JP3575639B2 - Method for producing silver halide grains and silver halide emulsion - Google Patents

Method for producing silver halide grains and silver halide emulsion Download PDF

Info

Publication number
JP3575639B2
JP3575639B2 JP19260995A JP19260995A JP3575639B2 JP 3575639 B2 JP3575639 B2 JP 3575639B2 JP 19260995 A JP19260995 A JP 19260995A JP 19260995 A JP19260995 A JP 19260995A JP 3575639 B2 JP3575639 B2 JP 3575639B2
Authority
JP
Japan
Prior art keywords
group
gelatin
carbon atoms
agx
silver halide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19260995A
Other languages
Japanese (ja)
Other versions
JPH0882883A (en
Inventor
光雄 斎藤
淳一 山之内
陽一 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP19260995A priority Critical patent/JP3575639B2/en
Publication of JPH0882883A publication Critical patent/JPH0882883A/en
Application granted granted Critical
Publication of JP3575639B2 publication Critical patent/JP3575639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は写真の分野で有用なハロゲン化銀粒子(以後「AgX」と記す)の製造方法およびハロゲン化銀乳剤に関する。
【0002】
【従来の技術】
アスペクト比(直径/厚さ)の大きい平板粒子を含有するAgX乳剤を支持体上に塗布し、写真感光材料に用いた場合、次のような多くの利点がある。例えば膜厚を薄くできる為にシャープネスの向上、表面/体積比が大きい為に分光増感色素を多量に吸着させる事ができ、光吸収率が向上する、表面/体積比が大きい為に現像処理が速くなる、像の平準化による粒状性の改良等。従って、従来、平板粒子が多くの写真感光材料に多用されてきた。しかし、該平板粒子を従来法で製造した場合、次のような欠点があった。非平板粒子が混入し、粒子サイズ分布が広い。即ち、粒子の形状的にも、サイズ分布的にも多分散であった。この為、該粒子を化学増感や分光増感した場合、総ての粒子が最適に化学増感や分光増感された態様が得られない、重層効果を活用できない等の欠点があった。
【0003】
この欠点を改良する為に多くの技術的検討がなされてきた。本発明者は平行双晶面を含む平板粒子の場合、該製造過程を核形成、熟成、成長の3つの過程に分け、それぞれの過程の最適条件を検討した。即ち、核形成過程では、双晶面形成確率を高すぎず、かつ、低すぎずに調節する。熟成過程では、平板粒子の低過飽和度下での選択成長性を利用して、平板粒子を残し、他の非平板粒子を消失させる。成長過程では平板粒子の選択成長性とエッジ部の拡散律速成長性を両立させるハロゲンイオン(以後「X」と書く)濃度と過飽和度を選択する事によって、サイズ分布を広げる事なく成長させる事等であり、詳細は下記文献の記載を参考にする事ができる。
Cl含率が50モル%以上の該平板粒子の詳細に関しては米国特許5176992、同5061617、同4400463、同5185239、同5183732、同5178998、同5178997、特開平4−283742、同4−161947等の記載を、Br含率の高い粒子に関しては特開昭63−151618、同63−11928、特開平2−28638、同1−131541、同2−838、同2−298935、同3−121445等の記載を参考にする事ができる。
【0004】
一方、主平面が{100}面である平板粒子の場合も、該粒子を従来法で製造した場合、同様の問題が存在する。これを改良する為に、該製造処方を核形成、熟成、成長の3つの過程に分け、それぞれの過程の改良方法が提案されている。それらの詳細に関しては特開平5−281640、同5−313273、米国特許第4063951、同4386156、同4946772、同5264337、同5275930、欧州特許第0534395A1等の記載を参考にする事ができる。
【0005】
これらの検討により、粒子形状的にも、サイズ分布的にも単分散性が著しく向上した。しかし、平板粒子の厚さを薄くすればする程、得られる粒子のサイズ分布が広くなるという問題はまだ解決されていなかった。また、よりかぶり濃度が低く、かつ、感度、粒状性のより優れた該平板粒子の製造方法が求められている。該粒子特性を粒子形成時の分散媒を変えることにより改良する事が試みられてきている。例えば Kelly〔Journal of Photographic Science,6巻,16〜22(1958年)〕は種々の条件で酸化された酸化処理ゼラチンとXを含む水溶液中にAgNO水溶液を添加し、AgBrI平板粒子を形成している。H等で酸化された酸化処理ゼラチンの使用は Sheppard や、他の多くの著者によって記述されている。その詳細は英国特許第245456、フランス特許768015、Gelatin in Photography−Monographs on the Theory of Photography from the Research Laboratory of the Eastman Kodak Co. No.3.D. Van Nostrand Co., New York に記載されている。また、該酸化により、メチオニン基がメチオニンスルフォキシドに変化する事が確認されており、Journal of Photographic Science, 16巻,68〜69(1968)に記載されている。
【0006】
最近、厚さ0.2μm以下の平板粒子を(メチオニン含率<30μmol /g)の酸化処理ゼラチン分散媒溶液中で製造する事がクレームされている。例えば特開昭62−157024号。該ゼラチンを用いて平板粒子を製造すると、76℃以下のすべての温度において非酸化ゼラチンに比べてより薄い平板粒子が形成される。しかし、粒子の厚さが薄くなる程、生成粒子のサイズ分布が広くなる事に変りはない。欧州特許第514742A号では該酸化ゼラチンとポリアルキレン化合物の存在下で、主平面が{111}面のAgBr平板粒子を形成し、該欠点を改良する方法が開示されている。しかし、主平面形状が正六角形からいびつに歪んだ平板粒子であり、かつ、感度、粒状性、かぶり濃度で満足すべきものではなかった。
【0007】
【発明が解決しようとする課題】
本発明の目的はかぶり濃度が低く、感度、粒状性のより優れたAgX平板粒子の製造方法およびハロゲン化銀乳剤を提供することにある。
【0008】
【課題を解決するための手段】
本発明の目的は次項によって達成された。
(1) 水と分散媒を有する分散媒溶液中で、少なくとも核形成、熟成、成長過程を経てハロゲン化銀粒子の投影面積の合計の75〜100%が厚さが0.02〜0.3μm、アスペクト比(直径/厚さ)が2〜50の平板粒子であるハロゲン化銀粒子を製造する方法において、該成長過程の該分散媒の30〜100重量%が次記(a)の特徴を有するゼラチンである事を特徴とするハロゲン化銀粒子の製造方法。
(a)該ゼラチン中の−NH基が化学修飾された数の割合%と該ゼラチンのメチオニン含率の関係が図1のaの領域にある。
【0009】
(2) 該分散媒溶液がポリアルキレンオキサイドの繰返し単位を有する重合体で、分子量が500〜10であるHPAO〔一般式(1)−a)または(1)−b)で表される〕またはPEOD〔一般式(2)の−a)〜−f)のうちのいずれかで表される〕を0.001g/L以上含有する事を特徴とする前記(1) 記載のハロゲン化銀粒子の製造方法。
【0010】
【化4】

Figure 0003575639
【0011】
ここでRはH、または少なくとも1つの極性基を有する炭素数1〜10の炭化水素(例えば−CHOH、−COH 、−CH−O−CH) で、好ましくはHである。Rは炭素数3〜10のアルキレン基を表す。
n、mは繰返し単位の平均数を表わし、前記分子量規定を満たす4以上の値である。
【0012】
【化5】
Figure 0003575639
【0013】
ここでLPUはHO−HPEOU−基およびHO−LPAOU−基以外の親油性基を指し、置換または無置換のアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリーロキシ基、アシル基、アシルアミノ基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリーロキシカルボニル基、アリサイクリック基を指す。なお、HPEOU、LPAOUは一般式(1)−a)、(1)−b)と同義である。LPU′はH、炭素数1〜20のアルキル基を指す。
【0014】
(3) 該分散媒溶液が一般式(3)で表されるモノマーの繰返し単位を1重量%以上含有する重合体の少なくとも1種を0.01g/リットル以上含有し、該重合体の分子量が500〜10である事を特徴とする前記(1) 記載のハロゲン化銀粒子の製造方法。
【0015】
【化6】
Figure 0003575639
【0016】
式中RはH、炭素数1〜4の低級アルキル基を表し、Rは炭素数1〜20の1価の置換基を表す。Rは炭素数3〜10のアルキレン基を表し、Lは2価の連結基を表す。nは繰返し単位の平均数を表し、4〜600である。
【0017】
(4) 該分散媒溶液が一般式(3)で表わされるモノマーと一般式(4)で表わされるモノマーの少なくとも2種をそれぞれ1重量%以上含有する共重合体を0.01g/リットル以上含有し、該共重合体の分子量が500〜10である事を特徴とする前記(1) 記載のハロゲン化銀粒子の製造方法。
一般式(4) CH=C(R)−L′−(CHCHO)−R
式中、RはH、炭素数1〜4の低級アルキル基を表し、Rは炭素数1〜20の1価の置換基を表し、L′は2価の連結基を表す。mは繰返し単位の平均数を表し、4〜600である。
【0018】
(5) 該分散媒溶液が下記一般式(5)で表される繰返し単位を1重量%以上含有する重合体の少なくとも1種と、一般式(6)で表される繰返し単位を1重量%以上含有する重合体の少なくとも1種をそれぞれ0.01g/リットル以上含有し、それぞれの重合体の分子量が500〜10である事を特徴とする前記(1) 記載のハロゲン化銀粒子の製造方法。
一般式(5) −(R−O)
一般式(6) −(CHCHO)
式中、Rは炭素数3〜10のアルキレン基を表わす。
n、mは繰返し単位の平均数を表し、該分子量規定を満たす4以上の値である。
【0019】
(6) 該一般式(5)で表される繰返し単位を有する重合体が下記一般式(7)−(a)で表されるモノマーを構成成分とするビニル重合体および一般式(7)−(b)で表されるポリウレタンを含む重合体から選ばれる少なくとも1種の重合体であり、該一般式(6)で表わされる繰返し単位を有する重合体が下記一般式(7)−(c)で表されるモノマーを構成成分とするビニル重合体、一般式(7)−(d)で表されるポリウレタンを含む重合体、および置換または未置換のポリエチレングリコールから選ばれる少なくとも1種の重合体であることを特徴とする前記(5) に記載のハロゲン化銀粒子の製造方法。
一般式(7)−a) CH=C(R)−L−(R−O)−R
一般式(7)−b)
−〔O −(R−O)−〔O − R11−O 〕−〔CONH−R12−NHCO 〕
一般式(7)−c) CH=C(R)−L′−(CHCHO)−R
一般式(7)−d)
−〔O−(CHCHO) X’−〔O−R13−O 〕 y’ −〔CONH−R14−NHCO 〕Z’
式中、n、mは繰返し単位の平均数を表し、4〜600である。R、RはHまたは炭素数1〜4の低級アルキル基を表す。R、RはHまたは炭素数1〜20の1価の置換基を表す。L、L′は2価の連結基を表す。R11、R12、R13、R14は2価の連結基を表し、炭素数1〜20のアルキレン基、炭素数6〜20のフェニレン基、または炭素数7〜20のアラルキレン基を表す。x、y、z、x′、y′、z′は各成分の重量百分率を表し、x、x′は1〜70、y、y′は1〜70、z、z′は20〜70を表す。ここでx+y+z=100、x′+y′+z′=100である。Rは炭素数3〜10のアルキレン基を表す。
【0020】
(7) 該平板粒子の主平面が{100}面かまたは{111}面であり、該粒子の直径分布の変動係数(標準偏差/平均直径)が0〜0.3である事を特徴とする前記1〜6記載のハロゲン化銀粒子の製造方法。
(8) 少なくとも分散媒とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該ハロゲン化銀粒子の全投影面積の75〜100%が厚さが0.02〜0.3μm、アスペクト比(直径/厚さ)が2〜50の平板粒子であり、該粒子の直径分布の変動係数(標準偏差/平均直径)が0〜0.3であり、該分散媒の30〜100重量%が(化学修飾された−NH基数の%とメチオニン含率の関係が図1のaの領域にあるゼラチン)である事を特徴とするハロゲン化銀乳剤。
【0021】
その他、本発明の好ましい態様は次の通り。
(9) 少なくとも分光増感色素を吸着したハロゲン化銀粒子と、分散媒を有するハロゲン化銀乳剤において、該ハロゲン化銀粒子の投影面積の75〜100%がアスペクト比が2〜50、厚さが0.02〜0.3μmの平板粒子であり、その直径分布の変動係数が0〜0.3、分光増感色素の吸着被覆率の変動係数が0〜0.3である事を特徴とするハロゲン化銀乳剤。
(10)該平板粒子が少なくとも10−7mol/mol Ag以上でセレン増感されており、かつ、該平板粒子のSeの含有率が該平板粒子の表面積に比例しており、該比例定数の粒子間バラツキの変動係数が0〜0.3である事を特徴とする前記(9) 記載のハロゲン化銀乳剤。
(11)該平板粒子が少なくとも10−7mol/mol Ag以上で金増感されており、かつ、該平板粒子の金の含有率が該平板粒子の表面積に比例しており、該比例定数の粒子間バラツキの変動係数が0〜0.3である事を特徴とする前記(9) 、(10)記載のハロゲン化銀乳剤。
【0022】
以下に本発明を更に詳細に説明する。
A.平板粒子
該平板粒子は主平面が{100}面の平板粒子(以後、「(100)平板粒子」と記す)と、{111}面の平板粒子(以後、「(111)平板粒子」と記す)を挙げる事ができる。
該平板粒子は厚さが0.02〜0.3μm、好ましくは0.02〜0.15μm、より好ましくは0.03〜0.10μm、最も好ましくは0.04〜0.08μmである。アスペクト比(直径/厚さ)は2〜50、好ましくは3〜30である。直径分布の変動係数(分布の標準偏差/平均直径)(以後、「C.V.値」と記す)は0〜0.3が好ましく、0〜0.2がより好ましく、0〜0.1が更に好ましく、0〜0.08が最も好ましい。ここで直径とは粒子の投影面積と等しい面積を有する円の直径を指し、厚さは、平板粒子の2つの主平面間の距離を指す。粒子の直径は0.1μm以上が好ましく、0.2〜10μmがより好ましい。該平板粒子はAgX粒子の全投影面積の75〜100%、好ましくは90〜100%、より好ましくは97〜100%を占める。該平板粒子の厚さ分布の変動係数(分布の標準偏差/平均厚さ)は0〜0.3が好ましく、0〜0.2がより好ましく、0〜0.1が更に好ましい。
【0023】
該平板粒子は少なくとも核形成→熟成→成長、の過程を経て製造される。最終的に得られる平板粒子の核は実質的に該核形成過程で形成される。ここで実質的にとは、数で、好ましくは75〜100%、より好ましくは95〜100%を指す。
核形成、熟成過程で該修飾ゼラチンを用いた場合は、それらの過程における反応溶液のpHは該修飾ゼラチンの等電点以上のpHが好ましく、(等電点pH+0.2)〜pH10がより好ましく、(等電点pH+0.4)〜pH7が更に好ましい。核形成時に添加するAgNOの添加量は反応溶液1リットルあたり1g以上が好ましく、1.8g以上がより好ましく、3〜30gが更に好ましい。核形成は反応溶液中へのAg液とX液の同時混合添加法、または2〜1000回の複数交互シングルジェット添加法で行う事がより好ましい。次に(100)平板粒子から順に説明する。
【0024】
A−1.(100)平板粒子
1.粒子構造
主平面が{100}面である平板粒子を形状で分類すると、次の6つを挙げる事ができる。(1) 主平面の形状が直角平行四辺形で、1つの平板粒子内で隣接辺比率(長辺の長さ/短辺の長さ)が1〜10、好ましくは1〜3の粒子、より好ましくは1〜2の粒子、(2) 該直角平行四辺形の4つの角の内、1個以上、好ましくは1〜3個が非等価的に欠落した粒子。即ち、〔(最大欠落部の面積/最小欠落部の面積)=aが2〜∞の粒子〕、(3) 該4つの角が等価的に欠落した粒子(該aが2より小の粒子)、(4) 該欠落部の面積の5〜100%、好ましくは20〜100%が(111)面である粒子、(5) 主平面を構成する4つの辺の内の少なくとも相対する2つの辺が外側に凸の曲線である粒子、(6) 該直角平行四辺形の4つの角の内の1つ以上、好ましくは1〜3個が直角平行四辺形状に欠落した粒子。
2.核形成
該(100)平板粒子の核は次の方法で製造される。(1) 低保護コロイド性溶液中で、銀塩溶液とハロゲン塩溶液(以後、「X塩液」と記す)を添加し、核形成する。Coagulation により結晶欠陥が形成されるとする考えがある。(2) 格子定数不整合による平板核形成法。例えば、a)ハロゲン組成ギャップ面を1つ以上、好ましくは1〜4つ、より好ましくは2〜3つ有する核を形成する。具体的には(AgX|AgX)において、XとXのハロゲン組成をCl含率、またはBr含率、またはI含率で10〜100モル%、好ましくは30〜100モル%、より好ましくは60〜100モル%だけ異なる。ここで(AgX|AgX)はAgX核を形成した後、AgX層を該核の表面上に積層させた態様を指す。より具体的には核形成時に添加するX塩液のハロゲン組成を該ギャップ面の所で前記規定に従って不連続に変化させる事を指す。該ギャップはAgX核に、X 塩溶液を添加し、ハロゲン conversion を生じさせる事によっても形成する事ができる。
【0025】
該ギャップ面を2つ有する平板核は(AgX|AgX|AgX)と記す事ができる。その他、b)該格子不整による欠陥形成を促進する為に、該ギャップの隣接相間におけるイオウ、セレン、テルル、SCN、SeCN、TeCN、CN、(Ag以外の金属イオン)、および該金属イオンの錯体(リガンドとしてはXリガンド、CNリガンド、イソシアノ、ニトロシル、チオニトロシル、アミン、ヒドロキシルを挙げることができる)の少なくとも1種以上の含有率差を好ましくは0.1〜100モル%差、より好ましくは1〜100モル%差、更に好ましくは10〜100モル%差にした態様を挙げることができる。Ag以外の金属イオンの代表例として周期律表の第8属金属イオン、Cu、Zn、Cd、In、Sn、Au、Hg、Pb、Cr、Mnの各金属イオンを挙げることができる。
【0026】
c)その他、該不純物イオン含率ギャップのみによって、該欠陥を形成する態様を挙げる事ができる。これらの不純物イオンの具体的化合物例、AgX相へのドープ方法の詳細に関してはResearch Disclosure ,307巻,アイテム307105,11月,1989年、米国特許5166045、同4933272、同5164292、同5132203、同4269927、同4847191、同4933272、同4981781、同5024931、特開平4−305644、同4−321024、同1−183647、同2−20853、同1−285941、同3−118536の記載を参考にすることができる。
【0027】
本発明では前記2−(2)、好ましくは2−(2)のa)の核形成法を好ましく用いる事ができ、該ハロゲンコンバージョン法をより好ましく用いる事ができる。該平板粒子が形成されるのは平板粒子のエッジ方向に成長を促進する欠陥が存在する為である。該欠陥を本発明ではらせん転位欠陥と記す。1つの粒子中に該欠陥が多数形成されると、三次元方向への成長促進が起こり、生成する粒子は厚くなる。該欠陥形成確率をゼロから序々に上げていくと、まず辺比率1〜2の平板粒子が形成される事から、該粒子は〔110〕方向またはその−25°〜+25°方向への成長促進ベクトルを有するらせん転位欠陥を1本有すると考えられる。該確率を更に上げていくと、該平板粒子の生成数が増し、更に上げると、低アスペクト比の粒子の混入比率が増す。これは該欠陥が1粒子あたり2本以上入り、厚さ方向に成長加速ベクトルを有するようになる為と考えられる。従って厚い粒子の混入率が許容される範囲内で該確率を高くすればよい。
【0028】
該ギャップは(AgX|AgX)組成で形成する方法の他、(AgX|AgX12|AgX)核の形成によって形成してもよい。この場合AgX12はAgとAgXの間のハロゲン組成を有する中間層である。AgXとAgXのハロゲン組成差を大きくすると、平板粒子核の数は増すが、厚い粒子の核数の比率も増す。中間層を入れる事により、平板粒子核の生成数は増すが、厚い粒子核の生成比率を抑制する効果がある。この場合、(AgX|AgX12)および(AgX12|AgX)のハロゲン組成ギャップ量は(AgX|AgX)のギャップ量の10〜90%が好ましく、30〜70%がより好ましい。該中間層の数は1〜4、好ましくは1つである。該中間層は、前記のギャップ面を2つ以上有する態様に対しても、そのギャップ面の1つ以上に対して設ける事ができる。
【0029】
3.熟成
核形成で生成した核の内、この熟成過程で非平板粒子核を個数で好ましくは30〜100%、より好ましくは60〜100%を消失させ、平板粒子の投影面積比率を高める。具体的には反応溶液のAgX溶解度を1.1倍以上、好ましくは1.5〜30倍に高めて熟成する。該溶解度を高める方法として次の方法を挙げる事ができる。(1) 温度を5℃以上、好ましくは10〜60℃だけ高くする。(2) X塩または銀塩を加える。(3) AgX溶剤を加える。(4) 前記(1) 〜(3) の2つ以上の併用方法。反応溶液中の(Cl濃度/X濃度)が0.9〜1.0の場合、該昇温でまず30%以上の該核を消失させた後、Cl塩を加え、AgX溶解度を1.1倍以上、好ましくは1.3〜10倍に高めて、残りの該核の80〜100%、好ましくは97〜100%を消失させる事がより好ましい。
消失後、該過剰Cl濃度は、AgNO液を添加し、低下させる事もできるし、従来公知の乳剤脱塩法で脱塩し、低下させる事もできる。AgNO液の添加速度は最適の添加速度を選ぶ事ができ、新核発生しない速度で添加する事が好ましい。
【0030】
該ハロゲン組成ギャップ面を形成した核を熟成し、非平板粒子核を消滅させる場合、その時成長する平板粒子に異種ハロゲンイオンが蓄積する。この時、平板粒子に更にらせん転位等の欠陥が組み込まれ、主平面と垂直な方向の成長ベクトル成分を有する成長促進欠陥が組込まれる。その為に、成長と共に平板粒子は更に厚くなる。これを防止する為には、異種ハロゲンイオンをホストハロゲンイオンで希釈すればよい。具体例を挙げると、(内核|外核)が(AgX|AgX)核の場合、熟成時に放出される異種イオンXを希釈する為に、AgとX を添加しながら熟成する方法、核の構造を(AgX|AgX|AgX)とする方法、粒子直径0.01〜0.15μmのX組成比率の高い微粒子を添加する方法、その2つ以上の併用法、を挙げることができる。該希釈により、非平板粒子核を消滅させる時に新たに形成されるらせん転位欠陥数が、既に存在する欠陥数の0〜0.3が好ましく、0〜0.2がより好ましい。
【0031】
A−2.(111)平板粒子
1.粒子構造
(111)平板粒子の主平面の形状で分類すると、次の2つを挙げる事ができる。(1) 主平面の周囲形状が実質的に六角形である六角平板粒子。ここで実質的にとは該六角形の最大隣接辺比率〔1つの六角形内の(最長辺の長さ/最短辺の長さ)〕が1〜2、好ましくは1〜1.5、より好ましくは1〜1.2である態様を指す。(2) 主平面の周囲形状が実質的に三角形である三角平板粒子。ここで実質的にとは該隣接辺比率が2より大である態様を指す。(3) 前記(1) 、(2) の粒子の角が丸くなった態様。該周囲辺の直線部の比率(b)が0〜0.5の円形平板粒子と、0.5<b≦1.0の粒子を挙げる事ができる。b値は該周囲辺の直線部を延長し、形成される交点間の長さに対する該辺の直線部の長さの割合を指す。(4) 前記(1) 〜(3) の粒子で〔エッジ面の{111}面の面積/エッジ面の総面積〕が0〜1.0の粒子と、〔エッジ面の{100}面の面積/エッジ面の総面積〕が0〜1.0の粒子。〔エッジ面の{111}の面積/エッジ面の{100}面の面積〕が0.01〜100の粒子。
【0032】
前記6個の辺を有する六角平板粒子および三角平板粒子の態様において、1つおきの3つの辺の(最長辺の辺長/最短辺の辺長)=bは1〜1.3が好ましく、1〜1.2がより好ましく、1〜1.1が最も好ましい。該粒子の投影面積の合計が、全AgX粒子の投影面積の合計の80%以上、好ましくは90%以上、より好ましくは97〜100%を占める態様が好ましい。
主平面に平行な双晶面の枚数は2〜4枚、好ましくは2〜3枚、より好ましくは2枚である。2枚の粒子は通常、該六角平板粒子で3枚の粒子は該三角平板粒子であるが、2枚で三角平板粒子である態様も存在する。特に0.1μm以下の薄い平板粒子を低過飽和度下で成長させた場合に出現する。エッジ面には凹入角部と凸入角部が存在するが、凹入角部の方が原子結合手数が多い為により速く成長する。薄い平板粒子では(厚さ/双晶面間隔)が小さい為、(凹入角部の面積≠凸入角部の面積)である事が多い。
【0033】
該粒子を低過飽和成長させた場合、(凹入角面の面積>凸入角面の面積)の辺がより速く成長する為と考えられる。平行双晶面を3枚有する粒子では、エッジ部の成長速度が(凹入角を2つ有するエッジ部>凹入角を1つ有するエッジ部)となる為と考えられる。凹入角部を2つ有するエッジ部は、(成長活性点数/単位面積)がより多く、かつ、(凹入角の面積>凸入角の面積)の関係が成り立つ為である。
(平板粒子の厚さ/双晶面の間隔)または(平板粒子の厚さ/最外双晶面間の間隔)は1.1以上、好ましくは1.5〜100、より好ましくは2〜50である。最外双晶面とは、主平面に最も近い双晶面を指す。本発明では前記六角平板粒子またはその角が丸くなった粒子(0.5<b<1.0)が好ましく、隣接辺比率が1〜1.5がより好ましく、1〜1.2が更に好ましい。該粒子を以後、「正六角平板粒子」と呼ぶ。
【0034】
2.核形成
核形成時の温度は60℃以下が好ましく、10〜50℃がより好ましい。分散媒濃度は0.01〜5重量%が好ましく、0.01〜1重量%がより好ましく、0.03〜0.6重量%が更に好ましい。X塩濃度は10−0.8〜10−3モル/リットルが好ましく、10−1.2〜10−2.7モル/リットルがより好ましく、10−1.6〜10−2.7モル/リットルが更に好ましい。添加するAg液および/またはX液が分散媒を含む態様が好ましく、該濃度が0.01〜1重量%が好ましく、0.03〜0.6重量%がより好ましい。分散媒の分子量は3000〜20万が好ましく、3000〜10万がより好ましい。反応溶液のpHは1〜11が好ましく、2〜6がより好ましい。分散媒はゼラチンが好ましく、アルカリ処理ゼラチンがより好ましく、後述の修飾ゼラチンがより好ましい。
次の熟成過程での熟成をより迅速に行なわせ、かつ、平板粒子比率をより高める為には、AgX溶解度の低い条件で微小核を形成する事が好ましい。即ち低X濃度、低温が好ましい。X濃度の低下に伴う双晶面形成確率の低下は分散媒濃度を低下させる事によって補えばよい。また、pHを下げる程、通常、分散媒のAgX溶解度が低下するので好ましい。
核形成時に添加する銀塩量の30%以上、好ましくは60〜100%、より好ましくは80〜100%はX塩液と同時混合添加する事が好ましい。
【0035】
3.熟成
核形成で生成した核の内、この熟成過程で非平板粒子核を個数で好ましくは75〜100%、より好ましくは90〜100%、更に好ましくは100%を消失させ、平板粒子の投影面積比率を高める。具体的には反応溶液の溶解度を1.1倍以上、好ましくは1.5〜30倍に高めて熟成する。該溶解度を高める方法としては前記A−1の3項記載の方法を挙げる事ができる。該熟成時の分散媒の濃度は低い程、またpHは低い程、該熟成はより迅速に進行する。これは分散媒のAgX粒子に対する吸着力が弱くなり、平板粒子の成長疎外因子が除かれる事、および、非平板粒子の溶解が促進される為と解される。熟成時の分散媒濃度、分散媒の分子量、反応溶液のpH、分散媒の種類に関しては前記2の項の記載を参考にする事ができる。X塩濃度は10−0.8〜10−2.5モル/リットルが好ましく、10−1.2〜10−2モル/リットルがより好ましい。
【0036】
B.平板粒子の成長条件
本発明では該成長過程の分散媒溶液中の分散媒の30〜100重量%、好ましくは60〜100重量%、より好ましくは75〜98重量%、最も好ましくは80〜96重量%が(化学修飾された−NH基数の%とメチオニン含率の関係が図1のa、好ましくはa、より好ましくはaの領域にあるゼラチン)である。該態様を実現する為の方法として次の方法を挙げる事ができる。
【0037】
(1) 核形成、熟成を該修飾ゼラチン以外の分散媒(以後、「非修飾媒」と記す)を用いて行い、成長前に該分散媒の10〜99.7重量%を除去し、新たに該修飾ゼラチンを添加する方法。(2) 核形成を非修飾媒を用いて行ない、核形成後に該分散媒の10〜99.5重量%を除去し、新たに該修飾ゼラチンを添加する方法。(3) 核形成を非修飾媒の低濃度下で行ない、核形成後に該修飾ゼラチンを添加する方法。(4) 核形成、熟成を非修飾媒の低濃度下で行ない、熟成後に該修飾ゼラチンを添加する方法。(5) 核形成、熟成を該修飾ゼラチンの該濃度下で行う方法。核形成後、または熟成後に更に該修飾ゼラチンを添加する事もできる。(6) 核形成後まで、または熟成後までを非修飾ゼラチンの存在下で行ない、次に後述の修飾剤を用いて該ゼラチンを修飾し、該修飾ゼラチンの比率を高める方法。(7) 核形成後まで、または熟成後までを非修飾ゼラチンの存在下で行ない、次に非修飾ゼラチンを添加し、均一化混合した後に後述の修飾剤を用いて該ゼラチンを修飾し、該修飾ゼラチンの比率を高める方法。
【0038】
該分散媒の除去方法としては次の方法を挙げる事ができる。1)AgX乳剤を遠心分離し、上澄み液を除去する方法。2)限外濾過膜を用いて、限外濾過法で除去する方法。3)凝集沈降剤を加え、沈降水洗する方法、または遠心分離法と併用する方法。
該分散媒の除去率は30〜99.5重量%が好ましく、60〜99%が更に好ましく、90〜99%が最も好ましい。
前記(1) 〜(4) 、(6) 、(7) の方法をより好ましく用いる事ができる。(3) 、(4) の低濃度は、0.01〜1重量%、好ましくは0.03〜0.6重量%、より好ましくは0.03〜0.3重量%を指す。また、後で添加する修飾ゼラチンの添加量は、本発明の態様が達成されるに必要な量である。
【0039】
平板粒子を厚くせず、かつ、サイズ分布を広げずに成長させる為には分散媒のAgX粒子に対する吸着性を精密に制御する必要がある。ゼラチン水溶液にHを添加し、ゼラチンを酸化した場合、Hの添加量と共に、ゼラチンの(メチオニンスルホキシド基数/メチオニン基数)=Cが増加する。Cの増加と共にゼラチンのAgX粒子への吸着力は低下する。該C値の異なる種々のゼラチンを用い、その水溶液中で(111)平板粒子を同一条件で成長させた場合、得られる平板粒子はC値の増加と共により薄くなるが、同時によりサイズ分布は広がる。この現象は次のように理解する事ができる。
【0040】
該酸化により、リジン基、アスパラギン酸基、グルタミン酸基は全く変化を受けていない為、この変化はC値の変化に帰せられる。即ち、メチオニン基の強い吸着がなくなる為に平板粒子のエッジ面の成長律速は、メチオニン基の脱着律速からエッジ面の反応律速へと変る。(111)平板粒子の成長活性場所はエッジの凹入角部である為、1つの平板粒子で凹入角部上に成長核が形成される確率は、平板粒子の周囲のエッジ長に比例する。該エッジ長(2πd)は直径(d)に比例する為、成長核形成確率はdに比例する。成長核形成過程が成長律速の場合、成長速度は(大粒子>小粒子)となり、成長と共にサイズ分布は広がる。
【0041】
しかし、該酸化ゼラチンにメチオニンを100(μmol /gゼラチン)だけ添加して平板粒子を成長させても該薄平板粒子が形成される。従ってゼラチン中のメチオニン基のみが単独で強い吸着力を保持しているのではない。ゼラチンのアミノ基を無水フタル酸でフタル化し、種々のフタル化率のゼラチンを調製する。次に、該分散媒中で同一の種晶平板粒子を同一条件で成長させた場合、フタル化率の増加と共に、生成する平板粒子は薄くなるが、サイズ分布はあまり広がらない。従って、薄くてサイズ分布の揃った平板粒子を調製する為には、ゼラチンのメチオニン基の含率とアミノ基の含率の最適の組合せを選ぶ事が必要である。この最適値の選択は本発明により初めてなされた。1−フェニル−5−メルカプトテトラゾールはAgX粒子に強く吸着するが、メルカプト基単独、またはテトラゾール基単独ではそれ程強い吸着を示さない。前記現象はこれと同様に考える事ができる。即ち、ゼラチンのAgX粒子に対する強い吸着はゼラチン分子中のメチオニン基と−NH基の協奏効果により生じていると考えられる。 また、前記酸化ゼラチンで成長させた場合、六角形の形状の歪んだ平板粒子が形成されるが、図1のaの領域、好ましくはaの領域のゼラチンを用いた場合は、正六角平板粒子が形成される。
【0042】
分散媒のAgX粒子に対する吸着力を制御するもう一つの大きな因子は温度である。同じ分散媒であっても、温度を低くする程、吸着基が脱着する頻度が減少し、粒子成長はより脱着律速成長となる。この場合、平板粒子のすべての表面はより等速成長に近づく。従って温度を高くする程、該脱着律速が除去され、エッジの選択成長性が高められ、より高アスペクト比の平板粒子が得られる。同じ平板粒子を種々の分散媒を用いて30〜80℃の種々の温度で成長させた場合、得られる平板粒子の該アスペクト比変化は、メチオニン含率が高く、かつ、自由アミノ基含率の高いゼラチンの方が、大きくなる。本発明の態様では、該温度変化が小さく、広い温度範囲において高アスペクト比で単分散の平板粒子が得られる。また、AgX粒子への適度な吸着力が保たれる為にかぶりの発生が抑えられ、(感度/かぶり)比の高い粒子が得られる。成長温度は30℃以上が好ましく、40〜90℃がより好ましい。最も好ましい温度を選んで用いる事ができる。
分散媒のAgX粒子に対する吸着力を制御するもう1つの大きな因子はpHである。メチオニン含率がゼロの酸化処理ゼラチンを用い、種々のpHの分散媒溶液を調製する。同じ(111)平板種晶をそれぞれの溶液に入れ、成長させた場合、pHの上昇と共に厚い平板粒子の混入比率が増す。pH8以上、特にpH9以上で顕著になる。この時、メチオニンスルホキシドは変化しない事から、メチオニンだけが厚板粒子の生成原因ではない事を示している。これに対し、本発明の修飾ゼラチンを用いた場合は、該pH依存性が小さく、pH9〜10においても厚板粒子は混入しない。即ち、成長pHが6〜11、好ましくは6〜10でより利点が大きくなる。
一方、(100)平板粒子の場合は、熟成、成長条件をより高pHにする程、薄い平板粒子が得られる。それらの関係と理由は表1にまとめた。ここでGel.はゼラチンを指す。
【0043】
【表1】
Figure 0003575639
【0044】
これらの平板粒子の成長は目的に応じて最も好ましい過飽和度を選んで成長させる事が好ましい。臨界過飽和度を100、溶質の添加なしの時の過飽和度を0とした場合、5〜90が好ましく、10〜80がより好ましい。ここで臨界過飽和度とは、AgNO水溶液とX塩水溶液を同時混合添加した場合、それ以上の添加速度で添加すると新核が発生する状態の時の過飽和度を指す。過飽和度を高くすると、得られる平板粒子はより単分散化するが、厚さ方向へも成長し、低アスペクト比化する。過飽和度を低くするとより高アスペクト比化するが、サイズ分布が広くなる。
成長時の該分散媒の濃度は0.1〜7重量%が好ましく、0.3〜3重量%がより好ましい。分子量は3000〜20万、好ましくは6000〜12万である。溶液のpHは該修飾ゼラチンの等電点以上のpHが好ましく、(等電点pH+0.2)〜pH11がより好ましく、(等電点pH+0.4)〜pH10が更に好ましい。同一条件で平板粒子を成長させた時、pHは低下する程、ゼラチン濃度は低下する程、該分子量は低下する程、生成する平板粒子は高アスペクト比化する。目的に応じて最も好ましい組合せを選んで用いる事ができる。
【0045】
(111)平板粒子の熟成時、成長時の反応溶液中のXの濃度は八面体粒子生成領域が好ましい。ここで八面体粒子生成領域とは、該X濃度条件に保ちながらAgとXを同時混合添加し、AgX粒子を形成した場合、粒子表面の70〜100%、好ましくは90〜100%が{111}面の粒子が生成する濃度範囲を指す。通常、該X濃度は10−0.5〜10−2.5モル/リットルが好ましく、10−1〜10−2モル/リットルがより好ましい。
該特徴は(111)平板粒子の他、(100)平板粒子においても見られる。従って前記(100)平板粒子に対しても好ましく用いる事ができる。(100)平板粒子の核形成、熟成、成長時の反応溶液中のX濃度は立方体粒子生成領域が好ましい。ここで立方体粒子生成領域とは、該X濃度条件に保ちながらAgとXを同時混合添加し、AgX粒子を形成した場合、粒子表面の70〜100%、好ましくは90〜100%が{100}面の粒子が生成する濃度範囲を指す。通常、該X、およびAg濃度は10−1.5モル/リットル以下が好ましく、10−2モル/リットル以下がより好ましい。
前記平板粒子のその他の詳細に関しては、前記「従来の技術」の項に記載した文献の記載および特開平3−288143号、同3−212639号、同3−116133号、同2−301742号、同2−34号、同6−59360号、特願平6−47991号、同5−248218号、同5−264059号、同5−96250号、後述の文献の記載を参考にする事ができる。
【0046】
C.修飾ゼラチン
ゼラチン中の−NH基としてはゼラチン分子の末端基のアミノ基、リジン基、ヒドロキシリジン基、ヒスチジン基、アルギニン基のアミノ基の他、アルギニン基がオルニチン基に変換されていれば、そのアミノ基を挙げる事ができる。更にアデニン、グアニン基等の不純物基も挙げる事ができる。−NH基の化学修飾とはゼラチンに反応試薬を添加し、該アミノ基と反応させ、共有結合を形成または脱アミノ化する事である。即ち、一級アミノ基(−NH)を2級アミノ基(−NH−)、3級アミノ基、または脱アミノ化体に変化させる事を指す。
【0047】
具体的には例えば酸無水物(マレイン酸無水物、o−フタル酸無水物、コハク酸無水物、isatoic anhydride 、安息香酸無水物等)、酸ハロゲン化物(R−COX、R−SOX、R−O−COX、Phenyl−COCl等)、アルデヒド基を有する化合物(R−CHO等)、エポキシ基を有する化合物、脱アミノ基剤(HNO、deaminase 等)、活性エステル化合物(スルホン酸エステル、p−ニトロフェニルアセテート、イソプロペニルアセテート、メチルo−クロロベンゾエート、p−ニトロフェニルベンゾエート等)、イソシアネート化合物 (Aryl isocyanate 等) 、活性ハロゲン化合物、例えば〔Aryl halide (benzyl bromide, biphenyl−halomethanes, benzoyl halomethane, phenyl benzoylhalo−methane, 1−Fluoro−2,4−dinitro−benzene), β−ketohalide, α−haloaliphatic acid, β−halonitrile, (s−triazine, pyrimidine, pyridazine, pyrazine, pyridazone, quinoxaline, quinazoline, phthalazine, benzoxazole, benzothiazole, benzoimidazole) のクロル誘導体〕、
カルバモイル化剤(cyanate, nitrourea 等) 、アクリル型活性2重結合基を有する化合物(maleimide, acrylamine, acrylamide, acrylonitrile, methylmethaacrylate, vinyl sulphone, vinylsulphonate ester, sulphonamide, styrene and vinylpyridine, allylamine, butadiene, isoprene, chloroprene等) 、sultone 類(butane sultone, propane sultone), Guanidine化剤(o−methylisourea等) 、carboxylazide 等を加え、反応させる事により達成する事ができる。
【0048】
この場合、ゼラチンの−OH基や−COOH基とも反応し、共有結合を形成する試薬よりは主としてゼラチンの−NH基と反応する試薬がより好ましい。主としては、60%以上、好ましくは80〜100%、より好ましくは95〜100%を指す。更には該反応生成物が、(エーテル基やケトン基の酸素がカルコゲン原子に置き代った基、例えば−S−、チオン基)を実質的に含まない態様がより好ましい。ここで実質的に含まないとは該化学修飾された基数の好ましくは10%以下、より好ましくは0〜3%を指す。従って前記の内、酸無水物、sultone 類、活性2重結合基を有する化合物、カルバモイル化剤、活性ハロゲン化合物、イソシアネート化合物、活性エステル化合物、アルデヒドを有する化合物、脱アミノ基剤がより好ましい。該化学修飾により、ゼラチン分子間で架橋が実質的にできない態様がより好ましい。ここで実質的にできないとは、該化学修飾された基の10%以下が好ましく、0〜3%が更に好ましい。
【0049】
該化学修飾剤およびゼラチンの該化学修飾法のその他の詳細に関しては後述の文献、特開平4−226449、特開昭50−3329号、米国特許第2525753号、同2614928号、同2614929号、同2763639号、同2594293号、同3132945号、安孫子義弘編,にかわとゼラチン,第II章,日本にかわ・ゼラチン工業組合(1987年)、Wardら編, The Science and Technology of Gelatin, 第7章,Academic Press(1977)の記載を参考にする事ができる。
該修飾ゼラチンの−NH基の化学修飾%は次のようにして求める事ができる。該修飾を行なっていないゼラチンと該修飾を行なったゼラチンを準備し、両者の−NH基数をe、eとして求める。化学修飾%は100×(e−e)/eより求める事ができる。該eとeの求め方は、−NH基に基づく赤外吸収強度や、該プロトンのNMR信号強度、呈色反応および蛍光反応を利用する方法を挙げる事ができ、詳細は分析化学便覧、有機編−2、丸善(1991)の記載を参考にする事ができる。その他、ゼラチンの滴定曲線の変化、formol滴定法等の定量法を挙げる事ができ、詳細は The Science and Technology of Gelatin, 第15章,Academic Press(1977年)の記載を参考にする事ができる。
【0050】
その他、グルタルアルデヒドとBritton−Robinson 高pH緩衝液の混合物を指定濃度のゼラチン溶液に添加し、発色させ、450nm近傍の分光吸収強度を測定し、比色定量する事により求める方法〔Photographic Gelatin II, p. 297〜315,Academic Press(1976)の記載を参考にする事ができる〕を挙げる事ができる。
該ゼラチンのメチオニン含率は、ゼラチンをアルカリ加水分解法で完全にアミノ酸に分解し、アミノ酸分析計で分析し、グリシン量に対するメチオニン量を求める事により求める事ができる。詳細は特願平6−102485の記載を参考にする事ができる。該ゼラチンのメチオニン含率は、ゼラチン水溶液に酸化剤を添加し、メチオニンの−S−基をスルフォキシド、スルフォネート、スルフォンの1つ以上に酸化する事により調節する事ができる。好ましくはスルフォキシドに酸化する。即ち、本発明ではメチオニンの該酸化体はメチオニンと見なされない。該酸化のレベルは主として添加する酸化剤の種類とその添加量により調節する事ができる。該水溶液の温度は10〜70℃が好ましく、25〜50℃がより好ましい。pHは2〜9が好ましく、3〜7がより好ましい。通常、温度、pHを一定に調節したゼラチン水溶液中に酸化剤を添加し、均一混合化する。次に、容器にフタをし、恒温、静置し、好ましくは15分間〜3日間、より好ましくは1〜24時間、経時する。酸化剤に関しては特願平6−102485の記載を参考にする事ができる。通常はHを好ましく用いる事ができる。
【0051】
該酸化により、ゼラチンの吸光係数(200〜500nm波長域)が低下する。従って、種々の酸化レベルの試薬を作り、該吸光係数とメチオニン含率の関係を求めておけば、それ以後は、吸光係数の測定により、該ゼラチンのメチオニン含率を簡便に求める事ができる。標準的なゼラチンのアミノ酸組成は、The Theory of The Photographic Process, 第2章,Macmilan(1977年)に記されており、メチオニンは1分子中に8分子含まれている。ゼラチンの分子量を96,000とすると、メチオニン含率は83μmol/g であり、従来のゼラチンのメチオニン含率は約80μmol/g 近傍と見なす事ができる。図1のa、a領域においてメチオニン含率は60μmol/g 以下が好ましく、50μmol/g 以下がより好ましく、40μmol/g 以下が更に好ましく、36μmol/g 以下が最も好ましい。図1のa領域においてはメチオニン含率は40μmol/g 以下が好ましい。
【0052】
D.PAO重合体
ポリアルキレンオキサイド重合物(以後、「PAO重合体」と記す)を核形成前〜成長終了の5分前、好ましくは10分前までの間に、より好ましくは核形成後〜成長開始直前までの間に添加する事が好ましい。前記平板粒子形成、更にはBr含率が50〜100モル%の(111)平板粒子形成に対して、より好ましく添加する事ができる。該PAO重合体の詳細に関しては欧州特許0514742A1、特願平5−118418、同5−191814、同5−263128に記載の化合物が好ましく、特に特願平5−191814、同5−263128記載の態様を好ましく用いる事ができる。下記第1〜第6態様のPAO重合体の分子量は500〜10が好ましく、10〜10がより好ましい。下記第1、第2態様のPAO重合体の該添加量は0.001〜20g/リットルが好ましく、0.003〜10g/リットルがより好ましい。下記第3〜第6態様の各重合体の該添加量は0.01〜20g/リットルが好ましく、0.03〜10g/リットルがより好ましい。下記第3〜第6態様の各重合体の該添加量は0.01〜20g/リットルが好ましく、0.03〜10g/リットルがより好ましい。粒子成長時のpHは5〜11が好ましく、5〜9.5がより好ましい。
【0053】
AgX粒子への有機エーテル化合物の吸着力の強さの順は、一般的傾向として−O−<−S−<−Se−<−Te−、である。酸素エーテル基のAgX粒子への吸着力は、チオエーテル基のそれに比べて弱い為、AgX粒子の成長を強く抑制する事がない。また、そのAgX粒子への吸着はファンデアワールスカに基づく為にAgX粒子の{111}面よりも{100}面の方により選択的に吸着する。それは{111}面に比べて{100}面の方がAgとXを有する為に誘起双極子モーメントが大きい為である。(111)平板粒子で{100}面が現れ易いのはエッジ面であるからPAOは主平面よりもエッジ面に適度の吸着力で吸着する。そしてエッジ面の成長律速をPAOの脱着律速に変える。単位面積あたりのPAOの吸着分子数が等しければ、大粒子も小粒子も、各単位面積の成長速度は同じである。従って、大粒子も小粒子も、エッジ面が等速で成長し、成長と共に直径分布の変動係数は小さくなる。
【0054】
PAO重合体の該吸着の晶癖依存性は、次の方法で求める事ができる。等表面積の単分散立方体粒子乳剤と八面体粒子乳剤を準備し、各々にPAO化合物を添加し、吸着平衡に達せしめた後、遠心分離し、上澄み液の分析をする。例えば該PAOの曇点以上の温度の場合はその分光透過強度の比較により求める事ができる。その他、クロマトグラフィー法でPAO成分を分離し分析する方法(例えばゲル濾過クロマトグラフィー法)を挙げる事ができる。その他、誘電損失法で該立方体と八面体粒子のイオン電導度を測定し、該吸着によるイオン伝導度変化量を求める事によっても比較する事ができる。
【0055】
従来のゼラチンのAgX粒子への吸着は通常、{111}面よりも{100}面に強く起こる。それは主として粒子表面のAgとの相互作用に基づいて吸着する為である。この場合、PAO重合体の{100}面への吸着は疎外される。しかし、該修飾ゼラチンの場合、AgX粒子への吸着が弱い為、PAO重合体の{100}面への選択的吸着が可能となり、前記態様の好ましい成長特性が得られる。PAO重合体は該吸着でAgBr粒子のイオン伝導度を増加させる事から、{100}面のBrとの相互作用が大きいと考えられる。
また、該PAO重合体とXとの水溶液中の相互作用は次の方法で求める事ができる。該PAOを含む水溶液中と、含まない水溶液中にそれぞれX選択電極を入れ、X塩の添加量と該電極電位(対標準電極)との関係を求め、比較すればよい。PAO重合体に取り込まれたX量分だけ該電位変化は小さくなる。
【0056】
該PAO重合体の第1態様はHPAOであり、前記一般式(1)−a)または(1)−b)で表される。HPEOUの分子量は分子全体の分子量の96.1〜100%、好ましくは97〜100%を占める態様(HP1)と4〜96%を占める態様(HP2)を挙げる事ができる。
(1)式において、RはH、または少なくとも1つの極性基を有する炭素数1〜10の炭化水素(例えば−CHOH、−COH 、−CH−O−CH) で、好ましくはHである。Rは炭素数3以上、10以下のアルキレン基を表し、具体例として −CH(CH)CH− 、−CHCH(CH)− 、−CHCHCH− 、−(CH−、−(CH−、−CHCH(C)− を挙げる事ができ、 −CH(CH)CH− 、−CHCH(CH)−が特に好ましい。
n、mは繰返し単位の平均数を表し、前記分子量規定を満たす4以上好ましくは6〜10,000、より好ましくは10〜2000の値である。
【0057】
但し、重合時の環状エーテルの開環位置の選択性が十分ではないので、前記(1)−d)式で例えば−〔CHCH(CH)O 〕−と−〔CH(CH)CHO 〕−が混入する事がある。
該PAO重合体の第2態様はPEODであり、一般式で表すと、前記(2) 式の(a)〜(f)で表される。ここでLPUはHO−HPEOU−基およびHO−LPAOU−基以外の親油性基を指し、置換または無置換のアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリーロキシ基、アシル基、アシルアミノ基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリーロキシカルボニル基、アリサイクリック基を指し、2価のイオウ、セレン、テルルを含まない化合物がより好ましい。LPU′はH、炭素数1〜20のアルキル基を指し、後述のRと同じである。
該HPAOの具体的化合物例を(10)式のa)〜c)に、該PEODの具体的化合物例を(11)式のa)〜g)に示した。
ここで置換基としては C d+1 、 C d+ CO を挙げる事ができる。dは1〜12の整数を表す。
【0058】
【化7】
Figure 0003575639
【0059】
式中、a、bは1〜25の整数を指し、n〜nはHPAOおよびPEODの前記分子量規定を満足する1〜10,000の値である。第1、第2態様の重合体のその他の詳細に関しては、特願平5−118418号の記載を参考にする事ができる。
該PAO重合体の第3態様は、前記一般式(3)〔後述の(7)−a)式と同じである。〕で表されるモノマーの繰返し単位を有する重合体の少なくとも1種を含有させる態様である。該重合体は後述の他のモノマーとの共重合体でもよい。その場合、重合体中で(3)式のモノマーが占める割合は1〜100重量%、好ましくは10〜90重量%である。該第4態様は重合体が一般式(3)で表されるモノマーと一般式(4)〔後述の(7)−c)式と同じである〕で表されるモノマーの少なくとも2種の1:100〜100:1、好ましくは5〜100〜100:5モル比の共重合体である態様である。
【0060】
該(3)式と(4)式において、R、Rは同じでも異なっていてもよく、H、炭素数1〜4の低級アルキル基(メチル、エチル、n−プロピル、n−ブチル)を表し、H、メチル基が特に好ましい。R、Rは同じでも異なっていてもよく、炭素数1〜20の1価の置換基を表し、H、置換または無置換のアルキル基、置換または無置換のアリール基、アシル基が好ましく、特にH、メチル基、エチル基、フェニル基、アセチル基が好ましい。n、mは繰返し単位の平均数を表し、nは4〜600、好ましくは4〜200、mは4〜600、好ましくは4〜200である。L、L′は2価の連結基を表し、具体例として−COO− 、−CONH−、−CONH−(CH−COO− 、−Ph−CHO−(Ph: フェニレン基) 、−COOCHCHO−、−CON(CH)−、を挙げる事ができる。Cは1〜20の整数を指す。
【0061】
一般式(3)で表されるモノマーの具体例は次の通り。
Figure 0003575639
【0062】
一般式(4)で表されるモノマーの具体例は次の通り。
Figure 0003575639
【0063】
該共重合体中で (3)式で表されるモノマーの占める割合は1〜90重量%、好ましくは5〜85重量%、より好ましくは15〜70重量%である。
該共重合体中で (4)式のモノマーの占める割合は1〜90重量%、好ましくは3〜70重量%、より好ましくは10〜50重量%である。
(3)式のモノマーおよび/または (4)式のモノマーと他のモノマーを共重合して用いる事もできる。該他のモノマーの具体例はアクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、ビニルエステル類、ビニルケトン類、アリル化合物、オレフィン類、ビニルエーテル類、N−ビニルアミド類、ビニル異節環化合物、マレイン酸エステル類、イタコン酸エステル類、フマル酸エステル類、クロトン酸エステル類である。該他のモノマーの共重合量は0〜99重量%、好ましくは0〜90重量%、より好ましくは5〜60重量%である。
【0064】
(3)式のモノマーと (4)式のモノマーとその他のモノマーの共重合体の具体例を(12)−1)〜(12)−5)式に示した。カッコ内は重合体中における各モノマーの重量百分率を表す。
Figure 0003575639
【0065】
第3、第4態様のPAO重合体のその他の詳細に関しては後述の第6態様の記載、特願平5−191814号の記載を参考にする事ができる。
該PAO重合体の第5態様は、該分散媒溶液が前記一般式(5)で表される繰返し単位を1重量%以上含有する重合体の少なくとも1種と、前記一般式(6)で表される繰返し単位を1重量%以上含有する重合体をそれぞれ前記濃度で含有する態様である。
該式中、Rは炭素数3以上、10以下のアルキレン基を表し、具体例として−CH(CH)CH−、−CHCH(CH)−、−CHCHCH− 、−(CH−、−(CH−、−CHCH(C)− を挙げる事ができ、−CH(CH)CH−、−CHCH(CH)−が特に好ましい。
n、mは繰返し単位の平均数を表し、前記分子量規定を満たす4以上好ましくは6〜10,000、より好ましくは10〜2000の値である。
【0066】
該PAO重合体の第6態様は、第5態様に対し、次の限定が加わった態様である。 (5)式で表される重合体が、(7) −a)式で表されるモノマーのビニル重合体、および(7) −b)式で表されるポリウレタンを含む重合体から選ばれる少なくとも1種の重合体であり、 (6)式で表される重合体が(7) −c)式で表されるモノマーのビニル重合体、(7) −d)式で表されるポリウレタンを含む重合体、および置換または未置換のポリエチレングリコールから選ばれる少なくとも1種の重合体である態様。
該式中、n、mは4以上、好ましくは4〜600、より好ましくは4〜80の値をとりうる。R、R、R、R、R、L、L′は前記と同じである。R11、R12、R13、R14は2価の連結基を表し、炭素数1〜20のアルキレン基、炭素数6〜20のフェニレン基、または炭素数7〜20のアラルキレン基を表す。x、y、z、x′、y′、z′は各成分の重量百分率を表し、x、x′は1〜70、好ましくは5〜40、y、y′は1〜70、好ましくは3〜50、z、z′は20〜70、好ましくは30〜60を表す。ここでx+y+z=100、x′+y′+z′=100である。
−(R−O)−で表される繰り返し単位は、重合体中で1種のみが用いられてもよいし、2種以上であってもよい。また−(R−O)−あるいは −(CHCHO)−の繰返し単位の平均数(分子量)の異なる2種以上がそれぞれ用いられていてもよい。
【0067】
(5)式で表される重合体としては (5)式の繰返し単位が含まれていれば好ましく用いる事ができるが、一般式(7) −a)で表されるモノマーのビニル重合体または、一般式(7) −b)で表されるポリウレタンを含む重合体をより好ましく用いる事ができ、前者の該ビニル重合体を更に好ましく用いる事ができる。
(7) −a)式で表されるモノマーの具体例を(7)−a)−1) 〜(7)−a)−5) 式〔(3) −a)−1) 〜(3)−a)−5) 式と同じである〕に示した。
【0068】
【化8】
Figure 0003575639
【0069】
該ビニル重合体において、(7) −a)で表されるモノマー単位の占める割合は1〜100重量%、好ましくは、10〜90重量%、より好ましくは30〜70重量%である。(7) −a)式のモノマーの該ビニル重合体の具体例を(8)−a)−1) 〜(8)−a)−3) 式に、(7) −b)式の該ポリウレタンの具体例を(8)−b)−1) 〜(8)−b)−2) 式に示した。カッコ内は重量百分率比を表す。
(8)−a)−1) :(7)−a)−3)/アクリルアミド共重合体 (25/75)
(8)−a)−2) :(7)−a)−3)/アクリル酸/アクリルアミド共重合体 (50/30/20)
(8)−a)−3) :(7)−a)−3)/アクリル酸共重合体 (70/30)
(8)−b)−1) :イソホロンジイソシアネート/2,2−ビス(ヒドロキシメチル)プロピオン酸ソーダ/ポリプロピレンオキシド(分子量400)/ポリプロピレンオキシド(分子量1000) (43.1/21.5/15.7/19.7)。
(8)−b)−2) :トルエンジイソシアネート/2,2−ビス(ヒドロキシメチル)ブタン酸ソーダ/ポリプロピレンオキシド(分子量1000)
(29.3/20.1/50.6) 。
該ポリウレタンは基本的にジオール化合物とジイソシアネート化合物の付加により合成される。
【0070】
(6) 式で表される重合体としては(6) 式の繰返し単位が含まれていれば好ましく用いる事ができるが、一般式(7) −c)で表されるモノマーの単独重合体、もしくは共重合体、あるいはポリエチレングリコール、置換ポリエチレングリコール、(7) −d)式で表されるポリウレタンを好ましく用いる事ができ、(7)−c)式のモノマーの該単独重合体をより好ましく用いる事ができる。
【0071】
(7) −c)式のモノマーは他のエチレン性不飽和モノマーと共重合してもよい。その場合、該共重合体において、(7) −c)式のモノマーが占める割合は1〜100重量%、好ましくは10〜80重量%、より好ましくは30〜70重量%である。(7) −c)式で表されるモノマーの具体例は次の通り〔(4)−a)−1) 〜(4)−a)−5) と同じである。〕。
Figure 0003575639
(6) 式で表される繰り返し単位を有する重合体としてはその他、ポリエチレングリコール、炭素数1〜30の置換基を有する置換ポリエチレングリコール、ポリウレタンを挙げる事ができる。(7) −d)式で表されるポリウレタン重合体中でポリエチレンオキシドが占める割合は1〜70重量%、好ましくは5〜40重量%である。
【0072】
次に(7) −c)式で表されるモノマーの重合体の具体例を(8) −c)式に、(7) −d)式の重合体例を(8) −d)式に示す。
(8)−c)−1) (7)−(c)−3)/アクリルアミド共重合体 (10/90)
(8)−c)−2) 〃 (25/75)
(8)−c)−3) 〃 (50/50)
(8)−c)−4) (7)−(c)−3)単独共重合体
(8)−d)−1) トルエンジイソシアネート/2,2−ビス(ヒドロキシメチル)ブタン酸ソーダ/ポリエチレングリコール(分子量1000)
(29.3/20.1/50.6)
(8)−d)−2) 4,4′−ジフェニルメタンジイソシアネート/2,2−ビス(ヒドロキシメチル)プロピオン酸ソーダ/ポリエチレングリコール(分子量400) (45.3/11.3/43.4)
【0073】
第5、第6態様のその他の詳細に関しては特願平5−263128号の記載を参考にする事ができる。
本発明では第1態様のHP1、第2〜第6態様を好ましく用いる事ができ、第2〜第6態様をより好ましく用いる事ができ、第3〜6態様を更に好ましく用いる事ができる。更には第5、第6態様がもっとも好ましい。
前記PAO重合体のその他の詳細に関しては Davidsohnら、Synthetic Detergents, John Wiley & Sons, New York (1987)、三沢忠則編, 水溶性高分子,化学工業社(1990)、堀口博著,新界面活性剤,三共出版(1975)、藤本武彦著,新界面活性剤入門,三洋化成工業(1976)、日本化学会編,化学便覧,第4−6節,丸善(1984)、吉田時行ら著,界面活性剤ハンドブック,工学図書、および後述の文献の記載を参考にする事ができる。
AgX粒子のハロゲン組成や成長条件(温度、pH、pAg等)により、(5) 式で表される重合体と(6) 式で表される重合体の最適添加量比が変化する。しかし、第5、第6態様の場合、両重合物を準備しておけば、その添加量比を変える事により、最適条件を選ぶ事ができる。しかし、第4態様の場合、(3) 式のモノマーと(4) 式のモノマーの重合比を種々変化させた重合物を準備しなければならず、きめ細かく対応する事が困難である。また、少量多品種化し、コストアップになる。従って、この点では第4態様より、第5、第6態様の方がより好ましい。
【0074】
D.AgとXの供給方法
成長過程でのAgとXの供給方法は、1)可溶性銀塩を溶解させた銀塩溶液と可溶性ハロゲン塩を溶解させたハロゲン塩溶液(以後「X塩液」と記す)を供給するイオン溶液添加法、2)予めAgX微粒子乳剤を形成し、該微粒子乳剤を供給する方法、3)スプラッシュ添加方法、4)前記両者の併用方法、をあげることができる。可溶性銀塩、可溶性ハロゲン塩としては室温の水に対する溶解度が1重量%以上、好ましくは10重量%以上の塩をあげることができ、日本化学会編,化学便覧,第8章,丸善(1993年)の記載を参考にすることができる。通常はAgNOと、Cl、Br、Iのアルカリ金属塩、アンモニウム塩を好ましく用いることができる。AgX微粒子としては粒子の直径(粒子の投影面積と等しい面積を有する円の直径)が0.15μm以下が好ましく、0.01〜0.1μmがより好ましく、0.02〜0.06μmが更に好ましい。ハロゲン組成はAgCl、AgBr、AgIおよびその2種以上の混晶をあげることができる。
【0075】
該サイズ分布は変動係数で0〜0.4が好ましく、0〜0.2がより好ましく、0〜0.1が更に好ましい。
該微粒子は2重以上の双晶面を実質的に有しないことが好ましく、1重双晶粒子をも実質的に有しないことがより好ましい。更にはらせん転位欠陥をも実質的に有しないことが好ましい。ここで実質的に有しないとは個数で3%以下が好ましく、1%以下がより好ましく、0〜0.1%が更に好ましい。
該微粒子は連続的に添加する事もできるし、断続的に添加する事もできる。また、供給する該微粒子のハロゲン組成は供給時間に対して連続的に変化させる事もできるし、断続的に変化させることもできる。該微粒子乳剤のpHは1〜12、pXは0.5〜6の最も好ましい組合せを選ぶことができる。
【0076】
該微粒子を形成する場合、AgX粒子に強く吸着する分散媒の方が、前記規定の微粒子の形成を可能にする。一方、該微粒子を供給して平板粒子を成長させる場合、分散媒とAgX粒子の結合は弱い方がよい。それは該微粒子の溶解を促進し、平板粒子の成長を促進する為である。従って、該AgX微粒子を分散媒溶液中で形成した後、該処理をし、同一条件下における該分散媒の単位重量あたりのAgとの錯体形成能を10%以上、好ましくは30〜99%以上、より好ましくは60〜95%、更に好ましくは80〜95%だけ低下させることが好ましい。ここで該処理とはH等の酸化剤を添加し、分散媒を酸化する事および/または該修飾剤を添加し、該アミノ基を該化学修飾する事を指す。該処理の詳細、および、該微粒子添加法のその他の詳細に関しては特願平6−102485の記載を参考にする事ができる。
【0077】
核形成、熟成、成長時の該AgとXの供給装置および該粒子形成装置としては従来公知のあらゆる装置を用いることができる。添加孔が分散媒溶液中に設置され、(添加孔数/1添加液)が2個以上、好ましくは4〜1015個の多孔添加系、該添加孔がゴム弾性体膜ででき、添加時には孔が開となり、添加停止時には孔が閉となる態様を好ましく用いる事ができる。前記微粒子添加法および従来の装置の詳細に関しては後述の文献、および特開平3−21339、同1−183417、同4−34544、同4−193336、同4−330427、同3−155539、同3−200952、同3−246534、同4−283741、同4−184326〜184330、同5−11377、同5−45757、同5−61134、同5−337350、同6−11779、米国特許第5254454、特願平4−240283、同4−302605、同5−25314の記載を参考にする事ができる。
【0078】
E.AgX乳剤の製造工程
AgX乳剤の製造工程は従来は通常、AgX粒子形成→乳剤水洗→化学増感、分光増感、で行なわれている。本発明では、この製造工程以外に、目的に応じて、化学増感後、および/または分光増感後に乳剤の脱塩工程を入れることができる。この場合、化学増感時のAgX乳剤条件、分光増感時のAgX乳剤条件を、塗布時のAgX乳剤条件とは異なる条件に選ぶことができ、それぞれの工程に最も適した条件を選ぶことができるという利点がある。化学増感と分光増感は同時に行なうこともでき、いずれか一方を先に行なうこともできる。
該乳剤を調製した後、従来法に従って乳剤を水洗し、脱塩する事ができる。該脱塩法としては、1)ヌーデル水洗法、2)凝集剤を加え、乳剤のpHを凝集pHに調節して乳剤を凝集させ、沈降させ、上澄み液を除去する方法、−NH基および/またはカルボキシル基、好ましくは−NH基を化学修飾したゼラチンを含む場合は、凝集剤なし、またはより少ない添加量で凝集、沈降させる事ができる。3)限外濾過膜を用いてAgX乳剤中の水溶液を除去する方法、4)遠心沈降法によりAgX粒子を沈降させ、上澄み液を除去する方法、5)遠心濾過法、6)電気透析法、を挙げる事ができる。それらの詳細に関しては後述の文献、特公昭62−27008号、特開昭62−113137号、特開平3−200952号、三沢編,増補・遠心分離,化学工業社(1985年)の記載を参考にする事ができる。
本発明の乳剤の場合、該遠心濾過法を用い、分散媒の10〜99.9%を除去し、新しい分散媒を添加し、分散媒を置換する方法も好ましく用いる事ができる。
【0079】
F.化学増感
本発明のAgX乳剤粒子は好ましくはSx増感され、分光増感色素を吸着しているが、ここでSxとはイオウ、セレン、テルルを指す。Sx増感剤としては従来公知のSx増感剤を用いることができ、具体例としてはチオ尿素類、ローダニン類、オキサゾリジン類、ポリスルフィド類、セレノ尿素類、ホスフィンセレニド類、セレノアミド類、チオ硫酸塩をあげることができ、詳細は後述の文献の記載を参考にすることができる。
本発明のAgX乳剤のAgX粒子は更に金増感されていることが好ましい。金増感剤としては従来公知の金増感剤を用いることができ、例えば塩化金酸、カリウムクロロオーレート、カリウムまたはナトリウムオーリチオシアネート(塩化金酸:SCN=1:1〜1:100モル比)、臭化金酸、ヨウ化金酸、硫化金、金セレナイド等をあげることができ、詳細は後述の文献の記載を参考にすることができる。
なお、(金増感剤の添加モル数/Sx増感剤の添加モル数)の比は4〜0.2が好ましく、2〜0.3がより好ましく、1.5〜0.4が更に好ましい。AgX乳剤への添加量はそれぞれ、10−2〜10−7、好ましくは10−3〜10−7モル/モルAgXの中から最適量を選ぶ事が好ましい。
【0080】
G.その他
核形成、熟成時の分散媒、また成長時に併存させる分散媒としては従来公知の水溶性分散媒の中から1種以上を選んで用いる事ができ、ゼラチンを好ましく用いる事ができる。従来公知の水溶性分散媒に関しては後述の文献およびResearch Disclosure ,307巻,アイテム307105,11月,1989年、特願平6−102485、特公昭52−16365、三沢忠則編,水溶性高分子,化学工業社(1987年),高分子学会編,高分子新素材,One Point 24,共立出版(1990)、長友信治編,水溶性高分子の応用と市場,シーエムシー社(1984)、Wardら著, The Science and Technology of Gelatin, Academic Press, London (1964)、の記載を参考にする事ができる。分散媒の濃度は0.01〜10重量%、好ましくは0.05〜3重量%の内の好ましい濃度を選んで用いる事ができる。
【0081】
このようにして調製した本発明の平板粒子乳剤は、該成長終了直後の状態は、次の如く表現される。少なくとも分散媒とAgX粒子を有するAgX乳剤において、該AgX粒子の全投影面積の75〜100%、好ましくは90〜100%、より好ましくは97〜100%が、厚さが0.02〜0.3μm、好ましくは0.03〜0.15μm、より好ましくは0.03〜0.1μm、アスペクト比(直径/厚さ)が2〜50、好ましくは3〜30の平板粒子であり、直径分布の変動係数が0〜0.3、好ましくは0〜0.2、より好ましくは0〜0.1であり、該分散媒の30〜100重量%、好ましくは60〜100重量%、より好ましくは90〜100重量%が(化学修飾された−NH基数の%と、メチオニン含率の関係が図1のaの領域、好ましくはaの領域、より好ましくはaの領域にあるゼラチン)である。メチオニン含率に関しては前記C項の記載を参考にする事ができる。更には該平板粒子の厚さの分布の変動係数は0〜0.3が好ましく、0〜0.2がより好ましく、0〜0.1が更に好ましい。
【0082】
このようにしてAgX粒子が形成された後、該AgX粒子は通常、水洗、化学増感される。更には分光増感剤、かぶり防止剤等の写真的に有効な添加剤が添加され、支持体上に塗布される。化学増感剤、分光増感用色素およびかぶり防止剤の添加の順序は、それぞれの目的に応じて最適の順序を選ぶことができる。該色素を添加する場合、粒子間で吸着被覆率のバラツキを少なくして均一に吸着させることが好ましい。この場合、添加した色素の吸着速度を適度に遅くした方がよい。即ち、添加した色素がより均一に混合化された後に吸着が進行した方が、該均一性が高まる。色素がAgX粒子に吸着する時に要する活性化エネルギーは、吸着した分散媒分子との交換吸着エネルギーである。それは主として分散媒分子の脱着の活性化エネルギーである。
【0083】
従って、該色素吸着速度を遅くするには、該脱着の活性化エネルギーのより大きい分散媒を用い、より低温で該色素を含む溶液をAgX乳剤に添加すればよい。この場合、前記粒子形成後から、該色素添加までの間に、新たに分散媒を添加することができるし、分散媒の一部もしくは全部を除去した後に新たに分散媒を加えることができる。このようにして、分散媒の種類、温度、pH、pAgを調節する事によって分散媒の吸着強度を最適に調製した後、AgX乳剤中に設置した中空管型ゴム弾性体多孔膜を通して、激しく攪拌しながら該色素溶液を瞬時に添加する。この場合、混合装置としては(気/液)界面を実質的になくした混合装置を用いる事が好ましい。激しく混合しても、発泡量が抑えられる。具体的には▲1▼添加液の添加量と共に元の容積の1.05倍以上、好ましくは1.1〜6倍に膨張可能な反応容器を用い、反応容器内の(気相部の体積/反応容器内の総容積)を好ましくは0〜0.3、より好ましくは0〜0.15、更に好ましくは0とする態様、▲2▼混合溶液表面に該表面の総面積の好ましくは10%以上、より好ましくは25〜99%、更に好ましくは50〜98%を覆う浮きブタを設置する態様、であり、その他の詳細は特願平4−302605号明細書の記載を参考にすることができる。
【0084】
本発明のAgX乳剤の分光増感後の好ましい態様は次の通りである。
1)少なくとも分光増感色素を吸着したAgX粒子と分散媒を有するAgX乳剤において、該AgX粒子の投影面積の75〜100%、好ましくは90〜100%、より好ましくは97〜100%がアスペクト比が2〜50、好ましくは4〜30、厚さが0.02〜0.3μm、好ましくは0.03〜0.15μm、より好ましくは0.03〜0.1μmの平板粒子であり、その直径分布の変動係数が0〜0.3、好ましくは0〜0.2、より好ましくは0〜0.1であり、該色素の吸着被覆率の変動係数が0〜0.3、好ましくは0〜0.2、より好ましくは0〜0.1である。
本発明のAgX乳剤は少なくとも金で増感されている事が好ましい。この場合の好ましい態様は次の通り。2)10−7モル/モルAgX以上の金増感剤で増感されたAgX粒子と、分散媒を有するAgX乳剤において、該AgX粒子の投影面積の75〜100%、好ましくは90〜100%、より好ましくは97〜100%が前記規定に従う平板粒子であり、該平板粒子の金の含有率が該平板粒子の表面積に比例しており、該比例定数の粒子間バラツキの変動係数が0〜0.3、好ましくは0〜0.2、より好ましくは0〜0.1である。
【0085】
本発明のAgX乳剤は少なくともセレンで増感されている事が好ましい。この場合の好ましい態様は次の通り。3)10−7モル/モルAgX以上のセレン増感剤で増感されたAgX粒子と、分散媒を有するAgX乳剤において、該AgX粒子の投影面積の75〜100%、好ましくは90〜100%、より好ましくは97〜100%が前記規定に従う平板粒子であり、該平板粒子のセレンの含有率が該平板粒子の表面積に比例しており、該比例定数の粒子間バラツキの変動係数が0〜0.3、好ましくは0〜0.2、より好ましくは0〜0.1である。
【0086】
前記1)〜3)の2つ以上、好ましくは3つが満足されたAgX乳剤がより好ましい。
前記規定に従った化学増感核を形成する為に、特に次の方法を好ましく用いることができる。従来は先ず、AgX乳剤を化学熟成温度に昇温し、次に化学増感剤をAgX乳剤の液面上に添加し、化学熟成していた。この場合、化学増感剤の高濃度液と接したAgX粒子の化学増感反応は急速に進行し、化学増感核形成が粒子間で不均一になる。AgX乳剤の温度を下げたり、pAgを上げたり、pHを下げると、該反応速度は低下する。従って本発明では添加した化学増感剤が実質的に反応しない条件でAgX乳剤に化学増感剤を添加し、均一化した後、AgX乳剤を該反応が進行する条件に変化させ、該反応を進行させる。即ち、温度が低温の場合は昇温し、pAgが高い場合は下げ、pHが低い場合には上げる。
セレン増感剤と金増感剤はAgX乳剤中で全く、均一であるから、すべてのAgX粒子上の単位面積部が化学増感剤と反応するチャンスは全く同じであり、本発明の目的が達せられる。
前記均一化学増感法、および均一分光増感法に関するその他の詳細、該均一性の検証法の詳細に関しては、特願平5−324502号の記載を参考にする事ができる。
【0087】
従来、分散媒とAgX粒子を有するAgX乳剤において、該AgX粒子の全投影面積の90〜100%、好ましくは96〜100%、より好ましくは98〜100%が厚さが0.02〜0.12μm、好ましくは0.02〜0.1μm、アスペクト比が3〜50、好ましくは4〜50の六角平板粒子であり、該粒子の直径分布の変動係数が0〜0.2、好ましくは0〜0.1、主平面の形状が、最大隣接辺比率1〜1.5、好ましくは1〜1.2、より好ましくは1〜1.1であるAgX乳剤は製造された事がない。本発明法を用いて、該乳剤の製造が初めて可能となった。該乳剤を特に好ましく用いる事ができる。
前記(100)平板粒子を−100℃以下で透過型電子顕微鏡で観察すると、図2、即ち図3(a)に示す粒子像が観察される事がある。この粒子は、Mignot, Journal of Crystal Growth, 23巻,207(1974年)に記載された2本のらせん転位を含有する態様の粒子に見える。しかし、観察された該欠陥像が、らせん転位線ならば、図3(b)の如くに観察されるはずである。図3(b)に対応する粒子も観察される事があるが、多くの場合、該転位線と異方成長の両ベクトルは必ずしも一致していない。転位線のベクトルはエッジの(100)面に対し、90°または65〜75°である事が多い。該手法で観察される種々の転位線の観察例を図4に示した。
【0088】
該らせん転位欠陥は、その他、次の手法で観察できる。即ち、該平板粒子を含むAgX乳剤を下塗りした平坦な支持体上に塗布し、乾燥させる。乾燥により膜厚が約1/10に減少する為、平板粒子は支持体と平行に配列する。次に該試薬を−50℃以下、好ましくは−100〜−200℃に冷却し、ミクロトームで裁断し、0.1μm以下の厚さの切片を作る。該切片を−100℃以下に冷却し、その粒子断面の透過型電子顕微鏡写真像を観察する。試料の同じ領域をそのまま透過した電子線と、格子原子に回折されて透過した電子線の干渉像を観察する事により、その格子像を観察する事ができる。いくつかの切片の該像を観察すると、らせん転位線が該切片を通過する点が観察される。該格子像の観察方法に関しては堀内繁雄著,高分解能電子顕微鏡,共立出版(1988)、の記載を参考にする事ができる。この場合、大部分の電子線は試料を透過するので、試料のチャージアップは少ない。
【0089】
AgX粒子への分散媒の吸着状態に関してはAgX粒子のイオン電導度を測定する事によりその一端を理解する事ができる。誘電損失法でゼラチン中に分散されたAgX粒子の格子間銀イオンAgiのイオン電導度を測定した場合、乳剤のpHをpH7→4にHNO液で下げた場合、立方体AgBr粒子のイオン電導度は上昇する。これはゼラチンの−NH基が−NH となり、粒子表面のAgへの吸着性が低下する為と考えられる。一方、八面体AgBr粒子の場合は該pH変化で、該イオン電導度は上昇する。この場合、ゼラチンの−NH と粒子表面のBr間のクーロン吸着性が増し、ゼラチンの吸着性が増す。これは粒子表面が殆んどBrで占められている為、該クーロン相互作用力が吸着力のメインになる為と解される。吸着が強化される事により始めて、ゼラチン中の−S−等と、Agが相互作用できるようになる事が考えられる。更には、表面Brの負電荷とバランスして存在していたAgiが、該負電荷が中和される事により、クーロン的に不要になり、該濃度が減少する事が考えられる。
【0090】
得られた粒子をホスト粒子とし、該粒子のエッジおよび/またはコーナーにエピタキシャル粒子を形成して用いてもよい。また、該粒子をコアとして内部に転位線を有する粒子を形成してもよい。その他、該粒子をサブストレートとして、サブストレートと異なるハロゲン組成のAgX層を積層させ、種々の既知のあらゆる粒子構造の粒子を作ることもできる。これらに関しては後述の文献の記載を参考にすることができる。また、得られた乳剤粒子に対し、通常、化学増感核が付与される。
【0091】
この場合、該化学増感核の生成場所と数/cmが制御されていることが好ましい。これに関しては特開平2−838号、同2−146033号、同1−201651号、同3−121445号、特開昭64−74540号、特願平3−73266号、同3−140712号、同3−115872号の記載を参考にすることができる。
【0092】
また、該平板粒子をコアとして、浅内潜乳剤を形成して用いてもよい。また、コア/シェル型粒子を形成することもできる。これについては特開昭59−133542号、同63−151618号、米国特許第3,206,313号、同3,317,322号、同3,761,276号、同4,269,927号、同3,267,778号の記載を参考にすることができる。
本発明の方法で製造したAgX乳剤粒子を他の1種以上のAgX乳剤とブレンドして用いることもできる。ブレンド比率は1.0〜0.01の範囲で適宜、最適比率を選んで用いることができる。
【0093】
これらの乳剤に粒子形成から塗布工程までの間に添加できる添加剤に特に制限はなく、従来公知のあらゆる写真用添加剤を好ましくは10−8〜10−1mol/mol AgXの添加量で添加することができる。例えばAgX溶剤、AgX粒子へのドープ剤(例えば第8族貴金属化合物、その他の金属化合物、カルコゲン化合物、SCN化物等)、分散媒、かぶり防止剤、増感色素(青、緑、赤、赤外、パンクロ、オルソ用等)、強色増感剤、化学増感剤(イオウ、セレン、テルル、金および第8族貴金属化合物、リン化合物、ロダン化合物、還元増感剤の単独およびその2種以上の併用)、かぶらせ剤、乳剤沈降剤、界面活性剤、硬膜剤、染料、色像形成剤、カラー写真用添加剤、可溶性銀塩、潜像安定剤、現像剤(ハイドロキノン系化合物等)、圧力減感防止剤、マット剤等を挙げることができる。
【0094】
本発明のAgX乳剤粒子および製造方法で製造したAgX乳剤は従来公知のあらゆる写真感光材料に用いることができる。例えば、黒白ハロゲン化銀写真感光材料〔例えば、Xレイ感材、印刷用感材、印画紙、ネガフィルム、マイクスフィルム、直接ポジ感材、超微粒子乾板感材(LSIフォトマスク用、シャドーマスク用、液晶マスク用)〕、カラー写真感光材料(例えばネガフィルム、印画紙、反転フィルム、直接ポジカラー感材、銀色素漂白法写真など)に用いることができる。更に拡散転写型感光材料(例えば、カラー拡散転写要素、銀塩拡散転写要素)、熱現像感光材料(黒白、カラー)、高密度 digital記録感材、ホログラフィー用感材などをあげることができる。
【0095】
塗布銀量は0.01g/m以上の好ましい値を選ぶことができる。該写真感光材料の構成(例えば、層構成、銀/発色材モル比、各層間の銀量比等)、露光、現像処理および写真感光材料の製造装置、写真用添加剤の乳化分散等に関しても制限はなく、従来公知のあらゆる態様、技術を用いることができる。従来公知の写真用添加剤、写真感光材料およびその構成、露光と現像処理、および写真感光材料製造装置等に関しては下記文献の記載を参考にすることができる。
【0096】
リサーチ・ディスクロージャー(Research Disclosure)、176巻(アイテム17643)(12月、1978年)、同307巻(アイテム307105、11月、1989年)ダフィン(Duffin)著、写真乳剤化学 (Photographic Emulsion Chemistry)、Focal Press, New York (1966年)、ビル著(E. J. Birr)、写真用ハロゲン化銀乳剤の安定化(Stabilization of Photographic Silver Halide Emulsion)、フォーカル・プレス(Focal Press) 、ロンドン(1974年)、ジェームス編(T. H. James) 、写真過程の理論(The Theory of Photographic Process)第4版、マクミラン(Macmillan) 、ニューヨーク(1977年)
【0097】
グラフキデ著(P. Glafkides)、写真の化学と物理(Chimie et Physique Photographiques)、第5版、エディション・ダ・リジンヌヴェル(Edition de I’ Usine Nouvelle, パリ(1987年)同第2版、ポウル・モンテル、パリ(1957年)、ゼリクマンら(V. L. Zalikman at al.) 、写真乳剤の調製と塗布(Making and Coating Photographic Emulsion)、Focal Press (1964年)、ホリスター(K. R. Hollister) ジャーナル・オブ・イメージング・サイエンス(Journal of Imaging science) 、31巻、p.148〜156(1987年)、マスカスキー(J. E. Maskasky)、同30巻、p.247〜254(1986年)、同32巻、160〜177(1988年)、同33巻、10〜13(1989年)
【0098】
フリーザーら編、ハロゲン化銀写真過程の基礎(Die Grundlagen Der Photographischen Prozesse Mit Silverhalogeniden)、アカデミッシェ・フェルラークゲゼルシャフト(Akademische Verlaggesellschaft)、フランクフルト(1968年)。
日化協月報1984年、12月号、p.18〜27、日本写真学会誌、49巻、7〜12(1986年)、同52巻、144〜166(1989年)、同52巻、41〜48(1989年)、特開昭58−113926〜113928号、同59−90841号、同58−111936号、同62−99751号、同60−143331号、同60−143332号、同61−14630号、同62−6251号、同63−220238号、同63−151618号、同63−281149号、同59−133542号、同59−45438号、同62−269958号、同63−305343号、同59−142539号、同62−253159号、同62−266538号、同63−107813号、同64−26839号、同62−157024号、同62−192036号、
【0099】
特開平1−297649号、同2−127635号、同1−158429号、同2−42号、同2−24643号、同1−146033号、同2−838号、同2−28638号、同3−109539号、同3−175440号、同3−121443号、同2−73245号、同3−119347号、米国特許第4,636,461号、同4,942,120号、同4,269,927号、同4,900,652号、同4,975,354号、欧州特許第0355568A2号、特願平2−326222号、同2−415037号、同2−266615号、同2−43791号、同3−160395号、同2−142635号、同3−146503号、同4−77261号。
本発明の乳剤は特開昭62−269958号、同62−266538号、同63−220238号、同63−305343号、同59−142539号、同62−253159号、特開平1−131541号、同1−297649号、同2−42号、同1−158429号、同3−226730号、同4−151649号、特願平4−179961号、欧州特許0508398A1号、特開平6−258788号、同6−273860号の実施例の感光材料の構成乳剤として好ましく用いることができる。
【0100】
【発明の実施の形態】
【0101】
【実施例】
次に実施例により本発明を更に詳細に説明するが、本発明の実施態様はこれに限定されるものではない。
実施例1
反応容器にゼラチン溶液1〔HO 1.2リットル、ゼラチン1を1.0g、KBr 0.25gを含み、HNO 3N液でpH2.0に調節した〕を入れ、温度を40℃に保ち、攪拌しながらAg−1液(AgNO 60g/リットル)とX−1液(HO 1リットル,KBr 43.2g,ゼラチン1を0.8g含む)を30ml/分で1分間添加し、核形成した。2分間攪拌した後、KBr−1液(KBr 100g/リットル)を30ml添加し、10分間で60℃に昇温した。更に12分間、第1熟成した後、硫安液〔(NHSO4g,HO 20mlを含む〕とNaOH 1N液を入れ、pH9.1とした。10分間、第2熟成をした後、ゼラチン溶液2〔ゼラチン2を25g、HO 130ml,KBr 0.15g含む〕を入れ、HNO 3N液でpH6.3とした。この時、分散媒の96.1重量%がフタル化率96%、メチオニン含率34μmol/g のゼラチンとなる。Ag−1液とX−1液を用い、pBr1.68に保ちながら同時混合添加した。Ag−1液は6.6ml/分で80ml添加した。次にAg−2液(AgNO 200g/リットル)とX−2液(146g/リットル)を用い、同pBrに保ちながら同時混合添加した。Ag−2液は初期流量3ml/分、直線流量加速0.3ml/分で40分間添加した。1分間攪拌した後、乳剤3mlをサンプリングし、生成粒子のレプリカの透過型電子顕微鏡写真像(TEM像)を観察した。その特性値は次の通りであった。
全AgX粒子の投影面積の合計(以後、「SA」と記す)の99%以上が最大隣接辺比率1〜1.2の六角平板粒子であり、平均厚さ0.05μm、平均直径2.1μm、平均アスペクト比42、C.V.値は0.09であった。
【0102】
次に該乳剤を30℃に降温し、HNO 1N液でpH3.9に下げ、乳剤を凝集沈降させた。乳剤を純水で3回水洗し、ゼラチン溶液を添加した。NaOH1N液でpH6.4にし、NaBr 1N液でpBr2.8にし、乳剤を再分散させた。該乳剤を特願平5−324502号の実施例1記載の密閉型容積可変容器に入れ、40℃で攪拌しながら増感色素1の0.3g/リットル溶液を飽和吸着量の70%だけ添加した。該実施例と同態様で該中空管型弾性体多孔膜を通して3秒間以内で全量を添加した。15分間攪拌した後、2番目の密閉型容積可変容器に移液した。乳剤の温度を45℃に保ちながら金増感剤(塩化金酸:NaSCN=1:20モル比の水溶液)を1.2×10−5モル/モルAgXだけ添加し、次にカルコゲナイド増感剤Sx1を2×10−5モル/モルAgXだけ添加した。それぞれ独立の、前記態様の中空管型弾性多孔膜より3秒間以内で添加した。
該乳剤の温度を60℃に昇温し、20分間熟成した。40℃に降温し、かぶり防止剤(4−ヒドロキシ−6−メチル−1,3,3a,7−テトラザインデン)を3×10−3モル/モルAgXだけ添加し、増粘剤、塗布助剤を加えて保護層と共に、TAC(三酢酸セルロース)ベース上に塗布し、乾燥し、塗布試料1とした。
但し、ゼラチン1は重量平均分子量30,000、メチオニン含率34μmol/g の脱イオン化アルカリ処理骨ゼラチン、ゼラチン2はゼラチン1をフタル化率96%でフタル化したゼラチン、ゼラチン3はメチオニン含率50μmol/g 脱イオン化アルカリ処理非修飾骨ゼラチンを指す。
【0103】
【化9】
Figure 0003575639
【0104】
実施例2
ゼラチン溶液2にEPA1を1.0g混入する事以外は実施例1と同じにした。乳剤3mlをサンプリングし、生成粒子のレプリカのTEM像を観察した所、その特性値は次の通りであった。
SAの99%以上が最大隣接辺比率1〜1.2の六角平板粒子であり、平均厚さ0.09μm、平均直径1.56μm、平均アスペクト比約17、C.V.値は0.075であった。後は実施例1と同じ態様で処理し、塗布試料2を得た。ここでEPA1は(3)−a)−2) 式の化合物:(4)−a)−4) 式の化合物:アクリルアミド=25:25:50重量%比の共重合体であり、重量平均分子量は33,000である。
【0105】
実施例3
ゼラチン溶液2にEPA2とEPA3を1.0gづつ混入する事以外は実施例1と同じにした。生成粒子のレプリカのTEM像を観察した所、その特性値は次の通りであった。SAの99%以上が最大隣接辺比率1〜1.2の六角平板粒子であり、平均厚さ0.09μ、平均直径1.56μm、平均アスペクト比約17、C.V.値は0.07であった。該粒子の粒子構造を示すTEM像を図5に示した。得られた塗布試料を塗布試料3とした。EPA2とEPA3は次の化合物を指す。EPA2はHC=C(CH)−COO−〔CHCH(CH)O 〕12−H:アクリルアミド=25:75 重合比の共重合体を、EPA3はHC=C(CH)−COO−(CHCHO)23−CH:アクリルアミド=25:75 重量比の重合体を指す。
【0106】
実施例4
第2熟成終了までを実施例1と同じにした。次にHNO 1N液を添加し、pH6.2とした後、30℃に降温し、台錐型遠心分離器に乳剤を入れ、遠心分離し、上澄み液を除去した。その除去体積比率は、原乳剤の93%であった。次にゼラチン溶液2を入れ、pH6.2とし、再分散し、乳剤を元の容器へ移液した。温度を60℃とし、PAO化合物としてEPP1 10g/リットル液を7ml添加し、後は実施例1と同じにした。乳剤3mlをサンプリングし、生成粒子のレプリカのTEM像を観察した所、その特性値は次の通りであった。
SAの99%以上が、最大隣接辺比率1〜1.2の六角平板粒子であり、平均厚さ0.11μm、平均直径1.41μm、平均アスペクト比約12.8、C.V.値は0.075であった。後は実施例1と同じ態様で処理し、塗布試料4を得た。ここでEPP1はポリエチレンオキシドとポリプロピレンオキシドのブロックコポリマー(分子量約3200)であり、BASF社製の商品名プルロニック31R1である。前記HP2に対応するPAO重合体である。
【0107】
実施例5
反応容器にゼラチン溶液51〔HO 1.2リットル、ゼラチン1を1.7g、KBr 1.2g、HNO 1N液でpH3.0に調節〕を入れ、温度を30℃に恒温しながら、Ag−51液(AgNO 100g/リットル)とKBr−51液(KBr 72g/リットル)50ml/分で1分間添加し、核形成した。1分間攪拌した後、KBr−2液(KBr 300g/リットル)を10ml添加し、10分間で温度を60℃に上げた。7分間、第1熟成した後、次にゼラチン溶液3(ゼラチン3を25g、HO 135ml含む)を添加し、温度を37℃にし、NaOH 1N液でpH9.5とした。pHを9.5に保ちながら無水フタル酸溶液1(ドライアセトン中に無水フタル酸を12重量%で溶解)を15分間かけて一定流量で添加した。更に20分間、pH9.5に保ちながら攪拌を続けた。次にHNO 3N液でpH4.0とし、乳剤を凝集沈降させ、上澄み液を除去した。純水を入れ、該凝集乳剤を水洗し、上澄み液を除去した。EPA1を1g含む純水1.3リットルを入れ、NaOH液でpH6.4とした。温度を60℃に上げ、NaBr液を入れ、pBr1.6とした。
【0108】
Ag−52液(AgNO 120g/リットル)とX−52液(KBr 90g/リットル)を用いて、pBr1.68に保ちながら32分間の同時混合添加した。Ag−52液の初期流量は12ml/分、直線流量加速量は0.6ml/分であった。1分間攪拌した後、乳剤3mlをサンプリングし、生成粒子のレプリカのTEM像を観察した。その特性値は次の通りであった。SAの99%以上が最大隣接辺比率1〜1.2の六角平板粒子であり、平均厚さ0.09μm、平均直径1.3μm、平均アスペクト比約14.4、C.V.値は0.072であった。
また、該乳剤をサンプリングし、遠心分離し、上澄み液をとりだした。温度を30℃とし、上澄み液のpHを4.0とし、凝集させ、上澄み液を除去した。純水で3回水洗した。凝集物を乾燥させ、ゼラチン重量を測定した後、純水とNaOH液を加え、再分散させ、1重量%液とした。ゼラチン3の1重量%液を比較試料とし、前記フォルモル滴定法でフタル化率を求めた所、フタル化率95%であった。従って、粒子成長時の分散媒の100%が、フタル化率95%、メチオニン含率34μmol/g のゼラチンであった事になる。
次に乳剤の温度を30℃に下げ、pH4.0にし、乳剤を凝集沈降させた。(上澄み液の除去→純水を入れリンスする)事を3回くり返した後、ゼラチン溶液3を添加した。後の工程は実施例1と同じにして塗布試料5を得た。
【0109】
実施例6
実施例1において、ゼラチン溶液1をゼラチン溶液4〔HO 1.2リットル、ゼラチン2を1.0g、KBr 0.25gを含み、HNO液とNaOH液でpH5.0に調節〕に代え、X−1液をX−61液(HO 1リットル、KBr 43.2g、ゼラチン2を0.8g含む)に代えた以外は実施例1と同じにした。この場合、核形成、熟成、成長時の分散媒の100%が、フタル化率95%、メチオニン含率34μmol/g のゼラチンである。生成粒子のレプリカのTEM像を観察した所、その特性値は次の通りであった。SAの99%以上が最大隣接辺比率1〜1.2の六角平板粒子であり、平均厚さ0.046μm、平均直径2.19μm、平均アスペクト比47.6、C.V.値は0.085であった。
【0110】
実施例7
乳剤の水洗と再分散を次の態様にする以外は実施例6と同じにし、塗布試料7を得た。粒子形成後、温度を30℃にし、台錐型遠心分離器に乳剤を入れ、遠心分離し、上澄み液を除去した。該除去量は母液量の92%に相当した。純水を2L入れ、リンスした後、遠心分離し、母液の92%に相当する上澄み液を除去した。ゼラチン3を50g含むゼラチン溶液を加え、pH6.4、pBr2.8にし、乳剤を再分散させた。
【0111】
比較例1
欧州特許0514742A1の実施例1に基づいて(111)平板粒子を調製した。粒子成長時の分散媒は100重量%がメチオニン含率0μmolg、フタル化率0%であった。
生成粒子のレプリカのTEM像を観察した所、b≧1.32の粒子の投影面積の合計がSAの約32%を占めた。該乳剤に凝集沈降剤を添加し、従来法に従って乳剤を水洗した。ゼラチン溶液3を添加し、pH6.4、pBr2.8にし、乳剤を再分散させた。後は実施例1と同じにして塗布試料を作り、塗布試料21とした。但し、分光増感色素と化学増感剤の添加は従来法通り、に添加した。生成粒子の粒子構造例を図6に示した。
【0112】
実施例1〜7と比較例1で得た塗布試料を500nm以上の波長の光を通すマイナス青フィルターと光学ウェッジを通して0.1秒間露光した。次にMAA−1現像液〔Journal of Photographic Science, 23巻,249〜256(1975年)に記載されている〕で、20℃で10分間、現像した。常法に従って、停止、定着、水洗、乾燥処理をし、センシトメトリーを行なった。
得られた結果(感度/粒状性の相対値)を表2に示した。該相対値は高い程、写真性能が優れている事を表す。
感度は(かぶり+0.2)の濃度を与える露光量の逆数で求めた。粒状性は試料を(かぶり+0.2)の濃度を与える光量で一様に露光し、前述の現像処理を行なった後、マクミラン社刊,ザ・セオリー・オブ・ザ・フォトグラフィック プロセス,p.619に記載の方法で測定した。
【0113】
実施例8
実施例7において、ゼラチン溶液4とX−61液に用いるフタル化ゼラチンを表2に示した81〜86のゼラチンに置き代える以外は同じにした。81〜89のゼラチンのメチオニン含量とフタル化率は表3に示した通りである。81〜89のゼラチンを用いて調製したAgX乳剤の塗布試料をそれぞれ塗布試料81〜89とした。
塗布試料を該マイナス青フィルターと光学ウェッジを通して0.1秒間露光した。次にMAA−1現像液で、20℃で10分間現像した。センシトメトリーにより得られた結果〔(感度/粒状性)の相対値〕を表3に示した。図1のa、好ましくはa、より好ましくはaの領域のゼラチンを用いた時に、最も好ましい写真特性が得られた。
【0114】
【表2】
Figure 0003575639
【0115】
【表3】
Figure 0003575639
【0116】
実施例9
反応容器にゼラチン溶液4〔HO 1.2リットル、ゼラチン1を20g、NaClを0.5g含み、HNO 1N液でpH4.0に調節した〕を入れ、40℃に保ち、攪拌しながらAg−91液(AgNO 200g/リットル)とX−91液(NaCl 69g/リットル)を50ml/分で15秒間、同時混合添加した。1分間攪拌した後、X−92液(1リットル中にNaCl 6g、KBr 15gを含む)を60ml/分で24秒間添加した。1分間攪拌した後、Ag−91液とX−91液を50ml/分で1分間、同時混合添加した。該核形成した後、次に温度を37℃にし、NaOH 1N液を入れ、pH9.2とし、pHを9.3に保ちながら無水フタル酸溶液1を15分間かけて添加した。更に20分間、9.3に保ちながら攪拌を続けた。HNO 3N液でpH4.0とし、乳剤を凝集沈降させ、上澄み液を除去した。NaCl 2.5gを含む純水1.3リットルを入れ、NaOH液でpH6.0にし、再分散した。HNO液でpH5.3とし、12分間で75℃に昇温した。18分間熟成した後、NaCl−1液(NaCl 100g/リットル)を10ml添加し、更に5分間熟成した。ここで熟成は終了した。Ag−91液を7ml/分で添加し、銀電位を140mVに調節した。
【0117】
銀電位を140mVに保ちながら、Ag−91液とX−91液を同時混合添加した。Ag−91液の初期流量は7ml/分で直線流量加速量は0.05ml/分であり、総添加量は290mlであった。次にAg−91液とX−93液(1リットル中にKBr 23g、NaCl 59gを含む)を用いて、銀電位120mVに保ちながら同時混合添加した。Ag−91液は8ml/分で7分間添加した。次にAg−91液とX−94液(1リットル中にKBr 45g、NaCl 50gを含む)を用いて銀電位120mVに保ちながら8ml/分で7分間添加した。1分間更に攪拌した後、温度を30℃に降温し、HNOでpH4.0とし、乳剤を凝集沈降させた。
【0118】
乳剤を純水で水洗した後、ゼラチン溶液を加え、NaOH液でpHを6.1、pCl 2.2とした。乳剤3mlを sampling し、生成粒子のレプリカのTEM像を観察した。その特性値は次の通りであった。SAの約94%が(アスペクト比≧3)、主平面形状が直角平行四辺形、の(100)平板粒子であり、平均厚さ0.12μm、平均直径1.3μm、平均アスペクト比約10.8、該平板粒子のC.V.値は0.25であった。
乳剤温度を40℃とし、増感色素2の0.3g/リットル溶液を、前記多孔膜添加系を用いて、飽和吸着量の65%だけ3秒間で添加した。15分間攪拌した後、乳剤を次の容器に移液し、乳剤の温度を40℃に保ちながら、多孔膜添加系を通してハイポを2.5×10−5モル/モルAgXだけ添加し、次に塩化金酸を10−5モル/モルAgXだけ添加した。50℃に昇温し、15分間熟成した後、かぶり防止剤2を3×10−3モル/モルAgXだけ添加し、温度を40℃にした。増粘剤、塗布助剤を加えてTACベース上に保護層と共に塗布し、乾燥し、塗布試料9とした。
【0119】
【化10】
Figure 0003575639
【0120】
実施例10
核形成終了までを実施例9と同じにした。次に乳剤を台錐型遠心分離器に入れ、遠心分離し、上澄み液を除去した。該除去量は母液量の95%であった。次にゼラチン溶液2を入れ、pH5.3とし、乳剤を再分散させ、乳剤を元の反応容器に戻した。この時の分散媒の96.1重量%がフタル化率96%、メチオニン含率34μmol/g のゼラチンとなる。(NaCl 2.6g,HO 20ml)を含む液を入れ、12分間で温度を75℃に上げた。該昇温後は実施例9と同じ工程を通して塗布試料10を得た。
生成粒子のレプリカのTEM像を観察した所、その特性値は次の通りであった。SAの約94%が(アスペクト比≧3)、主平面形状が直角平行四辺形の(100)平板粒子であり、平均厚さ0.13μm、平均直径1.25μm、平均アスペクト比約9.6、該平板粒子のC.V.値は0.26であった。
【0121】
比較例2
実施例9と次の工程以外は同じにして塗布試料22を調製した。即ち、核形成終了後、NaCl液(NaCl 1.6g、HO 20mlを含む)を入れ、pH5.3とし、75℃への昇温工程に入る。また、結晶成長後の脱塩工程は、凝集沈降剤を添加して行なう、従来の凝集沈降水洗法で行なう。粒子成長時の分散媒の100重量%がフタル化率0%、メチオニン含率34μmol/g である。
生成粒子のレプリカのTEM像を観察した所、その特性値は次の通りであった。SAの約90%が(アスペクト比≧3)、主平面形状が直角平行四辺形の(100)平板粒子であり、平均厚さ0.19μm、平均直径1.03μm、平均アスペクト比約5.4、該平板粒子のC.V.値は0.30であった。
塗布試料9、10、22をマイナス青フィルターを通して10−2秒間の露光をし、現像した。センシトメトリーの結果、(感度/粒状性)の相対値は、試料9が112、試料10が110、試料22が100であり、本発明法の効果が確認された。
【0122】
【発明の効果】
この様にして調製したAgX乳剤を支持体上に一層以上で塗布し、写真感光材料を製造した場合、かぶり濃度が低く、感度、粒状性の優れた写真感光材料が得られる。欧州特許514742A号の態様に比べて、該PAO重合体の最適添加量が約20%以下になる為、他の写真的に有効な添加剤の吸着防害が少ないという利点も有する。
【図面の簡単な説明】
【図1】本発明に用いられるゼラチンのメチオニン含率(μmol/g) vs 、アミノ基の化学修飾(%)、の好ましい組み合せ範囲を示す。図1の 領域の上限ラインは該修飾率=100%を示し、 領域の上限ラインは該修飾率=97%を示す。
【図2】(100)平板粒子の結晶構造(転位線構造)の例
【図3】転位線の構造模式図
【図4】観察される種々のタイプの結晶構造(転位線構造)の例
【図5】実施例3で得られた平板粒子の結晶構造を示す。
【図6】比較例1で得られた平板粒子の結晶構造を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing silver halide grains (hereinafter referred to as “AgX”) useful in the field of photography and a silver halide emulsion.
[0002]
[Prior art]
When an AgX emulsion containing tabular grains having a large aspect ratio (diameter / thickness) is coated on a support and used for a photographic light-sensitive material, there are many advantages as follows. For example, the film thickness can be reduced to improve sharpness, the surface / volume ratio is large, so that a large amount of spectral sensitizing dye can be adsorbed, the light absorption rate is improved, and the surface / volume ratio is large, so that development processing is performed. Speedup, improvement of graininess by leveling the image, etc. Therefore, tabular grains have been widely used in many photographic materials. However, when the tabular grains were produced by a conventional method, there were the following disadvantages. Non-tabular grains are mixed and the grain size distribution is wide. That is, the particles were polydisperse both in terms of shape and size distribution. For this reason, when the particles are chemically sensitized or spectrally sensitized, there are disadvantages such as an aspect in which all of the particles are not optimally subjected to chemical sensitization or spectral sensitization, and the layering effect cannot be utilized.
[0003]
Many technical studies have been made to remedy this drawback. In the case of tabular grains containing parallel twin planes, the present inventors divided the production process into three processes of nucleation, ripening, and growth, and examined the optimum conditions for each process. That is, in the nucleation process, the twin plane formation probability is adjusted not to be too high and not too low. In the ripening process, tabular grains are left and other non-tabular grains are eliminated by utilizing the selective growth of tabular grains under a low supersaturation degree. In the growth process, a halogen ion (hereinafter referred to as "X") is used to achieve both selective growth of tabular grains and diffusion-controlled growth of the edge portion.) By selecting the concentration and the degree of supersaturation to grow without expanding the size distribution, etc. For details, the description in the following literature can be referred to.
ClThe details of the tabular grains having a content of 50 mol% or more are described in U.S. Pat. Nos. 5,176,992; 5,616,617; 4,44,003; 5,185,239; 5,183,732; 5,178,998; Is BrWith respect to the particles having a high content, refer to the descriptions in JP-A-63-151618, JP-A-63-11928, JP-A-2-28638, JP-A-1-131541, JP-A-2-838, JP-A-2-298935, and JP-A-3-121445. You can do it.
[0004]
On the other hand, the same problem also exists in the case of tabular grains having a principal plane of {100} faces when the grains are produced by a conventional method. In order to improve this, the manufacturing recipe is divided into three processes of nucleation, ripening, and growth, and a method of improving each process has been proposed. For details thereof, reference can be made to the descriptions in JP-A-5-281640, JP-A-5-313273, U.S. Pat.
[0005]
As a result of these studies, the monodispersity was significantly improved both in terms of particle shape and size distribution. However, the problem that the smaller the thickness of the tabular grains becomes, the wider the size distribution of the obtained grains has not been solved yet. In addition, there is a need for a method for producing the tabular grains having a lower fog density and more excellent sensitivity and granularity. Attempts have been made to improve the particle properties by changing the dispersion medium during the formation of the particles. For example, Kelly [Journal of Photographic Science, Vol. 6, 16-22 (1958)] discloses oxidized gelatin oxidized under various conditions and X.AgNO in aqueous solution containing3An aqueous solution was added to form AgBrI tabular grains. H2O2The use of oxidized gelatin which has been oxidized as described by Shepard and many other authors has been described. For details, see British Patent No. 245456, French Patent 768015, Gelatin in Photography-Monographs on the Theory of Photography from the Research Laboratory of the Eastman Kodak. No. 3. D. Van Nostrand Co. , New York. In addition, it has been confirmed that the methionine group is changed to methionine sulfoxide by the oxidation, which is described in Journal of Photographic Science, 16, 16, 68-69 (1968).
[0006]
Recently, it has been claimed to produce tabular grains having a thickness of 0.2 μm or less in an oxidized gelatin dispersion medium solution (methionine content <30 μmol / g). For example, JP-A-62-157024. When tabular grains are produced using the gelatin, thinner tabular grains are formed at all temperatures below 76 ° C. as compared to non-oxidized gelatin. However, the smaller the thickness of the particles, the wider the size distribution of the generated particles remains. EP 514 742 A discloses a method for forming AgBr tabular grains having {111} major planes in the presence of the oxidized gelatin and a polyalkylene compound to improve the above disadvantage. However, the main plane shape was a tabular grain distorted from a regular hexagon into an irregular shape, and the sensitivity, granularity, and fog density were not satisfactory.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing AgX tabular grains having a low fog density and excellent sensitivity and granularity and a silver halide emulsion.
[0008]
[Means for Solving the Problems]
The object of the present invention has been achieved by the following items.
(1) In a dispersion medium solution containing water and a dispersion medium, at least 75 to 100% of the total projected area of silver halide grains through a nucleation, ripening and growth process has a thickness of 0.02 to 0.3 μm. In a method for producing silver halide grains which are tabular grains having an aspect ratio (diameter / thickness) of 2 to 50, 30 to 100% by weight of the dispersion medium in the growing process has the following feature (a). A method for producing silver halide grains, characterized in that the silver halide grains are gelatin.
(A) -NH in the gelatin2The relationship between the percentage of the number of chemically modified groups and the methionine content of the gelatin is shown in FIG.1Area.
[0009]
(2) The dispersion medium solution is a polymer having a repeating unit of polyalkylene oxide, and has a molecular weight of 500 to 10.6HPAO [represented by general formula (1) -a) or (1) -b)] or PEOD [represented by any of -a) to -f) in general formula (2) Is contained in an amount of 0.001 g / L or more.
[0010]
Embedded image
Figure 0003575639
[0011]
Where R0Is H, or a hydrocarbon having 1 to 10 carbon atoms having at least one polar group (e.g., -CH2OH, -C2H5OH, -CH2-O-CH3), Preferably H. R represents an alkylene group having 3 to 10 carbon atoms.
n and m represent the average number of repeating units, and are values of 4 or more that satisfy the above molecular weight specification.
[0012]
Embedded image
Figure 0003575639
[0013]
Here, LPU refers to a lipophilic group other than the HO-HPEOU- group and the HO-LPAOU- group, and is a substituted or unsubstituted alkyl group, alkenyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, acyl group, Refers to an acylamino group, an alkylthio group, an arylthio group, an alkoxycarbonyl group, an aryloxycarbonyl group, and an alicyclic group. Note that HPEOU and LPAOU have the same meanings as in the general formulas (1) -a) and (1) -b). LPU 'indicates H, an alkyl group having 1 to 20 carbon atoms.
[0014]
(3) The dispersion medium solution contains at least one kind of a polymer containing 1% by weight or more of the repeating unit of the monomer represented by the general formula (3) in an amount of 0.01 g / L or more, and the molecular weight of the polymer is 500-106(1) The method for producing silver halide grains as described in (1) above.
[0015]
Embedded image
Figure 0003575639
[0016]
Where R1Represents H, a lower alkyl group having 1 to 4 carbon atoms;2Represents a monovalent substituent having 1 to 20 carbon atoms. R3Represents an alkylene group having 3 to 10 carbon atoms, and L represents a divalent linking group. n represents the average number of repeating units and is from 4 to 600.
[0017]
(4) The dispersion medium solution contains not less than 0.01 g / liter of a copolymer containing 1% by weight or more of at least two kinds of the monomers represented by the general formula (3) and the monomers represented by the general formula (4), respectively. And the molecular weight of the copolymer is 500 to 106(1) The method for producing silver halide grains as described in (1) above.
General formula (4) CH2= C (R4) -L '-(CH2CH2O)m-R5
Where R4Represents H, a lower alkyl group having 1 to 4 carbon atoms;5Represents a monovalent substituent having 1 to 20 carbon atoms, and L ′ represents a divalent linking group. m represents the average number of repeating units and is from 4 to 600.
[0018]
(5) The dispersion medium solution contains at least one polymer containing 1% by weight or more of the repeating unit represented by the following general formula (5) and 1% by weight of the repeating unit represented by the general formula (6). At least one of the above polymers is contained in an amount of 0.01 g / L or more, and the molecular weight of each polymer is 500 to 106(1) The method for producing silver halide grains as described in (1) above.
General formula (5)-(RO)n
General formula (6)-(CH2CH2O)m
In the formula, R represents an alkylene group having 3 to 10 carbon atoms.
n and m represent the average number of repeating units and are 4 or more that satisfy the molecular weight specification.
[0019]
(6) The polymer having a repeating unit represented by the general formula (5) is a vinyl polymer having a monomer represented by the following general formula (7)-(a) as a constituent component and a general formula (7)- (B) at least one kind of polymer selected from polymers containing polyurethane, and a polymer having a repeating unit represented by the general formula (6) is represented by the following general formula (7)-(c) And at least one polymer selected from substituted or unsubstituted polyethylene glycols, a vinyl polymer containing a monomer represented by the following formula, a polyurethane-containing polymer represented by formulas (7) to (d): (5) The method for producing silver halide grains according to the above (5).
General formula (7) -a) CH2= C (R1) -L- (R3-O)n-R2
General formula (7) -b)
-[O- (RO)n]x-[O-R11-O]y-[CONH-R12-NHCO]Z
General formula (7) -c) CH2= C (R4) -L '-(CH2CH2O)m-R5
General formula (7) -d)
-[O- (CH2CH2O)m]X '-[ORThirteen-O]y '-[CONH-R14-NHCO]Z '
In the formula, n and m represent the average number of repeating units, and are 4 to 600. R1, R4Represents H or a lower alkyl group having 1 to 4 carbon atoms. R2, R5Represents H or a monovalent substituent having 1 to 20 carbon atoms. L and L 'represent a divalent linking group. R11, R12, RThirteen, R14Represents a divalent linking group, and represents an alkylene group having 1 to 20 carbon atoms, a phenylene group having 6 to 20 carbon atoms, or an aralkylene group having 7 to 20 carbon atoms. x, y, z, x ', y', z 'represent the weight percentage of each component, x, x' is 1-70, y, y 'is 1-70, z, z' is 20-70. Represent. Here, x + y + z = 100 and x ′ + y ′ + z ′ = 100. R represents an alkylene group having 3 to 10 carbon atoms.
[0020]
(7) The principal plane of the tabular grains is a {100} plane or a {111} plane, and the coefficient of variation (standard deviation / average diameter) of the diameter distribution of the grains is 0 to 0.3. 7. The method for producing silver halide grains according to the above 1-6.
(8) In a silver halide emulsion having at least a dispersion medium and silver halide grains, 75 to 100% of the total projected area of the silver halide grains has a thickness of 0.02 to 0.3 μm and an aspect ratio (diameter / diameter / Tabular grains having a thickness of 2 to 50, the coefficient of variation (standard deviation / average diameter) of the diameter distribution of the grains being 0 to 0.3, and 30 to 100% by weight of the dispersion medium being (chemically modified). -NH2The relationship between the% of the base and the methionine content is shown in FIG.1Silver halide emulsion).
[0021]
Other preferred embodiments of the present invention are as follows.
(9) In a silver halide emulsion having at least a silver sensitizing grain to which a spectral sensitizing dye has been adsorbed and a dispersion medium, 75 to 100% of the projected area of the silver halide grain has an aspect ratio of 2 to 50 and a thickness of Are tabular grains having a diameter of 0.02 to 0.3 μm, the coefficient of variation of the diameter distribution is 0 to 0.3, and the coefficient of variation of the adsorption coverage of the spectral sensitizing dye is 0 to 0.3. Silver halide emulsion.
(10) The tabular grains are at least 10-7selenium sensitization at mol / mol Ag or more, the Se content of the tabular grains is proportional to the surface area of the tabular grains, and the coefficient of variation of the inter-particle variation of the proportionality constant is 0 to 0. 3. The silver halide emulsion as described in (9) above, wherein
(11) the tabular grains are at least 10-7mol / mol Ag or more is gold sensitized, and the gold content of the tabular grains is proportional to the surface area of the tabular grains. 3. The silver halide emulsion as described in (9) or (10) above, wherein
[0022]
Hereinafter, the present invention will be described in more detail.
A. Tabular grains
The tabular grains include {100} plane tabular grains (hereinafter referred to as “(100) tabular grains”) and {111} plane tabular grains (hereinafter referred to as “(111) tabular grains”). I can list them.
The tabular grains have a thickness of 0.02 to 0.3 μm, preferably 0.02 to 0.15 μm, more preferably 0.03 to 0.10 μm, and most preferably 0.04 to 0.08 μm. The aspect ratio (diameter / thickness) is 2 to 50, preferably 3 to 30. The coefficient of variation of the diameter distribution (standard deviation of distribution / average diameter) (hereinafter referred to as “CV value”) is preferably 0 to 0.3, more preferably 0 to 0.2, and more preferably 0 to 0.1. Is more preferable, and 0 to 0.08 is most preferable. Here, the diameter refers to the diameter of a circle having an area equal to the projected area of the grains, and the thickness refers to the distance between two main planes of the tabular grains. The diameter of the particles is preferably 0.1 μm or more, more preferably 0.2 to 10 μm. The tabular grains account for 75 to 100%, preferably 90 to 100%, more preferably 97 to 100% of the total projected area of the AgX grains. The coefficient of variation (standard deviation of distribution / average thickness) of the thickness distribution of the tabular grains is preferably 0 to 0.3, more preferably 0 to 0.2, and still more preferably 0 to 0.1.
[0023]
The tabular grains are produced through at least the steps of nucleation → ripening → growth. The nuclei of the finally obtained tabular grains are substantially formed during the nucleation process. Here, “substantially” refers to a number, preferably 75 to 100%, more preferably 95 to 100%.
When the modified gelatin is used in the process of nucleation and ripening, the pH of the reaction solution in those processes is preferably a pH equal to or higher than the isoelectric point of the modified gelatin, and more preferably (isoelectric point pH + 0.2) to pH 10. , (Isoelectric point pH + 0.4) to pH7 are more preferable. AgNO added during nucleation3Is preferably 1 g or more per liter of the reaction solution, more preferably 1.8 g or more, and even more preferably 3 to 30 g. Nucleation is based on Ag in the reaction solution.+Liquid and XIt is more preferable to carry out the method by the simultaneous mixing and addition of liquids or the method of adding a plurality of alternate single jets two to 1,000 times. Next, the (100) tabular grains will be described in order.
[0024]
A-1. (100) Tabular grains
1. Particle structure
When tabular grains whose main planes are {100} planes are classified by shape, the following six can be mentioned. (1) Particles having a main plane shape of a right-angled parallelogram and an adjacent side ratio (length of long side / length of short side) of 1 to 10, preferably 1 to 3, within one tabular grain. (1) Particles in which one or more, preferably 1 to 3, of the four corners of the right-angled parallelogram are non-equivalently missing. That is, [(area of the largest missing part / area of the smallest missing part) = a1Are particles of 2 to ∞), (3) particles in which the four corners are equivalently missing (the a1(4) particles having a (111) plane in the area of 5 to 100%, preferably 20 to 100% of the area of the missing portion, (5) of the four sides constituting the main plane (6) One or more, preferably 1 to 3, of the four corners of the right-angled parallelogram are missing in the right-angled parallelogram. particle.
2. Nucleation
The core of the (100) tabular grain is produced by the following method. (1) In a low protective colloid solution, a silver salt solution and a halogen salt solution (hereinafter referred to as “XSalt solution) to form nuclei. There is a thought that crystal defects are formed due to coagulation. (2) Plate nucleation by lattice constant mismatch. For example, a) a nucleus having one or more, preferably one to four, more preferably two to three halogen composition gap planes is formed. Specifically, (AgX1| AgX2), X1And X2The halogen composition of ClContent, or BrContent, or IThe content differs by 10 to 100 mol%, preferably 30 to 100 mol%, more preferably 60 to 100 mol%. Here (AgX1| AgX2) Is AgX1After nucleation, AgX2Refers to an embodiment in which a layer is laminated on the surface of the core. More specifically, X added during nucleationThis means that the halogen composition of the salt solution is discontinuously changed at the gap surface in accordance with the above-mentioned rules. The gap is AgX1In the nucleus, X2 It can also be formed by adding a salt solution to generate a halogen conversion.
[0025]
The plate nucleus having two gap faces is (AgX1| AgX2| AgX3) Can be written. B) Sulfur, selenium, tellurium, SCN between adjacent phases of the gap to promote the formation of defects due to the lattice irregularity., SeCN, TeCN, CN, (Ag+And a complex of the metal ion (the ligand is XLigand, CNLigand, isocyano, nitrosyl, thionitrosyl, amine, hydroxyl), preferably at least 0.1% to 100% by mole difference, more preferably 1 to 100% by mole difference, An embodiment in which the difference is preferably 10 to 100 mol% can be mentioned. Ag+Representative examples of metal ions other than the above include metal ions of Group VIII of the periodic table, and metal ions of Cu, Zn, Cd, In, Sn, Au, Hg, Pb, Cr, and Mn.
[0026]
c) In addition, there can be mentioned an embodiment in which the defect is formed only by the impurity ion content gap. For details of specific examples of the compound of these impurity ions and the method of doping the AgX phase, Research Disclosure, Vol. 307, Item 307105, November, 1989, U.S. Pat. 4847191, 4933272, 4981781, 5024931, JP-A-4-305644, 4-321024, 1-183647, 2-20853, 1-288541, 3-118536. Can be.
[0027]
In the present invention, the nucleation method of the above 2- (2), preferably 2- (2), can be preferably used, and the halogen conversion method can be more preferably used. The tabular grains are formed because there are defects which promote growth in the edge direction of the tabular grains. The defect is referred to as a screw dislocation defect in the present invention. When a large number of the defects are formed in one particle, growth in three-dimensional directions occurs, and the generated particle becomes thick. When the defect formation probability is gradually increased from zero, tabular grains having a side ratio of 1 to 2 are formed first, so that the grains promote the growth in the [110] direction or in the -25 ° to + 25 ° direction. It is considered that there is one screw dislocation defect having a vector. Increasing the probability further increases the number of tabular grains produced, and further increasing the proportion increases the proportion of grains having a low aspect ratio. This is considered to be because the defect contains two or more defects per particle and has a growth acceleration vector in the thickness direction. Therefore, the probability may be increased as long as the mixing ratio of thick particles is allowed.
[0028]
The gap is (AgX1| AgX2) In addition to the method of forming with composition, (AgX1| AgX12| AgX2) It may be formed by nucleation. In this case AgX12Is Ag1X1And AgX2Is an intermediate layer having a halogen composition between the two. AgX1And AgX2When the halogen composition difference is increased, the number of nuclei of tabular grains increases, but the ratio of the number of nuclei of thick grains also increases. The addition of the intermediate layer increases the number of tabular grain nuclei generated, but has the effect of suppressing the rate of formation of thick grain nuclei. In this case, (AgX1| AgX12) And (AgX12| AgX2) Is (AgX1| AgX2) Is preferably 10 to 90%, more preferably 30 to 70% of the gap amount. The number of the intermediate layers is 1 to 4, preferably 1. The intermediate layer can be provided on one or more of the gap surfaces even in the embodiment having two or more gap surfaces.
[0029]
3. Aging
Of the nuclei generated by nucleation, preferably 30 to 100%, more preferably 60 to 100%, of non-tabular grain nuclei are eliminated by ripening in the ripening process to increase the projected area ratio of tabular grains. Specifically, the reaction solution is matured by increasing the solubility of AgX to 1.1 times or more, preferably 1.5 to 30 times. The following method can be mentioned as a method for increasing the solubility. (1) The temperature is increased by 5 ° C. or more, preferably 10 to 60 ° C. (2) XAdd salt or silver salt. (3) Add AgX solvent. (4) A combination method of two or more of the above (1) to (3). (Cl in the reaction solutionConcentration / XWhen the concentration is 0.9 to 1.0, 30% or more of the nuclei are first eliminated by the temperature increase, and then Cl is added.More preferably, a salt is added to increase the solubility of AgX to 1.1 times or more, preferably 1.3 to 10 times, so as to eliminate 80 to 100%, preferably 97 to 100% of the remaining nuclei.
After disappearance, the excess ClThe concentration is AgNO3It can be reduced by adding a liquid, or can be reduced by desalting by a conventionally known emulsion desalting method. AgNO3The addition rate of the liquid can be selected from the optimum addition rate, and it is preferable to add the solution at a rate that does not generate new nuclei.
[0030]
When the nuclei on which the halogen composition gap surfaces are formed are aged to eliminate the non-tabular grain nuclei, different types of halogen ions accumulate in the tabular grains growing at that time. At this time, defects such as screw dislocations are further incorporated into the tabular grains, and growth promoting defects having a growth vector component in a direction perpendicular to the main plane are incorporated. Therefore, the tabular grains become thicker as they grow. In order to prevent this, different types of halogen ions may be diluted with host halide ions. To give a specific example, (Inner core | Outer core) is (AgX1| AgX2) In the case of nuclei, foreign ions X released during ripening2Ag to dilute+And X1 A method of ripening while adding, the structure of the core (AgX1| AgX2| AgX1And X having a particle diameter of 0.01 to 0.15 μm.1A method of adding fine particles having a high composition ratio, and a method of using two or more of them in combination can be exemplified. By this dilution, the number of screw dislocation defects newly formed when the non-tabular grain nuclei are annihilated is preferably 0 to 0.3, more preferably 0 to 0.2 of the number of existing defects.
[0031]
A-2. (111) Tabular grains
1. Particle structure
When classified according to the shape of the main plane of the (111) tabular grains, the following two can be cited. (1) Hexagonal tabular grains whose peripheral shape around a main plane is substantially hexagonal. Here, “substantially” means that the maximum adjacent side ratio of the hexagon [the length of the longest side / the length of the shortest side in one hexagon] is 1 to 2, preferably 1 to 1.5. It refers to an embodiment that is preferably 1 to 1.2. (2) Triangular tabular grains having a substantially triangular shape around the main plane. Here, “substantially” refers to an aspect in which the adjacent side ratio is greater than 2. (3) A mode in which the corners of the particles (1) and (2) are rounded. The ratio (b1) Is 0 to 0.5 and 0.5 <b1<1.0 particles can be mentioned. b1The value indicates the ratio of the length of the straight portion of the side to the length between the intersections formed by extending the straight portion of the surrounding side. (4) The particles of (1) to (3), wherein [the area of the {111} face of the edge face / the total area of the edge face] is 0 to 1.0; Area / total area of edge surface] of 0 to 1.0. Particles having [area of {111} of edge surface / area of {100} surface of edge surface] of 0.01 to 100.
[0032]
In the embodiment of the hexagonal tabular grain and the triangular tabular grain having the six sides described above, the length of the longest side / the shortest side of every other three sides = b2Is preferably 1 to 1.3, more preferably 1 to 1.2, and most preferably 1 to 1.1. It is preferable that the total projected area of the grains accounts for 80% or more, preferably 90% or more, more preferably 97 to 100% of the total projected area of all AgX grains.
The number of twin planes parallel to the main plane is 2 to 4, preferably 2 to 3, and more preferably 2. Usually, two grains are the hexagonal tabular grains and three grains are the triangular tabular grains, but there is also an embodiment in which two grains are triangular tabular grains. In particular, it appears when a thin tabular grain of 0.1 μm or less is grown under a low supersaturation degree. The edge surface has a concave corner portion and a convex corner portion, but the concave corner portion grows faster because of a larger number of atomic bonds. In the case of thin tabular grains, since (thickness / twin plane spacing) is small, it is often (area of the concave corner portion / area of the convex corner portion).
[0033]
It is considered that when the particles are grown with low supersaturation, the side of (area of the concave surface> area of the convex surface) grows faster. It is considered that the growth rate of the edge portion of the grain having three parallel twin planes is (the edge portion having two reentrant angles> the edge portion having one reentrant angle). This is because the edge portion having two reentrant corners has more (the number of active growth points / unit area) and the relationship of (reentrant angle area> projection angle area) holds.
(Thickness of tabular grains / interval between twin planes) or (thickness of tabular grains / interval between outermost twin planes) is 1.1 or more, preferably 1.5 to 100, more preferably 2 to 50. It is. The outermost twin plane refers to the twin plane closest to the main plane. In the present invention, the hexagonal tabular grains or grains having rounded corners (0.5 <b1<1.0) is preferable, the adjacent side ratio is more preferably 1 to 1.5, and still more preferably 1 to 1.2. The grains are hereinafter referred to as “regular hexagonal tabular grains”.
[0034]
2. Nucleation
The temperature at the time of nucleation is preferably 60 ° C or less, more preferably 10 to 50 ° C. The concentration of the dispersion medium is preferably 0.01 to 5% by weight, more preferably 0.01 to 1% by weight, and still more preferably 0.03 to 0.6% by weight. XSalt concentration is 10−0.8-10-3Mol / l is preferred, and 10−1.2-10-2.7Mol / l is more preferred, and 10-1.6-10-2.7Mole / liter is more preferred. Ag to be added+Liquid and / or XAn embodiment in which the liquid contains a dispersion medium is preferred, and the concentration is preferably 0.01 to 1% by weight, more preferably 0.03 to 0.6% by weight. The molecular weight of the dispersion medium is preferably 3000 to 200,000, more preferably 3000 to 100,000. The pH of the reaction solution is preferably from 1 to 11, and more preferably from 2 to 6. The dispersion medium is preferably gelatin, more preferably alkali-treated gelatin, and more preferably modified gelatin described below.
In order to accelerate the ripening in the next ripening step and to further increase the tabular grain ratio, it is preferable to form micronuclei under conditions of low AgX solubility. That is, low XConcentration and low temperature are preferred. XThe decrease in the twin plane formation probability due to the decrease in the concentration may be compensated by decreasing the concentration of the dispersion medium. In addition, the lower the pH, the lower the AgX solubility of the dispersion medium, which is usually preferable.
30% or more, preferably 60 to 100%, more preferably 80 to 100% of the amount of silver salt added at the time of nucleation is XIt is preferable to add the salt and the salt at the same time.
[0035]
3. Aging
Of the nuclei formed by nucleation, preferably 75 to 100%, more preferably 90 to 100%, and even more preferably 100%, of non-tabular grain nuclei are eliminated during this ripening process, and the projected area ratio of tabular grains Enhance. Specifically, aging is performed by increasing the solubility of the reaction solution to 1.1 times or more, preferably 1.5 to 30 times. As a method for increasing the solubility, the method described in the above-mentioned item A-3 can be mentioned. The ripening proceeds more rapidly as the concentration of the dispersion medium during ripening is lower and the pH is lower. It is understood that this is because the adsorptive power of the dispersion medium to the AgX particles becomes weak, the growth alienation factor of the tabular grains is removed, and the dissolution of the non-tabular grains is promoted. Regarding the concentration of the dispersion medium during aging, the molecular weight of the dispersion medium, the pH of the reaction solution, and the type of the dispersion medium, the description in the above section 2 can be referred to. XSalt concentration is 10−0.8-10−2.5Mol / l is preferred, and 10−1.2-10-2Mole / liter is more preferred.
[0036]
B. Tabular grain growth conditions
In the present invention, 30 to 100% by weight, preferably 60 to 100% by weight, more preferably 75 to 98% by weight, and most preferably 80 to 96% by weight of the dispersion medium in the dispersion medium solution in the growth process is chemically modified. -NH2The relationship between the% of the base and the methionine content is shown in FIG.1, Preferably a2And more preferably a3Gelatin in the region of The following method can be cited as a method for realizing this embodiment.
[0037]
(1) Nucleation and ripening are performed using a dispersing medium other than the modified gelatin (hereinafter referred to as “unmodified medium”), and before growth, 10 to 99.7% by weight of the dispersing medium is removed. Adding the modified gelatin to the mixture. (2) A method in which nucleation is performed using an unmodified medium, 10 to 99.5% by weight of the dispersion medium is removed after nucleation, and the modified gelatin is newly added. (3) A method in which nucleation is carried out at a low concentration of an unmodified medium, and the modified gelatin is added after nucleation. (4) A method in which nucleation and ripening are performed at a low concentration of a non-modified medium, and the modified gelatin is added after ripening. (5) A method in which nucleation and ripening are performed under the concentration of the modified gelatin. The modified gelatin can be further added after nucleation or ripening. (6) A method in which the process is performed in the presence of unmodified gelatin until after nucleation or after ripening, and then the gelatin is modified with a modifier described below to increase the ratio of the modified gelatin. (7) Until the nucleation or ripening is carried out in the presence of the unmodified gelatin, then the unmodified gelatin is added, and the mixture is homogenized and mixed. How to increase the ratio of modified gelatin.
[0038]
The following method can be used as a method for removing the dispersion medium. 1) A method of centrifuging an AgX emulsion and removing a supernatant. 2) A method of removing by an ultrafiltration method using an ultrafiltration membrane. 3) A method of adding a coagulating sedimentation agent and washing by settling, or a method used in combination with a centrifugation method.
The removal rate of the dispersion medium is preferably 30 to 99.5% by weight, more preferably 60 to 99%, and most preferably 90 to 99%.
The methods (1) to (4), (6) and (7) can be more preferably used. The low concentration of (3) and (4) indicates 0.01 to 1% by weight, preferably 0.03 to 0.6% by weight, and more preferably 0.03 to 0.3% by weight. Further, the amount of the modified gelatin to be added later is an amount necessary to achieve the embodiment of the present invention.
[0039]
In order to grow the tabular grains without increasing the thickness and without expanding the size distribution, it is necessary to precisely control the adsorptivity of the dispersion medium to the AgX particles. H in aqueous gelatin solution2O2Was added to oxidize the gelatin,2O2(Number of methionine sulfoxide groups / number of methionine groups) = C1Increase. C1The adsorption power of gelatin to the AgX particles decreases with the increase in the amount of gelatin. The C1When various types of gelatin having different values are used and (111) tabular grains are grown under the same conditions in an aqueous solution thereof, the obtained tabular grains have C1As the value increases, it becomes thinner, but at the same time the size distribution broadens. This phenomenon can be understood as follows.
[0040]
Since the oxidation did not change the lysine group, aspartic acid group or glutamic acid group at all, this change1Attributable to value changes. That is, since the strong adsorption of the methionine group disappears, the rate of growth of the edge surface of the tabular grain changes from the rate of desorption of the methionine group to the rate of reaction of the edge surface. Since the growth active site of the (111) tabular grain is the reentrant corner of the edge, the probability that a single tabular grain forms a growth nucleus on the reentrant corner is proportional to the edge length around the tabular grain. . Since the edge length (2πd) is proportional to the diameter (d), the growth nucleation probability is proportional to d. When the growth nucleation process is growth-determined, the growth rate becomes (larger particles> small particles), and the size distribution expands with growth.
[0041]
However, even when methionine is added to the oxidized gelatin by only 100 (μmol / g gelatin) to grow tabular grains, the thin tabular grains are formed. Therefore, the methionine group alone in gelatin does not alone retain strong adsorption power. Amino groups of gelatin are phthalated with phthalic anhydride to prepare gelatins having various phthalation rates. Next, when the same seed crystal tabular grains are grown in the dispersion medium under the same conditions, the tabular grains generated become thinner with an increase in the phthalation rate, but the size distribution is not so widened. Therefore, in order to prepare thin tabular grains having a uniform size distribution, it is necessary to select an optimal combination of the methionine group content and the amino group content of gelatin. The selection of this optimal value has been made for the first time by the present invention. 1-phenyl-5-mercaptotetrazole strongly adsorbs to AgX particles, but mercapto groups alone or tetrazole groups alone do not show so strong adsorption. The above phenomenon can be considered similarly. That is, the strong adsorption of gelatin to AgX particles is due to the methionine group in the gelatin molecule and -NH.2It is thought to be caused by the concert effect of the group. When grown on the oxidized gelatin, distorted tabular grains having a hexagonal shape are formed.1Region, preferably a2When gelatin in the region (1) is used, regular hexagonal tabular grains are formed.
[0042]
Another major factor controlling the adsorption power of the dispersion medium to AgX particles is temperature. Even with the same dispersion medium, as the temperature is lowered, the frequency of desorption of the adsorbing group is reduced, and the particle growth becomes more desorption-controlled. In this case, all surfaces of the tabular grains approach more uniform growth. Therefore, as the temperature is increased, the rate of desorption is eliminated, the selective growth of the edge is enhanced, and tabular grains having a higher aspect ratio are obtained. When the same tabular grains are grown at various temperatures of 30 to 80 ° C. using various dispersing media, the change in the aspect ratio of the resulting tabular grains has a high methionine content and a high free amino group content. Higher gelatin is larger. In the embodiment of the present invention, monodisperse tabular grains having a small aspect ratio and a high aspect ratio over a wide temperature range can be obtained. Further, since an appropriate adsorption force to the AgX particles is maintained, generation of fog is suppressed, and particles having a high (sensitivity / fogging) ratio can be obtained. The growth temperature is preferably 30C or higher, more preferably 40 to 90C. The most preferred temperature can be selected and used.
Another major factor controlling the adsorption power of the dispersion medium to AgX particles is pH. Using oxidized gelatin having a methionine content of zero, dispersion medium solutions of various pHs are prepared. When the same (111) tabular seed crystal is put into each solution and grown, the mixing ratio of thick tabular grains increases as the pH increases. It becomes remarkable at pH 8 or more, particularly at pH 9 or more. At this time, since methionine sulfoxide does not change, it indicates that methionine alone is not the cause of the formation of thick plate particles. On the other hand, when the modified gelatin of the present invention is used, the pH dependency is small, and no thick particles are mixed even at pH 9 to 10. That is, when the growth pH is 6 to 11, preferably 6 to 10, the advantage becomes larger.
On the other hand, in the case of (100) tabular grains, thinner tabular grains can be obtained as the ripening and growth conditions are set to a higher pH. The relationships and reasons are summarized in Table 1. Here, Gel. Refers to gelatin.
[0043]
[Table 1]
Figure 0003575639
[0044]
The growth of these tabular grains is preferably performed by selecting the most preferable degree of supersaturation according to the purpose. When the critical degree of supersaturation is 100 and the degree of supersaturation when no solute is added is 0, 5-90 is preferable, and 10-80 is more preferable. Here, the critical supersaturation degree is defined as AgNO3Aqueous solution and XWhen the salt aqueous solution is added at the same time, it indicates the degree of supersaturation when a new nucleus is generated when the salt solution is added at a higher rate. When the degree of supersaturation is increased, the obtained tabular grains are more monodispersed, but also grow in the thickness direction and have a lower aspect ratio. Lowering the degree of supersaturation increases the aspect ratio, but broadens the size distribution.
The concentration of the dispersion medium during growth is preferably 0.1 to 7% by weight, more preferably 0.3 to 3% by weight. The molecular weight is 3000 to 200,000, preferably 6000 to 120,000. The pH of the solution is preferably a pH equal to or higher than the isoelectric point of the modified gelatin, more preferably (isoelectric point pH + 0.2) to pH 11, and further preferably (isoelectric point pH + 0.4) to pH10. When tabular grains are grown under the same conditions, the lower the pH, the lower the gelatin concentration, and the lower the molecular weight, the higher the aspect ratio of the resulting tabular grains. The most preferable combination can be selected and used according to the purpose.
[0045]
X in the reaction solution during ripening and growth of (111) tabular grainsIs preferably in the octahedral particle forming region. Here, the octahedral particle generation region is defined as XAg while keeping the concentration condition+And XIs added at the same time to form AgX particles, a concentration range in which 70 to 100%, preferably 90 to 100% of the particle surface forms {111} plane particles. Usually, the XThe concentration is 10-0.5-10−2.5Mol / l is preferred, and 10-1-10-2Mole / liter is more preferred.
This feature is found not only in (111) tabular grains but also in (100) tabular grains. Therefore, it can be preferably used also for the (100) tabular grains. (100) X in the reaction solution during nucleation, ripening, and growth of tabular grainsThe concentration is preferably in a cubic particle generation region. Here, the cubic particle generation region is defined as XAg while keeping the concentration condition+And XIs added at the same time to form AgX particles, a concentration range in which 70 to 100%, preferably 90 to 100% of the particle surface forms {100} plane particles. Usually, the X, And Ag+The concentration is 10−1.5Mol / l or less, preferably 10-2More preferably, it is not more than mol / liter.
With respect to the other details of the tabular grains, the description of the literature described in the section of the “prior art” and JP-A-3-288143, JP-A-3-212639, JP-A-3-116133, JP-A-2-301742, JP-A-2-34, JP-A-6-59360, Japanese Patent Application No. 6-47991, JP-A-5-248218, JP-A-5-264059, JP-A-5-96250, and descriptions of the following documents can be referred to. .
[0046]
C. Modified gelatin
-NH in gelatin2Examples of the group include an amino group of a terminal group of a gelatin molecule, a lysine group, a hydroxylysine group, a histidine group, an amino group of an arginine group, and, if the arginine group is converted to an ornithine group, the amino group can be mentioned. . Further, impurity groups such as adenine and guanine groups can also be mentioned. -NH2Chemical modification of a group means adding a reaction reagent to gelatin and reacting with the amino group to form a covalent bond or deamination. That is, a primary amino group (—NH2) To a secondary amino group (—NH—), a tertiary amino group, or a deaminated product.
[0047]
Specifically, for example, acid anhydrides (maleic anhydride, o-phthalic anhydride, succinic anhydride, isatoic anhydride, benzoic anhydride, etc.), acid halides (R-COX, R-SO2X, RO-COX, Phenyl-COCl, etc.), a compound having an aldehyde group (R-CHO, etc.), a compound having an epoxy group, a deaminating agent (HNO2, Deaminese, etc.), active ester compounds (sulfonic acid esters, p-nitrophenyl acetate, isopropenyl acetate, methyl o-chlorobenzoate, p-nitrophenyl benzoate, etc.), isocyanate compounds (Aryl isocyanate, etc.), active halogen compounds, for example [Aryl halide (benzyl bromide, biphenyl-halomethanes, benzoyl halomethane, phenyl benzoylhalo-methane, 1-Fluoro-2,4-dinitro-a-hate, β-fluoro-2,4-dinitro-athene-a, py imidine, pyridazine, pyrazine, pyridazone, quinoxaline, quinazoline, phthalazine, benzoxazole, benzothiazole, chlorine derivatives of benzoimidazole)],
Carbamoylation agent (cyanate, nitrourea, etc.), compounds having an acrylic type active double bond group (maleimide, acrylamine, acrylamide, acrylonitrile, methylmethaacrylate, vinyl sulphone, vinylsulphonate ester, sulphonamide, styrene and vinylpyridine, allylamine, butadiene, isoprene, chloroprene ), Sultones (butane sultone, propane sultone), Guanidine agent (o-methylisourea, etc.), carboxylazide, etc. For example, it can be achieved by reacting.
[0048]
In this case, the reagent which also reacts with the -OH group or -COOH group of gelatin and forms a covalent bond is mainly composed of -NH group of gelatin.2Reagents that react with groups are more preferred. It mainly means 60% or more, preferably 80 to 100%, more preferably 95 to 100%. Furthermore, an embodiment in which the reaction product does not substantially contain (a group in which oxygen of an ether group or a ketone group replaces a chalcogen atom, for example, -S- or thione group) is more preferable. Here, “substantially not contained” refers to preferably 10% or less, more preferably 0 to 3% of the number of the chemically modified groups. Accordingly, among the above, acid anhydrides, sultones, compounds having an active double bond group, carbamoylating agents, active halogen compounds, isocyanate compounds, active ester compounds, compounds having aldehydes, and deamino groups are more preferred. An embodiment in which cross-linking between gelatin molecules is substantially impossible by the chemical modification is more preferable. Here, "substantially impossible" means that the content of the chemically modified group is preferably 10% or less, more preferably 0 to 3%.
[0049]
For details of the chemical modifying agent and the method of chemically modifying gelatin, see the below-mentioned documents, JP-A-4-226449, JP-A-50-3329, U.S. Pat. Nos. 2,525,753, 2,614,928, 2,614,929 and 2,614,929. No. 2763639, No. 2594293, No. 3132945, edited by Yoshiko Abiko, Nika and Gelatin, Chapter II, Japan Nika and Gelatin Industry Association (1987), edited by Ward et al., The Science and Technology of Gelatin, Chapter 7, Academic. Press (1977) can be referred to.
-NH of the modified gelatin2The chemical modification% of a group can be determined as follows. Gelatin without the modification and gelatin with the modification are prepared, and -NH2Base e1, E2Asking. Chemical modification% is 100 × (e1-E2) / E1I can ask more. The e1And e2Is obtained by -NH2Examples of the method include a method using an infrared absorption intensity based on a group, an NMR signal intensity of the proton, a color reaction, and a fluorescence reaction. For details, see the descriptions in Analytical Chemistry Handbook, Organic Edition-2, Maruzen (1991). You can refer to it. Other examples include a change in the titration curve of gelatin and a quantitative method such as a formol titration method, and the details can be referred to the description of The Science and Technology of Gelatin, Chapter 15, Academic Press (1977). .
[0050]
In addition, a method in which a mixture of glutaraldehyde and Britton-Robinson high pH buffer is added to a gelatin solution having a specified concentration, color is developed, the spectral absorption intensity around 450 nm is measured, and colorimetric determination is performed [Photographic Gelatin II, p. 297 to 315, Academic Press (1976) can be referred to].
The methionine content of the gelatin can be determined by completely decomposing the gelatin into amino acids by an alkaline hydrolysis method, analyzing the resultant with an amino acid analyzer, and determining the methionine content relative to the glycine content. For details, the description of Japanese Patent Application No. 6-102485 can be referred to. The methionine content of the gelatin can be adjusted by adding an oxidizing agent to the aqueous gelatin solution and oxidizing the -S- group of methionine to one or more of sulfoxide, sulfonate and sulfone. Preferably, it is oxidized to sulfoxide. That is, in the present invention, the oxidized form of methionine is not regarded as methionine. The level of the oxidation can be adjusted mainly by the kind of the oxidizing agent to be added and the amount thereof. The temperature of the aqueous solution is preferably from 10 to 70 ° C, more preferably from 25 to 50 ° C. The pH is preferably 2 to 9, and more preferably 3 to 7. Usually, an oxidizing agent is added to an aqueous gelatin solution whose temperature and pH are constantly adjusted, and the mixture is uniformly mixed. Next, the container is covered with a lid, kept at a constant temperature, and allowed to stand for 15 minutes to 3 days, more preferably for 1 to 24 hours. Regarding the oxidizing agent, the description of Japanese Patent Application No. 6-102485 can be referred to. Usually H2O2Can be preferably used.
[0051]
Due to the oxidation, the extinction coefficient (200 to 500 nm wavelength range) of gelatin decreases. Therefore, if reagents having various oxidation levels are prepared and the relationship between the extinction coefficient and the methionine content is determined, thereafter, the methionine content of the gelatin can be easily determined by measuring the extinction coefficient. The amino acid composition of standard gelatin is described in The Theory of The Photographic Process, Chapter 2, Macmillan (1977), and eight molecules of methionine are contained in one molecule. Assuming that the molecular weight of gelatin is 96,000, the methionine content is 83 μmol / g, and the methionine content of conventional gelatin can be considered to be about 80 μmol / g. FIG. 1a1, A2In the region, the methionine content is preferably 60 μmol / g or less, more preferably 50 μmol / g or less, still more preferably 40 μmol / g or less, and most preferably 36 μmol / g or less. FIG. 1a3In the region, the methionine content is preferably 40 μmol / g or less.
[0052]
D. PAO polymer
The polyalkylene oxide polymer (hereinafter referred to as “PAO polymer”) is prepared before nucleation to 5 minutes before the end of growth, preferably up to 10 minutes before, more preferably after nucleation to just before the start of growth. It is preferable to add them in between. The above-mentioned tabular grain formation, furthermore BrIt can be more preferably added to the formation of (111) tabular grains having a content of 50 to 100 mol%. With respect to the details of the PAO polymer, the compounds described in European Patent 0514742A1, Japanese Patent Application Nos. 5-118418, 5-191814 and 5-263128 are preferable, and particularly the embodiments described in Japanese Patent Application Nos. 5-191814 and 5-263128. Can be preferably used. The molecular weight of the PAO polymer of the following first to sixth aspects is 500 to 106Is preferably 103-105Is more preferred. The amount of the PAO polymer in the following first and second embodiments is preferably 0.001 to 20 g / liter, more preferably 0.003 to 10 g / liter. The amount of each polymer of the following third to sixth embodiments is preferably 0.01 to 20 g / liter, more preferably 0.03 to 10 g / liter. The amount of each polymer of the following third to sixth embodiments is preferably 0.01 to 20 g / liter, more preferably 0.03 to 10 g / liter. The pH during grain growth is preferably from 5 to 11, more preferably from 5 to 9.5.
[0053]
The order of the strength of the adsorption power of the organic ether compound to the AgX particles is generally -O-<-S-<-Se-<-Te-. Since the adsorbing power of the oxygen ether group to the AgX particles is weaker than that of the thioether group, the growth of the AgX particles is not strongly suppressed. Since the adsorption to AgX particles is based on Van der Waalska, the adsorption is more selectively performed on the {100} surface than on the {111} surface of the AgX particles. It is Ag on {100} face compared to {111} face+And XThis is because the induced dipole moment is large because of It is on the edge surface that the {100} plane is likely to appear in the (111) tabular grains, so PAO is adsorbed on the edge surface with a moderate adsorption force rather than on the main plane. Then, the growth rate of the edge surface is changed to the rate of PAO desorption. If the number of adsorbed molecules of PAO per unit area is equal, the growth rate of each unit area is the same for both large and small particles. Therefore, the edge surface of both large particles and small particles grows at a constant speed, and the coefficient of variation of the diameter distribution decreases with the growth.
[0054]
The crystal habit dependence of the adsorption of the PAO polymer can be determined by the following method. A monodisperse cubic grain emulsion and an octahedral grain emulsion having the same surface area are prepared, and a PAO compound is added to each of them to reach an adsorption equilibrium, followed by centrifugation and analysis of a supernatant. For example, when the temperature is higher than the cloud point of the PAO, it can be determined by comparing the spectral transmission intensities. In addition, a method of separating and analyzing the PAO component by chromatography (eg, gel filtration chromatography) can be mentioned. In addition, the comparison can be made by measuring the ionic conductivity of the cubic and octahedral particles by a dielectric loss method and determining the amount of change in ionic conductivity due to the adsorption.
[0055]
Conventional gelatin adsorption on AgX particles usually occurs more strongly on {100} faces than on {111} faces. It is mainly the Ag on the particle surface+This is for adsorption based on the interaction with In this case, the adsorption of the PAO polymer to the {100} plane is excluded. However, in the case of the modified gelatin, since the adsorption to the AgX particles is weak, the selective adsorption to the {100} plane of the PAO polymer becomes possible, and the preferable growth characteristics of the above embodiment can be obtained. Since the PAO polymer increases the ionic conductivity of AgBr particles by the adsorption, the {100} plane BrIt is thought that the interaction with is large.
Further, the PAO polymer and XCan be determined by the following method. X and X are respectively contained in the aqueous solution containing PAO and the aqueous solution not containing PAO.Insert the selection electrode and XThe relationship between the amount of salt added and the electrode potential (relative to the standard electrode) may be determined and compared. X incorporated into PAO polymerThe change in the potential is reduced by the amount.
[0056]
A first embodiment of the PAO polymer is HPAO, and is represented by the general formula (1) -a) or (1) -b). The molecular weight of HPEOU includes 96.1 to 100%, preferably 97 to 100% of the molecular weight of the whole molecule (HP1) and the mode (HP2) occupying 4 to 96% of the molecular weight.
In the formula (1), R0Is H, or a hydrocarbon having 1 to 10 carbon atoms having at least one polar group (e.g., -CH2OH, -C2H5OH, -CH2-O-CH3), Preferably H. R represents an alkylene group having 3 to 10 carbon atoms, and specific examples thereof include -CH (CH3) CH2-, -CH2CH (CH3)-, -CH2CH2CH2−, − (CH2)4-,-(CH2)5-, -CH2CH (C6H5)-, And -CH (CH3) CH2-, -CH2CH (CH3)-Is particularly preferred.
n and m represent the average number of repeating units, and are values of 4 or more, preferably 6 to 10,000, and more preferably 10 to 2000, which satisfy the above-mentioned molecular weight specification.
[0057]
However, since the selectivity of the ring opening position of the cyclic ether during the polymerization is not sufficient, for example,-[CH2CH (CH3) O]-and-[CH (CH3) CH2O 2] − may be mixed.
The second embodiment of the PAO polymer is PEOD, which is represented by the general formula (a) to (f) in the above formula (2). Here, LPU refers to a lipophilic group other than the HO-HPEOU- group and the HO-LPAOU- group, and is a substituted or unsubstituted alkyl group, alkenyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, acyl group, It refers to an acylamino group, an alkylthio group, an arylthio group, an alkoxycarbonyl group, an aryloxycarbonyl group, or an alicyclic group, and is more preferably a compound containing no divalent sulfur, selenium, or tellurium. LPU ′ denotes H, an alkyl group having 1 to 20 carbon atoms,2Is the same as
Specific compound examples of the HPAO are shown in a) to c) of formula (10), and specific compound examples of the PEOD are shown in a) to g) of formula (11).
Here, the substituent is CdH2 d + 1 , CdH2 d + 1COCan be mentioned. d represents an integer of 1 to 12.
[0058]
Embedded image
Figure 0003575639
[0059]
Wherein a and b each represent an integer of 1 to 25;1~ N3Is a value of 1 to 10,000 which satisfies the above-mentioned molecular weight specifications of HPAO and PEOD. For other details of the polymers of the first and second embodiments, the description of Japanese Patent Application No. 5-118418 can be referred to.
The third embodiment of the PAO polymer is the same as the general formula (3) [the formula (7) -a described later). ] It contains at least one kind of polymer having a repeating unit of a monomer represented by the following formula: The polymer may be a copolymer with another monomer described below. In that case, the proportion of the monomer of the formula (3) in the polymer is 1 to 100% by weight, preferably 10 to 90% by weight. The fourth embodiment is characterized in that the polymer has at least two kinds of monomers represented by general formula (3) and at least two types of monomers represented by general formula (4) [same as the following formula (7) -c]: : 100 to 100: 1, preferably 5 to 100 to 100: 5 molar ratio.
[0060]
In the formulas (3) and (4), R1, R4May be the same or different, and represents H, a lower alkyl group having 1 to 4 carbon atoms (methyl, ethyl, n-propyl, n-butyl), and H and a methyl group are particularly preferred. R2, R5May be the same or different and represent a monovalent substituent having 1 to 20 carbon atoms, preferably H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or an acyl group, particularly preferably H, methyl Groups, ethyl groups, phenyl groups, and acetyl groups are preferred. n and m represent the average number of repeating units, n is 4-600, preferably 4-200, and m is 4-600, preferably 4-200. L and L ′ represent a divalent linking group, and specific examples thereof include —COO—, —CONH—, and —CONH— (CH2)C-COO-, -Ph-CH2O- (Ph: phenylene group), -COOCH2CH2O-, -CON (CH3)-. C indicates an integer of 1 to 20.
[0061]
Specific examples of the monomer represented by the general formula (3) are as follows.
Figure 0003575639
[0062]
Specific examples of the monomer represented by the general formula (4) are as follows.
Figure 0003575639
[0063]
The proportion of the monomer represented by the formula (3) in the copolymer is 1 to 90% by weight, preferably 5 to 85% by weight, more preferably 15 to 70% by weight.
The proportion of the monomer represented by the formula (4) in the copolymer is 1 to 90% by weight, preferably 3 to 70% by weight, more preferably 10 to 50% by weight.
The monomer of the formula (3) and / or the monomer of the formula (4) may be copolymerized with another monomer for use. Specific examples of the other monomers include acrylic esters, methacrylic esters, acrylamides, methacrylamides, vinyl esters, vinyl ketones, allyl compounds, olefins, vinyl ethers, N-vinylamides, and vinyl heterocycles. Compounds, maleic esters, itaconic esters, fumaric esters, crotonic esters. The copolymerization amount of the other monomer is 0 to 99% by weight, preferably 0 to 90% by weight, more preferably 5 to 60% by weight.
[0064]
Specific examples of copolymers of the monomer of the formula (3), the monomer of the formula (4) and other monomers are shown in the formulas (12) -1) to (12) -5). The values in parentheses indicate the weight percentage of each monomer in the polymer.
Figure 0003575639
[0065]
For other details of the PAO polymers of the third and fourth embodiments, the description of the sixth embodiment described later and the description of Japanese Patent Application No. 5-191814 can be referred to.
A fifth aspect of the PAO polymer is that the dispersion medium solution contains at least one polymer containing 1% by weight or more of the repeating unit represented by the general formula (5) and the polymer represented by the general formula (6). In this embodiment, the polymer containing 1% by weight or more of the repeating unit is contained at the above concentration.
In the formula, R represents an alkylene group having 3 to 10 carbon atoms, and specific examples thereof include -CH (CH3) CH2-, -CH2CH (CH3)-, -CH2CH2CH2−, − (CH2)4-,-(CH2)5-, -CH2CH (C6H5)-And -CH (CH3) CH2-, -CH2CH (CH3)-Is particularly preferred.
n and m represent the average number of repeating units, and are values of 4 or more, preferably 6 to 10,000, and more preferably 10 to 2000, which satisfy the above-mentioned molecular weight specification.
[0066]
The sixth embodiment of the PAO polymer is an embodiment in which the following limitation is added to the fifth embodiment. The polymer represented by the formula (5) is at least selected from a vinyl polymer of a monomer represented by the formula (7) -a) and a polymer containing a polyurethane represented by the formula (7) -b). One kind of polymer, wherein the polymer represented by the formula (6) includes a vinyl polymer of a monomer represented by the formula (7) -c) and a polyurethane represented by the formula (7) -d) An embodiment in which the polymer is at least one polymer selected from a polymer and a substituted or unsubstituted polyethylene glycol.
In the above formula, n and m can take values of 4 or more, preferably 4 to 600, more preferably 4 to 80. R, R1, R2, R4, R5, L, L 'are the same as above. R11, R12, RThirteen, R14Represents a divalent linking group, and represents an alkylene group having 1 to 20 carbon atoms, a phenylene group having 6 to 20 carbon atoms, or an aralkylene group having 7 to 20 carbon atoms. x, y, z, x ', y', z 'represent the weight percentage of each component, x, x' is 1 to 70, preferably 5 to 40, y, y 'is 1 to 70, preferably 3 -50, z and z 'represent 20-70, preferably 30-60. Here, x + y + z = 100 and x ′ + y ′ + z ′ = 100.
As the repeating unit represented by-(RO)-, only one type may be used in the polymer, or two or more types may be used. Also,-(RO)-or-(CH2CH2Two or more types having different average numbers (molecular weights) of O)-repeating units may be used.
[0067]
The polymer represented by the formula (5) can be preferably used as long as it contains the repeating unit of the formula (5). However, a vinyl polymer of the monomer represented by the general formula (7) -a) or And a polymer containing a polyurethane represented by the general formula (7) -b) can be more preferably used, and the former vinyl polymer can be more preferably used.
Specific examples of the monomer represented by the formula (7) -a) are as follows: (7) -a) -1) to (7) -a) -5) Formulas [(3) -a) -1) to (3) -A) -5) Same as the formula].
[0068]
Embedded image
Figure 0003575639
[0069]
In the vinyl polymer, the proportion of the monomer unit represented by (7) -a) is 1 to 100% by weight, preferably 10 to 90% by weight, and more preferably 30 to 70% by weight. Specific examples of the vinyl polymer of the monomer of the formula (7) -a) are represented by formulas (8) -a) -1) to (8) -a) -3), and the polyurethane of the formula (7) -b) Are shown in the formulas (8) -b) -1) to (8) -b) -2). The values in parentheses indicate weight percentage ratios.
(8) -a) -1): (7) -a) -3) / acrylamide copolymer (25/75)
(8) -a) -2): (7) -a) -3) / acrylic acid / acrylamide copolymer (50/30/20)
(8) -a) -3): (7) -a) -3) / acrylic acid copolymer (70/30)
(8) -b) -1): Isophorone diisocyanate / 2,2-bis (hydroxymethyl) propionate sodium / polypropylene oxide (molecular weight 400) / polypropylene oxide (molecular weight 1000) (43.1 / 21.5 / 15. 7 / 19.7).
(8) -b) -2): Toluene diisocyanate / 2,2-bis (hydroxymethyl) butanoic acid sodium / polypropylene oxide (molecular weight 1000)
(29.3 / 20.1 / 50.6).
The polyurethane is basically synthesized by addition of a diol compound and a diisocyanate compound.
[0070]
The polymer represented by the formula (6) can be preferably used as long as it contains the repeating unit of the formula (6). However, a homopolymer of a monomer represented by the general formula (7) -c), Alternatively, a copolymer or a polyethylene glycol, a substituted polyethylene glycol, or a polyurethane represented by the formula (7) -d) can be preferably used, and the homopolymer of the monomer represented by the formula (7) -c) is more preferably used. Can do things.
[0071]
The monomer of the formula (7) -c) may be copolymerized with another ethylenically unsaturated monomer. In this case, the proportion of the monomer represented by the formula (7) -c) in the copolymer is 1 to 100% by weight, preferably 10 to 80% by weight, and more preferably 30 to 70% by weight. Specific examples of the monomer represented by the formula (7) -c) are the same as [(4) -a) -1) to (4) -a) -5) as follows. ].
Figure 0003575639
(6) Other examples of the polymer having a repeating unit represented by the formula include polyethylene glycol, substituted polyethylene glycol having a substituent having 1 to 30 carbon atoms, and polyurethane. The proportion of polyethylene oxide in the polyurethane polymer represented by the formula (7) -d) is 1 to 70% by weight, preferably 5 to 40% by weight.
[0072]
Next, specific examples of the polymer of the monomer represented by the formula (7) -c) are shown in the formula (8) -c), and examples of the polymer of the formula (7) -d) are shown in the formula (8) -d). .
(8) -c) -1) (7)-(c) -3) / acrylamide copolymer (10/90)
(8) -c) -2) 〃 (25/75)
(8) -c) -3) 〃 (50/50)
(8) -c) -4) (7)-(c) -3) Homopolymer
(8) -d) -1) Toluene diisocyanate / 2,2-bis (hydroxymethyl) butanoic acid sodium / polyethylene glycol (molecular weight 1000)
(29.3 / 20.1 / 50.6)
(8) -d) -2) 4,4'-diphenylmethane diisocyanate / 2,2-bis (hydroxymethyl) propionate sodium / polyethylene glycol (molecular weight 400) (45.3 / 11.3 / 43.4)
[0073]
For other details of the fifth and sixth aspects, the description of Japanese Patent Application No. 5-263128 can be referred to.
In the present invention, HP1 of the first aspect, the second to sixth aspects can be preferably used, the second to sixth aspects can be more preferably used, and the third to sixth aspects can be more preferably used. Further, the fifth and sixth aspects are most preferable.
For other details of the PAO polymer, see Davidson et al., Synthetic Detergents, John Wiley & Sons, New York (1987), edited by Tadanori Misawa, Water-Soluble Polymers, Chemical Industry Co. (1990), Hiroshi Horiguchi, New Surface Activity , Sankyo Publishing (1975), Takehiko Fujimoto, Introduction to New Surfactants, Sanyo Chemical Industries (1976), The Chemical Society of Japan, Chemical Handbook, Section 4-6, Maruzen (1984), Tokyuki Yoshida, Surfactant handbooks, engineering books, and the following literatures can be referred to.
The optimum addition ratio of the polymer represented by the formula (5) to the polymer represented by the formula (6) changes depending on the halogen composition of the AgX particles and the growth conditions (temperature, pH, pAg, etc.). However, in the case of the fifth and sixth embodiments, if both polymers are prepared, the optimum conditions can be selected by changing the ratio of the amounts added. However, in the case of the fourth embodiment, it is necessary to prepare a polymer in which the polymerization ratio of the monomer of the formula (3) and the monomer of the formula (4) is variously changed, and it is difficult to respond finely. In addition, a large number of products can be produced in small quantities, resulting in an increase in cost. Therefore, in this regard, the fifth and sixth aspects are more preferable than the fourth aspect.
[0074]
D. Ag+And XSupply method
Ag in the growth process+And XCan be supplied by 1) a silver salt solution in which a soluble silver salt is dissolved and a halogen salt solution in which a soluble halide salt is dissolved (hereinafter referred to as “XSalt solution), 2) a method of forming an AgX fine particle emulsion in advance and supplying the fine particle emulsion, 3) a splash addition method, and 4) a combination method of the above two methods. it can. Examples of the soluble silver salt and the soluble halogen salt include salts having a solubility in water at room temperature of 1% by weight or more, preferably 10% by weight or more, and are edited by The Chemical Society of Japan, Chemical Handbook, Chapter 8, Maruzen (1993) ) Can be referred to. Usually AgNO3And Cl, Br, IAlkali metal salts and ammonium salts can be preferably used. The AgX fine particles preferably have a particle diameter (diameter of a circle having an area equal to the projected area of the particles) of 0.15 μm or less, more preferably 0.01 to 0.1 μm, and still more preferably 0.02 to 0.06 μm. . The halogen composition includes AgCl, AgBr, AgI and mixed crystals of two or more thereof.
[0075]
The size distribution preferably has a coefficient of variation of 0 to 0.4, more preferably 0 to 0.2, and still more preferably 0 to 0.1.
The fine particles preferably have substantially no double or more twin planes, more preferably substantially no single twin particles. Further, it is preferable that the film does not substantially have a screw dislocation defect. Here, the term "substantially free" means that the number is preferably 3% or less, more preferably 1% or less, and even more preferably 0 to 0.1%.
The fine particles can be added continuously or intermittently. Further, the halogen composition of the fine particles to be supplied can be changed continuously or intermittently with respect to the supply time. The most preferable combination of the fine grain emulsion having a pH of 1 to 12 and a pX of 0.5 to 6 can be selected.
[0076]
In the case of forming the fine particles, the dispersion medium which strongly adsorbs to the AgX particles enables the formation of the fine particles as defined above. On the other hand, when the fine particles are supplied to grow tabular grains, the bond between the dispersion medium and the AgX grains is preferably weak. This is for promoting the dissolution of the fine particles and promoting the growth of tabular grains. Therefore, after the AgX microparticles are formed in a dispersion medium solution, the treatment is performed, and the Ag / particles per unit weight of the dispersion medium under the same conditions are treated.+It is preferable to reduce the ability to form a complex by 10% or more, preferably 30 to 99% or more, more preferably 60 to 95%, and even more preferably 80 to 95%. Here, the processing is H2O2And the like, and oxidizing the dispersion medium and / or adding the modifier to chemically modify the amino group. The details of the treatment and other details of the method of adding fine particles can be referred to the description of Japanese Patent Application No. 6-102485.
[0077]
Ag during nucleation, ripening and growth+And XAny conventionally known device can be used as the supply device and the particle forming device. The addition holes are provided in the dispersion medium solution, and (number of addition holes / 1 addition liquid) is 2 or more, preferably 4 to 10FifteenIt is possible to preferably use a mode in which a single porous addition system, in which the addition holes are made of a rubber elastic body film, the holes are opened when the addition is performed, and the holes are closed when the addition is stopped. The details of the method for adding fine particles and the conventional apparatus are described in the following literature, and JP-A-3-21339, 1-183417, 4-34544, 4-193336, 4-330427, 3-155439, 3-15539. -200952, 3-246534, 4-283741, 4-184326 to 184330, 5-1377, 5-45757, 5-61134, 5-337350, 6-11779, U.S. Pat. The description of Japanese Patent Application Nos. 4-240283, 4-302605, and 5-25314 can be referred to.
[0078]
E. FIG. AgX emulsion manufacturing process
Conventionally, the production process of an AgX emulsion is usually carried out in the order of AgX grain formation → rinse water washing → chemical sensitization and spectral sensitization. In the present invention, a desalting step of the emulsion can be added after chemical sensitization and / or after spectral sensitization depending on the purpose other than the production step. In this case, the AgX emulsion conditions at the time of chemical sensitization and the AgX emulsion conditions at the time of spectral sensitization can be selected to be different from the AgX emulsion conditions at the time of coating, and the most suitable conditions for each step can be selected. There is an advantage that you can. Chemical sensitization and spectral sensitization can be performed simultaneously, or one of them can be performed first.
After preparing the emulsion, the emulsion can be washed with water and desalted according to a conventional method. As the desalting method, 1) a Nudel washing method, 2) a method of adding an aggregating agent, adjusting the pH of the emulsion to an aggregation pH, causing the emulsion to aggregate, sedimentation, and removing the supernatant,2Group and / or carboxyl group, preferably -NH2When gelatin containing chemically modified groups is included, aggregation and precipitation can be performed without a flocculant or with a smaller amount of addition. 3) a method of removing an aqueous solution in an AgX emulsion using an ultrafiltration membrane, 4) a method of sedimenting AgX particles by a centrifugal sedimentation method and removing a supernatant, 5) a centrifugal filtration method, 6) an electrodialysis method, Can be mentioned. For the details thereof, refer to the following documents, Japanese Patent Publication No. 62-27008, Japanese Patent Application Laid-Open No. 62-113137, Japanese Patent Application Laid-Open No. 3-200952, edited by Misawa, Supplement / Centrifugation, Chemical Industry Co., Ltd. (1985). It can be.
In the case of the emulsion of the present invention, a method of removing 10 to 99.9% of the dispersion medium by using the centrifugal filtration method, adding a new dispersion medium, and replacing the dispersion medium can also be preferably used.
[0079]
F. Chemical sensitization
The AgX emulsion grains of the present invention are preferably Sx sensitized and adsorb spectral sensitizing dyes, where Sx refers to sulfur, selenium, tellurium. As the Sx sensitizer, conventionally known Sx sensitizers can be used. Specific examples thereof include thioureas, rhodanines, oxazolidines, polysulfides, selenoureas, phosphine selenides, selenoamides, and thiosulfates. Salts can be given, and the details can be referred to the descriptions in the following literatures.
The AgX grains of the AgX emulsion of the present invention are preferably further gold sensitized. As the gold sensitizer, a conventionally known gold sensitizer can be used. For example, chloroauric acid, potassium chloroaurate, potassium or sodium aurithiocyanate (chloroauric acid: SCN)= 1: 1 to 1: 100 molar ratio), brominated auric acid, iodoauric acid, gold sulfide, gold selenide and the like.
The ratio of (the number of moles of the gold sensitizer added / the number of moles of the Sx sensitizer) is preferably 4 to 0.2, more preferably 2 to 0.3, and further preferably 1.5 to 0.4. preferable. The amount added to the AgX emulsion was 10-2-10-7, Preferably 10-3-10-7It is preferable to select an optimum amount from mol / mol AgX.
[0080]
G. FIG. Other
As the dispersion medium at the time of nucleation and ripening, or as a dispersion medium to coexist at the time of growth, one or more kinds of conventionally known water-soluble dispersion media can be selected and used, and gelatin can be preferably used. Regarding conventionally known water-soluble dispersion media, see the following literature and Research Disclosure, Volume 307, Item 307105, November, 1989, Japanese Patent Application No. 6-102485, Japanese Patent Publication No. 52-16365, edited by Tadanori Misawa, water-soluble polymer, Chemical Industry Co. (1987), edited by The Society of Polymer Science, New Polymer Material, One Point 24, Kyoritsu Shuppan (1990), Shinji Nagatomo, edited and marketed for water-soluble polymers, CMC (1984), Ward et al. Reference can be made to the description of the book, The Science and Technology of Gelatin, Academic Press, London (1964). The concentration of the dispersion medium can be selected and used from 0.01 to 10% by weight, preferably 0.05 to 3% by weight.
[0081]
The state of the tabular grain emulsion of the present invention thus prepared immediately after the completion of the growth is expressed as follows. In an AgX emulsion having at least a dispersion medium and AgX grains, 75 to 100%, preferably 90 to 100%, more preferably 97 to 100%, of the total projected area of the AgX grains, and a thickness of 0.02 to 0.1%. Tabular grains having a diameter of 3 μm, preferably 0.03 to 0.15 μm, more preferably 0.03 to 0.1 μm, and an aspect ratio (diameter / thickness) of 2 to 50, preferably 3 to 30. The coefficient of variation is 0 to 0.3, preferably 0 to 0.2, more preferably 0 to 0.1, and 30 to 100% by weight of the dispersion medium, preferably 60 to 100% by weight, more preferably 90 to 100% by weight. ~ 100% by weight (chemically modified -NH2The relationship between% of the number of bases and methionine content is shown in FIG.1Region, preferably a2Region, more preferably a3Gelatin in the region of Regarding the methionine content, the description in the above section C can be referred to. Further, the coefficient of variation of the thickness distribution of the tabular grains is preferably 0 to 0.3, more preferably 0 to 0.2, and still more preferably 0 to 0.1.
[0082]
After the AgX particles are thus formed, the AgX particles are usually washed with water and chemically sensitized. Further, photographically effective additives such as a spectral sensitizer and an antifoggant are added, and the mixture is coated on a support. The order of addition of the chemical sensitizer, the spectral sensitizing dye, and the antifoggant can be selected in an optimum order according to each purpose. When the dye is added, it is preferred that the particles be uniformly adsorbed with less variation in the adsorption coverage between particles. In this case, it is preferable that the adsorption speed of the added dye is appropriately reduced. That is, the more uniform the admixed dye is and then the adsorption proceeds, the higher the uniformity is. The activation energy required when the dye is adsorbed on the AgX particles is the exchange adsorption energy with the adsorbed dispersion medium molecules. It is mainly the activation energy of the desorption of the dispersion medium molecules.
[0083]
Therefore, in order to slow down the dye adsorption rate, a solution containing the dye may be added to the AgX emulsion at a lower temperature by using a dispersion medium having a larger activation energy for desorption. In this case, a new dispersion medium can be added after the particles are formed and before the pigment is added, or a new dispersion medium can be added after a part or all of the dispersion medium is removed. In this way, after adjusting the type, temperature, pH, and pAg of the dispersion medium to optimally adjust the adsorption strength of the dispersion medium, the dispersion medium is violently passed through a hollow-tube-type rubber elastic porous membrane installed in an AgX emulsion. The dye solution is added instantaneously with stirring. In this case, it is preferable to use a mixing device having substantially no (gas / liquid) interface. Even if mixed vigorously, the amount of foaming can be suppressed. Specifically, {circle around (1)} a reaction vessel which can be expanded to 1.05 times or more, preferably 1.1 to 6 times the original volume together with the added amount of the additive liquid, (Total volume in the reaction vessel) is preferably 0 to 0.3, more preferably 0 to 0.15, and still more preferably 0. (2) The total surface area of the mixed solution is preferably 10 %, More preferably 25-99%, even more preferably 50-98%, in which floating pigs are installed. For other details, refer to the description of Japanese Patent Application No. 4-302605. Can be.
[0084]
Preferred embodiments of the AgX emulsion of the present invention after spectral sensitization are as follows.
1) In an AgX emulsion having at least a spectral sensitizing dye-adsorbed AgX particle and a dispersion medium, the aspect ratio is 75 to 100%, preferably 90 to 100%, more preferably 97 to 100% of the projected area of the AgX particle. Are tabular grains having a diameter of 2 to 50, preferably 4 to 30, and a thickness of 0.02 to 0.3 μm, preferably 0.03 to 0.15 μm, more preferably 0.03 to 0.1 μm. The coefficient of variation of the distribution is 0 to 0.3, preferably 0 to 0.2, more preferably 0 to 0.1, and the coefficient of variation of the adsorption coverage of the dye is 0 to 0.3, preferably 0 to 0.3. 0.2, more preferably 0 to 0.1.
The AgX emulsion of the present invention is preferably sensitized at least with gold. The preferred embodiment in this case is as follows. 2) 10-7AgX grains sensitized with a gold sensitizer of mol / mol AgX or more and an AgX emulsion having a dispersion medium, 75 to 100%, preferably 90 to 100%, more preferably 97 to 100% of the projected area of the AgX grains. 100100% are tabular grains conforming to the above-mentioned rules, the gold content of the tabular grains is proportional to the surface area of the tabular grains, and the coefficient of variation of the proportional constant between grains is 0 to 0.3, preferably Is 0 to 0.2, more preferably 0 to 0.1.
[0085]
The AgX emulsion of the present invention is preferably sensitized with at least selenium. The preferred embodiment in this case is as follows. 3) 10-7In an AgX emulsion sensitized with a selenium sensitizer of mol / mol AgX or more and an AgX emulsion having a dispersion medium, 75 to 100%, preferably 90 to 100%, more preferably 97 to 100% of the projected area of the AgX grain. 100100% are tabular grains according to the above definition, the selenium content of the tabular grains is proportional to the surface area of the tabular grains, and the coefficient of variation of the proportional constant between grains is 0 to 0.3, preferably Is 0 to 0.2, more preferably 0 to 0.1.
[0086]
AgX emulsions satisfying two or more, preferably three, of the above 1) to 3) are more preferred.
In order to form a chemical sensitization nucleus according to the above-mentioned rules, the following method can be particularly preferably used. Conventionally, the AgX emulsion was first heated to a chemical ripening temperature, and then a chemical sensitizer was added to the liquid surface of the AgX emulsion to perform chemical ripening. In this case, the chemical sensitization reaction of the AgX particles in contact with the high concentration solution of the chemical sensitizer proceeds rapidly, and the formation of chemical sensitization nuclei becomes non-uniform among the particles. Decreasing the temperature of the AgX emulsion, increasing the pAg, or decreasing the pH decreases the reaction rate. Therefore, in the present invention, the chemical sensitizer is added to the AgX emulsion under the condition that the added chemical sensitizer does not substantially react, and after homogenization, the AgX emulsion is changed to a condition under which the reaction proceeds, and the reaction is performed. Let go. That is, the temperature rises when the temperature is low, decreases when the pAg is high, and increases when the pH is low.
Since the selenium sensitizer and the gold sensitizer are completely uniform in the AgX emulsion, the chance of the unit area on all the AgX grains reacting with the chemical sensitizer is exactly the same. Can be reached.
For the details of the uniform chemical sensitization method and the uniform spectral sensitization method and the details of the method of verifying the uniformity, the description of Japanese Patent Application No. 5-324502 can be referred to.
[0087]
Conventionally, in an AgX emulsion having a dispersion medium and AgX grains, 90 to 100%, preferably 96 to 100%, more preferably 98 to 100% of the total projected area of the AgX grains has a thickness of 0.02 to 0.2%. 12 μm, preferably 0.02 to 0.1 μm, the aspect ratio is 3 to 50, preferably 4 to 50 hexagonal tabular grains, the coefficient of variation of the diameter distribution of the grains is 0 to 0.2, preferably 0 to 0.2. An AgX emulsion having a primary plane shape of 0.1 and a maximum adjacent side ratio of 1 to 1.5, preferably 1 to 1.2, more preferably 1 to 1.1 has never been produced. The use of the method of the present invention makes it possible for the first time to produce such emulsions. The emulsion can be particularly preferably used.
When the (100) tabular grains are observed with a transmission electron microscope at −100 ° C. or lower, a grain image shown in FIG. 2, that is, FIG. 3A may be observed. The particles appear to be particles having an embodiment containing two screw dislocations described in Mignot, Journal of Crystal Growth, Vol. 23, 207 (1974). However, if the observed defect image is a screw dislocation line, it should be observed as shown in FIG. Although a particle corresponding to FIG. 3B may be observed, in many cases, the dislocation line and the vector of anisotropic growth do not always match. The vector of the dislocation line is often 90 ° or 65 to 75 ° with respect to the (100) plane of the edge. FIG. 4 shows examples of observations of various dislocation lines observed by this method.
[0088]
The screw dislocation defect can be observed by the following method. That is, the AgX emulsion containing the tabular grains is coated on an undercoated flat support and dried. Since the film thickness is reduced to about 1/10 by drying, the tabular grains are arranged in parallel with the support. Next, the reagent is cooled to −50 ° C. or lower, preferably −100 to −200 ° C., and cut with a microtome to make a section having a thickness of 0.1 μm or less. The section is cooled to -100 ° C or lower, and a transmission electron microscope photograph of the cross section of the particle is observed. By observing the interference image of the electron beam transmitted through the same region of the sample as it is and the electron beam diffracted by the lattice atoms and transmitted, the lattice image can be observed. When observing the image of several sections, the point at which a screw dislocation line passes through the section is observed. The method of observing the lattice image can be referred to the description of Shigeo Horiuchi, High Resolution Electron Microscope, Kyoritsu Shuppan (1988). In this case, since most of the electron beams pass through the sample, the charge of the sample is small.
[0089]
One end of the adsorption state of the dispersion medium to the AgX particles can be understood by measuring the ion conductivity of the AgX particles. When the ionic conductivity of interstitial silver ion Agi of AgX particles dispersed in gelatin was measured by the dielectric loss method, the pH of the emulsion was changed from pH 7 to pH 4 by HNO.3When lowered with liquid, the ionic conductivity of the cubic AgBr particles increases. This is the -NH of gelatin2Group is -NH3 +And Ag on the particle surface+This is considered to be due to the decrease in the adsorbability to the surface. On the other hand, in the case of octahedral AgBr particles, the ion conductivity increases due to the pH change. In this case, -NH of gelatin3 +And Br on the particle surfaceThe adsorptivity of the coulomb between the membranes increases, and the adsorptivity of the gelatin increases. This is because the particle surface is almost BrTherefore, it is understood that the Coulomb interaction force becomes the main force of the adsorption force. Only when the adsorption is enhanced, -S- in gelatin and Ag+May be able to interact. Further, the surface BrAgi that existed in balance with the negative charge of+However, it is considered that the neutralization of the negative charge makes Coulomb unnecessary, and the concentration decreases.
[0090]
The obtained particles may be used as host particles and epitaxial particles may be formed at edges and / or corners of the particles. Further, particles having dislocation lines therein may be formed using the particles as a core. Alternatively, the particles may be used as a substrate, and AgX layers having a different halogen composition from the substrate may be laminated to produce various known particles having various particle structures. Regarding these, the description in the following literature can be referred to. Further, a chemically sensitized nucleus is usually provided to the obtained emulsion grains.
[0091]
In this case, the location of the chemical sensitization nucleus and the number / cm2Is preferably controlled. Regarding this, JP-A-2-838, JP-A-2-14633, JP-A-1-201651, JP-A-3-121445, JP-A-64-74540, JP-A-3-73266, JP-A-3-140712, Reference can be made to the description in JP-A-3-1155872.
[0092]
Further, the tabular grains may be used as a core to form a shallow latent emulsion. Also, core / shell type particles can be formed. This is described in JP-A-59-133542, JP-A-63-151618, U.S. Pat. Nos. 3,206,313, 3,317,322, 3,761,276, and 4,269,927. No. 3,267,778 can be referred to.
The AgX emulsion grains produced by the method of the present invention can also be used by blending with one or more other AgX emulsions. The blend ratio can be appropriately selected and used within the range of 1.0 to 0.01.
[0093]
There are no particular restrictions on the additives that can be added to these emulsions during the period from the grain formation to the coating step.-8-10-1mol / mol AgX can be added in an added amount. For example, an AgX solvent, a dopant for AgX particles (for example, a Group 8 noble metal compound, another metal compound, a chalcogen compound, an SCN compound, etc.), a dispersion medium, an antifoggant, a sensitizing dye (blue, green, red, infrared) , Panchromatic, orthorectified, etc.), supersensitizers, chemical sensitizers (sulfur, selenium, tellurium, gold and Group 8 noble metal compounds, phosphorus compounds, rhodan compounds, reduction sensitizers alone and two or more of them) ), Fogging agents, emulsion precipitants, surfactants, hardeners, dyes, color image forming agents, color photographic additives, soluble silver salts, latent image stabilizers, developers (hydroquinone compounds, etc.) , A pressure desensitizing agent, a matting agent and the like.
[0094]
The AgX emulsion particles of the present invention and the AgX emulsion produced by the production method can be used for all conventionally known photographic light-sensitive materials. For example, black-and-white silver halide photographic light-sensitive materials [for example, X-ray light-sensitive materials, printing light-sensitive materials, photographic paper, negative films, microphone films, direct positive light-sensitive materials, ultrafine particle dry plate light-sensitive materials (for LSI photomasks, shadow masks) , For liquid crystal masks)] and color photographic light-sensitive materials (for example, negative films, photographic papers, reversal films, direct positive color light-sensitive materials, silver dye bleaching photographs, etc.). Further, there can be mentioned a diffusion transfer type photosensitive material (for example, a color diffusion transfer element, a silver salt diffusion transfer element), a heat development photosensitive material (black and white, color), a high density digital recording material, a holographic material and the like.
[0095]
The amount of silver applied is 0.01 g / m2The above preferred values can be selected. The composition of the photographic material (for example, layer constitution, silver / coloring material molar ratio, silver amount ratio between layers, etc.), exposure, development processing, production equipment of the photographic material, emulsification and dispersion of photographic additives, etc. There is no limitation, and any conventionally known modes and techniques can be used. With respect to conventionally known photographic additives, photographic light-sensitive materials and their constitutions, exposure and development processing, photographic light-sensitive material manufacturing equipment, and the like, the following documents can be referred to.
[0096]
Research Disclosure, Volume 176 (Item 17643) (December, 1978), Volume 307 (Item 307105, November, 1989), Duffin, Photographic Emulsion Chemistry, Focal Press, New York (1966), Bill (EJ Birr), Stabilization of Photographic Silver Silver Hold Emulsion, Focal Press (Focal Press, 1974). ), James James (TH James), Theory of Photographic Process (The Theory of P) Photographic Process, 4th Edition, Macmillan, New York (1977)
[0097]
P. Glafkids, Chemie et Physique Photographiques, 5th Edition, Edition de I 'Usine Nouvelle, Paris (1987) Pond, 2nd Ed. Monterre, Paris (1957); Zelikman et al. (VL Zalikman at al.), Preparation and Coating of Photographic Emulsions (Making and Coating Photographic Emulsion), Focal Press (1964), Hollister (KR Hollister). Journal of Imaging Science, vol. 31, p. 148-156 1987), Maskesky (JE Maskasky), Vol. 30, p. 247-254 (1986), Vol. 32, 160-177 (1988), Vol. 33, 10-13 (1989) )
[0098]
Ed., Freezer et al., Die Grundlagen Der Photographischen Prozesses Mit Silverhalogeniden, Akademichsche Verlaggesellschaft, Akademische Verlaggeschaft, 68, 1967.
JCIA Monthly Report, December 1984, p. 18-27, Journal of the Photographic Society of Japan, 49, 7-12 (1986), 52, 144-166 (1989), 52, 41-48 (1989), JP-A-58-113926. Nos. 113928, 59-90841, 58-111936, 62-99751, 60-143331, 60-143332, 61-14630, 62-6251, 63-220238 No. 63-151618, No. 63-281149, No. 59-133542, No. 59-45438, No. 62-269958, No. 63-305343, No. 59-142439, No. 62-253159, No. 62-266538, No. 63-107813, No. 64-26839, No. 62-157024, No. 62-192036
[0099]
JP-A-1-297649, JP-A-2-127635, JP-A-1-158429, JP-A-2-42, JP-A-2-24643, JP-A-1-14633, JP-A-2-838, JP-A-2-28638, Nos. 3-109439, 3-175440, 3-121443, 2-73245, 3-119347, U.S. Pat. Nos. 4,636,461, 4,942,120, 4, Nos. 269,927, 4,900,652, 4,975,354, European Patent No. 0355568A2, Japanese Patent Application Nos. 2-326222, 2-415037, 2-266615 and 2-266615. Nos. 43991, 3-160395, 2-142635, 3-146503 and 4-77261.
The emulsions of the present invention are described in JP-A-62-269958, JP-A-62-266538, JP-A-63-220238, JP-A-63-305343, JP-A-59-142539, JP-A-62-253159, JP-A-1-131541, JP-A-1-297649, JP-A-2-42, JP-A-1-158429, JP-A-3-226730, JP-A-4-151649, Japanese Patent Application No. 4-179996, European Patent No. 0508398A1, JP-A-6-258788, It can be preferably used as a constituent emulsion of the light-sensitive material of the embodiment of JP-A-6-273860.
[0100]
BEST MODE FOR CARRYING OUT THE INVENTION
[0101]
【Example】
Next, the present invention will be described in more detail by way of examples, but embodiments of the present invention are not limited thereto.
Example 1
Put gelatin solution 1 [H2O 1.2 liters, containing 1.0 g gelatin 1 and 0.25 g KBr, HNO3  3N solution adjusted to pH 2.0], keeping the temperature at 40 ° C., and stirring the Ag-1 solution (AgNO3  60 g / liter) and X-1 solution (H2O 1 liter, KBr 43.2 g, gelatin 1 0.8 g) was added at 30 ml / min for 1 minute to form nuclei. After stirring for 2 minutes, 30 ml of a KBr-1 solution (100 g / liter of KBr) was added, and the temperature was raised to 60 ° C. for 10 minutes. After the first aging for another 12 minutes, the ammonium sulfate solution [(NH4)2SO44g, H2O 20 ml] and 1N NaOH solution were added to adjust the pH to 9.1. After a second aging for 10 minutes, gelatin solution 2 [25 g of gelatin 2, H2O130ml, KBr 0.15g] and HNO3  The pH was adjusted to 6.3 with a 3N solution. At this time, 96.1% by weight of the dispersion medium becomes gelatin having a phthalation rate of 96% and a methionine content of 34 μmol / g. Using Ag-1 solution and X-1 solution, simultaneous addition was performed while maintaining pBr at 1.68. 80 ml of the Ag-1 solution was added at 6.6 ml / min. Next, Ag-2 solution (AgNO3  (200 g / liter) and X-2 solution (146 g / liter) were added simultaneously while maintaining the same pBr. The Ag-2 solution was added for 40 minutes at an initial flow rate of 3 ml / min and a linear flow rate acceleration of 0.3 ml / min. After stirring for 1 minute, 3 ml of the emulsion was sampled, and a transmission electron micrograph image (TEM image) of a replica of the formed particles was observed. The characteristic values were as follows.
99% or more of the total projected area (hereinafter referred to as “SA”) of all AgX grains are hexagonal tabular grains having a maximum adjacent side ratio of 1 to 1.2, an average thickness of 0.05 μm, and an average diameter of 2.1 μm. , Average aspect ratio 42, C.I. V. The value was 0.09.
[0102]
Next, the emulsion was cooled to 30 ° C.3  The pH was lowered to 3.9 with a 1N solution to coagulate and sediment the emulsion. The emulsion was washed three times with pure water, and a gelatin solution was added. The pH was adjusted to 6.4 with 1N NaOH solution and to 2.8 with 1N NaBr solution to redisperse the emulsion. The emulsion was placed in the closed-type variable-volume container described in Example 1 of Japanese Patent Application No. 5-324502, and a 0.3 g / liter solution of sensitizing dye 1 was added thereto at 70 ° C. while stirring at 40 ° C. by 70% of the saturated adsorption amount. did. The whole amount was added within 3 seconds through the hollow tube-shaped elastic porous membrane in the same manner as in the example. After stirring for 15 minutes, the solution was transferred to the second closed-type variable-volume container. While keeping the temperature of the emulsion at 45 ° C., a gold sensitizer (aqueous solution of chloroauric acid: NaSCN = 1: 20 molar ratio) was added to 1.2 × 10-5Mol / mol AgX only, and then 2 × 10 2 chalcogenide sensitizer Sx1-5Only mol / mol AgX was added. The addition was performed within 3 seconds from each of the independent hollow tubular elastic porous membranes of the above embodiment.
The temperature of the emulsion was raised to 60 ° C and ripened for 20 minutes. The temperature was lowered to 40 ° C., and an antifoggant (4-hydroxy-6-methyl-1,3,3a, 7-tetrazaindene) was added to 3 × 10-3Only mol / mol AgX was added, a thickener and a coating aid were added, and the resultant was coated on a TAC (cellulose triacetate) base together with a protective layer, followed by drying.
However, gelatin 1 was a deionized alkali-treated bone gelatin having a weight average molecular weight of 30,000 and a methionine content of 34 μmol / g, gelatin 2 was gelatin obtained by phthalating gelatin 1 at a phthalation rate of 96%, and gelatin 3 was a methionine content of 50 μmol. / G Deionized alkali treated unmodified bone gelatin.
[0103]
Embedded image
Figure 0003575639
[0104]
Example 2
Example 1 was the same as Example 1 except that 1.0 g of EPA1 was mixed into the gelatin solution 2. When 3 ml of the emulsion was sampled and a TEM image of a replica of the formed particles was observed, the characteristic values were as follows.
99% or more of SA is hexagonal tabular grains having a maximum adjacent side ratio of 1 to 1.2, an average thickness of 0.09 μm, an average diameter of 1.56 μm, an average aspect ratio of about 17, and C.I. V. The value was 0.075. Thereafter, the same treatment as in Example 1 was performed to obtain a coated sample 2. Here, EPA1 is a compound of the formula (3) -a) -2): (4) -a) -4) A compound of the formula: acrylamide = 25: 25: 50% by weight and a weight average molecular weight Is 33,000.
[0105]
Example 3
Example 1 was the same as Example 1 except that EPA2 and EPA3 were mixed into the gelatin solution 2 in an amount of 1.0 g each. When the TEM image of the replica of the formed particles was observed, the characteristic values were as follows. 99% or more of SA is hexagonal tabular grains having a maximum adjacent side ratio of 1 to 1.2, an average thickness of 0.09 μm, an average diameter of 1.56 μm, an average aspect ratio of about 17, and C.I. V. The value was 0.07. FIG. 5 shows a TEM image showing the particle structure of the particles. The obtained coating sample was used as coating sample 3. EPA2 and EPA3 refer to the following compounds. EPA2 is H2C = C (CH3) -COO- [CH2CH (CH3) O]12-H: acrylamide = 25: 75 A copolymer having a polymerization ratio, EPA3 is H2C = C (CH3) -COO- (CH2CH2O)23-CH3: Acrylamide = 25: 75 refers to a polymer in a weight ratio.
[0106]
Example 4
The procedure up to the end of the second ripening was the same as in Example 1. Next, HNO3  After adding 1N solution to adjust the pH to 6.2, the temperature was lowered to 30 ° C., the emulsion was put in a truncated cone type centrifuge, centrifuged, and the supernatant was removed. The removal volume ratio was 93% of the original emulsion. Next, gelatin solution 2 was added to adjust the pH to 6.2, redispersed, and the emulsion was transferred to the original container. The temperature was adjusted to 60 ° C., and 7 ml of a 10 g / liter solution of EPP1 was added as a PAO compound. When 3 ml of the emulsion was sampled and a TEM image of a replica of the formed particles was observed, the characteristic values were as follows.
99% or more of SA is hexagonal tabular grains having a maximum adjacent side ratio of 1 to 1.2, an average thickness of 0.11 μm, an average diameter of 1.41 μm, an average aspect ratio of about 12.8, and C.I. V. The value was 0.075. Thereafter, the same treatment as in Example 1 was performed to obtain a coated sample 4. Here, EPP1 is a block copolymer of polyethylene oxide and polypropylene oxide (molecular weight: about 3200), and is a product name Pluronic 31R1 manufactured by BASF. It is a PAO polymer corresponding to HP2.
[0107]
Example 5
A gelatin solution 51 [H2O 1.2 liters, gelatin 1 1.7 g, KBr 1.2 g, HNO3  PH is adjusted to 3.0 with 1N solution], and while keeping the temperature constant at 30 ° C, an Ag-51 solution (AgNO3  100 g / l) and KBr-51 solution (KBr 72 g / l) at 50 ml / min for 1 minute to form nuclei. After stirring for 1 minute, 10 ml of KBr-2 solution (KBr 300 g / liter) was added, and the temperature was raised to 60 ° C. in 10 minutes. After the first aging for 7 minutes, then gelatin solution 3 (25 g of gelatin 3, H2O. 135 ml) was added, the temperature was brought to 37 ° C and the pH was adjusted to 9.5 with 1N NaOH solution. While maintaining the pH at 9.5, phthalic anhydride solution 1 (12% by weight of phthalic anhydride dissolved in dry acetone) was added at a constant flow rate over 15 minutes. Stirring was continued for another 20 minutes while maintaining the pH at 9.5. Next, HNO3  The pH was adjusted to 4.0 with a 3N solution, the emulsion was coagulated and precipitated, and the supernatant was removed. Pure water was added, the aggregated emulsion was washed with water, and the supernatant was removed. 1.3 liters of pure water containing 1 g of EPA1 was added, and the pH was adjusted to 6.4 with a NaOH solution. The temperature was raised to 60 ° C., and a NaBr solution was added to obtain pBr 1.6.
[0108]
Ag-52 liquid (AgNO3  (120 g / l) and the X-52 solution (KBr 90 g / l) were simultaneously added for 32 minutes while maintaining the pBr at 1.68. The initial flow rate of the Ag-52 solution was 12 ml / min, and the linear flow rate acceleration rate was 0.6 ml / min. After stirring for 1 minute, 3 ml of the emulsion was sampled, and a TEM image of a replica of the formed particles was observed. The characteristic values were as follows. 99% or more of SA is hexagonal tabular grains having a maximum adjacent side ratio of 1 to 1.2, an average thickness of 0.09 μm, an average diameter of 1.3 μm, an average aspect ratio of about 14.4, and C.I. V. The value was 0.072.
The emulsion was sampled, centrifuged, and the supernatant was taken. The temperature was adjusted to 30 ° C., the pH of the supernatant was adjusted to 4.0, the mixture was aggregated, and the supernatant was removed. Washed three times with pure water. After the aggregate was dried and the weight of gelatin was measured, pure water and a NaOH solution were added and redispersed to obtain a 1% by weight solution. A 1% by weight solution of gelatin 3 was used as a comparative sample, and the phthalation ratio was determined by the formal titration method. The phthalation ratio was 95%. Therefore, 100% of the dispersion medium during the particle growth was gelatin having a phthalation ratio of 95% and a methionine content of 34 μmol / g.
Next, the temperature of the emulsion was lowered to 30 ° C., the pH was adjusted to 4.0, and the emulsion was coagulated and settled. (Removal of supernatant liquid → rinsing with pure water) was repeated three times, and then gelatin solution 3 was added. The subsequent steps were the same as in Example 1 to obtain a coating sample 5.
[0109]
Example 6
In Example 1, gelatin solution 1 was replaced with gelatin solution 4 [H2O 1.2 liters, containing 1.0 g gelatin 2 and 0.25 g KBr, HNO3Solution and NaOH solution to adjust the pH to 5.0], and replace solution X-1 with solution X-61 (H2O1 liter, 43.2 g of KBr, and 0.8 g of gelatin 2). In this case, 100% of the dispersion medium during nucleation, ripening and growth is gelatin having a phthalation rate of 95% and a methionine content of 34 μmol / g. When the TEM image of the replica of the formed particles was observed, the characteristic values were as follows. 99% or more of SA is hexagonal tabular grains having a maximum adjacent side ratio of 1 to 1.2, an average thickness of 0.046 μm, an average diameter of 2.19 μm, an average aspect ratio of 47.6, and C.I. V. The value was 0.085.
[0110]
Example 7
A coating sample 7 was obtained in the same manner as in Example 6 except that the emulsion was washed with water and redispersed in the following manner. After grain formation, the temperature was adjusted to 30 ° C., and the emulsion was put in a frustum-type centrifuge, centrifuged, and the supernatant was removed. The removal amount corresponded to 92% of the mother liquor amount. After 2 L of pure water was added and rinsed, the mixture was centrifuged to remove a supernatant corresponding to 92% of the mother liquor. A gelatin solution containing 50 g of gelatin 3 was added to adjust the pH to 6.4 and pBr 2.8, and the emulsion was redispersed.
[0111]
Comparative Example 1
(111) Tabular grains were prepared based on Example 1 of EP 0514742 A1. 100% by weight of the dispersion medium at the time of particle growth had a methionine content of 0 μmolg and a phthalation rate of 0%.
When the TEM image of the replica of the generated particles was observed, b2The total projected area of the ≧ 1.32 grains accounted for about 32% of SA. A coagulating sedimentation agent was added to the emulsion, and the emulsion was washed with water according to a conventional method. Gelatin solution 3 was added to pH 6.4, pBr 2.8, and the emulsion was redispersed. After that, a coated sample was prepared in the same manner as in Example 1 to obtain a coated sample 21. However, the spectral sensitizing dye and the chemical sensitizer were added as in the conventional method. FIG. 6 shows an example of the particle structure of the generated particles.
[0112]
The coated samples obtained in Examples 1 to 7 and Comparative Example 1 were exposed for 0.1 second through a minus blue filter and an optical wedge that transmit light having a wavelength of 500 nm or more. Next, development was carried out at 20 ° C. for 10 minutes using a MAA-1 developer (described in Journal of Photographic Science, vol. 23, 249-256 (1975)). Stopping, fixing, washing with water, and drying were performed according to a conventional method, and sensitometry was performed.
The results obtained (relative value of sensitivity / granularity) are shown in Table 2. The higher the relative value, the better the photographic performance.
The sensitivity was determined by the reciprocal of the exposure amount giving a density of (fog + 0.2). The graininess was determined by uniformly exposing the sample with a light amount giving a density of (fogging +0.2), and after performing the above-described development processing, Macmillan, Theory of the Photographic Process, p. 619.
[0113]
Example 8
Example 7 was the same as Example 7 except that the phthalated gelatin used for the gelatin solution 4 and the X-61 solution were replaced with the gelatins 81 to 86 shown in Table 2. The methionine content and the phthalation ratio of the gelatins 81 to 89 are as shown in Table 3. The coated samples of the AgX emulsion prepared using the gelatins 81 to 89 were referred to as coated samples 81 to 89, respectively.
The coated sample was exposed for 0.1 second through the minus blue filter and an optical wedge. Next, development was performed at 20 ° C. for 10 minutes using a MAA-1 developer. Table 3 shows the results [relative value of (sensitivity / granularity)] obtained by sensitometry. FIG. 1a1, Preferably a2And more preferably a3The most favorable photographic properties were obtained when using gelatin in the area of
[0114]
[Table 2]
Figure 0003575639
[0115]
[Table 3]
Figure 0003575639
[0116]
Example 9
A gelatin solution 4 [H2O, 1.2 liters, 20 g of gelatin 1, 0.5 g of NaCl, HNO3  PH was adjusted to 4.0 with 1N solution], kept at 40 ° C, and stirred with Ag-91 solution (AgNO3  200 g / liter) and the X-91 solution (69 g / liter of NaCl) were added simultaneously at 50 ml / min for 15 seconds. After stirring for 1 minute, X-92 solution (containing 6 g of NaCl and 15 g of KBr in 1 liter) was added at 60 ml / min for 24 seconds. After stirring for 1 minute, the Ag-91 solution and the X-91 solution were simultaneously mixed and added at 50 ml / min for 1 minute. After the nucleation, the temperature was raised to 37 ° C., a 1N NaOH solution was added to adjust the pH to 9.2, and the phthalic anhydride solution 1 was added over 15 minutes while maintaining the pH at 9.3. Stirring was continued for another 20 minutes while maintaining the temperature at 9.3. HNO3  The pH was adjusted to 4.0 with a 3N solution, the emulsion was coagulated and precipitated, and the supernatant was removed. 1.3 liters of pure water containing 2.5 g of NaCl was added, the pH was adjusted to 6.0 with a NaOH solution, and the mixture was redispersed. HNO3The solution was adjusted to pH 5.3 and heated to 75 ° C. for 12 minutes. After aging for 18 minutes, 10 ml of NaCl-1 solution (100 g / liter of NaCl) was added, and aging was performed for another 5 minutes. Here, the aging was completed. The Ag-91 solution was added at 7 ml / min, and the silver potential was adjusted to 140 mV.
[0117]
While keeping the silver potential at 140 mV, the Ag-91 solution and the X-91 solution were simultaneously mixed and added. The initial flow rate of the Ag-91 solution was 7 ml / min, the linear flow acceleration amount was 0.05 ml / min, and the total addition amount was 290 ml. Next, a solution of Ag-91 and a solution of X-93 (containing 23 g of KBr and 59 g of NaCl per liter) were added simultaneously while keeping the silver potential at 120 mV. The Ag-91 solution was added at 8 ml / min for 7 minutes. Next, Ag-91 solution and X-94 solution (containing 45 g of KBr and 50 g of NaCl in 1 liter) were added at 8 ml / min for 7 minutes while keeping the silver potential at 120 mV. After further stirring for 1 minute, the temperature was lowered to 30 ° C.3The pH was adjusted to pH 4.0 by coagulation and sedimentation of the emulsion.
[0118]
After the emulsion was washed with pure water, a gelatin solution was added, and the pH was adjusted to 6.1 and pCl to 2.2 with a NaOH solution. 3 ml of the emulsion was sampled, and a TEM image of a replica of the formed particles was observed. The characteristic values were as follows. About 94% of SA (aspect ratio ≧ 3) is (100) tabular grains whose main plane shape is a right-angled parallelogram, and has an average thickness of 0.12 μm, an average diameter of 1.3 μm, and an average aspect ratio of about 10. 8, C.I. V. The value was 0.25.
The emulsion temperature was set to 40 ° C., and a 0.3 g / liter solution of sensitizing dye 2 was added for 3 seconds by 65% of the saturated adsorption amount using the porous film addition system. After stirring for 15 minutes, the emulsion was transferred to the next container, and while keeping the temperature of the emulsion at 40 ° C, 2.5 × 10-5Mol / mol AgX only, then add chloroauric acid-5Only mol / mol AgX was added. After raising the temperature to 50 ° C. and aging for 15 minutes, 3 × 10-3Only mol / mol AgX was added and the temperature was brought to 40 ° C. A thickener and a coating aid were added, and the mixture was coated on a TAC base together with a protective layer, and dried to obtain a coated sample 9.
[0119]
Embedded image
Figure 0003575639
[0120]
Example 10
The procedure up to the end of nucleation was the same as in Example 9. Next, the emulsion was placed in a frustum-type centrifuge, centrifuged, and the supernatant was removed. The removal amount was 95% of the mother liquor amount. Next, gelatin solution 2 was added to adjust the pH to 5.3, the emulsion was redispersed, and the emulsion was returned to the original reaction vessel. At this time, 96.1% by weight of the dispersion medium becomes gelatin having a phthalation ratio of 96% and a methionine content of 34 μmol / g. (2.6 g of NaCl, H2O 20 ml) was added and the temperature was raised to 75 ° C. in 12 minutes. After the temperature rise, a coating sample 10 was obtained through the same steps as in Example 9.
When the TEM image of the replica of the formed particles was observed, the characteristic values were as follows. About 94% of SA (aspect ratio ≧ 3) is a (100) tabular grain whose main plane shape is a rectangular parallelogram, having an average thickness of 0.13 μm, an average diameter of 1.25 μm, and an average aspect ratio of about 9.6. C. of the tabular grains. V. The value was 0.26.
[0121]
Comparative Example 2
A coating sample 22 was prepared in the same manner as in Example 9 except for the following steps. That is, after the completion of nucleation, a NaCl solution (1.6 g of NaCl, H2O. 20 ml), pH 5.3, and start the temperature raising step to 75 ° C. The desalting step after the crystal growth is performed by a conventional coagulation sedimentation washing method in which a coagulation sedimentation agent is added. 100% by weight of the dispersion medium during grain growth has a phthalation ratio of 0% and a methionine content of 34 μmol / g.
When the TEM image of the replica of the formed particles was observed, the characteristic values were as follows. About 90% of SA (aspect ratio ≧ 3) is (100) tabular grains whose main plane shape is a rectangular parallelogram, and has an average thickness of 0.19 μm, an average diameter of 1.03 μm, and an average aspect ratio of about 5.4. C. of the tabular grains. V. The value was 0.30.
The coated samples 9, 10, and 22 were passed through a minus blue filter for 10 minutes.-2Exposure for 2 seconds and development. As a result of sensitometry, relative values of (sensitivity / granularity) were 112 for sample 9, 110 for sample 10, and 100 for sample 22, confirming the effect of the method of the present invention.
[0122]
【The invention's effect】
When the AgX emulsion thus prepared is coated on a support in one or more layers to produce a photographic light-sensitive material, a photographic light-sensitive material having low fog density, excellent sensitivity and granularity can be obtained. Compared to the embodiment of EP 514 742 A, the optimum addition amount of the PAO polymer is about 20% or less, so that there is also an advantage that the adsorption prevention of other photographically effective additives is small.
[Brief description of the drawings]
FIG. 1 shows a preferable combination range of methionine content (μmol / g) vs. chemical modification of amino group (%) of gelatin used in the present invention. Of FIG.a 1 The upper limit line of the region indicates the modification rate = 100%,a 3 The upper limit line of the region indicates the modification rate = 97%.
FIG. 2 shows an example of a crystal structure (dislocation line structure) of a (100) tabular grain.
FIG. 3 is a schematic structural view of a dislocation line.
FIG. 4 shows examples of various types of crystal structures (dislocation line structures) observed.
FIG. 5 shows the crystal structure of the tabular grains obtained in Example 3.
6 shows the crystal structure of the tabular grains obtained in Comparative Example 1. FIG.

Claims (8)

水と分散媒を有する分散媒溶液中で、少なくとも核形成、熟成、成長過程を経てハロゲン化銀粒子の投影面積の合計の75〜100%が厚さが0.02〜0.3μm、アスペクト比(直径/厚さ)が2〜50の平板粒子であるハロゲン化銀粒子を製造する方法において、該成長過程の該分散媒の30〜100重量%が次記(a)の特徴を有するゼラチンである事を特徴とするハロゲン化銀粒子の製造方法。
(a)該ゼラチン中の−NH基が化学修飾された数の割合%と該ゼラチンのメチオニン含率の関係が図1のaの領域にある。
In a dispersion medium solution containing water and a dispersion medium, at least 75 to 100% of the total projected area of the silver halide grains through a nucleation, ripening, and growth process has a thickness of 0.02 to 0.3 μm and an aspect ratio of In a method for producing silver halide grains which are tabular grains having a diameter / thickness of 2 to 50, 30 to 100% by weight of the dispersion medium in the growing process is gelatin having the following characteristics (a). A method for producing silver halide grains, characterized in that:
(A) Relationship of methionine content of a few percentage% and said gelatin to -NH 2 group is chemically modified of the gelatin is in the region of a 1 in FIG. 1.
該分散媒溶液がポリアルキレンオキサイドの繰返し単位を有する重合体で、分子量が500〜10であるHPAO〔一般式(1)−a)または(1)−b)で表される〕またはPEOD〔一般式(2)−a)〜−f)のうちのいずれかで表される〕を0.001g/リットル以上含有する事を特徴とする請求項1記載のハロゲン化銀粒子の製造方法。
Figure 0003575639
ここでRはH、または少なくとも1つの極性基を有する炭素数1〜10の炭化水素で、好ましくはHである。Rは炭素数3以上、10以下のアルキレン基を表す。
n、mは繰返し単位の平均数を表わし、前記分子量規定を満たす4以上の値である。
Figure 0003575639
ここでLPUはHO−HPEOU−基およびHO−LPAOU−基以外の親油性基を指し、置換または無置換のアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリーロキシ基、アシル基、アシルアミノ基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリーロキシカルボニル基、アリサイクリック基を指す。なお、HPEOU、LPAOUは一般式(1)−a)、(1)−b)と同義であり、LPU′はH、炭素数1〜20のアルキル基を指す。
A polymer in which the dispersion medium solution has a repeating unit of polyalkylene oxide, the molecular weight of [represented by the general formula (1) -a) or (1) -b)] HPAO a 500 to 6 or PEOD [ Represented by any one of formulas (2) -a) to -f)] of 0.001 g / liter or more.
Figure 0003575639
Here, R 0 is H or a hydrocarbon having 1 to 10 carbon atoms having at least one polar group, and is preferably H. R represents an alkylene group having 3 to 10 carbon atoms.
n and m represent the average number of repeating units, and are values of 4 or more that satisfy the above molecular weight specification.
Figure 0003575639
Here, LPU refers to a lipophilic group other than the HO-HPEOU- group and the HO-LPAOU- group, and is a substituted or unsubstituted alkyl group, alkenyl group, aryl group, heterocyclic group, alkoxy group, aryloxy group, acyl group, It refers to an acylamino group, an alkylthio group, an arylthio group, an alkoxycarbonyl group, an aryloxycarbonyl group, and an alicyclic group. Here, HPEOU and LPAOU have the same meanings as in the general formulas (1) -a) and (1) -b), and LPU 'indicates H and an alkyl group having 1 to 20 carbon atoms.
該分散媒溶液が一般式(3)で表されるモノマーの繰返し単位を1重量%以上含有する重合体の少なくとも1種を0.01g/リットル以上含有し、該重合体の分子量が500〜10である事を特徴とする請求項1記載のハロゲン化銀粒子の製造方法。
Figure 0003575639
式中RはH、炭素数1〜4の低級アルキル基を表し、Rは炭素数1〜20の1価の置換基を表す。Rは炭素数3〜10のアルキレン基を表し、Lは2価の連結基を表す。nは繰返し単位の平均数を表し、4〜600である。
The dispersion medium solution contains at least one kind of polymer containing 1% by weight or more of the repeating unit of the monomer represented by the general formula (3) in an amount of 0.01 g / L or more, and has a molecular weight of 500 to 10 6. The method for producing silver halide grains according to claim 1, wherein
Figure 0003575639
In the formula, R 1 represents H, a lower alkyl group having 1 to 4 carbon atoms, and R 2 represents a monovalent substituent having 1 to 20 carbon atoms. R 3 represents an alkylene group having 3 to 10 carbon atoms, and L represents a divalent linking group. n represents the average number of repeating units and is from 4 to 600.
該分散媒溶液が一般式(3)で表わされるモノマーと一般式(4)で表わされるモノマーの少なくとも2種をそれぞれ1重量%以上含有する共重合体を0.01g/リットル以上含有し、該共重合体の分子量が500〜10である事を特徴とする請求項1記載のハロゲン化銀粒子の製造方法。
一般式(4) CH=C(R)−L′−(CHCHO)−R
式中、RはH、炭素数1〜4の低級アルキル基を表し、Rは炭素数1〜20の1価の置換基を表し、L′は2価の連結基を表す。mは繰返し単位の平均数を表し、4〜600である。
The dispersion medium solution contains at least 0.01 g / liter of a copolymer containing at least two kinds of monomers represented by the general formula (3) and at least two kinds of the monomers represented by the general formula (4), respectively. method for producing silver halide grains as claimed in claim 1, wherein the molecular weight of the copolymer, characterized in that it is 500 to 6.
Formula (4) CH 2 = C ( R 4) -L '- (CH 2 CH 2 O) m -R 5
In the formula, R 4 represents H, a lower alkyl group having 1 to 4 carbon atoms, R 5 represents a monovalent substituent having 1 to 20 carbon atoms, and L ′ represents a divalent linking group. m represents the average number of repeating units and is from 4 to 600.
該分散媒溶液が下記一般式(5)で表される繰返し単位を1重量%以上含有する重合体の少なくとも1種と、一般式(6)で表される繰返し単位を1重量%以上含有する重合体の少なくとも1種をそれぞれ0.01g/リットル以上含有し、それぞれの重合体の分子量が500〜10である事を特徴とする請求項1記載のハロゲン化銀粒子の製造方法。
一般式(5) −(R−O)
一般式(6) −(CHCHO)
式中、Rは炭素数3〜10のアルキレン基を表わす。
n、mは繰返し単位の平均数を表し、該分子量規定を満たす4以上の値である。
The dispersion medium solution contains at least one polymer containing 1% by weight or more of the repeating unit represented by the following general formula (5) and 1% by weight or more of the repeating unit represented by the general formula (6). at least one kind of containing respectively 0.01 g / l or more, a manufacturing method of the silver halide grains of claim 1, wherein the molecular weight of each polymer is characterized in that a 500 to 6 of the polymer.
General formula (5)-(RO) n-
Formula (6) - (CH 2 CH 2 O) m -
In the formula, R represents an alkylene group having 3 to 10 carbon atoms.
n and m represent the average number of repeating units and are 4 or more that satisfy the molecular weight specification.
該一般式(5)で表される繰返し単位を有する重合体が下記一般式(7)−(a)で表されるモノマーを構成成分とするビニル重合体および一般式(7)−(b)で表されるポリウレタンを含む重合体から選ばれる少なくとも1種の重合体であり、該一般式(6)で表される繰返し単位を有する重合体が下記一般式(7)−(c)で表されるモノマーを構成成分とするビニル重合体、一般式(7)−(d)で表されるポリウレタンを含む重合体、および置換または未置換のポリエチレングリコールから選ばれる少なくとも1種の重合体であることを特徴とする請求項5に記載のハロゲン化銀粒子の製造方法。
一般式(7)−a) CH=C(R)−L−(R−O)−R
一般式(7)−b)
−〔O −(R−O)−〔O − R11−O 〕−〔CONH−R12−NHCO 〕
一般式(7)−c) CH=C(R)−L′−(CHCHO)−R
一般式(7)−d)
−〔O−(CHCHO) X’−〔O−R13−O 〕y’−〔CONH−R14−NHCO 〕Z’111中、
n、mは繰返し単位の平均数を表し、4〜600である。R、RはHまたは炭素数1〜4の低級アルキル基を表す。R、RはHまたは炭素数1〜20の1価の置換基を表す。L、L′は2価の連結基を表す。R11、R12、R13、R14は2価の連結基を表し、炭素数1〜20のアルキレン基、炭素数6〜20のフェニレン基、または炭素数7〜20のアラルキレン基を表す。x、y、z、x′、y′、z′は各成分の重量百分率を表し、x、x′は1〜70、y、y′は1〜70、z、z′は20〜70を表す。ここでx+y+z=100、x′+y′+z′=100である。Rは炭素数3〜10のアルキレン基を表す。
The polymer having a repeating unit represented by the general formula (5) is a vinyl polymer containing a monomer represented by the following general formula (7)-(a) as a constituent component, and a general formula (7)-(b) At least one kind of polymer selected from polymers containing polyurethane represented by the following general formula (6), wherein the polymer having a repeating unit represented by the general formula (6) is represented by the following general formulas (7) to (c). And at least one polymer selected from a substituted or unsubstituted polyethylene glycol, and a polymer containing a polyurethane represented by the general formulas (7) to (d). The method for producing silver halide grains according to claim 5, wherein
Formula (7) -a) CH 2 = C (R 1) -L- (R 3 -O) n -R 2
General formula (7) -b)
- [O - (R-O) n] x - [O - R 11 -O] y - [CONH-R 12 -NHCO] Z -
Formula (7) -c) CH 2 = C (R 4) -L '- (CH 2 CH 2 O) m -R 5
General formula (7) -d)
Among [CONH-R 14 -NHCO] Z '111, - - [O- (CH 2 CH 2 O) m ] X' - [O-R 13 -O] y '
n and m represent the average number of repeating units, and are 4-600. R 1 and R 4 represent H or a lower alkyl group having 1 to 4 carbon atoms. R 2 and R 5 represent H or a monovalent substituent having 1 to 20 carbon atoms. L and L 'represent a divalent linking group. R 11 , R 12 , R 13 and R 14 represent a divalent linking group, and represent an alkylene group having 1 to 20 carbon atoms, a phenylene group having 6 to 20 carbon atoms, or an aralkylene group having 7 to 20 carbon atoms. x, y, z, x ', y', z 'represent the weight percentage of each component, x, x' is 1-70, y, y 'is 1-70, z, z' is 20-70. Represent. Here, x + y + z = 100 and x ′ + y ′ + z ′ = 100. R represents an alkylene group having 3 to 10 carbon atoms.
該平板粒子の主平面が{100}面かまたは{111}面であり、該粒子の直径分布の変動係数(標準偏差/平均直径)が0〜0.3である事を特徴とする請求項1記載のハロゲン化銀粒子の製造方法。The principal plane of the tabular grains is a {100} plane or a {111} plane, and the coefficient of variation (standard deviation / average diameter) of the diameter distribution of the grains is 0 to 0.3. 2. The method for producing silver halide grains according to item 1. 少なくとも分散媒とハロゲン化銀粒子を有するハロゲン化銀乳剤において、該ハロゲン化銀粒子の全投影面積の75〜100%が厚さが0.02〜0.3μm、アスペクト比(直径/厚さ)が2〜50の平板粒子であり、該粒子の直径分布の変動係数(標準偏差/平均直径)が0〜0.3であり、該分散媒の30〜100重量%が(化学修飾された−NH基数の%とメチオニン含率の関係が図1のaの領域にあるゼラチン)である事を特徴とするハロゲン化銀乳剤。In a silver halide emulsion having at least a dispersion medium and silver halide grains, 75 to 100% of the total projected area of the silver halide grains has a thickness of 0.02 to 0.3 μm and an aspect ratio (diameter / thickness). Are 2 to 50 tabular grains, the coefficient of variation (standard deviation / average diameter) of the diameter distribution of the grains is 0 to 0.3, and 30 to 100% by weight of the dispersion medium is (chemically modified − the silver halide emulsion NH 2 cardinality relationship% and methionine content of and wherein the gelatin) in the region of a 1 in FIG. 1.
JP19260995A 1994-07-14 1995-07-06 Method for producing silver halide grains and silver halide emulsion Expired - Fee Related JP3575639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19260995A JP3575639B2 (en) 1994-07-14 1995-07-06 Method for producing silver halide grains and silver halide emulsion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-184128 1994-07-14
JP18412894 1994-07-14
JP19260995A JP3575639B2 (en) 1994-07-14 1995-07-06 Method for producing silver halide grains and silver halide emulsion

Publications (2)

Publication Number Publication Date
JPH0882883A JPH0882883A (en) 1996-03-26
JP3575639B2 true JP3575639B2 (en) 2004-10-13

Family

ID=26502310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19260995A Expired - Fee Related JP3575639B2 (en) 1994-07-14 1995-07-06 Method for producing silver halide grains and silver halide emulsion

Country Status (1)

Country Link
JP (1) JP3575639B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10148897A (en) * 1996-11-19 1998-06-02 Fuji Photo Film Co Ltd Production of silver halide planar particle

Also Published As

Publication number Publication date
JPH0882883A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
EP0697618B1 (en) Method for producting silver halide grain and silver halide emulsion using the grain
JPH0228638A (en) Silver halide photographic emulsion and its production
JP3025585B2 (en) Silver halide emulsion
JPH0833598B2 (en) A method for stabilizing high chloride crystals with modified crystal habit using bromide shell.
JP3575639B2 (en) Method for producing silver halide grains and silver halide emulsion
JPH0789200B2 (en) Method for producing silver halide emulsion
JP3383397B2 (en) Silver halide emulsion
JP2794247B2 (en) Silver halide emulsion
JPH07146522A (en) Silver halide emulsion
JP3484287B2 (en) Silver halide photographic emulsion and photographic light-sensitive material using the same
JPH1010663A (en) Production of silver halide particles and silver halide emulsion
JP4068683B2 (en) Silver halide photographic emulsion, method for producing the same, and silver halide photographic light-sensitive material using the same
JP2709799B2 (en) Method for producing silver halide emulsion
JPH0611778A (en) X-ray silver-halide photograph material having proper image color tone and surface glare
JP4225664B2 (en) Method for producing silver halide emulsion
JP3388914B2 (en) Silver halide emulsion
JP3630262B2 (en) Method for producing silver halide tabular grain emulsion
JP2840897B2 (en) Silver halide emulsion and method for producing the same
JPH10148897A (en) Production of silver halide planar particle
JPH08262617A (en) Production of internal latent image type direct positive silver halide emulsion and color diffusion transfer photographic film unit using this emulsion
JP2000187293A (en) Manufacture of silver halide emulsion
JP3668828B2 (en) Silver halide photographic material
JPH10197977A (en) Manufacture of silver halide emulsion
JP3637475B2 (en) Silver halide photographic material
JP3913825B2 (en) Silver halide photographic material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080716

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090716

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100716

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110716

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees