JP3998049B2 - Motion sensor vibrator and vibratory gyroscope - Google Patents

Motion sensor vibrator and vibratory gyroscope Download PDF

Info

Publication number
JP3998049B2
JP3998049B2 JP29719199A JP29719199A JP3998049B2 JP 3998049 B2 JP3998049 B2 JP 3998049B2 JP 29719199 A JP29719199 A JP 29719199A JP 29719199 A JP29719199 A JP 29719199A JP 3998049 B2 JP3998049 B2 JP 3998049B2
Authority
JP
Japan
Prior art keywords
vibration
vibrating
leg
vibrating body
legs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29719199A
Other languages
Japanese (ja)
Other versions
JP2001082963A (en
Inventor
芳明 加藤
Original Assignee
芳明 加藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芳明 加藤 filed Critical 芳明 加藤
Priority to JP29719199A priority Critical patent/JP3998049B2/en
Publication of JP2001082963A publication Critical patent/JP2001082963A/en
Application granted granted Critical
Publication of JP3998049B2 publication Critical patent/JP3998049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は振動体に作用するコリオリ力を利用して角速度を検出するジャイロスコープ用の運動センサ振動体の構造、振動体に作用する直線加速度を検出する加速度計用の運動センサ振動体の構造、またジャイロスコープ用の運動センサ振動体と検出回路を組合わせた振動ジャイロスコープの構成に関する。
【0002】
【従来の技術】
従来種々の振動モードを有する各種の振動体が振動ジャイロスコープ用の運動センサ振動体(以下ジャイロセンサ振動体、あるいは単に振動体と略称する)として提案されている。図6は第1の従来例である音叉型のジャイロセンサ振動体の一例を示す。(a)は平面図、(b)、(c)は振動脚の電極部分の断面図であって電極配置と接続を示している。音叉型振動体は真直な2本の同形の片持ち棒である振動脚1R、1Lを平行に並べて各一端を基部9に連結した形状で、その対称軸SA(立体的には対称面と言うべきだが音叉を平面的とみなして軸としておく)に対称な基本振動(コリオリ力を惹起させるための定常的な振動)を行わせる。材質は水晶材とし、全体は図示しない真空容器内に封入される。(以下基本的に本発明を含む他の例も同様であるとする。)
【0003】
UR、ULは振動中の各脚の自由端4R、4L付近に必要に応じて設けた付加質量5R、5L(例えば厚メッキした金や接着した錘物体等。省略されることもあるがその場合は脚自身の先端付近の質量とする)の重心GR、GLのある瞬間の最大速度ベクトルである。音叉がその対称軸SAと平行な回転軸の回りに回転を行うとき、その角速度Ωに比例したコリオリ力FR、FLが各振動脚に音叉平面(紙面)に垂直な方向に互いに逆向きに発生する(コリオリ力は速度ベクトルと角速度ベクトルに垂直である)。励振、検出は圧電的に行われる。
【0004】
図6(c)6Rは基本振動を持続させる交流電圧を与えるための膜状の励振電極で脚のバネ部3Rの4側面に設けられ、導電膜より成るリードパターン10(平面図には図示せず)で結線され基部9上の励振端子8Vに導かれる。また(b)7Lは膜状の検出電極で脚のバネ部3Lの表裏面に設けられ、コリオリ力に基づくバネ部の歪みを検出し、基部9上の検出端子8Dに導かれる。励振電極と検出電極は本来各振動脚毎に設けたいが、圧電効果の高い位置はいずれも振動脚の固定端2R、2Lに近い部位であって重なってしまうため各脚に振り分けている。なお検出電極7Lはバネ部3Lの両側面に設けられる場合もあるし、共通の脚の上の異なる場所に励振電極と検出電極を設ける例もある。
【0005】
図7は第2の従来例であるジャイロセンサ振動体を示し、(a)は平面図、(b)は振動脚の断面図である。この振動体は音叉を変形したL字形状の振動脚を持ち、やはり線対称な平面形状と振動モードを持つ。各部の記号は第1従来例と共通する。振動脚1R、1Lは音叉同様に固定端2R、2Lが基部9と連結する。平行に並べられた2本の長い真直棒状であるバネ部3R、3L、それらの自由端4R、4Lには外向きの張り出し部分を有し、この場所にバネ軸線から偏心した付加質量5R、5Lを有する。付加質量の目的は、コリオリ力を検出するためと、固有振動数を適当な低周波に調節するためである。振動体は励振電極6R、6Lによって励振され、振動体平面に平行な回転運動(面内回転)の角速度を検出するに適する。
【0006】
基部9と共に振動体全体がその面に垂直な回転軸の回りに角速度Ωで回転すると、付加質量5R、5Lの重心の速度UR、ULに応じて平面内でコリオリ力FR,FLが逆向きに発生する。両コリオリ力によって振動脚のバネ部3R,3L内に生ずるモーメントはその一方は励振による撓みを増すように、他方は減ずるように作用し、それらの圧電効果による検出電圧は励振電極6R、6Lの励振電圧に重畳される。故に各脚の励振端子、2つの8Vを差動増幅器(図示せず)の入力とし、励振電圧は相殺してコリオリ力の検出電圧を加算させ、また同期検波を行って励振電圧とコリオリ力の検出電圧を分離し、角速度が測定できる。
【0007】
【発明が解決しようとする課題】
第1従来例の音叉は、励振される基本振動については優れた特性を示す。また各振動脚の固有振動数を等しく加工調整する必要があるが、振動脚は2個しかないので作業は容易である長所がある。しかし音叉面内の回転を検出することができない。従って水平面内の運動検出のためには音叉を立てて配置せねばならず、多くの用途において薄型のジャイロセンサを得る支障となりやすい。また励振電極と検出電極の高効率な位置は既述のように重なるので、2種の電極を同じ振動脚上に分離配置することが困難である。また振動脚の面外振動を検出する検出電極7Lの(b)図の構造は振動脚の4面を利用する構成に比して高い感度が得られない。
【0008】
第2従来例の振動体は、その面内の回転を検出できる長所がある。しかし励振される基本振動は慣性力のバランスが取れていない。振動脚の先端部分はバネ部3R、3Lのバネ軸線上の途中にできる回転中心CR、CL(付加質量を無視すると固定端から自由端までの長さの約27%の位置、またバネ部の質量を無視すると固定端から全長の1/3の位置と計算される。即ち一般的には約30%付近の位置)を中心として回転運動を行う。従って偏心した重心GR、GLの位置での付加質量5R、5Lの慣性力は対称軸SA方向の成分が打ち消されずに残り、基部9を揺すり、振動漏れを起こし、振動体のQ値が低下する。コリオリ力の検出感度を上げようとして付加質量の偏心量を大きくする(モーメントの腕長を長くする)ほどこの欠点は甚だしくなり、十分な振幅も得られないことになる。
【0009】
なお複数の振動脚が一平面内でほぼ対称に開閉屈曲振動している振動体の振動慣性力のバランス条件を一般的に表現しておく。各脚の振動質量の重心(付加質量が大ならば付加質量の重心に近い場所に来る)の振動軌跡(上述のように回転運動であるから短い円弧をなす)に共通接線が引けること(これにより各脚の慣性力は同一作用線に乗り、向きは反対となる)であり、また換言すれば重心位置が対称軸に沿って同じ高さにありかつ重心の動径が対称軸に平行となることである。この条件があれば、振動脚の形状自体は非対称的でも差し支えない。
【0010】
また励振のモーメントとコリオリ力FR、FLが各バネ部に作るモーメントは同じ方向なので、両者による圧電効果は重なり、既述のように励振用と検出用の電極の分離が困難である。回路的な信号の分離は原理的には可能だが、コリオリ力の検出電圧は小さいので、相殺されずに残った励振信号や基本振動の圧電効果で発生する電圧が大きなノイズとなって検出精度に悪影響を与える可能性が高い。また動径rR、rL方向を向くコリオリ力FR、FLがバネ部3R、3Lの断面に作るモーメントを考えると、回転中心CR、CL付近ではモーメントの腕長がゼロとなり、またその前後で腕長の符号が反転さえする。従ってコリオリ力は圧電効果の元になる有効なバネ部の歪みを電極の領域内の一部(腕長の大きい自由端に比較的近い部分)でしか発生できず、この構成のままでは本来的に低い感度しか得られないと考えられる。
【0011】
また振動体の材質の問題がある。従来、各種の振動体の材料は圧電性の単結晶または成形後適宜分極処理された磁器である。金属の恒弾性材料を用いる場合は圧電素子を表面に接着する。これらは圧電性が強いので真空封入を必要とはしないが、製品精度が不安定である。製品の特性を安定させ検出精度を向上させるには単結晶材料の使用が好ましい。特に人工水晶材は(腕時計用音叉振動子への応用が成功しているように)Q値や基本振動の温度特性に優れ廉価で、エッチングによる加工も可能であり極めで望ましいが、水晶材は圧電性が比較的弱く、また良好な特性が得られるカット角度(結晶軸に対する)に制限があると考えられており、まだ特殊なセンサ振動体にしか適用されていない。水晶以外の単結晶材料は十分使いこなされてはおらず、また高価である。
【0012】
更に運動検出における他の問題を取り上げる。その1は加速度計用の運動センサ振動体である。従来例に挙げた音叉を励振なしで用いるとき、右脚1Rの電極6Rからは音叉面内で振動脚軸に垂直な方向の加速度に比例する電圧が検出でき(この方向の慣性力が基本振動と同じ歪みを生ずるため)、左脚1Lの電極7Lからは音叉面に垂直な(コリオリ力と同方向の)加速度に比例する電圧が検出できる。しかし振動体の平面内で2軸(直交2方向)の加速度検出の可能な単純な構成の振動体はまだ提案されていない。なお加速度計では励振をしないで用いるが、加速度を感じる要部が自由振動可能な形状である場合は振動体と称する。
【0013】
他の問題のその2は振動ジャイロスコープの検出原理に関する。従来はコリオリ力による振動歪みに比例した電圧を圧電気現象を用いてアナログ的に検出しており、角速度を例えばデジタル的に検出する如き多様な試みはなされなかった。これは一般的に言って測定技術の発展上好ましいことではないと考えられる。
【0014】
本発明の主たる目的は、小型・薄型化、製造容易、高度な振動体品質、振動体面内回転が検出可能、高感度検出が可能であり、更には圧電性単結晶の利用にも適した振動ジャイロスコープ用運動センサ振動体を提供することである。また他の目的は任意の方向の加速度が検出可能な加速度計用運動センサ振動体を提供することである。また更に他の目的は新規な検出原理による振動ジャイロスコープを提供することである。
【0015】
上記主たる目的の達成のため本発明の振動ジャイロスコープ用の運動センサ振動体は次の特徴を備える。
(1)実質的に一つの平面内に複数の片持ち振動脚を有し、該振動脚の少なくとも一つは固定端から自由端へと辿るとき当該振動脚の振動質量の重心が該振動脚の各部によって270°以上の角度で包囲されるような屈曲した形状を備えると共に、前記複数の振動脚が前記平面内で自由振動するときそれらの振動質量の重心の振動軌跡がほぼ同一直線上にあるようにして励振される振動の慣性力が全体としてほぼ相殺されるように設定され、前記屈曲した形状の表面に少なくとも励振用の電極を設けたこと。
【0016】
本発明の運動センサ振動体は更に以下の特徴の少なくとも一つを備えることがある。
(2)前記励振用の電極を前記振動脚の固定端に近い部分の4側面に設け、またコリオリ力検出用の電極を前記励振用の電極よりも前記自由端に近くかつ前記振動質量の重心を包囲している部分の少なくとも一部に設けたこと。
(3)各振動脚の材質は単結晶材より成り、折れ線状に屈曲しており、前記折れ線状の屈曲部の内の少なくとも2つの方向は、前記単結晶材の有する複数の同種の結晶軸のうちの少なくとも2つとほぼ等しい角度をなしていること。
【0017】
(4)前記自由端付近の振動質量の重心の振動軌跡の延長線が前記コリオリ力検出用の電極を通ること。
【0018】
上記他の目的を達成するため本発明の振動ジャイロスコープは次の特徴を備える。
(5)上記(1)のセンサ振動体を使用し、前記振動部の振動質量はコリオリ力によって振動運動の動径が変化する構造を有していて、振動の方向転換ごとに方向が反転するコリオリ力の効果によって振動運動の半周期が長短交互に変化するようにし、引き続く振動の半周期の変化あるいは該変化に相当する時間を計測することによって前記コリオリ力を生じさせた回転角速度を検知すること。
【0019】
【発明の実施の形態】
図1は本発明の第1の実施の形態である振動ジャイロスコープ用の運動センサ振動体を示し、(a)は平面図、(b)および(c)は電極の配置と接続をも示す振動脚の断面図、(d)は基本振動とコリオリ力による振動脚の撓み変形を示す線図である。本例において、既述の第1・第2従来例と類似の機能を有する部分には同じ記号を付し、説明の重複を避けた。また振動体の材質は水晶材を用いることを前提としている(以下他の実施の形態についても同様とする)。振動体は水晶のZ板(またはこれをX軸回りに数度回転させたZ’板)から打ち抜かれ、全体形状も基本振動姿態も各脚の長手方向である対称軸SAに関して対称な面内振動である。各脚の固有振動数は等しい。また対称軸SAの方向は結晶軸の一つY軸(またはY’軸)に向いている。これは主要なバネ部に圧電効果を発揮させ、同時に振動数の安定化のため弾性率の温度変化を小さくできる方向である。振動体は空気抵抗をなくすために真空容器(図示せず)内に封入される。
【0020】
振動脚1R、1Lは軸が大きく屈曲した形状を呈し対称軸SAに関して対称に配置されている。各脚のバネ部は屈曲部毎に区切られ、固定端2R、2Lから自由端4R、4Lに向けて、31R、31L、33R、33Lより成る。バネ部31R、31Lの周囲4面には(b)のように励振電極6R、6Lを設け、バネ部33R、33Lの周囲4面には(c)のように検出電極7R、7Lを設ける。また振動脚の部分32R、32Lは短く撓み難いのでバネ性がなく、部分34R、34Lは断面(脚の巾)を太くし剛体的にしてバネ性を利用せず(この部分はX軸方向であり屈曲歪みの圧電効果が出せず弾性率の温度特性も悪いため)、また自由端に近い部分35R、35Lは付加質量5R、5Lの固着部となっている。各振動脚の全振動質量の重心GGR、GGLは回転中心CR、CLの真上にある。なお固定端2R、2Lから自由端3R、3Lへ辿ると例えばバネ部32R、32Lと部分35R、35Lは向きを180°転じ(部分32R、32Lとは270°)た折り返し屈曲形状をしている。また振動質量の重心GGR、GGLはそれぞれの振動脚の各部によって270°以上の角度で包囲されている。
【0021】
次に励振される基本振動の慣性力をバランスさせる構成について述べる。第1近似的には、バネ部31R、31Lの中央位置を回転中心CR、CLとみなし、各振動脚の回転中心CR、CLより上の部分の質量分布より振動質量の重心GGR、GGLを求め、それが回転中心CR、CLのそれぞれの真上(対称軸SAを垂直にして)でかつ等しい高さとなるようにする。より正確には各振動脚の形状と質量分布を細部に分けて設定し、振動体に仮想の自由振動をさせて有限要素法を適用し、計算された各細部の慣性力(大きさは振幅に比例)の合計が対称軸SAに垂直・逆向きで大きさが等しく相殺されるように、かつ各固定端2R、2Lに関する各細部の慣性力のモーメントの総計が打消しあうように形状と質量分布を決定するのが良い。質量分布の修正は実験的にも行うことができる。
【0022】
次に回転の検出機構を説明する。振動体がその面内で回転するとき、コリオリ力FR、FLは第2従来例の場合と同様に、各振動脚の付加質量5R、5Lの重心GR、GLに振動体面内で作用する。その作用線は動径rR、rLであるが、検出電極を設けたバネ部33R、33Lの軸線は回転中心からずらしてあるため(ずらし量は原理的には任意である)動径rR、rLとの距離が大きく、バネ部33R、33Lにはその全長にわたって十分大きなコリオリ力のモーメントを作用させることができ、高感度の検出が行える。なおコリオリ力は振動体面内にモーメントを作るため、基本振動の励振と同様脚周囲の4面電極で感度のよい検出ができる。また検出部位32R、32Lを励振部位31R、31Lと異ならせたためそれぞれ専用の電極を設けることができた。
【0023】
次に図1(d)の線図を参照して励振部位と検出部位の最適性について吟味する。線図は簡略化のため対称な片側(右脚)のみ示してある。細線は静止状態の原形、太線は励振あるいはコリオリの慣性力が作用したときの撓み形状が誇張して描かれている。励振電極を設けるバネ部31R、31Lは全振動質量の重心から最も遠い位置にあるので基本振動の慣性力のモーメントによる圧電効果が最も高く、励振電極を設ける部位として最適である。
【0024】
また検出を行うバネ部33R、33Lの部位では既述のように4面電極が可能で、またコリオリ力のモーメントが大きく作用するので検出に適するが、更に別の理由もある。付加質量5R、5L(各振動脚の部分34R、34L、35R、35L自体の質量も加算して考えておく)の重心GR、GLの高さを適宜に設定すると、(d)の左図のように付加質量の慣性力の作用線(重心GRの基本振動の速度ベクトルURとほぼ一致すると考えられる)はバネ部33Rの(電極部の)長さの中央を切る。故に付加質量5Rの慣性力がバネ部33R内に作るモーメントはバネ部の上半分と下半分とで正反対となり(線図の撓みが逆)、圧電効果は相殺され検出電極7Rには基本振動の影響は表れず、ノイズのない(あるいは極めて小さい)純粋な検出出力が得られることになる。これは弱いコリオリ力を高精度で検出するための本振動体の優れた特性の一つであり、残留ノイズを回路的に分離するにしても従来例より格段に有利となる。
【0025】
次に第1の実施の形態の振動体の細部の説明をしておく。主に電極の結線パターンに関する。10は振動体表面に設けた膜状の接続パターンであり、電極膜同志、また電極膜と接続パッド29、92群を接続する。振動体の裏面と表面の接続はスルーホール28、93を利用する。基部9上の接続パッド92群は必要なら更に相互接続(図示しない外部回路側で接続してもよい)されて適宜に駆動端子8V、検出端子8Dとなる。また検出電極7R、7Lからの端子を振動脚表面経由で引出すと励振電極6R、6Lの面積が削られる。これは励振の効率を落とす他、接近した検出電極の引出線に励振信号をノイズとして誘導させかねない。そこで本実施の形態では振動脚の屈曲部に設けた接続パッド29と、補助基部91側に設けた接続パッド92とをワイヤボンディングで接続している。30はボンディングワイヤである。接続パッド29のある部位の基本振動の振幅は比較的小さいのでこの構造でも障害になり難い。但しこれは必須構造ではない。
【0026】
図2は本発明のジャイロセンサ用振動体の第2の実施の形態を示し、(a)は平面図、(b)、(c)は振動脚の断面図、(d)は振動脚の撓み変形を示す線図である。本実施の形態の形状や作用は既述の第1の実施の形態の振動体と共通点が多い。即ち折返して屈曲し振動質量の重心を包囲した概形、対称な形状、各脚の固有振動数が等しい、水晶Z板(またはZ’板)であること、基本振動の慣性力はバランスしている、励振電極と検出電極の分離、検出電極部位でコリオリ力のモーメントが大きいこと、平面内回転の検出、検出電極における基本振動の不感性、真空封入、接続方法(一部図示を省略した)等である。
【0027】
本実施の形態の特徴は振動脚1R、1Lの各部の軸線の方向が略60°の倍数をなしていることである。水晶はZ軸回りに3回回転対称性があり、全く同性質のX軸、Y軸が120°毎にある。そこで振動脚の各部を3本のY1、Y2、Y3軸のいずれかと略平行とした。従って振動脚のどの部分でも屈曲撓みを圧電的に検出でき、かつ屈曲の弾性の温度変化が比較的少ないカット方位を持つバネ部として全長を無駄なく利用できる。(既述の如く第1の実施の形態では振動脚の部分34R、34Lは故意に剛性を高めてバネ部としての使用を回避したが。)本例ではバネ部31R、31Lを励振用に、32R、32L、33R、33L、34R、34Lを検出用に用いている。(バネ部32R、32Lは励振用に振り替えてもよい。)各部の電極は検出すべきコリオリ力のモーメントの方向と当該部分のY軸の向きを考慮して各部の検出電圧が直列加算されるように接続パターン10で接続する。本例の形状構造によって検出感度が一段と高められる。
【0028】
本実施の形態においては検出電極から検出端子へのリードパターン10は第1の実施の形態とは異なり、ワイヤボンディングを経由せず励振電極6R、6Lの上面電極を分割して生じた隙間を通している。隙間の位置はバネ部31R、31Lの巾の中心部(撓みの中立面の側面)であり、この部分は基本振動による歪みがほとんどなく、両側は同じ極性の励振電極に挟まれて等電位であり、励振作用からのノイズを拾う恐れが少ない。もう一つ同じ効果の得られる引出し方は、励振電極6R、6Lの下面電極の巾中央にも隙間を設け、検出電極7R、7L用の2本のリードパターン10を一本づつ上下の隙間に通す構造である。
【0029】
図3は本発明のジャイロセンサ振動体のその他の実施の形態を示し、いずれも水晶Z板から形成され3方向のY軸を活用した形態で、(a)、(b)、(c)、(d)はそれらの各例の平面図である。(a)は図2の振動体に似るがその振動脚途中の長手方向のバネ部をほとんどなくして振動体の全長を短くした例で、検出電極は22R、22L 23R、23Lに設けることができる。(b)は同じ向きに屈曲する2本の振動脚を左右方向に重ね配置し、固定端2R、2Lを接近させて各振動脚間の振動歪みの伝達性の向上を図った形状である。(c)は基部9を囲んで振動脚1R、1Lを配置し、大型の脚を用いて低周波、電極面積大を狙いながらコンパクトな形状とした。(d)は(a)より更にバネ部要素を減らし簡素化・小型化を狙った。いずれも振動脚重心GGR、GGLを深く包囲し大きく屈曲した脚形状を持ち((b)例の包囲角度はやや小さい方だがそれでも180°を越えている)、また基本振動の慣性力のバランスのため、振動脚重心の動径GrR、GrLを平行に配置しかつ重心GGR、GGLの動径方向の高さを等しくしてある。
【0030】
これら本発明のジャイロセンサ振動体は振動質量の重心を囲む形状を与えるので、振動脚はいわば頭でっかちであり、特に面外方向から衝撃を受けた場合、単純な音叉に比べれば固定端付近で脚が折れ易いのは止むを得ない。この傾向を防止し破損し難いジャイロスコープを得るための振動体容器の工夫について述べる。以下図示しないが、容器内側に設けた台座には振動体の基部9が固着される。また容器内には振動体面に平行に適宜な間隔をおいて柔軟なシリコンゴムを塗布した板等を振動体を挟んで設置する。この構造により振動体は通常時はゴム面に触れず、衝撃時には過大に変形しない範囲でゴム板が振動体を緩衝的に受け止め、折損を防止する。これは後述の加速度計用振動体についても同じである。
【0031】
図4は本発明の振動ジャイロスコープの実施の形態の一例を示し、(a)は振動体の平面図、(b)は励振および検出回路のブロック図、(c)は回路の一部の変形部分のブロック図、(d)は角速度の検出原理を説明する波形図である。(a)の振動体は概ね「コ」字型の振動脚1R、1Lを水晶Z(Z’)板面上に対称配置し基部9と共に一体化されている。板内の方位はほぼ図示の通りであり、板面の回転を検出する。各振動脚のバネ部は31R、31L、33R、33L(Y1軸に平行)、32R(Y2軸に平行)、32L(Y3軸に平行)であり、圧電特性と温度特性のよい方向である。バネ部31R、31Lは基本振動の最も主要なバネ部であって励振電極6R、6Lが設けられ、また回転中心CR、CLはその中央付近に生じる。付加質量5R、5Lを含めた振動脚全体の重心GGR、GGLは各回転中心の真上かつ同じ高さにあり、基本振動の慣性力はバランスしている。
【0032】
バネ部32R、32Lや33R、33Lには第1、第2の実施の形態のように検出電極を設けてコリオリ力を検出する使い方もできるが、本例では異なる検出原理を適用するのでこの部分には検出電極を設けない。(この部分を励振電極で覆って基本振動の振幅を稼ぐようにしてもよい。)本例における検出原理は、面内回転によるコリオリ力FR、FLが動径方向に働き、脚の屈曲形状のためコリオリ力の向きによって振動質量の動径GrR、GrLが伸縮変化する(「コ」字が僅かに撓み、開閉しながら振動する)ことを利用する。一般に同じ質量〜バネ系で振動質量の動径が増せば固有振動周期が長くなり、動径が減少すれば振動周期が短くなる。また発振回路11R、11L((b)に図示)は振動体に自由に振動を行わせる。コリオリ力は振動の半周期毎に方向を反転するので、各振動脚は振幅の端から端まで、長い半周期と短い半周期を交互に繰り返しながら振動していることになる。またコリオリ力FR、FLは逆方向なので、片側の脚の振動の半周期が伸びているとき、他方の脚の半周期は短くなっている。
【0033】
図4(d)において、縦軸は励振電極から検出される振動電圧(上は1R側,下は1L側)、横軸は時間である。振動半周期の時間差は誇張してある。発振回路の出力波形は脚の振動変位と通常数十度の位相差があるので、これを略90゜とみなせば電圧の半周期は振動質量速度の半周期(重心の速度が同じ向きである期間)即ち重心の振動変位の端から端までの半周期とほぼ一致することになる。各脚の電圧波形のゼロ点をTR1、TR2、……、TL1、TL2、……とする。既述の理論により(1)TR1〜TR2、(2)TR2〜TR3、あるいは(3)TL1〜TL2等の時間間隔をそれぞれ測定して(1)と(2)、あるいは(1)と(3)等との時間差を出せばそれはコリオリ力の関数となる。本実施の形態ではTR1とTL1、TL2とTR2、TR3とTL3……等の差時間を速いクロックパルスCを用いて直接数える。
【0034】
図4(b)の測定回路図において、各脚の励振電極は各脚と相互作用をしている発振回路11R、11Lに供給され、その出力波形は必要があれば波形整形回路12R、12Lによって安定な検出ができるよう、振幅や波形や位相が修正される。更にレベル検出回路13R、13Lによって波形のゼロ点TR1、TL1、TL2、TR2、……等の時点でのパルス信号が出力され、それらの間隔を時間差測定回路14によって測定する。即ち安定な高周波クロック源15の出す信号Cをカウントする。補正回路16は測定結果の非線形性などを補正する。測定結果は表示装置17で表示される。
【0035】
(c)は本実施の形態を一部変更した変形例の回路ブロック図である。この場合は振動体側にもバネ部32R、32L、33R、33L等に検出電極を設ける(図示せず)。各振動脚の検出電極出力はコリオリ力による電圧も僅か含まれるが、大部分は振動変位に比例する電圧である。これはそのまま増幅器18R、18Lにて増幅され、レベル検出回路13R、13Lに印加され、以下は本実施の形態の原形(b)と同様となる。ただしレベル検出回路13R、13Lは電圧波形のゼロ点ではなくピーク又は底の時点を検出するように構成する。
【0036】
図5は本発明の更に他の実施の形態である直線加速度センサ用の振動体を示し、(a)、(b)はそれらの平面図である。いずれも水晶Z板から形成され、バネ部がY1、Y2、Y3軸と平行な3個または6個の振動脚を有する。本センサ体は振動体と称してはいるが、直線加速度のみを計測する場合には励振させる必要はない。しかしセンサの要部は音叉の脚のような質量と曲げ弾性を有する片持ち部材(質量−バネ系)であって励振電極がなくても刺激による自由振動は可能な形状であるし、目的によっては振動させてジャイロスコープ用センサ等と兼用する場合もあり得るので敢えて振動体と呼ぶことにする。また励振しない場合は振動体を真空中でなく単に気密容器に封止してもよい。
【0037】
(a)の加速度センサ振動体は3本脚より成る。基部9が振動体面に平行な直線加速度運動をし、各振動脚1A、1B、1Cにその慣性力が作用して振動体面内で撓むとき、その歪みを図1(c)7Rまたは7Lの如き4面の検出電極(図示せず)を設けて検出する。各脚と検出電極の構造が全く同じならば各脚の撓み即ち検出電圧の正負と比率は脚の軸と加速度の向きとのなす角度の正弦に比例するので、3個の検出電圧から加速度の大きさと面内の方向・向きが演算できる。
【0038】
なお参考迄に、この振動体は他の使い方もできる。各振動脚を励振し各重心の振動軌跡(矢印で図示)が中心の1点に向くように設計すると慣性力のバランスが略取れる。そして振動体面に平行な軸の回りの回転に対して面に垂直な方向にコリオリ力が生じる。故に各脚を励振すると共に図6(b)7Lのような構造の検出電極を設けておくと3個の検出電圧から角速度ベクトルの大きさ・方向が演算できるので、平面内2軸のジャイロスコープ用センサともなり得る。
【0039】
(b)の加速度センサ振動体は6本脚で、脚1A、1DはY1軸に、脚1B、1EはY3軸に、脚1C、1FはY2軸に平行である。検出端子8D群は外側に配置した基部9上に設けて外部回路との接続を容易化した。上記同方向の2脚を組にした3組の脚を用いて(a)の3脚振動体に準じて2軸の加速度センサを構成することもできるが、本例では脚1A、1B、1Cを用いて振動体面内の加速度を検出し、脚1D、1E、1Fを用いて面外(面に垂直)加速度を検出する構成とすることができる。脚1A、1B、1Cには図1(c)7Lの構造の、脚1D、1E、1Fには図6(b)7Lのような構造の検出電極を設けておけばよい。垂直方向の加速度は脚3本分の検出電圧を加算できるので、この方向の検出感度の低さを補うことができる。
【0040】
再び参考迄にこの(b)の振動体はジャイロセンサとしても利用できる。バランスの取れる基本振動のモードは2つある。その1は各脚が1つおきに逆方向に振動体面外へ振動するモードで、これは面外撓みの検出と同構造の電極を各脚に設けて励振する。検出できる回転の軸は振動体面に平行で、そのコリオリ力による各脚の撓みも面内である。その2は隣接する脚の間隔が振動体面内で変化するモードで、ある瞬間の脚間隔は矢印のように1つおきに大、小、大、小、大、小となる。そして振動体面に平行な回転軸によるコリオリ力を各脚の面外振動として検出する。面内回転を検出することも不可能ではなく、そのためには(c)のように各脚の同じ側に偏心質量を設け(偏心量は大でもバランスする。偏心腕も各Y軸に平行とする)、第2従来例と同様にコリオリ力による面内撓みを誘発させて検出する。
【0041】
以上本発明の種々の実施の形態について述べたが、本発明の適用例は既述のものに限定されない。例えば振動体の材質は水晶に限らず、他の圧電性単結晶でもよい(カット角や結晶の対称性に応じてバネ部の屈折角度を決める)。また圧電性磁器を用いたり、金属に圧電素子を貼ったものでも許される場合があり得る。これらの場合も振動体上の電極膜の位置は既述の場合に準ずる。振動脚の形状(例えば磁器や金属製振動体でなだらかな折り返しや渦巻き形状とする、また脚の自由端を外向きにする、形状の異なる脚を一対とする等)、振動脚数を任意の数設ける、付加質量の位置や形状(場合によっては錘部材はなしとする)、基部の形状、励振電極や検出電極の位置、それらの接続パターンや端子の配置等々は図示形態例以外にも種々あり得る。振動ジャイロスコープにおける振動体や検出回路構成についても同様である。
【0042】
【発明の効果】
本発明の運動センサ振動体は請求項1〜2の構成により次の効果が得られる。
(1)小型・薄型化が可能(主要部が一平面内にあることによる)。
(2)製造容易(平面的形状であること、調整を要するする振動脚が最低2本でよいことによる)。
(3)高振動体品質(基本振動の慣性力が全体でバランスしているため)。
(4)面内回転検出可能(全体構成による。薄型化にも関連する)。
(5)検出の高感度化が可能(励振・検出にそれぞれ適した部位を設け、それぞれの電極を設けることができること、検出電極の有効長の増大や脚の4面利用が可能なこと、屈曲形状によりコリオリ力検出用の質量と検出部位でのモーメントの増大が図れること、検出部位での励振振動によるノイズ的圧電効果を減少させ得る場合もあること、による)。
【0043】
また請求項3の構成を追加し、振動脚が屈曲した形状であるにも拘らず、脚の各部に同じ圧電的、は弾性的性質を与えることができ、次の諸効果が得られる。
(6)脚の各部を検出(および励振)のために圧電的に有効に利用できる。
(7)脚の弾性的性質(例えば弾性率の温度特性)を比較的に良好に保てる。
(8)従ってセンサ用振動体の材料として圧電性単結晶を効果的に用いて、高精度の検出を可能とする。
(9)殊に圧電効果が弱いが弾性的性質の優れている水晶材を用い得る。
【0044】
請求項4の構成により、次の効果がある。
(10)コリオリ力の検出電極に、振動質量の基本振動による圧電効果が現われ難くすることができる。
(11)従って弱いコリオリ力を低ノイズで検出することが可能となる。
【0045】
請求項5の構成により、次の効果がある。
(12)検出出力のデジタル化も容易な、新規な検出原理による振動ジャイロスコープを提供することができた。
(13)検出電極を不要として振動体の構成を簡素化できる場合もある。
【図面の簡単な説明】
【図1】本発明の振動ジャイロスコープ用の運動センサ振動体の第1の実施の形態を示し、(a)は平面図、(b)および(c)は電極の配置と接続をも示す振動脚の断面図、(d)は基本振動とコリオリ力による振動脚の撓み変形を示す線図である。
【図2】本発明の振動ジャイロスコープ用の運動センサ振動体の第2の実施の形態を示し、(a)は平面図、(b)は振動脚の撓み変形を示す線図、(c)および(d)は振動脚の断面図である。
【図3】本発明の振動ジャイロスコープ用の運動センサ振動体のその他の実施の形態を示し、(a)、(b)、(c)、(d)はそれらの各例の平面図である。
【図4】本発明の振動ジャイロスコープの実施の形態を示し、(a)は振動体の平面図、(b)は励振および検出回路のブロック図、(c)は回路の一部の変形部分のブロック図、(d)は角速度の検出原理を説明する波形図である。
【図5】本発明の多方向の直線加速度の検出が可能な加速度計用の運動センサ振動体の実施の形態を示し、(a)、(b)はそれらの各例の平面図である。
【図6】第1の従来例の振動ジャイロスコープ用の運動センサ振動体を示し、(a)は平面図、(b)は振動脚の断面図である。
【図7】第2の従来例の振動ジャイロスコープ用の運動センサ振動体を示し、(a)は平面図、(b)は振動脚の断面図である。
【符号の説明】
1A,1B,1C,1D,1E,1F,1R,1L 振動脚(または脚)
2R、2L 固定端
3R、3L、31R、31L、32R、32L、33R、33L バネ部
34R、34L、35R、35L (振動脚の)部分
4R、4L 自由端
5R、5L 付加質量
6R、6L 励振電極
7R、7L 検出電極
8D 検出端子
8V 励振端子
9 基部
91 補助基部
10 リードパターン
29、92 接続パッド
28、93 スルーホール
30 ボンディングワイヤ
11R、11L 発振器
12R、12L 波形フィルタ
13R、13L ゼロレベル検出回路
14 時間差測定回路
15 高周波クロック源
16 補正回路
17 表示装置
C クロックパルス
CR、CL 回転中心
GR、GL 付加質量の重心
GGR、GGL 振動質量の重心
FR、FL コリオリ力
rR、rL 付加質量の動径
GrR、GrL 振動質量の動径
UR、UL 速度ベクトル
SA 対称軸
Ω 角速度
[0001]
BACKGROUND OF THE INVENTION
The present invention is a structure of a motion sensor vibrating body for a gyroscope that detects angular velocity using Coriolis force acting on the vibrating body, a structure of a motion sensor vibrating body for an accelerometer that detects linear acceleration acting on the vibrating body, The present invention also relates to a configuration of a vibration gyroscope in which a motion sensor vibrating body for a gyroscope and a detection circuit are combined.
[0002]
[Prior art]
Conventionally, various vibrators having various vibration modes have been proposed as motion sensor vibrators for vibration gyroscopes (hereinafter simply referred to as gyro sensor vibrators or simply vibrators). FIG. 6 shows an example of a tuning fork type gyro sensor vibrating body as a first conventional example. (A) is a top view, (b), (c) is sectional drawing of the electrode part of a vibration leg, and has shown electrode arrangement | positioning and connection. The tuning fork type vibrating body has two straight cantilevered vibrating legs 1R and 1L arranged in parallel and connected at one end to the base 9, and has a symmetry axis SA (three-dimensional symmetry plane). However, the tuning fork should be considered as a plane and set as an axis) to make a symmetric fundamental vibration (steady vibration to induce Coriolis force). The material is quartz, and the whole is enclosed in a vacuum container (not shown). (Hereinafter, other examples including the present invention are basically the same.)
[0003]
UR and UL are additional masses 5R and 5L provided as necessary near the free ends 4R and 4L of the legs during vibration (for example, thick-plated gold or bonded weight objects, etc. Is the maximum velocity vector at a certain moment of the center of gravity GR, GL. When the tuning fork rotates around a rotation axis parallel to the symmetry axis SA, Coriolis forces FR and FL proportional to the angular velocity Ω are generated in opposite directions in the direction perpendicular to the tuning fork plane (paper surface) on each vibrating leg. (Coriolis force is perpendicular to the velocity and angular velocity vectors). Excitation and detection are performed piezoelectrically.
[0004]
6C, 6R is a film-like excitation electrode for applying an alternating voltage that sustains the fundamental vibration, and is provided on the four side surfaces of the leg spring portion 3R. A lead pattern 10 made of a conductive film (not shown in the plan view). ) And led to the excitation terminal 8V on the base 9. Also, (b) 7L is a film-like detection electrode provided on the front and back surfaces of the leg spring portion 3L, detects the distortion of the spring portion based on the Coriolis force, and is guided to the detection terminal 8D on the base 9. The excitation electrode and the detection electrode are originally provided for each vibration leg, but the positions where the piezoelectric effect is high are close to the fixed ends 2R and 2L of the vibration leg and overlap each other, so that they are distributed to the legs. The detection electrode 7L may be provided on both side surfaces of the spring portion 3L, or there may be an example in which the excitation electrode and the detection electrode are provided at different locations on a common leg.
[0005]
7A and 7B show a gyro sensor vibrating body as a second conventional example, in which FIG. 7A is a plan view and FIG. 7B is a sectional view of a vibrating leg. This vibrating body has an L-shaped vibrating leg obtained by deforming a tuning fork, and also has a plane shape and a vibration mode that are line-symmetric. The symbols of the respective parts are the same as in the first conventional example. The vibration legs 1R and 1L are connected to the base 9 at the fixed ends 2R and 2L in the same manner as the tuning fork. Two long straight rod-like spring portions 3R and 3L arranged in parallel, and their free ends 4R and 4L have outwardly protruding portions, and additional masses 5R and 5L eccentric from the spring axis at this place Have The purpose of the additional mass is to detect the Coriolis force and to adjust the natural frequency to an appropriate low frequency. The vibrating body is excited by the excitation electrodes 6R and 6L, and is suitable for detecting an angular velocity of a rotational motion (in-plane rotation) parallel to the plane of the vibrating body.
[0006]
When the entire vibrating body together with the base 9 rotates at an angular velocity Ω around a rotation axis perpendicular to the surface, the Coriolis forces FR and FL are reversed in the plane according to the speeds UR and UL of the center of gravity of the additional masses 5R and 5L. appear. The moments generated in the spring portions 3R, 3L of the vibrating legs by both Coriolis forces act so that one of them increases the deflection due to the excitation and the other decreases, and the detection voltage due to the piezoelectric effect is applied to the excitation electrodes 6R, 6L. It is superimposed on the excitation voltage. Therefore, the excitation terminal of each leg, two 8V are input to the differential amplifier (not shown), the excitation voltage is canceled and the Coriolis force detection voltage is added, and synchronous detection is performed to detect the excitation voltage and the Coriolis force. The detection voltage can be separated and the angular velocity can be measured.
[0007]
[Problems to be solved by the invention]
The tuning fork of the first conventional example exhibits excellent characteristics with respect to the excited fundamental vibration. Although it is necessary to adjust the natural frequency of each vibration leg equally, there is an advantage that the work is easy because there are only two vibration legs. However, rotation in the tuning fork plane cannot be detected. Therefore, a tuning fork must be placed in order to detect motion in a horizontal plane, and this tends to be an obstacle to obtaining a thin gyro sensor in many applications. In addition, since the highly efficient positions of the excitation electrode and the detection electrode overlap as described above, it is difficult to separately arrange the two types of electrodes on the same vibration leg. Further, the structure of the detection electrode 7L for detecting the out-of-plane vibration of the vibrating leg cannot obtain high sensitivity as compared with the configuration using the four surfaces of the vibrating leg.
[0008]
The vibrating body of the second conventional example has an advantage that it can detect the in-plane rotation. However, the fundamental vibration that is excited does not balance the inertial force. The tip of the vibrating leg is a center of rotation CR, CL (about 27% of the length from the fixed end to the free end if the additional mass is ignored, and the spring portion 3R, 3L on the spring axis line) If the mass is ignored, the position is calculated as 1/3 of the total length from the fixed end, that is, the position is generally about 30%). Accordingly, the inertial forces of the additional masses 5R and 5L at the positions of the eccentric gravity centers GR and GL remain without canceling out the components in the direction of the symmetry axis SA, shake the base 9, cause vibration leakage, and lower the Q value of the vibrating body. . Increasing the eccentricity of the additional mass (increasing the arm length of the moment) in an attempt to increase the detection sensitivity of the Coriolis force becomes more serious, and a sufficient amplitude cannot be obtained.
[0009]
In addition, the balance condition of the vibration inertia force of the vibrating body in which the plurality of vibrating legs are opened / closed and bent / vibrated substantially symmetrically in one plane is generally expressed. A common tangent line can be drawn on the vibration trajectory of the vibration mass of each leg (if the additional mass is large, it comes close to the center of gravity of the additional mass) (this is a short arc because of the rotational motion as described above). In other words, the inertial force of each leg is on the same line of action and the direction is opposite), in other words, the position of the center of gravity is at the same height along the axis of symmetry, and the radius of gravity of the center of gravity is parallel to the axis of symmetry. It is to become. Under this condition, the shape of the vibrating leg itself may be asymmetric.
[0010]
Further, since the excitation moment and the moment generated by the Coriolis forces FR and FL in the respective spring portions are in the same direction, the piezoelectric effect due to both overlaps, making it difficult to separate the excitation and detection electrodes as described above. Although it is possible in principle to separate circuit signals, the detection voltage of Coriolis force is small, so the excitation signal that remains without being canceled and the voltage generated by the piezoelectric effect of the fundamental vibration become large noise, which increases detection accuracy. High potential for adverse effects. Also, considering the moment that the Coriolis forces FR and FL facing the radial directions rR and rL make on the cross section of the spring portions 3R and 3L, the arm length of the moment becomes zero near the rotation centers CR and CL, and the arm length before and after that The sign of is even reversed. Therefore, the Coriolis force can generate an effective spring distortion that causes the piezoelectric effect only in a part of the electrode area (a part relatively close to the free end having a large arm length). It is thought that only low sensitivity can be obtained.
[0011]
There is also a problem with the material of the vibrating body. Conventionally, the materials of various vibrators are piezoelectric single crystals or porcelains appropriately polarized after forming. When a metal constant elastic material is used, the piezoelectric element is bonded to the surface. These have strong piezoelectricity and do not require vacuum sealing, but the product accuracy is unstable. In order to stabilize the product characteristics and improve the detection accuracy, it is preferable to use a single crystal material. Artificial quartz materials are particularly desirable (as they have been successfully applied to tuning fork vibrators for wristwatches). They are excellent in the Q value and temperature characteristics of basic vibrations, can be processed by etching, and are extremely desirable. It is considered that the cut angle (relative to the crystal axis) at which the piezoelectricity is relatively weak and good characteristics are obtained is limited, and it is still applied only to special sensor vibrating bodies. Single crystal materials other than quartz are not fully used and expensive.
[0012]
In addition, other issues in motion detection are addressed. Part 1 is a motion sensor vibrating body for an accelerometer. When the tuning fork mentioned in the conventional example is used without excitation, a voltage proportional to the acceleration in the direction perpendicular to the vibrating leg axis can be detected from the electrode 6R of the right leg 1R (the inertial force in this direction is the fundamental vibration). Therefore, a voltage proportional to the acceleration perpendicular to the tuning fork surface (in the same direction as the Coriolis force) can be detected from the electrode 7L of the left leg 1L. However, a vibration body having a simple configuration capable of detecting acceleration in two axes (two orthogonal directions) in the plane of the vibration body has not been proposed yet. Although the accelerometer is used without excitation, it is referred to as a vibrating body when the main part that senses acceleration has a shape capable of free vibration.
[0013]
The second of the other problems relates to the detection principle of a vibrating gyroscope. Conventionally, a voltage proportional to the vibration distortion due to the Coriolis force is detected in an analog manner using a piezoelectric phenomenon, and various attempts have not been made to detect an angular velocity, for example, digitally. In general, this is not preferable for the development of measurement technology.
[0014]
The main object of the present invention is to make a compact, thin, easy to manufacture, high quality of vibrating body, capable of detecting in-plane rotation of the vibrating body, capable of high sensitivity detection, and vibration suitable for use of a piezoelectric single crystal. It is providing the motion sensor vibrating body for gyroscopes. Another object is to provide a motion sensor vibrating body for an accelerometer capable of detecting acceleration in an arbitrary direction. Yet another object is to provide a vibrating gyroscope with a novel detection principle.
[0015]
In order to achieve the above main object, the motion sensor vibrator for the vibration gyroscope of the present invention has the following characteristics.
(1) It has a plurality of cantilevered vibration legs substantially in one plane, and at least one of the vibration legs follows from the fixed end to the free end. Kin Center of gravity of vibrating mass of the vibrating leg Is surrounded by each part of the vibrating leg at an angle of 270 ° or more In addition, when the plurality of vibrating legs freely vibrate in the plane, the inertial force of vibration excited so that the vibration locus of the center of gravity of the vibrating mass is substantially on the same straight line is provided. It is set so as to be substantially cancelled as a whole, and at least an excitation electrode is provided on the bent surface.
[0016]
The motion sensor vibrating body of the present invention may further include at least one of the following features.
(2) The excitation electrode is provided on four side surfaces near the fixed end of the vibrating leg, and the Coriolis force detection electrode is closer to the free end than the excitation electrode and the center of gravity of the vibration mass. Provided in at least a part of the surrounding area.
(3) The material of each vibration leg is made of a single crystal material and is bent in a polygonal line, and at least two directions of the bent part of the polygonal line are a plurality of the same kind of crystal axes of the single crystal material. An angle approximately equal to at least two of the two.
[0017]
(4) An extension line of the vibration locus of the center of gravity of the vibration mass near the free end passes through the Coriolis force detection electrode. thing.
[0018]
In order to achieve the other object, the vibrating gyroscope of the present invention has the following features.
(5) (1) above Using a sensor vibrating body, the vibration mass of the vibration part has a structure in which the radius of vibration movement changes due to the Coriolis force. Detecting the rotational angular velocity that caused the Coriolis force by changing the half cycle alternately long and short and measuring the change of the half cycle of the subsequent vibration or the time corresponding to the change.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a motion sensor vibrating body for a vibration gyroscope according to a first embodiment of the present invention, where (a) is a plan view, and (b) and (c) are vibrations also showing electrode arrangement and connection. Sectional drawing of a leg, (d) is a diagram showing a bending deformation of a vibrating leg due to fundamental vibration and Coriolis force. In this example, parts having functions similar to those of the first and second conventional examples described above are given the same symbols to avoid duplication of explanation. In addition, it is assumed that the material of the vibrating body is a quartz material (hereinafter, the same applies to other embodiments). The vibrating body is punched out of a quartz Z plate (or a Z ′ plate obtained by rotating it several times around the X axis), and the entire shape and the basic vibration state are in a plane symmetrical with respect to the symmetry axis SA which is the longitudinal direction of each leg. It is vibration. The natural frequency of each leg is equal. The direction of the symmetry axis SA is directed to one Y axis (or Y ′ axis) of the crystal axes. This is a direction in which the main spring portion exhibits a piezoelectric effect, and at the same time, the temperature change of the elastic modulus can be reduced to stabilize the frequency. The vibrator is enclosed in a vacuum container (not shown) in order to eliminate air resistance.
[0020]
The vibrating legs 1R and 1L have a shape in which the axis is greatly bent, and are arranged symmetrically with respect to the symmetry axis SA. The spring part of each leg is divided into bent parts, and is composed of 31R, 31L, 33R, and 33L from the fixed ends 2R and 2L toward the free ends 4R and 4L. Excitation electrodes 6R and 6L are provided on the four surrounding surfaces of the spring portions 31R and 31L as shown in (b), and detection electrodes 7R and 7L are provided on the four surrounding surfaces of the spring portions 33R and 33L as shown in (c). Further, the vibrating leg portions 32R and 32L are short and difficult to bend, so there is no springiness. The portions 34R and 34L have a thick cross section (leg width) to make them rigid and do not use the springiness (this portion is in the X-axis direction). There is no bending-distortion piezoelectric effect and the temperature characteristic of the elastic modulus is poor), and the portions 35R and 35L close to the free end are fixed portions of the additional masses 5R and 5L. The center of gravity GGR, GGL of the total vibration mass of each vibration leg is directly above the rotation centers CR, CL. Incidentally, when tracing from the fixed ends 2R, 2L to the free ends 3R, 3L, for example, the spring portions 32R, 32L and the portions 35R, 35L are turned and bent by 180 ° (the portions 32R, 32L are 270 °). . The center of gravity GGR, GGL of the vibrating mass is surrounded by each part of each vibrating leg at an angle of 270 ° or more.
[0021]
Next, a configuration for balancing the inertial force of the fundamental vibration to be excited will be described. In the first approximation, the center positions of the spring portions 31R and 31L are regarded as the rotation centers CR and CL, and the gravity centers GGR and GGL of the vibration mass are obtained from the mass distribution above the rotation centers CR and CL of each vibration leg. , So that it is directly above each of the rotation centers CR and CL (with the symmetry axis SA vertical) and equal height. More precisely, the shape and mass distribution of each vibrating leg is set in detail, the virtual free vibration is applied to the vibrating body, the finite element method is applied, and the calculated inertial force (the magnitude is the amplitude of each detail). In proportion to the axis of symmetry SA in the vertical direction and in the opposite direction, and the magnitude of the moment of inertia of each detail with respect to each fixed end 2R, 2L cancels out. It is good to determine the mass distribution. The correction of the mass distribution can also be performed experimentally.
[0022]
Next, a rotation detection mechanism will be described. When the vibrating body rotates in the plane, the Coriolis forces FR and FL act on the center of gravity GR and GL of the additional masses 5R and 5L of the vibrating legs in the vibrating body plane, as in the second conventional example. The action lines are the radiuses rR and rL, but the axes of the spring portions 33R and 33L provided with the detection electrodes are shifted from the center of rotation (the shift amounts are arbitrary in principle). And a sufficiently large Coriolis moment can be applied to the spring portions 33R and 33L over its entire length, and highly sensitive detection can be performed. Since the Coriolis force creates a moment in the surface of the vibrating body, it can be detected with high sensitivity using the four-surface electrodes around the legs as in the case of excitation of the basic vibration. In addition, since the detection parts 32R and 32L are different from the excitation parts 31R and 31L, respective dedicated electrodes can be provided.
[0023]
Next, the optimality of the excitation part and the detection part will be examined with reference to the diagram of FIG. For the sake of simplicity, the diagram shows only one side (right leg) that is symmetrical. The thin line is exaggerated and the thick line is exaggerated in the bending shape when excitation or Coriolis inertial force is applied. Since the spring portions 31R and 31L where the excitation electrodes are provided are located farthest from the center of gravity of the total vibration mass, the piezoelectric effect due to the moment of inertia force of the fundamental vibration is the highest, and is optimal as a site where the excitation electrodes are provided.
[0024]
Further, as described above, the four-surface electrode is possible at the spring portions 33R and 33L where the detection is performed, and the Coriolis force moment acts greatly, which is suitable for the detection. However, there is another reason. If the heights of the center of gravity GR and GL of the additional masses 5R and 5L (which are also considered by adding the masses of the vibrating legs 34R, 34L, 35R and 35L themselves) are set appropriately, the left figure of (d) Thus, the action line of inertial force of the additional mass (which is considered to be substantially coincident with the velocity vector UR of the basic vibration of the center of gravity GR) cuts the center of the length of the spring portion 33R (of the electrode portion). Therefore, the moment generated by the inertial force of the additional mass 5R in the spring portion 33R is opposite in the upper half and the lower half of the spring portion (the bending of the diagram is reversed), the piezoelectric effect is canceled out, and the detection electrode 7R has a basic vibration. No effect appears, and a pure detection output without noise (or extremely small) can be obtained. This is one of the excellent characteristics of the present vibrating body for detecting weak Coriolis force with high accuracy, and even if the residual noise is separated in a circuit, it is much more advantageous than the conventional example.
[0025]
Next, details of the vibrator according to the first embodiment will be described. Mainly related to electrode connection pattern. Reference numeral 10 denotes a film-like connection pattern provided on the surface of the vibrating body, and connects the electrode films to each other and the electrode film and the connection pads 29 and 92 group. Through holes 28 and 93 are used for connection between the back surface and the front surface of the vibrator. The connection pads 92 on the base 9 are further interconnected (may be connected on the side of an external circuit (not shown)) if necessary, so that the drive terminals 8V and the detection terminals 8D are appropriately used. Further, when the terminals from the detection electrodes 7R and 7L are pulled out via the surface of the vibration legs, the areas of the excitation electrodes 6R and 6L are cut. This lowers the excitation efficiency and may induce an excitation signal as noise in the lead-out line of the close detection electrode. Therefore, in the present embodiment, the connection pad 29 provided on the bending portion of the vibration leg and the connection pad 92 provided on the auxiliary base 91 side are connected by wire bonding. Reference numeral 30 denotes a bonding wire. Since the amplitude of the basic vibration at a portion where the connection pad 29 is present is relatively small, even this structure is unlikely to be an obstacle. However, this is not an essential structure.
[0026]
2A and 2B show a second embodiment of a vibrating body for a gyro sensor according to the present invention, wherein FIG. 2A is a plan view, FIGS. 2B and 2C are cross-sectional views of a vibrating leg, and FIG. It is a diagram which shows a deformation | transformation. The shape and action of the present embodiment have much in common with the vibrator of the first embodiment described above. In other words, it is folded and bent to surround the center of gravity of the vibration mass, a symmetrical shape, the natural frequency of each leg is equal, the crystal Z plate (or Z 'plate), the inertial force of the basic vibration is balanced Separation of excitation electrode and detection electrode, large moment of Coriolis force at detection electrode part, detection of in-plane rotation, insensitivity of basic vibration in detection electrode, vacuum sealing, connection method (some illustrations omitted) Etc.
[0027]
The feature of this embodiment is that the direction of the axis of each part of the vibrating legs 1R, 1L is a multiple of approximately 60 °. Quartz has three-fold rotational symmetry around the Z axis, and there are X and Y axes of exactly the same nature every 120 °. Therefore, each part of the vibrating leg is made substantially parallel to any of the three Y1, Y2, and Y3 axes. Accordingly, the bending deflection can be detected piezoelectrically in any part of the vibrating leg, and the entire length can be used without waste as a spring part having a cut orientation in which the temperature change of the bending elasticity is relatively small. (As described above, in the first embodiment, the vibration legs 34R and 34L intentionally increase the rigidity to avoid the use as a spring part.) In this example, the spring parts 31R and 31L are used for excitation. 32R, 32L, 33R, 33L, 34R, and 34L are used for detection. (The spring portions 32R and 32L may be changed for excitation.) The electrodes of each portion are added in series with the detection voltage of each portion in consideration of the direction of the Coriolis moment to be detected and the direction of the Y axis of the portion. As shown in FIG. The detection sensitivity is further enhanced by the shape structure of this example.
[0028]
In the present embodiment, unlike the first embodiment, the lead pattern 10 from the detection electrode to the detection terminal passes through a gap generated by dividing the upper electrodes of the excitation electrodes 6R and 6L without going through wire bonding. . The position of the gap is the central part of the width of the spring parts 31R and 31L (the side surface of the neutral plane of bending), and this part is hardly distorted by the fundamental vibration, and both sides are sandwiched between excitation electrodes of the same polarity and equipotential And there is little risk of picking up noise from the excitation effect. Another way of drawing out the same effect is to provide a gap at the center of the bottom surface of the excitation electrodes 6R and 6L, and to place the two lead patterns 10 for the detection electrodes 7R and 7L one above the other. It is a structure to pass through.
[0029]
FIG. 3 shows another embodiment of the gyro sensor vibrating body of the present invention, each of which is formed from a quartz crystal Z plate and utilizes the Y-axis in three directions, (a), (b), (c), (D) is a plan view of each of these examples. (A) is similar to the vibrating body of FIG. 2, but the length of the vibrating body is shortened by eliminating the spring part in the longitudinal direction in the middle of the vibrating leg, and the detection electrodes can be provided on 22R, 22L 23R, and 23L. . (B) is a shape in which two vibrating legs bent in the same direction are arranged in the left-right direction, and the fixed ends 2R and 2L are brought close to each other to improve the transmission of vibration distortion between the vibrating legs. In (c), the vibration legs 1R and 1L are disposed surrounding the base 9, and a large leg is used to achieve a low frequency and a compact electrode shape while aiming for a large electrode area. (D) aimed at simplification and size reduction by further reducing the spring element than (a). Each of them has a bent leg shape that surrounds the vibration leg center of gravity GGR and GGL deeply ((b) the surrounding angle is slightly smaller but still exceeds 180 °), and the balance of the inertial force of the basic vibration For this reason, the radial radii GrR and GrL of the vibration leg centroids are arranged in parallel, and the heights of the centroids GGR and GGL in the radial direction are made equal.
[0030]
Since these gyro sensor vibrators of the present invention give a shape surrounding the center of gravity of the vibrating mass, the vibrating legs are so-called heads. Especially when subjected to impacts from the out-of-plane direction, the legs are closer to the fixed end than a simple tuning fork. Inevitably breaks. The device of the vibrator container for preventing this tendency and obtaining a gyroscope which is not easily damaged will be described. Although not shown below, the base 9 of the vibrator is fixed to a pedestal provided inside the container. In addition, a plate or the like coated with flexible silicon rubber is placed in the container with an appropriate interval in parallel to the surface of the vibration member, with the vibration member interposed therebetween. With this structure, the vibrating body normally does not touch the rubber surface, and the rubber plate receives the vibrating body in a range that does not deform excessively at the time of impact, thereby preventing breakage. The same applies to an accelerometer vibrating body to be described later.
[0031]
FIG. 4 shows an example of an embodiment of a vibrating gyroscope according to the present invention, where (a) is a plan view of a vibrating body, (b) is a block diagram of an excitation and detection circuit, and (c) is a modification of a part of the circuit. FIG. 4D is a waveform diagram for explaining the principle of angular velocity detection. In the vibrating body (a), generally “U” -shaped vibrating legs 1 </ b> R and 1 </ b> L are arranged symmetrically on a crystal Z (Z ′) plate surface and integrated with the base 9. The orientation in the plate is almost as shown, and the rotation of the plate surface is detected. The spring portions of the vibrating legs are 31R, 31L, 33R, 33L (parallel to the Y1 axis), 32R (parallel to the Y2 axis), and 32L (parallel to the Y3 axis), which are good directions of piezoelectric characteristics and temperature characteristics. The spring portions 31R and 31L are the most principal spring portions of the basic vibration, and the excitation electrodes 6R and 6L are provided. The rotation centers CR and CL are generated near the center. The center of gravity GGR, GGL of the entire vibrating leg including the additional masses 5R, 5L is directly above and at the same height as each rotation center, and the inertial force of the basic vibration is balanced.
[0032]
The spring parts 32R, 32L and 33R, 33L can be used to detect Coriolis force by providing detection electrodes as in the first and second embodiments, but this part applies a different detection principle in this example. Is not provided with a detection electrode. (This portion may be covered with an excitation electrode to increase the amplitude of the fundamental vibration.) The detection principle in this example is that the Coriolis forces FR and FL due to in-plane rotation act in the radial direction, and the bent shape of the legs Therefore, it is utilized that the moving masses GrR and GrL of the vibrating mass expand and contract depending on the direction of the Coriolis force (the “U” is slightly bent and vibrates while opening and closing). In general, if the radius of vibration mass increases in the same mass to spring system, the natural vibration period becomes longer, and if the radius decreases, the vibration period becomes shorter. Further, the oscillation circuits 11R and 11L (shown in (b)) allow the vibrating body to freely vibrate. Since the Coriolis force reverses the direction at every half cycle of vibration, each vibrating leg vibrates from end to end of the amplitude by alternately repeating a long half cycle and a short half cycle. Further, since the Coriolis forces FR and FL are in opposite directions, when the half cycle of vibration of one leg is extended, the half cycle of the other leg is shortened.
[0033]
In FIG. 4D, the vertical axis represents the oscillating voltage detected from the excitation electrode (upper side is 1R side, lower side is 1L side), and the horizontal axis is time. The time difference of the vibration half cycle is exaggerated. Since the output waveform of the oscillation circuit has a phase difference of several tens of degrees from the vibration displacement of the leg, if this is regarded as approximately 90 °, the half cycle of the voltage is the half cycle of the vibration mass velocity (the direction of the center of gravity is the same direction) Period), that is, substantially coincides with the half cycle from end to end of the vibration displacement of the center of gravity. Suppose that the zero point of the voltage waveform of each leg is TR1, TR2,..., TL1, TL2,. By measuring the time intervals of (1) TR1 to TR2, (2) TR2 to TR3, or (3) TL1 to TL2, respectively according to the above-described theory, (1) and (2), or (1) and (3 ) Etc., it becomes a function of Coriolis force. In this embodiment, the difference times such as TR1 and TL1, TL2 and TR2, TR3 and TL3,... Are directly counted using a fast clock pulse C.
[0034]
In the measurement circuit diagram of FIG. 4 (b), the excitation electrode of each leg is supplied to the oscillation circuits 11R and 11L interacting with each leg, and the output waveform is supplied by the waveform shaping circuits 12R and 12L if necessary. The amplitude, waveform, and phase are corrected so that stable detection is possible. Further, pulse signals at the time points of the waveform zero points TR1, TL1, TL2, TR2,... Are output by the level detection circuits 13R and 13L, and their intervals are measured by the time difference measurement circuit 14. That is, the signal C output from the stable high-frequency clock source 15 is counted. The correction circuit 16 corrects the nonlinearity of the measurement result. The measurement result is displayed on the display device 17.
[0035]
(C) is a circuit block diagram of a modification in which this embodiment is partially modified. In this case, detection electrodes are provided on the springs 32R, 32L, 33R, 33L and the like on the vibrating body side (not shown). The detection electrode output of each vibration leg includes a small amount of voltage due to Coriolis force, but most is a voltage proportional to the vibration displacement. This is directly amplified by the amplifiers 18R and 18L and applied to the level detection circuits 13R and 13L. The following is the same as the original form (b) of the present embodiment. However, the level detection circuits 13R and 13L are configured to detect a peak or bottom time point instead of a zero point of the voltage waveform.
[0036]
FIG. 5 shows a vibrating body for a linear acceleration sensor which is still another embodiment of the present invention, and (a) and (b) are plan views thereof. Each is formed of a crystal Z plate, and the spring portion has three or six vibrating legs parallel to the Y1, Y2, and Y3 axes. Although this sensor body is referred to as a vibrating body, it is not necessary to excite it when measuring only linear acceleration. However, the main part of the sensor is a cantilever member (mass-spring system) that has mass and bending elasticity like the leg of a tuning fork and has a shape that allows free vibration by stimulation without an excitation electrode. Is vibrated and may also be used as a gyroscope sensor or the like. When excitation is not performed, the vibrating body may be sealed in an airtight container instead of in a vacuum.
[0037]
The acceleration sensor vibrating body (a) is composed of three legs. When the base portion 9 performs linear acceleration motion parallel to the vibrating body surface and the inertial force acts on the vibrating legs 1A, 1B, and 1C to bend in the vibrating body surface, the distortion is shown in FIG. 1 (c) 7R or 7L. Such four-surface detection electrodes (not shown) are provided for detection. If the structure of each leg and the detection electrode is exactly the same, the deflection of each leg, that is, the positive / negative ratio of the detection voltage and the ratio are proportional to the sine of the angle between the leg axis and the direction of acceleration. The size and in-plane direction / direction can be calculated.
[0038]
For reference, this vibrator can be used in other ways. If the vibration legs are excited and designed so that the vibration locus of each center of gravity (illustrated by an arrow) is directed to one point at the center, the balance of inertial force can be substantially taken. A Coriolis force is generated in a direction perpendicular to the surface with respect to rotation about an axis parallel to the vibrating body surface. Therefore, if each leg is excited and a detection electrode having a structure as shown in FIG. 6 (b) 7L is provided, the magnitude / direction of the angular velocity vector can be calculated from the three detection voltages. It can also be a sensor.
[0039]
The acceleration sensor vibrating body in (b) has six legs, the legs 1A and 1D are parallel to the Y1 axis, the legs 1B and 1E are parallel to the Y3 axis, and the legs 1C and 1F are parallel to the Y2 axis. The detection terminal 8D group is provided on the base 9 disposed outside to facilitate connection with an external circuit. A biaxial acceleration sensor can be configured in accordance with the three-legged vibrating body of (a) using three pairs of legs in the same direction, but in this example legs 1A, 1B, 1C Can be used to detect the acceleration in the plane of the vibrating body, and to detect out-of-plane acceleration (perpendicular to the plane) using the legs 1D, 1E, and 1F. The legs 1A, 1B and 1C may be provided with detection electrodes having the structure shown in FIG. 1C, and the legs 1D, 1E and 1F may be provided with detection electrodes having the structure shown in FIG. 6B and 7L. Since the acceleration in the vertical direction can add the detection voltage for the three legs, the low detection sensitivity in this direction can be compensated.
[0040]
For reference again, the vibrating body (b) can also be used as a gyro sensor. There are two basic vibration modes that can be balanced. The first is a mode in which every other leg vibrates in the opposite direction to the outside of the vibrating body surface, which is excited by providing an electrode of the same structure as that for detecting out-of-plane bending. The axis of rotation that can be detected is parallel to the surface of the vibrating body, and the deflection of each leg due to the Coriolis force is also in-plane. The second is a mode in which the interval between adjacent legs changes in the plane of the vibrating body, and the interval between legs at a certain moment is every other large, small, large, small, large, and small as shown by arrows. Then, the Coriolis force by the rotation axis parallel to the vibrating body surface is detected as out-of-plane vibration of each leg. It is not impossible to detect in-plane rotation. For that purpose, an eccentric mass is provided on the same side of each leg as shown in (c) (even if the amount of eccentricity is large, the eccentric arm is parallel to each Y axis). In the same manner as in the second conventional example, in-plane bending due to Coriolis force is induced and detected.
[0041]
Although various embodiments of the present invention have been described above, application examples of the present invention are not limited to those already described. For example, the material of the vibrator is not limited to quartz, but may be other piezoelectric single crystals (the refraction angle of the spring portion is determined according to the cut angle and the symmetry of the crystal). In addition, there may be cases where a piezoelectric ceramic is used, or a metal having a piezoelectric element attached thereto. Also in these cases, the position of the electrode film on the vibrating body conforms to the case described above. The shape of the vibrating legs (for example, gently folding or spiraling with porcelain or metal vibrating bodies, or with the free ends of the legs facing outwards, or a pair of legs with different shapes), and any number of vibrating legs There are various types of additional mass positions and shapes (possibly with no weight member), base shapes, excitation and detection electrode positions, connection patterns and terminal arrangements, etc. obtain. The same applies to the vibrating body and the detection circuit configuration in the vibrating gyroscope.
[0042]
【The invention's effect】
The motion sensor vibrating body of the present invention can achieve the following effects by the configuration of claims 1 to 2.
(1) Small and thin (possibly because the main part is in one plane).
(2) Easy to manufacture (because of the planar shape and the minimum number of vibrating legs requiring adjustment).
(3) High vibration body quality (because the inertial force of basic vibration is balanced as a whole).
(4) In-plane rotation can be detected (depending on overall configuration, also related to thinning).
(5) Sensitivity of detection is possible (sites suitable for excitation and detection can be provided, each electrode can be provided, the effective length of the detection electrode can be increased, and four legs can be used, bending The shape can increase the mass for detecting the Coriolis force and the moment at the detection site, and can reduce the noise-like piezoelectric effect due to the excitation vibration at the detection site).
[0043]
Moreover, although the structure of claim 3 is added and the vibration leg is bent, the same piezoelectric and elastic properties can be given to each part of the leg, and the following various effects are obtained.
(6) Each part of the leg can be effectively used piezoelectrically for detection (and excitation).
(7) The elastic properties of the legs (for example, temperature characteristics of elastic modulus) can be kept relatively good.
(8) Accordingly, the piezoelectric single crystal is effectively used as the material of the sensor vibrating body, thereby enabling highly accurate detection.
(9) It is possible to use a quartz material that is particularly weak in piezoelectric effect but excellent in elastic properties.
[0044]
The configuration of claim 4 has the following effects.
(10) The piezoelectric effect due to the fundamental vibration of the vibrating mass can be made difficult to appear on the Coriolis force detection electrode.
(11) Therefore, weak Coriolis force can be detected with low noise.
[0045]
The configuration of claim 5 has the following effects.
(12) It was possible to provide a vibration gyroscope based on a novel detection principle that can easily digitize the detection output.
(13) In some cases, the configuration of the vibrator can be simplified by eliminating the need for the detection electrode.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of a motion sensor vibrating body for a vibration gyroscope according to the present invention, where (a) is a plan view, and (b) and (c) are vibrations that also show electrode arrangement and connection. Sectional drawing of a leg, (d) is a diagram showing a bending deformation of a vibrating leg due to fundamental vibration and Coriolis force.
FIGS. 2A and 2B show a second embodiment of a motion sensor vibrating body for a vibration gyroscope of the present invention, FIG. 2A is a plan view, FIG. 2B is a diagram showing bending deformation of a vibration leg, and FIG. And (d) are cross-sectional views of the vibrating legs.
FIGS. 3A and 3B show other embodiments of the vibration sensor vibrating body for the vibration gyroscope of the present invention, and FIGS. 3A and 3B are plan views of the respective examples. FIGS. .
4A and 4B show an embodiment of a vibrating gyroscope of the present invention, in which FIG. 4A is a plan view of a vibrating body, FIG. 4B is a block diagram of an excitation and detection circuit, and FIG. (D) is a waveform diagram for explaining the principle of angular velocity detection.
FIGS. 5A and 5B show an embodiment of a motion sensor vibrating body for an accelerometer capable of detecting multi-directional linear acceleration according to the present invention, and FIGS. 5A and 5B are plan views of examples thereof. FIGS.
6A and 6B show a motion sensor vibrating body for a vibration gyroscope of a first conventional example, where FIG. 6A is a plan view and FIG. 6B is a cross-sectional view of a vibration leg.
7A and 7B show a motion sensor vibrating body for a vibration gyroscope of a second conventional example, where FIG. 7A is a plan view and FIG. 7B is a sectional view of a vibration leg.
[Explanation of symbols]
1A, 1B, 1C, 1D, 1E, 1F, 1R, 1L Vibration leg (or leg)
2R, 2L fixed end
3R, 3L, 31R, 31L, 32R, 32L, 33R, 33L Spring part
34R, 34L, 35R, 35L (vibrating leg)
4R, 4L Free end
5R, 5L additional mass
6R, 6L excitation electrode
7R, 7L detection electrode
8D detection terminal
8V excitation terminal
9 Base
91 Auxiliary base
10 Lead pattern
29, 92 Connection pad
28, 93 Through hole
30 Bonding wire
11R, 11L oscillator
12R, 12L waveform filter
13R, 13L Zero level detection circuit
14 Time difference measurement circuit
15 High frequency clock source
16 Correction circuit
17 Display device
C clock pulse
CR, CL Rotation center
GR, GL Center of gravity of additional mass
GGR, GGL Center of gravity of vibrating mass
FR, FL Coriolis force
rR, rL Radius of additional mass
GrR, GrL Radius of vibrating mass
UR, UL velocity vector
SA symmetry axis
Ω Angular velocity

Claims (5)

実質的に一つの平面内に複数の片持ち振動脚を有し、該振動脚の少なくとも一つは固定端から自由端へと辿るとき当該振動脚の振動質量の重心が該振動脚の各部によって270°以上の角度で包囲されるような屈曲した形状を備えると共に、前記複数の振動脚が前記平面内で自由振動するときそれらの振動質量の重心の振動軌跡がほぼ同一直線上にあるようにして励振される振動の慣性力が全体としてほぼ相殺されるように設定され、前記屈曲した形状の表面に少なくとも励振用の電極を設けたことを特徴とする振動ジャイロスコープ用の運動センサ振動体。Substantially has a plurality of cantilever vibration legs in one plane, at least one center of gravity of the seismic mass and can those the vibrating legs traced to a free end from the fixed end of the vibrating legs of the vibrating leg It has a bent shape that is surrounded by each part at an angle of 270 ° or more, and when the plurality of vibrating legs freely vibrate in the plane, the vibration locus of the center of gravity of their vibrating mass is substantially collinear. The motion sensor vibration for a vibration gyroscope is set so that the inertial force of the vibration excited as described above is substantially canceled as a whole, and at least an excitation electrode is provided on the bent surface. body. 前記励振用の電極を前記振動脚の固定端に近い部分の4側面に設け、またコリオリ力検出用の電極を前記励振用の電極よりも前記自由端に近くかつ前記振動質量の重心を包囲している部分の少なくとも一部に設けたことを特徴とする請求項1に記載の運動センサ振動体。The excitation electrode is provided on four side surfaces of the portion near the fixed end of the vibration leg, and the Coriolis force detection electrode is closer to the free end than the excitation electrode and surrounds the center of gravity of the vibration mass. The motion sensor vibrating body according to claim 1 , wherein the vibration sensor vibrating body is provided in at least a part of the portion. 各振動体の材質は単結晶材より成り、折れ線状に屈曲しており、前記折れ線状の屈曲部の内の少なくとも2つの方向は、前記単結晶材の有する複数の同種の結晶軸のうち少なくとも2つとほぼ等しい角度をなしていることを特徴とする請求項1あるいは2に記載の運動センサ振動体。The material of each vibrator is made of a single crystal material and is bent in a polygonal line, and at least two directions of the bent part of the polygonal line are at least of a plurality of the same kind of crystal axes of the single crystal material. The motion sensor vibrating body according to claim 1 , wherein the motion sensor vibrating body has an angle substantially equal to two. 前記自由端付近の振動質量の慣性力の作用線が前記コリオリ力検出用の電極を設けた部分を通ることを特徴とする請求項2または3に記載の運動センサ振動体。 The motion sensor vibrating body according to claim 2 or 3, wherein an action line of inertial force of a vibrating mass near the free end passes through a portion provided with the Coriolis force detection electrode . 請求項1に記載の運動センサ振動体を使用し、前記振動部の振動質量はコリオリ力によって振動運動の動径が変化する構造を有していて、振動の方向転換ごとに方向が反転するコリオリ力の効果によって振動運動の半周期が長短交互に変化するようにし、引き続く振動の半周期の変化あるいは該変化に相当する時間を計測することによって前記コリオリ力を生じさせた回転角速度を検知することを特徴とする振動ジャイロスコープ。 The motion sensor vibrating body according to claim 1 is used, and the vibration mass of the vibration part has a structure in which the radial diameter of the vibration motion is changed by Coriolis force, and the direction is reversed every time the vibration direction is changed. Detecting the rotational angular velocity that caused the Coriolis force by making the half-cycle of vibrational motion change alternately by the effect of force and measuring the half-cycle change of the subsequent vibration or the time corresponding to the change. Vibrating gyroscope characterized by.
JP29719199A 1999-09-13 1999-09-13 Motion sensor vibrator and vibratory gyroscope Expired - Fee Related JP3998049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29719199A JP3998049B2 (en) 1999-09-13 1999-09-13 Motion sensor vibrator and vibratory gyroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29719199A JP3998049B2 (en) 1999-09-13 1999-09-13 Motion sensor vibrator and vibratory gyroscope

Publications (2)

Publication Number Publication Date
JP2001082963A JP2001082963A (en) 2001-03-30
JP3998049B2 true JP3998049B2 (en) 2007-10-24

Family

ID=17843372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29719199A Expired - Fee Related JP3998049B2 (en) 1999-09-13 1999-09-13 Motion sensor vibrator and vibratory gyroscope

Country Status (1)

Country Link
JP (1) JP3998049B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033371A (en) * 2005-07-29 2007-02-08 Kyocera Kinseki Corp Inertial sensor element
CN103278147B (en) * 2006-01-24 2015-11-04 松下电器产业株式会社 Inertia force sensor
JP4183272B2 (en) * 2006-02-21 2008-11-19 マイクロストーン株式会社 Angular velocity sensor and measuring method of angular velocity
JP2007256235A (en) * 2006-03-27 2007-10-04 Matsushita Electric Ind Co Ltd Inertia force sensor
JP4687789B2 (en) * 2006-07-21 2011-05-25 株式会社村田製作所 Tuning fork type vibrator and vibration gyro using the same
WO2008010337A1 (en) * 2006-07-21 2008-01-24 Murata Manufacturing Co., Ltd. Tuning fork-shaped vibrator and vibration gyro using the same
EP2063224A4 (en) * 2006-08-21 2012-05-09 Panasonic Corp Angular velocity sensor
JP5205725B2 (en) * 2006-08-21 2013-06-05 パナソニック株式会社 Angular velocity sensor
JP2008190972A (en) * 2007-02-05 2008-08-21 Matsushita Electric Ind Co Ltd Angular velocity sensor
JP4858215B2 (en) * 2007-02-20 2012-01-18 パナソニック株式会社 Compound sensor
WO2008102535A1 (en) * 2007-02-20 2008-08-28 Panasonic Corporation Inertia force sensor and composite sensor for detecting inertia force
WO2009034682A1 (en) * 2007-09-13 2009-03-19 Panasonic Corporation Angular velocity sensor
JPWO2009044522A1 (en) * 2007-10-01 2011-02-03 パナソニック株式会社 Inertial force sensor
JP4626858B2 (en) * 2008-03-31 2011-02-09 Tdk株式会社 Angular velocity sensor element
CN103250028A (en) 2010-12-28 2013-08-14 松下电器产业株式会社 Angular velocity sensor
WO2013018788A1 (en) * 2011-08-01 2013-02-07 株式会社村田製作所 Oscillator and oscillating gyroscope

Also Published As

Publication number Publication date
JP2001082963A (en) 2001-03-30

Similar Documents

Publication Publication Date Title
JP3998049B2 (en) Motion sensor vibrator and vibratory gyroscope
US5392650A (en) Micromachined accelerometer gyroscope
US7004024B1 (en) Horizontal and tuning fork vibratory microgyroscope
JP4214123B2 (en) Tuning fork type vibrating MEMS gyroscope
JP4814715B2 (en) Temperature compensation mechanism of micro mechanical ring vibrator
JP3834397B2 (en) Rate sensor
JP5514384B2 (en) Vibration micro-mechanical sensor for angular velocity
US20030131664A1 (en) Angular velocity sensor
JP2006525514A (en) Microfabricated multi-sensor for uniaxial acceleration detection and biaxial angular velocity detection
JP3307906B2 (en) Micro gyroscope
JP2000509812A (en) Rotational speed gyroscope preventing mutual interference between orthogonal primary and secondary vibrations
JP2008545128A (en) Micromachined gyrometer sensor for differential measurement of vibration mass motion
US6966224B2 (en) Micromachined vibratory gyroscope with electrostatic coupling
JP2000009471A (en) Angular velocity sensor
JP2000074673A (en) Compound movement sensor
JP2002213962A (en) Angular velocity sensor and its manufacturing method
JP4370432B2 (en) Angular acceleration sensor
JP3138518B2 (en) Gyro device
JPH11230760A (en) Semiconductor vibration gyro sensor
JP3307101B2 (en) Angular velocity sensor
JP3181368B2 (en) Gyro device
JPH05322579A (en) Gyroscopic device
JP2007178300A (en) Tuning-fork type vibrator
RU2018133C1 (en) Inertial primary information sensor
RU2073209C1 (en) Vibratory gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees