when emulsion 1 is used for the blue-sensitive layer of the light-sensitive material, it is preferable to add one or more blue-sensitive layer sensitizing dyes, adsorb them to the grains, and spectrally sensitize them.
When used in a green sensitive layer, one or more sensitizing dyes for green sensitive layer are added, and when used in a red sensitive layer, one or more sensitizing dyes for red sensitive layer are added for spectral sensitization. Are used in the form described in (53), respectively, and the dye is used in a form in which the dye is adsorbed by 10 to 100%, preferably 30 to 100% of the saturated adsorption amount.
In addition, it can be used in the mode described in (54). It can also be used for a photosensitive material that is exposed to light in the wavelength range of 360 to 440 nm. Any light can be used, and there are natural light, LED light, laser light, fluorescence, discharge light, high temperature material light, and the like. Regarding the light source, the description in Reference 7 can be referred to, and the description of References 4, 6, and 11 can be referred to for the details of the compound examples of the cyanine dye and the method of use. 1 to 10 kinds of the dye species can be preferably used, and it is preferable to use two or more kinds of dyes having different absorption spectrum waveforms or dyes having different adsorption orientations to form a preferable absorption spectrum waveform and adsorption orientation.
Further, a compound that absorbs one photon and gives 2 to 4 electrons to AgX grains when adsorbed on emulsion grains and irradiated with light is 10-8-10-1, Preferably 10-6-10-2It is preferable to add in the addition amount of mol / mol AgX. Regarding the details of the compound, the description in Reference 12 can be referred to.
[0013]
(II-7) Other uses of particle 1
Since the particle 1 has low solubility in water, it can form ultrafine particles that are highly transparent to visible light. For this reason, it can utilize for a photographic material in the following aspect. 1) An ultrafine particle emulsion of particle 1 is added to and dispersed in the dispersion medium layer of the photosensitive layer and / or the non-photosensitive layer, and the refractive index of the dispersion medium layer with respect to visible light is increased. The difference in refractive index between the photosensitive AgX particles and the surrounding dispersion medium layer is reduced, the light scattering intensity of the AgX particles is reduced, and the sharpness of the photographic image obtained by development processing is increased. Molar ratio of other refractive index increasing agents such as titanium oxide and any ratio ((particles 1 / other refractive index increasing agents other than particle 1) = 10-Five-10Five, Preferably 10-3-10Three] Can also be used together. Regarding these details and embodiments, the description in Reference 5 can be referred to.
2) The ultrafine particles are dispersed in the dispersion layer of the photosensitive layer and / or the non-photosensitive layer as an ultraviolet absorber. Since the intrinsic absorption edge of the particle 1 is a direct allowable transition and has a large absorption coefficient, it is effective as an ultraviolet absorbing material having a wavelength of about 420 nm or less. In this case, the molar ratio of other ultraviolet absorbers and any molar ratio [(ultraviolet absorber other than particle 1 / particle 1) is 10).-Five-10Five, Preferably 10-3-10Three] Can also be used together. For other ultraviolet absorbers, the descriptions in References 4 and 5 can be referred to.
In order to form the fine particles described in (16), it is preferable to form the particles 1 under conditions of low solubility. For that purpose, AgX solvent (Ag+The compound which forms a soluble complex with the compound) is substantially absent, ie, its concentration (mol / L) is 0-10.-1Is preferred, 0-10-3Is more preferable, 0-10-6Is more preferable. Further, in the solubility curve of the particle 1 [curve representing the relationship between the dissolution concentration of silver (mol / L) and the pAg], the solubility is 1.0 to 6, preferably 1.0 to 3 times the pAg of the lowest solubility. These conditions are preferred.
Under these conditions, AgnXmSince the complex concentration is low, it is difficult for crystal defects to enter the particles, so that smaller particles are formed.
Specifically, it is preferable to use the conditions described in (113).
Also, Ag during nucleation+And X-It is only necessary to increase the double jet addition speed to form many nuclei and complete the particle formation in a short time. That is, the method described in (104) may be used. However, when added at high speed, the generation ratio of particles having uncontrolled defects increases. In this case, it is preferable to increase the protective colloid properties of the nucleus using the method described in (106). Furthermore, nucleation may be performed at a low temperature, and the following conditions may be used.
In order to form nuclei and seed crystals with as few defects as possible, the Ag at the time of nucleation+And X-The rate of addition (mol / min) may be slowed down, and the condition (105) may be used. It is more preferable to use the method (106) in combination. However, the number of generated nuclei is reduced. If necessary, it is preferable to concentrate the emulsion using the methods (74) and (75).
In addition to the temperature of the reaction solution, the combination of pH, pAg, and pI is selected to change the size of the produced particles. Therefore, it is preferable to select the most preferable combination. The interaction between the dispersion medium and the AgX particles changes, and the size changes.
When added in the form of (111) and (112), the added solution is added at the same temperature as the reaction solution, so that the specific particles can be made well and monodisperse particles with more uniform performance are formed. And preferred. FIG. 14 shows an example of the apparatus.
The lower the temperature (° C.), the lower the solubility, preferably 0 to 70, more preferably 1 to 40, and still more preferably 1 to 30. In this case, the dispersion medium is preferably a dispersion medium that does not gel at the low temperature, and has a viscosity (Pa · second) of 10% when a 2.0 mass% solution is allowed to stand at 1 to 20 ° C. for 15 minutes.-Four~ 0.2, preferably 10-Four~ 0.1, more preferably 10-FourA dispersion medium of ~ 0.05 is preferred. In the case of the gelatin, the weight average molecular weight is preferably 3000 to 50,000, more preferably 3000 to 30,000. Further, the dispersion medium described in (107) and (108) is also preferable.
[0014]
(II-8) Others.
When the X-ray diffraction is measured by CuKβ ray after the dodecahedron AgI particles are settled and oriented on a flat glass substrate, the diffraction pattern shown in FIG. 8A is obtained, and the (001) plane and (100) plane are obtained. A diffraction peak of (101) plane remains. Accordingly, crystal planes oriented parallel to the substrate are the (001) plane, (100) plane, and (101) plane. When the hexagonal columnar particles are oriented in the same manner and X-ray diffraction is measured, the diffraction pattern shown in FIG. 8B is obtained, and the diffraction patterns on the (100) and (001) planes remain. Accordingly, the crystal planes oriented parallel to the substrate are the (100) plane and the (001) plane. When the tetrahedral particles shown in FIG. 4 are similarly oriented and X-ray diffraction is measured, the diffraction pattern of (c) of FIG. 8 is obtained, and the diffraction patterns of the (001) plane and the (101) plane remain. Accordingly, the crystal planes oriented parallel to the substrate are the (001) plane and the (101) plane.
If the particle has a flat crystal plane, the crystal plane has a probability of being in close contact with the substrate surface in proportion to the area thereof, so that a diffraction peak of the crystal plane with a proportional strength remains.
[0015]
[Table 2]
Figure 0003999147
[0016]
When the dielectric loss of the dry film of the gelatin dispersion of emulsion grains described in (9) to (15) is measured and the dark conductivity (σ) characteristics of the grains are examined, the following can be said. Dodecahedron particle C having a diameter of about 0.2 μm at 25 ° C.FiveGives two loss peaks, a large peak (fL) on the low frequency side is about 106The small peak (fH) on the high frequency side is 10 Hz.8Presumed to be around. This behavior is close to that of octahedral AgBr particles of the same size. When the antifoggants 1 to 3 are adsorbed to the particles, fL and fH shift to the low frequency side, and from the result of the particle size dependency described later, the dark conductivity component corresponding to fL is the particle surface site. Ag+Interstitial Silver Ion Agi Generated by Entering the Particle+it is conceivable that.
The fL temperature (T ° K) change of the dodecahedron particles described in (3-1) to (3-7) in Table 3 was measured, and log (σT) vs. 1000 / T was plotted in FIG. ΔE of σT = Aexp (−ΔE / kT) was determined from the slope of the straight line and is shown in Table 3. However, [peak frequency of fL = 1011σ]. Since the slope was slightly different between the region of 250 ° K or higher and the region of 250 ° K or lower, both ΔE values were described. The decrease in fL due to the addition of the antifoggant was small compared to the AgBr system. AgI is a bond between a soft acid atom and a soft base atom, and is a soft bond compared to a bond between a hard acid atom and a hard base atom. The binding free energy ΔG is also smaller than AgBr. For this reason, Agi is easy to generate and move in the crystal. This is a phenomenon that reflects this. For this, the methods (26) to (36) are used together, and the fL value is set to 10-3It is preferable to reduce it to 0.9 times. [△ E = △ Gi(Agi+Generation energy) + U (Agi+Activation energy))], and in AgI, U = 0, so ΔE≈ΔGiRepresents.
As the particle size increased, fL and fH shifted to lower frequencies. For example, fL is 10 for particles of about 1.1 μm diameter.5.24Met. Hexagonal columnar particle C of Example 61(Average diameter 0.65 μm, average thickness 0.26 μm) fL is 104.5, FH is 106.05When the antifoggant 2 is adsorbed thereto, fL decreases and disappears, and fH is 105.1It becomes one peak. This behavior is shown in Table 19Tabular grain C obtained under the conditions of9Similar to the behavior of (average thickness 0.25 μm, average diameter 2 μm). Particle C9FL is 104.8And fH is 105.8When the inhibitor 2 was adsorbed thereto, the two frequencies were almost the same, and the peak intensity ratio of (fL / fH) was reversed (1 / 0.95 → 0.94 / 1).
Both particles have twin planes parallel to the main plane, which is Agi+It is considered that the frequency of fL is lowered. Particle C1Or C9When the main plane is oriented parallel to the electrode surface, the surface conductivity of the main plane does not contribute to the dielectric loss. It is considered that the frequency of fH is lowered because only the surface conduction of the side surface and part of the non-parallel oriented main plane contributes.
The amount of antifoggant added is about 3 × 10.-3Mol / mol AgX (see Table 3).
[0017]
[Chemical 1]
Figure 0003999147
[0018]
The CFiveThe change in fL when the pH and pAg of the emulsion was changed was compared with that in the case of AgBr grains as shown in Table 3 (fL value 10XThe X value is shown). Table 3 shows type emulsion and HNO for type emulsionThreeSolution added to pH 3; NaOH solution added to pH 10.4; AgNO 3ThreeLiquid to pAg2.2, AgBr is Br-For AgI,-The liquid was added to give pX = 2.0, and the antifoggant 1 or 2 was (3 × 10-3(Mol / mol AgX). Cube AgBr, B6And octahedron AgBr, B7And dodecahedron AgI, CFiveThen, Agi at pH ↑ than type+The concentration has dropped. This is Gel's -NHThree +Is Ags+(Ag on the particle surface+) Was unstable, but at pH ↑ -NH2And this is Ags+Coordinated to Ags+Stabilize the Ags+⇔Agi+It is understood that the balance of is moved to the left side. B6And B7The opposite phenomenon occurs at pH ↓ than type, and Agi+The concentration has increased. This is Gel's -COO-Is Ags+Was changed to -COOH at pH ↓, Ags+It is understood that the stabilizing action of the slag decreased and the equilibrium shifted to the right. But CFiveThen the concentration decreased. This is because the high hydrophobicity of AgI is close to that of organic compounds.-This is because the stabilization effect by intermolecular force with -COOH is larger than the stabilization effect of. Non-ionic -NH also in the case of pH ↑2This is considered to be a stabilizing effect due to the intermolecular force. There are the following mechanisms for the dispersion medium to stabilize the atoms on the particle surface. 1) Coulomb interaction, 2) S, N, O atoms and Ag with electron pairs+Stabilization effect by coordination bond. H2O coordination bonds are also included. 3) Interaction due to intermolecular force between an organic compound having —COOH or π-conjugated bond and AgX on the surface. It can be understood that the contribution rate of each action is different between the AgBr system and the AgI system. Regarding intermolecular forces, reference can be made to descriptions in the chemical dictionary, intermolecular forces, and Tokyo Kagaku Dojin (1994).
B6And B7Then Ag+Agi at concentration ↑+Concentration ↓. This is because Ag on the particle surface+Is adsorbed, and the whole particle is positively charged, whereby Agi in the particle+The electrical energy level of A is increased by ΔEeV, and Agi+This is because the concentration decreases. The electric potential in the particle due to the surface charge is almost equipotential according to Gauss's law (therefore no potential gradient exists), and Agi+The concentration decreases everywhere in the particle. The amount of decrease is usually exp (-ΔE / KT). Here, K represents a Boltzman constant, T represents an absolute temperature, and the unit is KTeV.
On the other hand, CFiveThen Ag+Agi at concentration ↑+Conversely, the concentration increased. The reason is as follows. AgI particles and Ag+The level ↑ is small because the ionic interaction with is small (AgI is hydrophobic). For this reason, the adsorbed Ag+Is Agi+And (Ags+⇔Agi+) Is moved to the right to increase the concentration. Or because the lattice spacing of AgI is large, Ag+Mechanism that goes directly into the gap. Alternatively, AgI can be regarded as a kind of organic polymer because it is a four-coordinate bond and has a large covalent bond (a bond electron has a large localization). Therefore, Ag in the solution+It is also considered that the liquid is soaked between the polymer interstices. However, Agi+Movement is I-The movement also shows dielectric loss characteristics because it is constrained by the interaction. Br-Agi at concentration ↑+The concentration has increased. This would be the opposite effect.
CFiveThen I-Agi at concentration ↑+Concentration decreased slightly. This is I-Is the particle surface Ags+Adsorbed on Ags+The effect of reducing the concentration. I-Is Ag in solution+The concentration of (in the solution Ag+⇔Ags++ Agi+The effect of shifting the chemical equilibrium to the left is considered.
Since AgI has characteristics close to those of the organic polymer, it has high electron localization and low electrical conductivity. Therefore, it also has a feature that the photoconductivity in the crystal is lower than AgCl and AgBr.
Therefore, the AgI system has a sensitivity different from that of the AgBr system, and it is necessary to select an optimum combination of pH, pAg, and pI of the emulsion. However, the pH of the type emulsions in Table 3 is 6.4, and pAg is neutral (pAg = pX).
[0019]
[Table 3]
Figure 0003999147
[0020]
AgI dodecahedron particles having a β-type content of about 100% are oriented on a glass plate and X-ray diffraction is measured. Next, when the sample is annealed at 250 to 300 ° C. as it is, then rapidly cooled and converted into a γ-type, and X-ray diffraction is measured, the maximum diffraction peak at 21.3 ° increases. From this, it can be seen that the β-type (001) plane is changed to the γ-type (111) plane. That is, it can be seen that the β-type [001] vector direction is changed to the γ-type [111] direction.
This indicates that β-type and γ-type can coexist as the stacking fault in one crystal. Moreover, the example is seen by the ZnS crystal | crystallization, for example, the description of Philosophical Magazine B, 279-297 (2001) can be referred. Ag in the [001] direction of FIG.+If the stacking position of the layers is (ABABAB / CBABA) or (ABABAB / CBACBA), the / position is a twin plane.
Regarding the AgX emulsion of the present invention and its application, the descriptions in paragraphs (0067) to (0087) of JP-A No. 2000-201810 and (I-8) of JP-A No. 2001-255611 can be employed. .
Regarding the application of the emulsion of the present invention to a heat-developable light-sensitive material, reference can be made to Reference 13 below, and for application to other light-sensitive materials, Reference 14 can be referred to.
Regarding the non-photosensitive organic silver salt, the thermal developer, the binder, and the support described in (123), the description in Reference 13 can be referred to.
(Reference)
1. B.L.J.Byerley et al. Journal of Photographic Science, 18, 53-59 (1970). U.S. Pat. Nos. 4,672,026, 4,414,310 and 4,184,878.
J.E.Maskasky, Physical Review, Volume B43, 5769-5772 (1991).
2. J. E. Maskasky, Phot. Sci. Eng. 25, 96-101 (1981), U.S. Pat. Nos. 4,940,084, 4,142,900 and 4,459,353.
3. G.C. Farnell, Journal of Photographic Science, 22, 228-237 (1974).
4). Research Disclosure, item 17643 (December 1978), item 38957 (September 1996).
5. European Patent No. 930532A, Japanese Patent Laid-Open No. 2000-347336.
6). Japanese Patent Application Nos. 2001-297023, 2001-201810, 2001-255611, 2000-347336, 8-69069, US 5,360,712.
7. Edited by Hiroshi Kubota, Optical Handbook, Asakura Shoten (1975). Edited by Shigeo Minami et al., Spectral Technology Handbook, Asakura Shoten (1990).
8). Edited by Chemical Industry Association, Handbook of Chemical Equipment, Chapter 21, Maruzen (1989).
9. The Chemical Society of Japan, Chemical Handbook, Basics, Maruzen (1984).
10. T.H.James and W.Vanslow Phot.Sci.Eng., 5, 21-29 (1961).
11. T.H.James, The Theory of the Photographic Process, 4th edition, Macmil lan (1977).
12. Japanese Patent Application Nos. 2001-800, 86161, 2000-22162, U.S. Pat. Nos. 5,747,235, 5747236, 6054260, and 5994051.
13. Japanese Patent Application Nos. 2001-349031, 2001-342983, 2001-335613, and JP-A-2001-33911.
14. JP-A-59-119350, 59-119344, US Pat. No. 4,672,026.
[0021]
【Example】
The following “Example 1”, “Example 2”, “Example 3”, “Example 4”, “Example 5” and “Example 12” are referred to as “Reference Example 1” and “Reference Example”, respectively. “Example 2”, “Reference Example 3”, “Reference Example 4”, “Reference Example 5”, and “Reference Example 12” shall be read.
Example 1.
  Dispersion medium solution 1 (25 g of gelatin 1, 1200 ml of water, 0.1 g of KI and pH 6.0) was put in a reaction vessel, kept at a temperature of 75 ° C., and stirred with Ag-1 solution (AgNOThreeWas added at the same time at 4 ml / min for 10 minutes to form seed crystals. After aging for 2 minutes, Ag-2 solution (AgNOThreeIs contained in 17 ml of 100 ml) and X-2 solution (16.7 g of KI is contained in 100 ml), and a silver potential (a metallic silver electrode, a pair of 25 ° C. saturated calomel reference electrode).ThreeCDJ was added to keep it at -40 mV). Ag-2 solution was added at a starting flow rate of 2.4 ml / min and an acceleration flow rate of 0.16 ml / min for 98 minutes.
  At this point, 1 ml of the emulsion was collected, and after sensitizing dye 1 was saturated and adsorbed, it was centrifuged to remove gelatin. Water was added for redispersion, and one drop was placed on a mesh plate covered with a collodion film and dried. Carbon deposition, Au-Pd shadowing, and fixing were performed, and a transmission electron microscope image (TEM image) of the replica film was taken. The variation coefficient of variation in the diameter of the particles was 0.065, and the average diameter was 0.24 μm. The particle shape (9) and the dodecahedron particles shown in FIG. 2 accounted for 99% or more of the total projected area of the particles.
  The addition rate (mol / sec) of the X-2 solution is based on the same rate as the addition rate (mol / sec) of the Ag-2 solution. If the silver potential is higher than -40 mV, it is proportional to the potential difference. The CDJ was added in such a manner that the addition rate was increased, and when the addition rate decreased, the rate was decreased in proportion to the potential difference. As described in 1) of (II-4), k obtained in a preliminary experiment2When CDJ was added, the amplitude of the potential fluctuation in the CDJ was within -14 to +14 mV with reference to -40 mV. In addition, each additive solution in all Examples was directly added to the solution through a hollow tubular rubber porous membrane having 800 pores. This is a rubber tube with a 0.5 mm diameter needle inserted to make a hole, and when not added, the hole is closed.
  In addition to the addition of one solution, the solution was added in the form of the alternating addition method described in (78) using two plunger pumps.
[0022]
Example 2
In Example 1, the same growth was performed except that the CDJ addition growth was performed as follows. The addition mode of the Ag-2 was the same, but the addition of the X-2 solution was performed simultaneously with Ag-2 for 98 minutes at an initial flow rate of 2.2 ml / min and an acceleration flow rate of 0.147 ml / min. At this time, the silver potential was controlled to -40 mV by controlling the addition speed of the X-21 solution (containing 4.15 g of KI in 100 ml) and adding it simultaneously. The starting flow rate was 0.8 ml / min and was controlled 10 seconds after the start of addition. The fluctuation width of the potential by this control method was within -14 to +14 mV with reference to -40 mV.
The TEM image of the obtained emulsion grains was taken and shown in FIG. The average diameter was 0.24 μm and the coefficient of variation was 0.058. The dodecahedron grains accounted for 99% or more of the total projected area of the grains.
[0023]
Example 3
Dispersion medium solution 3 (35 g of gelatin 1, 1500 ml of water, 0.05 g of KI, pH 6.0) was put in a reaction vessel, kept at a temperature of 62 ° C., and stirred, while stirring, Ag-31 solution (AgNO in 100 ml)Three30 g) and X-31 solution (containing 29.4 g of KI and 1 g of gelatin 2 in 100 ml) were added simultaneously at 25 ml / min for 8 minutes directly into the solution through the porous membrane.
Next, simultaneous mixing addition was performed for 4 minutes at a start flow rate of 25 ml / min and an acceleration flow rate of 3 ml / min. In either case, the alternate addition method was used.
The TEM image of the obtained emulsion grains was taken. The average diameter was 0.04 μm, and the variation coefficient of the diameter distribution was 0.10. 80 ml of the emulsion was sampled and added to the dispersion medium solvent 3. At 75 ° C., using Ag-2 solution and X-2 solution, initial flow rate was 3.4 ml / min and acceleration flow rate was 0.24 ml / min for 50 minutes. In the same manner as in Example 1, -40 mV CDJ was added. When the TEM image of the obtained emulsion grains was taken, 98% or more of the projected area was the dodecahedron grains.
[0024]
Example 4
Example 3 was the same except for the following. Ag-31 solution and X-31 solution were added at the same rate of 12 ml / min for 8 minutes. Next, simultaneous mixing addition was performed for 12 minutes at a start flow rate of 12 ml / min and an acceleration flow rate of 1.2 ml / min. The average diameter of the obtained emulsion grains was 0.06 μm, and the coefficient of variation in diameter distribution was 0.09. When the grains were grown in the same manner as in Example 3, 99% or more of the projected area was the dodecahedron grains.
[0025]
Example 5 FIG.
Dispersion medium solution 5 (containing 25 g of gelatin 1 and 1200 ml of water, and adjusted to pH 10.0 with NaOH)ThreeWas added to a reaction vessel, the temperature was kept at 75 ° C., and Ag-1 solution and X-41 solution (containing 100 g of KI in 100 ml) were stirred at 4 ml / min. Simultaneous mixing was added for 10 minutes. Then, using Ag-2 solution and X-42 solution (containing 16.56 g of KI in 100 ml), CDJ was added in the same manner as in Example 1 to keep the silver potential at 360 mV. Ag-2 was added at an initial flow rate of 2.4 ml / min and an acceleration flow rate of 0.16 ml / min for 98 minutes.
The TEM image of the obtained emulsion grains was taken and shown in FIG. The particle structure is (33) AFiveThe average value was an ellipsoidal sphere of about 1.16. The average diameter was 0.34 μm, and the variation coefficient of the diameter distribution was 0.08. The particles described in (33) accounted for 97% or more of the total projected area of the particles.
The particles were treated in the same manner as in Example 3 in Table 1FiveWhen grown with CDJ-40 mV under the above conditions, 96% or more of the total projected area was the dodecahedron grains.
[0026]
Example 6
Dispersion medium solution 6 (containing 25 g of gelatin 1 and 1200 ml of water, HNOThreeTo the solution adjusted to pH 2.0 with AgNOThree1.2 g dissolved solution) was placed in a reaction vessel, the temperature was kept at 75 ° C., and Ag-1 solution and X-41 solution were simultaneously mixed and added at 4 ml / min for 10 minutes while stirring. Next, using the Ag-2 solution and the X-42 solution, CDJ was added in the same manner as in Example 1 to keep the silver potential at 391 mV. Ag-2 was added at an initial flow rate of 2.4 ml / min and an acceleration flow rate of 0.16 ml / min for 98 minutes.
When a TEM image of the obtained emulsion grains was taken, the grain shape was hexagonal columnar grains shown in FIG. The average diameter was 0.65 μm, the average thickness was 0.26 μm, and the variation coefficient of the diameter distribution was 0.14. The particles accounted for 96% or more of the total projected area of all the particles.
[0027]
Example 7
The dispersion medium solution 1 was put in a reaction vessel, and the temperature was kept at 40 ° C., and Ag-1 solution and X-1 solution were simultaneously mixed and added at 4 ml / min for 8 minutes while stirring all the time. Next, the temperature was raised to 75 ° C., and −40 mV CDJ was added for 90 minutes in the same manner as in Example 1 using Ag-2 and X-2. The start flow rate of Ag-2 was 2.4 ml / min, and the linear acceleration flow rate was 0.24 ml / min. 1 ml of the emulsion was sampled and a TEM image of the replica film of the grains was taken and shown in FIG. The variation coefficient of variation in particle diameter was 0.06, the average diameter was 0.21 μm, and the particle shape was asymmetric tetrahedral particles as shown in FIG. The variation coefficient of the diameter distribution was 0.087. (37) A6The average value was about 0.27, and the variation coefficient of the variation distribution was 0.12.
Thereafter, the emulsion was washed with water, re-dispersed, chemically sensitized, spectrally sensitized, and additives were added in the same manner as in Example 1 and coated on a PET base to obtain a sample.
[0028]
Example 8 FIG.
Dispersion medium solution 8 (30 g of gelatin 1, 1300 ml of water, 0.05 g of KI, pH 6.0) was put in a reaction vessel, kept at a temperature of 40 ° C., and 8 ml of Ag-2 solution and X-2 solution with stirring. The mixture was added at the same time for 8 minutes. Next, the temperature was raised to 75 ° C., and Ag-2 solution and X-2 solution were added in the same manner as in Example 1 for 18 minutes by adding −40 mV CDJ. The starting flow rate was 24 ml / min and the linear acceleration flow rate was 2.4 ml / min.
1 ml of the emulsion was sampled and a TEM image of the replica film of the grains was taken and shown in FIG. It was an asymmetrical tetrahedral particle. The average diameter is 0.12 μm, the coefficient of variation of the diameter distribution is 0.11, and A6The average value was about 0.32, and the variation coefficient of the variation distribution was 0.14.
[0029]
Example 9
Dispersion medium solution 9 (25 g of gelatin 2 and 0.05 g of KI, pH 6.0) was put in a reaction vessel, and the temperature was kept at 18 ° C., and Ag-2 solution and X-2 solution were mixed at 5 ml / Added for 5 minutes. Next, using the Ag-2 solution and the X-2 solution, a CDJ having a silver potential of −40 mV was added in the same manner as in Example 1. Ag-2 solution was added at a start flow rate of 5 ml / min and an acceleration flow rate of 0.7 ml / min for 28 minutes.
At this point, 1 ml of the emulsion was sampled and gelatin and soluble salts were removed in the same manner as in Example 1. The collodion film was applied, and the particles were placed on a carbon-deposited mesh. After drying, it was cooled to about −130 ° C. and a TEM image was taken. The average diameter of the particles was 0.026 μm, and the variation coefficient of the diameter distribution was 0.11.
[0030]
Example 10
The dispersion medium solution 9 is put in a reaction vessel, and the temperature is kept at 18 ° C., while stirring, Ag-1 solution and X-3 solution (100 ml contains 3.36 g of KI and 1 g of gelatin 2, pH 6.0) Was added for 2 minutes at a starting flow rate of 1 ml / min and an acceleration flow rate of 12 ml / min. Subsequently, simultaneous mixing was added at 25 ml / min for 5 minutes. Next, using the Ag-2 solution and the X-2 solution, a CDJ having a silver potential of −40 mV was added in the same manner as in Example 1. Ag-2 solution was added at a start flow rate of 5 ml / min and an acceleration flow rate of 0.7 ml / min for 28 minutes.
As in Example 9, a TEM image of the generated particles was taken. The average diameter of the particles was 0.024 μm, and the variation coefficient of the diameter distribution was 0.09.
However, gelatin 1 = empty gelatin obtained by desalting alkali-treated beef bone gelatin through an ion exchange resin. Gelatin 2 = [HNO in aqueous solution containing gelatin 1ThreeWas added to obtain a pH of 0.7, followed by hydrolysis at a temperature of 90 ° C. to obtain a mass average molecular weight of 15000. After desalting by ultrafiltration to remove 95% of the added acid, it was neutralized to pH 6.0 with NaOH. H2O2Was added and mixed, and then allowed to stand at 40 ° C. for 15 hours. 100% of Met changed to sulfinyl group. ]
[0031]
Comparative Example 1
Dispersion medium solution 11 (25 g of gelatin 1, 1200 ml of water, 2 g of KI and pH 6.0) is put in a reaction vessel, the temperature is kept at 75 ° C., and Ag-1 solution and X-1 solution are added at 4 ml / min for 10 minutes. , And added simultaneously. Next, using the Ag-2 solution and the X-2 solution, CDJ was added by a conventional method to keep the silver potential at -40 mV. Ag-2 was added at a start flow rate of 2.4 ml / min and an acceleration flow rate of 0.16 ml / min for 98 minutes. The amplitude of the silver potential in the CDJ was always 70 mV or more (total of 140 mV or more) with respect to the set value.
When a TEM image of the replica film of the generated particles was taken, it was a polydisperse particle containing particles of various shapes having an average diameter of 0.6 μm, a diameter distribution variation coefficient of 0.4, and three or more types.
For each of the emulsions obtained in Examples 1 to 10 and Comparative Example 1, the coagulating sedimentation agent 1 was added, the temperature was lowered to 30 ° C., the pH was lowered to around 4.0, the emulsion was flocked, and the sedimentation was performed. I let you. The supernatant was removed, and the emulsion was washed with water three times. Then, the pH was raised to 6.4 and the temperature was raised to 40 ° C. to redisperse. AgNOThreeSolution and KI solution were used to adjust the pAg of the emulsion to 5.5. Sensitizing dye 1 is added at an amount of 85% of the saturated adsorption amount at 40 ° C. to achieve adsorption equilibrium, the temperature is raised to 60 ° C., and chemical sensitizer 1 is added to 3.5 × 10.-FourMole / mole AgX was added and aged for 50 minutes. The temperature is lowered to 40 ° C., and the antifogging agent 3 is 3 × 10-3Only mol / mol AgX was added, and similarly adjusted to pH 6.4 and pHAg 5.5, and stirred for 30 minutes.
The emulsion was coated on a PET base with a protective layer containing hardener 1 (0.01 g / g gelatin) and dried. It put into the airtight container and it hold | maintained at 40 degreeC for 15 hours, and accelerated the dural reaction. The emulsion coatings of Examples 1-10 were designated Samples 1-10, and the emulsion coating of Comparative Example 1 was designated Comparative 1.
[0032]
Example 11
AgI Emulsion B was the same except that gelatin 3 used in Examples 3 and 4 was replaced with gelatin 3.11, B12Formed. B11The produced particles had an average diameter of 0.05 μm and a variation coefficient of diameter distribution of 0.10. B12The produced particles had an average diameter of 0.08 μm and a coefficient of variation of 0.09. 80 ml of the emulsion was collected, added to the dispersion medium solution 3 and grown in the same manner as in Example 3. In both cases, 99% or more of the projected area was the dodecahedron grains.
Gelatin 3 = Plate having a phthalation rate of 83% by allowing phthalic anhydride to act on gelatin 1.
B11, B12HNOThreeWas added to a pH of 4, and the emulsion was flocculated and allowed to settle, the supernatant was removed and washed three times with water. After the emulsion is washed with water, redispersion and the like are performed in the same manner as described above.11, B12Got.
Apply coated sample through optical wedge to 10-2Samples exposed to blue light (wavelength light of 450 nm or less) for 2 seconds and samples exposed to -blue light (wavelength light of 500 nm or more) were prepared, and developed with pyrogallol developer described in Reference 10 at 40 ° C. for 50 minutes. After soaking in the stop solution for 1 minute, it was soaked in fixer (Super Fuji Fix) for 30 minutes to fix, then washed with water and dried. The sensitometry was performed, and the result of the (sensitivity / granularity) ratio is shown in Table 4. It was confirmed that the sample of the present invention was superior in (sensitivity / granularity) to the comparative sample.
Sensitivity is represented by the reciprocal of the exposure amount (looks / second) giving a density of (fog + 0.2), and the granularity is 10 as the amount of light giving the density of (fog + 0.2).-2Exposure was performed uniformly for seconds, development was performed, density variation was measured with a microdensitometer using a circular opening with a diameter of 48 μm, and rms granularity σ was determined. The details are described in Chapter 21 section E of the document 11.
[0033]
Example 12
A reaction vessel of the type shown in FIG.1= 3) is added dispersion medium aqueous solution (30 g of gelatin 1, 1500 ml of water, 0.05 g of KI, pH 6.5), kept at 70 ° C., Ag-12 liquid (AgNO in 100 ml) with vigorous stirring.Three3 g and 0.6 g of gelatin 4) at 160 ml / min, X-12 solution (29.3 g of KI and 1 g of gelatin 4 in 100 ml, pH 6.5) at 157 ml / min for 4 minutes, constant flow rate Added. At the same time, the silver potential was kept constant at -10 mV by adding X-120 solution (containing 30 g of KI and 0.6 g of gelatin in 100 ml, pH 6.5). The amplitude of the potential fluctuation was within 20 mV of the specified value. Immediately after the addition, cold water was put into a constant humidity bath and the temperature was rapidly cooled to 30 ° C. over 1 minute. This was designated as Emulsion 12a.
1 ml of the emulsion was collected, and the dye 1 was added by about 130% of the saturated adsorption amount and cooled to 20 ° C. A TEM image of the particles was taken in the same manner as in Example 9. The average diameter of the particles was about 30 nm and the coefficient of variation of the size distribution was 0.12.
Next, 27 ml of the emulsion was collected in a reaction container [25 g of gelatin 1, 0.05 g of KI, H2O 2250 ml, pH 6.3, 60 ° C.), the microparticles were grown at a rate that did not generate new nuclei. Specifically, Ag-121 solution (AgNO in 100 ml)ThreeCDJ addition was carried out for 12 minutes in the same manner as in Example 1, using X-121 solution (containing 4.9 g of KI in 100 ml) and maintaining the silver potential at 150 mV. The addition flow rate of the Ag-121 liquid was a start flow rate of 3 ml / min and an acceleration flow rate of 0.3 ml / min. The temperature was raised to 75 ° C. during the first 5 minutes of this addition. Next, the same CDJ was added using Ag-2 solution and X-2 solution while keeping the silver potential at 150 mV. The initial flow rate of Ag-2 solution was 2.6 ml / min and the acceleration flow rate was 0.24 ml / min. Cooling was started after 1 minute and the temperature was lowered to 30 ° C. in 2 minutes. This was designated as Emulsion 12b.
1 ml of the emulsion was collected, and Dye 1 was added in an amount of about 130% of the saturated adsorption amount. A TEM image of the replica film of the particles was taken. When about 3000 particles were observed, 99% of the particles were the dodecahedron, the average diameter was about 0.155 μm, and the variation coefficient of the size distribution was 0.08. Accordingly, the fine particles are fine particles that become dodecahedron when grown, and correspond to the item (19). Gelatin 4 is a gelatin having an average molecular weight of 15,000 obtained by degrading gelatin 1 with a degrading enzyme.
[0034]
Example 13
In the same reaction vessel as in Example 12, an aqueous dispersion medium (containing 30 g of gelatin 4, 1500 ml of water, pH 6.5) was kept at 20 ° C., and the Ag-12 solution was added at 160 ml / min with vigorous stirring. 12 liquids were added simultaneously at 157 ml / min for 4 minutes. At this time, the silver potential was kept at 120 mV by adding the X-120 solution at the same time. The potential fluctuation was within 20 mV of the specified value. The variation coefficient of size distribution was about 0.12. This was designated as Emulsion 13a.
Next, 29 ml of the emulsion was collected and placed in a reaction vessel [25 g of gelatin 1, 0.05 g of KI, H2O 2250 ml, pH 6.3, 57 ° C.) and the microparticles were grown at a rate such that no new nuclei were generated. Specifically, the same CDJ was added using Ag-2 solution and X-2 solution while maintaining the silver potential at 150 mV. Ag-2 solution was added at a start flow rate of 1.8 ml / min and an acceleration flow rate of 0.13 ml / min for 105 minutes. After 1 minute, 1 ml of the emulsion was collected, dye 1 was added, and the mixture was cooled to 20 ° C. A TEM image of the replica film of the particles was taken. When about 3000 particles were observed, 99% of the particles were A.6The tetrahedral particles had a value of 0.18 to 0.25. A6The average value of was 0.21. The average diameter was 0.14 μm and the coefficient of variation was 0.08. This was designated as Emulsion 13b.
[0035]
Example 14 FIG.
In the same reaction vessel as in Example 12, the dispersion medium aqueous solution 14 (25 g of gelatin 1, 1.2 g of KI, H2(Containing 1200 ml of O, adjusted to pH 10.2 with NaOH), and keeping at 65 ° C., Ag-1 solution and X-14 solution (containing 3.56 g of KI in 100 ml) were added at 12 ml / min for 10 minutes. . The temperature was raised to 75 ° C. over 5 minutes and after aging for 10 minutes, -190 mV CDJ addition was performed for 35 minutes using Ag-2 solution and X-14 solution (containing 16.84 g of KI in 100 ml). . The start flow rate was 7.2 ml / min and the acceleration flow rate was 0.64 ml / min. After completion of the addition, after aging for 5 minutes, the temperature was lowered to 30 ° C.
1 ml of the emulsion was collected, and Dye 1 was added in an amount of about 130% of the saturated adsorption amount. A TEM image of the replica film of the particles was taken. When about 1000 particles were observed, about 93% of the particles had the shape shown in FIG.2It was a tabular grain having a value of 1.0 to 3.0 and an aspect ratio of 2 to 30. Average projected diameter is 0.8μm, average C2= 1.7, average aspect ratio = 7.5, coefficient of variation of diameter distribution was about 0.2. In addition, the content of γ type determined by the same method as in Table 1 was about 45%. This emulsion was designated as Emulsion 14.
Sensitizing dye 1 was added to each of the emulsions obtained in Examples 12 to 13 in an amount of 85% of the saturated adsorption amount, and after equilibration, precipitating agent 1 was added, and the emulsion was washed with water in the same manner as described above. The temperature was raised to 40 ° C., phthalated bovine bone gelatin having a phthalation rate of 96% was added, and the emulsion was redispersed to pH 6.4 and pAg5. The methanol solution of the chemical sensitizer 2 is 3 × 10 3 for the emulsions 12a and 13a.-Four10 for emulsions 12b, 13b, 14-Four(Mole / mole AgX) was added and ripened at 47 ° C. for 60 minutes. The temperature is lowered to 40 ° C., and latent image formation efficiency improver 1 is added to emulsions 12a and 13a at 2 × 10-35 × 10 for emulsions 12b and 14-FourOnly (mol / mol AgX) was added and stirred for 30 minutes. Antifoggant 3 3 × 10-3Only mol / mol AgX was added and adjusted to pH 6.4 and pAg 5.3.
Each emulsion was coated on the PET base together with the protective layer containing the hardener 1, dried and processed in the same manner as above, and the samples were sequentially designated as 12a, 12b, 13a, 13b, and 14. The coated sample was exposed in the same manner as described above, developed, and subjected to sensitometry. The results of (sensitivity / granularity) ratio are shown in Table 4. It was confirmed that the sample of the present invention was superior in (sensitivity / granularity) to the comparative sample.
[0036]
[Chemical 2]
Figure 0003999147
[0037]
[Chemical 3]
Figure 0003999147
[0038]
[Table 4]
Figure 0003999147
[0039]
【The invention's effect】
By using the AgX emulsion of the present invention and the photographic light-sensitive material containing the emulsion, an AgX photographic light-sensitive material having an excellent (sensitivity / granularity) ratio was obtained.
[Brief description of the drawings]
FIG. 1 represents a schematic diagram of a particle structure. a represents a top view of the particle, b represents a side view of the particle as viewed from the right side, and c represents a top surface when the (101) plane is disposed on the top surface. d represents the particle structure when the particles a are viewed obliquely from above. e represents a top view of the elliptical spherical particles.
FIG. 2 represents a schematic diagram of the particle structure. a is a top view, b is a side view as seen from the side arrow direction of a, and c is a particle structure when the particles are seen obliquely from above. d represents a structural example when a particle having a structure different from C is viewed obliquely from above.
FIG. 3 represents a schematic diagram of the particle structure. a represents a top view, b represents a side view viewed from the direction of the arrow a, and c represents a particle structure when the particle is viewed obliquely from above.
FIG. 4 represents a schematic diagram of the particle structure. a represents the particle structure when the particle is viewed obliquely from above, b represents its side view, and c represents the particle structure when another example of the particle is viewed from obliquely above. d represents an example of a tetrahedral particle having a recess.
5A and 5C are top views of tabular grains, b is a grain structure when a is viewed obliquely from above, and d is a grain structure when c is viewed obliquely from above.
6 is a in FIG. 1, b is in c in FIG. 1, c is in e in FIG. 1, d is in c in FIG. 2, e is in b in FIG. 2, and f is in a in FIG. Further, f and g are examples of a more detailed particle structure of particles corresponding to a in FIG. 4 and h is a particle corresponding to b and d in FIG.
FIG. 7 represents a unit cell model of β-type AgI crystal.
FIG. 8 represents an X-ray diffraction pattern (relationship between X-ray diffraction intensity and 2θ) of CuKβ rays of AgI particles. a represents the pattern of the dodecahedron particles, b represents the hexagonal column particles, and c represents the pattern of the tetrahedral particles.
FIG. 9 is a graph showing a change in fL temperature (T ° K) of dodecahedron particles.
FIG. 10 is a TEM image of grains representing the grain structure of emulsion grains.
FIG. 11 is a TEM image of grains representing the grain structure of emulsion grains.
FIG. 12 is a TEM image of grains representing the grain structure of emulsion grains.
FIG. 13 is a TEM image of grains representing the grain structure of emulsion grains.
FIG. 14 represents a cross-sectional side view of the reactor.
[Explanation of symbols]
1. a1, A2, AThreeRepresents three crystal axes representing the crystal structure.
2. θ represents the angle between the incident X-ray beam and the substrate surface.
3.41 represents a recess.
4.6-1 represents a reaction solution.
5.6-2 represents a hollow liquid feeding tube.
6.6-3 represents a constant temperature jacket.
7.6-4 represents a constant temperature water circulation device.
8.6-5 represents a mixing box.

Claims (11)

少なくとも分散媒と水とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該粒子の投影面積の合計の88〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に6コの長方形の面を有する八面体、またはその角および/または稜が丸みを帯びた形状の単一種であり、粒子の円相当投影直径(μm)が0.002〜20である事を特徴とするハロゲン化銀乳剤 In a silver halide emulsion having at least a dispersion medium, water and silver halide grains, 88 to 100% of the total projected area of the grains has an AgI content (mol%) of 85 to 100, and the grain shape is The outer shape other than the particle size is an octahedron having two parallel hexagonal surfaces and six rectangular surfaces on the side surfaces, or a simple shape having rounded corners and / or edges. A silver halide emulsion which is a kind and has a circle equivalent projected diameter (μm) of 0.002 to 20 . 少なくとも分散媒と水とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該粒子の投影面積の合計の88〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に12コの台形状の面が互いに鏡像関係で有し、前記六角形状の面と合せて14面体の単一種であり、粒子の円相当投影直径(μm)が0.002〜20である事を特徴とするハロゲン化銀乳剤。In a silver halide emulsion having at least a dispersion medium, water, and silver halide grains, 88 to 100% of the total projected area of the grains has an AgI content (mol%) of 85 to 100, and the shape of the grains is The outer shape other than the size of the particle has two parallel hexagonal surfaces and 12 trapezoidal surfaces on the side surfaces in a mirror image relation, and the hexagonal surfaces are combined into a tetrahedron. A silver halide emulsion which is a single type and has a circle equivalent projected diameter (μm) of 0.002 to 20. 該2つの六角形状の面の大きさが、1つの粒子中において異なり、(小さい六角形の面積/大きい六角形の面積)=Aが0.1〜0.92である事を特徴とする請求項記載のハロゲン化銀乳剤 The size of the two hexagonal faces is different during one particle, and wherein the (small hexagonal area area / large hexagonal) = A 6 is 0.1 to 0.92 The silver halide emulsion according to claim 2 . Agを含む水溶液とXを含む水溶液を、親水性分散媒を含む水溶液中へ、該溶液の銀電位を一定に保ちながら同時混合添加する事により、少なくとも分散媒と水とハロゲン化銀粒子を有し、該粒子の投影面積の合計の40〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に6コの長方形の面を有する八面体、またはその角および/または稜が丸みを帯びた形状の単一種であり、粒子の円相当投影直径(μm)が0.002〜20であるハロゲン化銀乳剤を製造する方法において、該添加時間の30〜100%において、該銀電位の振幅(mV)が、指定値に対し、−50〜+50であることを特徴とするハロゲン化銀乳剤の製造方法 By simultaneously mixing and adding an aqueous solution containing Ag + and an aqueous solution containing X to an aqueous solution containing a hydrophilic dispersion medium while keeping the silver potential of the solution constant, at least the dispersion medium, water, and silver halide grains Particles having a AgI content (mol%) of 85 to 100, and having a shape other than the size of the two particles, is 40 to 100% of the total projected area of the particles. An octahedron having a parallel hexagonal surface and six rectangular surfaces on the side surface, or a single species having rounded corners and / or ridges, and having a circle equivalent projected diameter (μm). In the method for producing a silver halide emulsion of 0.002 to 20, the silver potential amplitude (mV) is −50 to +50 with respect to a specified value at 30 to 100% of the addition time. Method for producing a featured silver halide emulsion . AgAg + を含む水溶液とXSolution containing X and X を含む水溶液を、親水性分散媒を含む水溶液中へ、該溶液の銀電位を一定に保ちながら同時混合添加する事により、少なくとも分散媒と水とハロゲン化銀粒子を有し、該粒子の投影面積の合計の40〜100%の粒子がAgI含率(モル%)が85〜100で、粒子の形状は、粒子の大きさ以外の外形形状が、2つの互いに平行な六角形状の面と、側面に12コの台形状の面が互いに鏡像関係で有し、前記六角形状の面と合せて14面体の単一種であり、粒子の円相当投影直径(μm)が0.002〜20であるハロゲン化銀乳剤を製造する方法において、該添加時間の30〜100%において、該銀電位の振幅(mV)が、指定値に対し、−50〜+50であることを特徴とするハロゲン化銀乳剤の製造方法。The aqueous solution containing the aqueous dispersion medium is added to the aqueous dispersion solution containing the hydrophilic dispersion medium at the same time while maintaining the silver potential of the solution constant, thereby having at least the dispersion medium, water, and silver halide grains, and projecting the grains. Particles having a total area of 40 to 100% have an AgI content (mol%) of 85 to 100, and the shape of the particles is that the outer shapes other than the size of the particles are two parallel hexagonal surfaces, Twelve trapezoidal surfaces are mirror images of each other on the side surface, and are a single type of tetradecahedron combined with the hexagonal surface, and the equivalent circular projected diameter (μm) of the particles is 0.002 to 20. In the method for producing a silver halide emulsion, the silver potential emulsion has an amplitude (mV) of silver potential of -50 to +50 with respect to a specified value in 30 to 100% of the addition time. Manufacturing method. 該Ag溶液とX溶液の少なくとも一方が、中空管を通して反応溶液中に直接に添加される事、(反応溶液中の中空管長/反応容器の内直径)比=Cが0.5〜50である請求項4または5記載のハロゲン化銀乳剤の製造方法。At least one of the Ag + solution and the X solution is directly added to the reaction solution through the hollow tube, and the ratio of (the hollow tube length in the reaction solution / the inner diameter of the reaction vessel) = C 1 is 0.5. 6. The method for producing a silver halide emulsion according to claim 4 or 5 , wherein the silver halide emulsion is. 該銀電位の振幅が指定値に対し、−30〜+30であることを特徴とする請求項4または5に記載のハロゲン化銀乳剤の製造方法。6. The method for producing a silver halide emulsion according to claim 4 , wherein the amplitude of the silver potential is −30 to +30 with respect to a specified value. 該銀電位の振幅が指定値に対し、−15〜+15であることを特徴とする請求項4または5に記載のハロゲン化銀乳剤の製造方法。6. The method for producing a silver halide emulsion according to claim 4 , wherein the amplitude of the silver potential is −15 to +15 with respect to a specified value. 粒子の投影面積の合計が88〜100%であることを特徴とする請求項4または5に記載のハロゲン化銀乳剤の製造方法。6. The method for producing a silver halide emulsion according to claim 4 , wherein the total projected area of the grains is 88 to 100%. 粒子の投影面積の合計が95〜100%であることを特徴とする請求項4または5に記載のハロゲン化銀乳剤の製造方法。6. The method for producing a silver halide emulsion according to claim 4 , wherein the total projected area of the grains is 95 to 100%. 支持体の一方もしくは両方の面上に1層以上のハロゲン化銀乳剤層を塗布した写真感光材料において、少なくとも1層のハロゲン化銀乳剤層が請求項1または2記載の感光性ハロゲン化銀乳剤を含有することを特徴とする写真感光材料。In one or photographic material coated with one or more silver halide emulsion layers on both sides of the support, at least one silver halide emulsion layer is sensitive silver halide emulsion according to claim 1 or 2, wherein A photographic light-sensitive material comprising:
JP2003057156A 2002-03-22 2003-03-04 Silver halide emulsion, process for producing the same and photographic light-sensitive material Expired - Fee Related JP3999147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057156A JP3999147B2 (en) 2002-03-22 2003-03-04 Silver halide emulsion, process for producing the same and photographic light-sensitive material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002081020 2002-03-22
JP2003057156A JP3999147B2 (en) 2002-03-22 2003-03-04 Silver halide emulsion, process for producing the same and photographic light-sensitive material

Publications (2)

Publication Number Publication Date
JP2004004586A JP2004004586A (en) 2004-01-08
JP3999147B2 true JP3999147B2 (en) 2007-10-31

Family

ID=30445799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057156A Expired - Fee Related JP3999147B2 (en) 2002-03-22 2003-03-04 Silver halide emulsion, process for producing the same and photographic light-sensitive material

Country Status (1)

Country Link
JP (1) JP3999147B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528428A3 (en) * 2003-10-28 2006-07-12 Fuji Photo Film Co., Ltd. Silver halide emulsion

Also Published As

Publication number Publication date
JP2004004586A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP2670847B2 (en) Silver halide photographic emulsion and method for producing the same
JPH0341812B2 (en)
JP3025585B2 (en) Silver halide emulsion
JP3999147B2 (en) Silver halide emulsion, process for producing the same and photographic light-sensitive material
JP3383397B2 (en) Silver halide emulsion
EP0645670B1 (en) Silver halide emulsion
EP0541104A1 (en) Silver halide photographic emulsion and light-sensitive silver halide photographic material making use of the same
JP2559264B2 (en) Silver halide emulsion and method for producing the same
JP3557808B2 (en) Silver halide photographic emulsion, method for producing the same, silver halide photographic light-sensitive material and processing method
US7118851B2 (en) Silver halide emulsion and production process thereof
JPS63151618A (en) Silver halide emulsion
JP2583445B2 (en) Silver halide emulsion and method for producing the same
JP3393271B2 (en) Silver halide photographic material and method for sensitizing silver halide emulsion
JP4225664B2 (en) Method for producing silver halide emulsion
EP1528428A2 (en) Silver halide emulsion
JPH08101472A (en) Radiation-sensitive emulsion and photographic element
JP2926441B2 (en) Silver halide emulsion and silver halide photographic material containing the same
US5932408A (en) Silver halide emulsion
JP2006284751A (en) Silver halide emulsion, photographic sensitive material, method for growing silver halide grains, and filter material
JP3041377B2 (en) Silver halide emulsion and light-sensitive material containing the emulsion
JP2006099026A (en) Silver halide emulsion
JP2002090925A (en) Silver halide emulsion, method for preparing the same and silver halide photosensitive material
JP2001201810A (en) Method for preparing silver halide emulsion
JPH0882883A (en) Production of silver halide particles and silver halide emulsion
JP2000047344A (en) Silver halide photographic emulsion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees