JP3997941B2 - Dust collector - Google Patents
Dust collector Download PDFInfo
- Publication number
- JP3997941B2 JP3997941B2 JP2003091188A JP2003091188A JP3997941B2 JP 3997941 B2 JP3997941 B2 JP 3997941B2 JP 2003091188 A JP2003091188 A JP 2003091188A JP 2003091188 A JP2003091188 A JP 2003091188A JP 3997941 B2 JP3997941 B2 JP 3997941B2
- Authority
- JP
- Japan
- Prior art keywords
- dust
- electrode plate
- electrode
- dust collector
- positive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrostatic Separation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、空調及び産業分野で大気塵、室内の粉塵、ほこりなどを集塵し、また、集塵すると同時に脱臭や除湿など他の空気清浄および空気浄化作用を行う機能を付加した集塵装置に関するものである。
【0002】
【従来の技術】
従来、この種の集塵装置としては、例えば特開平6−31200号公報に記載されたものが知られている。以下、その集塵装置について図8を参照しながら説明する。図8に示すように、荷電部101は線状電極102と通常アースに接続されてゼロの電位を持つ対向電極板103とからなり、イオン放出手段としての役割を果たしている。荷電部101の通風方向下流側にプラス電極板105とマイナス電極板106とからなる集塵部104を設けている。通常、荷電部101においては線状電極102と対向電極板103の間に5〜15kV、また、集塵部104のプラス電極板105とマイナス電極板106の間に2〜6kVの電位差を持つように高圧安定化電源107によって線状電極102およびプラス電極板105にそれぞれ高電圧が印加されている。上記構成において、荷電部101では線状電極102に高電圧が印加されており、線状電極102近傍に非常に強い電界が作られている。そのため空気中の電荷をもつ物質が空気分子と衝突を起こし、空気分子から電子が分離したり、分離した電子が他の空気分子に付着したりして空気イオンとなる。これを空気のイオン化と呼ぶことにする。そして、対向電極板103の間に存在する空気が絶縁破壊を起こし、一定の大きな放電電流を伴いながら空気のイオン化が起こる放電現象をコロナ放電というが、コロナ放電によって作られたイオンが集塵装置に供給された空気に含まれる粉塵に付着して粉塵を帯電させる。帯電した粉塵は送風の流れにそって集塵部104に導入され、プラス電極板105とマイナス電極板106との電界の力を受けて両電極板のどちらかに付着して取り除かれ、清浄な空気が集塵部104後方から吹出される。また上記従来例では、放電電極に線状のものを示したが、他に不平等電界を形成するような形状、例えば針状の電極を用いても同様で、針状電極の先端と対向電極板103の間で一定電流が流れた状態でコロナ放電が生じ、同様の機構で粉塵が帯電されて捕集される。
【0003】
また、集塵部104を濾材108に置き換えたタイプの集塵装置が従来から知られている。以下、その集塵装置について図9を参照しながら説明する。図9に示すように、通風方向から順に、線状電極102と対向電極板103とからなる荷電部101と濾材108が設けられている。濾材108の後ろには通気性のある導電性シート109が設置されており、アースに接続されている。通常、荷電部101においては線状電極102と対向電極板103の間に5〜15kVの電位差を持つように高圧安定化電源107によって線状電極102に電圧が印加されている。
【0004】
上記構成において、荷電部101では前述したように線状電極102に電圧を印加することにより、線状電極102近傍でコロナ放電を起こして粉塵を帯電すると同時に、線状電極102と導電性シート109の間に電界が発生し、その電界によって濾材108は分極される。そして濾材108の中に導入された帯電粉塵は、濾材内部の分極電場に沿って濾材繊維表面へ向かう力を受ける。その結果濾材に捕集されやすくなり、濾材108の集塵性能は高められるが、線状電極102を用いたコロナ放電を起こしているため放電電流は大きく、また、対向電極板を設けているために濾材と線状電極の間の電界も強くならず、結果として濾材108の分極の度合いは小さい。
【0005】
【特許文献1】
特開平6−31200号公報
【0006】
【発明が解決しようとする課題】
このような従来の集塵装置では、集塵部における極性の異なる電極どうしの間隔が大きくなるにしたがって電極に捕集されるまでの粉塵の移動距離が増加するため性能が低下する。また、粉塵を含む空気を通過させるために極性の異なる電極を、一定の空間をあけながら積層することが必要であり、そのため電極の表面におくスペーサー、もしくはそれに代わる電極表面の突起加工が必要となる。特に電極表面に突起を設ける場合は極性の異なる電極どうしが接触しないようにするために、電極を絶縁体で被覆することが必要となるため生産性が悪く材料コストも高いという課題があり、簡単な構造で高い集塵性能を実現する集塵装置が要求されている。
【0007】
また、従来の電気式集塵装置は材料として金属や樹脂を用いることが多いため加工が難しくコストが高いという課題があり、加工性がよく安価な材料を用いて低コストを実現することが要求されている。
【0008】
また、従来の集塵装置では、集塵作用に特化したものがほとんどで、有害ガスの捕集や分解といった他の作用がないという課題があり、集塵作用以外の空気清浄・調和作用を持つ集塵装置が求められている。
【0009】
また、従来の集塵装置では、集塵性能や装置の美観を維持するために捕集した粉塵を水洗いなどで定期的に取り除く必要があるという課題があり、捕集した粉塵を分解することが可能な集塵装置が求められている。
【0010】
また、荷電部と集塵部を別々に構成する構造は高コストになるという課題があり、荷電部と集塵部を一体化した構造とすることが要求されている。
【0011】
また、放電電極が単極性のみの場合、装置近傍を帯電させることがあるためそれが汚れの原因となることがあるという課題があり、装置近傍を帯電させないようにすることが要求されている。
【0012】
また、イオン放出手段からオゾンが多量に発生するという課題があり、オゾンを出さないで粉塵を帯電することが要求されている。
【0013】
本発明はこのような従来の課題を解決するものであり、簡単な構造で高い集塵性能を実現し、また、加工性がよく安価な材料を用いることで低コストを実現し、また、集塵以外の空気清浄作用をもたらし、また、捕集した粉塵を分解することができ、また、近傍への影響をなくして集塵性能を最大限に発揮することができ、オゾン発生量を微小なものにすることができる集塵装置を提供することを目的としている。
【0040】
【課題を解決するための手段】
本発明の集塵装置は、上記目標を達成するため、請求項1記載の集塵装置は、セル構造を持つ絶縁体を挟みながらマイナス電極板とプラス電極板を交互に積層し、交互に積層された前記マイナス電極板の端部と前記プラス電極板の端部に先端の尖った突起状電極を設け、前記マイナス電極板にマイナス電圧を印加し、前記プラス電極板にプラス電圧を印加し、プラスイオンとマイナスイオンを等量出すように前記プラス電極板に+3.1kVの電圧を印加し前記マイナス電極板に−2.9kVの電圧を印加し放電させて集塵することを特徴とする。また、請求項2記載の集塵装置は、セル構造を持つ絶縁体を挟みながらマイナス電極板とプラス電極板を交互に積層し、交互に積層された前記マイナス電極板の端部と前記プラス電極板の端部に設けられた、先端の尖った突起状電極の前方に、突起状電極の先端を囲むように格子状電極を設置し、これをゼロ電位とし、前記マイナス電極板にマイナス電圧を印加し、前記プラス電極板にプラス電圧を印加し、プラスイオンとマイナスイオンを等量出すように前記プラス電極板に+3.1kVの電圧を印加し前記マイナス電極板に−2.9kVの電圧を印加し放電させて集塵することを特徴とする。
以上
【0041】
そして、本発明によれば、プラスマイナスのイオンを同時に放出することが可能な集塵装置が得られる。
【0061】
【発明の実施の形態】
本発明の集塵装置は、交互に積層された極性の異なる電極板を、ゼロ電位に対してそれぞれプラスおよびマイナスの極性にすることを特徴とする。端部に尖った突起を設けた電極板をプラスとマイナスの極性にしてセル構造を持つ絶縁体を挟みながら交互に積層することにより、プラス極性の電極板の突起からプラス極性のイオンが、マイナス極性の電極板の突起からマイナス極性のイオンがそれぞれ同時に放出される。そうすることよって粉塵をプラス極性かマイナス極性のどちらかに帯電し、集塵部の電界の力を受けて捕集されるが、捕集し切れなかった粉塵やイオンはプラス極性のものとマイナス極性のものが等量くらいで装置から出てくるため、捕集し切れなかった粉塵同士が電荷を打ち消しあうことで装置近傍に付着せず、また、装置近傍の帯電を電気的に中和することができるという作用を有する。
【0065】
【実施例】
(実施例1)
まず、図13に示すような従来の集塵装置に基づいて実験装置を作成した。図13を用いて装置の説明を行うと、開口寸法132mm×122mmのダクトの途中に、線径0.15mm、長さ132mmのタングステン製の線を用いた線状電極102をダクトの断面方向に20mmの間隔で6本設置し、その真中に来るように通風方向から見て奥行き長さ16mm、幅132mmの鋼製対向電極板103を等間隔に設置した荷電部101を設けた。線状電極102に−5.8kVの電圧を印加することにより50μAの放電電流が流れるコロナ放電を発生させ、線状電極102近傍で空気が容易にイオン化するようになっている。そして、ダクト最後方に送風機を設けてダクト内送風風量0.48m3/minの条件で通風し、集塵効率η(%)と発生オゾン濃度(ppb)を測定した。この時のダクト風速は約0.5m/sである。集塵効率はリオン製パーティクルカウンターKC−01Cを用い、荷電部101の直前と集塵部104の直後の粉塵濃度を測定して求めた。粉塵濃度は係数法で測定し、0.167リットルの空気をサンプリングしてその中に含まれる粒径0.3μm以上の粉塵の全個数を測定して求めた。荷電部101直前の粉塵濃度をCf、集塵部104直後の粉塵濃度をCbとすると、集塵効率ηは次式で求めることができる。
【0066】
η =(1 − Cb/Cf)×100 (%)
発生オゾン濃度は集塵部104直後のダクト内空気をサンプリングし、荏原実業製オゾンモニターEG2001Fを用いて測定を行った。単位はppbであり、10億分の1の質量濃度を示す。
【0067】
それぞれの集塵装置の条件詳細及び構成について図1、2、3、4、5、6、7、8および13を用いて説明し、それぞれの集塵装置の実験結果を表1に示した。
【0068】
【表1】
【0069】
比較例であるNo.1の集塵装置は従来例の図13と同じ構成であり、厚さ0.5mm、奥行き20mm、幅132mmのステンレス鋼板を10mm間隔で重ね、一枚おきにステンレス鋼板をアースに接続してプラス電極板105(電位はゼロ)とし、プラス電極板105を挟むようにして両側に位置するステンレス鋼板に−6kVの電圧を印加することによってマイナス電極板106とすることによって作られた集塵部104を前述の荷電部101の後ろに設置したものである。そして高圧安定化電源107を用いて荷電部101の線状電極102に−5.8kVを印加した。この集塵部104の集塵効率は表1に示すように43%となり、高い集塵性能は得られなかった。また、荷電部101の線状電極102はマイナス極性の電圧を印加して50μAのコロナ放電を起こしているため、オゾン発生濃度が56ppbと高い値になった。
【0070】
参考例であるNo.2の集塵装置の構成を図1に示す。荷電部101は比較例であるNo.1で示した従来のものをそのまま使用している。そして集塵部104は、厚さ0.5mm、奥行き20mm、幅132mmのステンレス鋼板を、ポリプロピレン製の波状シートと平状シートを積層することによってコルゲート状のセルを多数持たせた絶縁体ハニカム1を挟みながら10mm間隔で重ね、一枚おきにステンレス鋼板をアースに接続してプラス電極板105(電位はゼロ)とし、プラス電極板105を挟むようにして両側に位置するステンレス鋼板に−6kVの電圧を印加することによってマイナス電極板106とした構造となっている。絶縁体ハニカム1の寸法は高さ10mm、奥行き20mmであり、幅約2.5mm×高さ約1.7mm×奥行き20mmのコルゲート状のセルを100mm2の断面積あたり約24個持っている。この構成で線状電極102に−5.8kVの電圧を印加したところ集塵効率は77%となり、比較例であるNo.1の集塵装置に比べて高い集塵性能を示した。これは捕集されるのに必要な粉塵の平均移動距離を電極板の距離の半分と仮定すると、細かいセルを持つ絶縁体ハニカム1を電極板の間に設けたことで、今まで5mmだったのが0.8mm程度となり約1/6になって粉塵が捕集されやすくなったことによる。また、電極板の間に弾力性のある絶縁体ハニカム1が設けられたことによって、No.1の集塵部102に比べて押す力に対する強度が向上し、変形しにくくなることがわかった。
【0071】
参考例であるNo.3の集塵装置の構成はNo.2と同じであるが、セルを形成する波状シートと平状シートが表裏で分極している絶縁体ハニカム1を用いた。絶縁体ハニカム1のシートの分極が電極板の間の電界の向きと逆になるように設置すると集塵効率は99%となり、非常に高い性能を示した。セルを形成するシートを表裏の方向に分極することにより、セルの中でさらに強い電界が形成されたためであると考えられる。また、表1には記載していないが、シートの分極が電極板の間の電界の向きと同じになるように設置したところ集塵効率は90%となった。これはセルを形成するシートが電極板の間の電界と逆の方向となるように分極されることによる。
【0072】
参考例であるNo.4の集塵装置の構成を図3に示す。集塵部104の構成はNo.3とほぼ同じであるが、底辺が3mmで底辺から頂点までの長さが5mmとなる三角形状となるように厚さ0.3mmのアルミ板を加工して作った突起状電極2をマイナス電極板106の上流側端部に45mmの間隔で設け、そしてNo.1、2、3の集塵装置では用いた従来型の荷電部101を実験装置から外したものである。今回の実験にあたっては図2に示すとおり1枚の電極に対して3つ設けられ、6枚のマイナス電極板106を使用していることから計18個の突起状電極が設けられている。そしてこの突起状電極2はマイナス電極板106と電気的につながっているためにマイナス電極板106と同じ−6kVが印加される。そしてプラス電極板105との間で1.2μAの放電電流が流れる放電を起こすことによって空気を電離しイオンを放出している。そして集塵効率を測定したところ94%となり、非常に高い集塵性能を示した。また、このように集塵部でイオンを放出できる構造とすることにより、線状電極102を用いた従来型の荷電部101を省くことができ、装置全体の寸法も小さくすることができた。また、オゾン発生濃度を測定したところ2ppb以下となり、放電電流を低減してイオンのみを発生させることで、十分な集塵性能を持ちながらオゾン発生量を極微小なものにできることがわかった。
【0073】
参考例であるNo.5の集塵装置の構成を図3に示す。基本的な構造はNo.4とほぼ同じであるが、三角形状の突起状電極2の代わりに長さが8mmで先端が鋭く尖った鋼製の突起状針電極3をマイナス電極板の風上側端部に設けたものである。この突起状針電極3にはマイナス電極板106と同じ−6kVが印加され、プラス電極板105との間で1.5μAの放電電流が流れる放電を起こすことによって空気を電離しイオンを放出している。そして集塵効率を測定したところ98%となり、No.4以上に高い集塵性能を示した。突起状電極2をより尖った針状にすることにより、さらに効率よくイオンを放出できることがわかった。また、オゾン発生濃度を測定したところ、No.4と同様に2ppb以下となり、放電電流を低減してイオンのみを発生させることで、十分な集塵性能を持ちながらオゾン発生量を極微小なものにできることがわかった。
【0074】
比較例であるNo.6の集塵装置の構成を図4に示す。図4に示すとおり、No.4の集塵装置の突起状電極2から30mm前の位置にメッシュ数10/inchのステンレス製の網状対向電極4を設け、網状対向電極4をアースに接続してゼロ電位としたものである。三角形状の突起状にはマイナス電極板106と同じ−6kVが印加され、プラス電極板105および網状対向電極4との間で合計12μAの放電電流が流れる放電を起こすことによって空気を電離しイオンを放出している。しかしながら70%しか集塵効率は得られず、No.4よりも低い集塵性能を示した。突起状電極2の先端から最も近い垂直位置に対向電極を置くと、先端と対向電極を線で結ぶ狭い範囲にしかイオンが放出されなくなり、イオンが突起状電極2の前方に均一に広がらなくなることがわかった。また、オゾン発生濃度を測定したところ5ppbとなり、No.4に比べてわずかに大きくなった。これは突起状電極2の先端から最も近い位置に対向電極が設けられると、放電電流が増加してオゾン発生量も増加してしまうことが原因である。
【0075】
比較例のNo.6に対する参考例であるNo.7の集塵装置の構成を図5に示す。図5に示すとおり、No.4の突起状電極2から30mm前の位置に突起状電極2の先端を中心にして45mmの間隔で突起状電極2を挟むように幅3mm厚さ0.2mmのステンレス製の格子状対向電極5を設け、格子状対向電極5をアースに接続してゼロ電位としたものである。三角形状の突起状にはマイナス電極板106と同じ−6kVが印加され、プラス電極板105および格子状対向電極5との間で合計4μAの放電電流が流れる放電を起こすことによって空気を電離しイオンを放出している。そして集塵効率を測定したところ99%となり、No.4以上に高い集塵性能を示した。格子状対向電極5を突起状電極2が挟まれるように前方に設けることで、突起状電極2先端の手前の狭い範囲だけではなく前方の広い範囲に均一に広がるようにイオンを放出することができることがわかった。また、オゾン発生濃度を測定したところ、No.4と同様に2ppb以下となり、放電電流を低減してイオンのみを発生させることで、十分な集塵性能を持ちながらオゾン発生量を極微小なものにできることがわかった。
【0076】
以上のことをまとめると、比較例であるNo.1で示したように絶縁体ハニカム1を電極板の間に挟まない場合、集塵性能は低い。参考例であるNo.2またはNo.3で示したように、細かいセルを持つ絶縁体ハニカム1を電極板の間に挟む構造にした場合、高い集塵性能を実現することができる。また、線状電極102を用いた従来型の荷電部101を用いた場合、オゾン発生量が非常に多い。参考例であるNo.4またはNo.5で示したように放電電流を数μA程度にしてイオンのみを発生させている場合は、集塵性能を維持しながらオゾン発生を極力抑制することができている。そして集塵部にイオンを放出する手段を設けることによって集塵装置全体の寸法をコンパクトにすることができることがわかった。また、集塵部104の電極板に突起状電極2を設けて集塵部とイオン放出手段を一体化した構造においては突起状電極2の先端から最も近い垂直位置ではなく、No.6に示すような格子状対抗電極5を、突起状電極2を挟むように手前に設けることで突起状電極2の前方に均一に広がるようにイオンを放出することができるようになり、より高い集塵性能が得られることがわかった。
【0077】
次に以下に示すそれぞれの集塵装置において、プラスおよびマイナスイオンの発生量がどの程度であるのかを評価した。空気イオン濃度は集塵部の後方300mmの位置におけるダクト内空気をサンプリングし、電気移動度が0.4cm2/V・sec以上の小イオンの個数濃度を計測できるFISA製イオンテスターFIC−2000を用いて測定した。単位は個/ccである。それぞれの集塵装置における詳細を図6、7、8を使って説明する。またイオン発生量と集塵効率の結果を表1に示す。
【0078】
No.1の集塵装置を用いてイオン発生量を測定した結果、マイナスイオンは20,000個/cc個出ていたが、プラスイオンは0個/ccだった。No.1の集塵装置は従来から一般的に用いられたものと全く同じであり、図13の荷電部101の線状電極102に−5.8kVの電圧がかけられて50μAの放電電流が流れているため、マイナスイオンのみを発生しているためである。
【0079】
実施例であるNo.8の集塵装置の構成を図6に示す。基本的な構成は実施例であるNo.4の集塵装置と同じであるが、図6に示すとおり底辺が3mmで底辺から頂点までの長さが5mmとなる三角形状をした突起状電極2が、マイナス電極板106の上流側端部に45mmの間隔で1枚につき3個(全部で18個)、プラス電極板105の上流側端部に45mmの間隔で1枚につき2個(全部で14個)設けられている。そしてプラス電極板105に+3.1kV、マイナス電極板106には−2.9kVの電圧を印加し、放電電流が10μA流れる放電を起こさせた。この集塵装置を用いてイオン発生量を測定した結果、検出されたマイナスイオン、プラスイオンはともに0/cc個となり、また91%という高い集塵効率を得た。これはプラス電極板105とマイナス電極板106の間で放電が起こり、マイナス電極板106に設けられた突起状電極2からマイナスイオンが、プラス電極板105に設けられた突起状電極2からプラスイオンがそれぞれ放出されることによる。それぞれのイオンは粉塵に付着してそれぞれの極性に粉塵を帯電する。そして帯電した粉塵は2つの電極板がつくる電界の力を受けて絶縁体ハニカム1のセル壁面上に捕集される。捕集されずに装置を通過した粉塵やイオンはプラスもしくはマイナスの電荷をもっており、異なる極性どうしの粉塵やイオンが結合してお互いの電荷を打ち消しあい、電気的に中和される。このようにしてプラスイオンとマイナスイオンを等量出すように放電を行うことで、高い集塵性能を持ちながら、捕集し切れなかったイオンや粉塵の電荷を中和することができることがわかった。
【0080】
実施例であるNo.9の集塵装置の構成を図7に示す。この集塵装置No.9はNo.8の集塵装置のマイナス電極板およびプラス電極板それぞれに設けられた突起状電極2の風上側30mmの位置に、プラス電極板105およびマイナス電極板106それぞれに設けられた突起状電極2の先端を中心にして22mmの間隔を置いて幅3mmの格子状対向電極5を設けたものである。そしてプラス電極板105には+3.1kV、マイナス電極板106に−2.9kVの電圧を印加し、放電電流が12μA流れる放電を起こさせた。この集塵装置を用いてイオン発生量を測定した結果、検出されたマイナスイオン、プラスイオンはともに0個/ccとなり、また集塵効率92%となりNo.8の集塵装置よりも高い集塵性能を得た。格子状対向電極5を設けることによってプラスマイナスにそれぞれ電圧が印加された突起状電極からイオンが均一に広がるように放出され、粉塵を広い範囲でしっかりと帯電させることによって集塵効率を高めながら捕集し切れなかったイオンや粉塵の電荷を中和することができることがわかった。
【0081】
実施例であるNo.10の集塵装置の構成を図8に示す。この集塵装置No.10はNo.9の集塵装置において、プラス電極板105およびマイナス電極板106それぞれの風下側端部にも、風上側と同様突起状電極を設けたものである。今回評価した装置においては風上側と同じ配置と数になるよう突起状電極を設けた。また風上側および風下側ともにNo.9と同じ配置で格子状対向電極5を設けた。そしてプラス電極板105に+3.1kV、マイナス電極板106に−2.9kVの電圧を印加し、放電電流が23μA流れる放電を起こさせた。この集塵装置を用いてイオン発生量を測定した結果、検出されたマイナスイオン、プラスイオンはともに70万個/ccとなり、また集塵効率は92%となりNo.9の集塵装置同様高い集塵性能を得た。このようにして突起状電極2をプラス電極板5およびマイナス電極板6それぞれの風下側端部に設けることにより、大量のプラスイオンとマイナスイオンを放出し、そしてプラスイオンとマイナスイオンで集塵装置近傍にある物体の持つ電荷を中和し、その帯電を解消することができる装置が得られることがわかった。
【0082】
以上の結果、実施例であるNo.8、9、10の集塵装置のようにプラスイオンとマイナスイオンを等量放出する構造を実現することにより、粉塵をそれぞれの極性に帯電して捕集すると同時に装置近傍を帯電せず、さらには装置近傍の帯電をプラスイオンとマイナスイオンで解消することができる集塵装置が得られることがわかった。
【0083】
なお、本実施例では図2においてプラス電極板105とマイナス電極板106との間隔10mmの中にコルゲート状のセルが約6段入るようなセル寸法を持つ絶縁体ハニカム1を用いたが、電極板の間にセルが挟まれる構造であれば、電極板間の距離および挟むセルの数、寸法をいくつにしても同様の効果が得られる。
【0084】
なお、本実施例ではコルゲート状のセルを持つ絶縁体ハニカム1を用いたが、セルの形状を持ち通風できるものであれば、セルの形状を丸や四角など他のものにしても同様の効果が得られる。
【0085】
なお、突起状電極2として先端が鋭利に尖った鋼製の三角形状の突起状電極や針を用いたが、空気をイオン化できるならば、かわりとして導電性を持つ他の材質のものを用いてもその効果に差は生じない。
【0086】
なお、本実施例では格子状対向電極5の材料として3mm幅厚さ0.2mmのステンレス製の平板を用いたが、突起状電極2の先端を挟むように設けることが可能かつ導電性を持っていればどのような寸法、材質のものを用いてもその効果に差は生じない。
【0087】
なお、本実施例ではプラス電極板105には突起状電極2を12個設けて+3.1kVの電圧を、マイナス電極板106には突起状電極を18個設けて−2.9kVの電圧をそれぞれ印加したが、プラスイオンとマイナスイオンが等量出るならばどのような条件でもよく、突起状電極の数や配置、そして印加電圧もこの限りではない。
【0088】
(参考例1)
集塵以外に脱臭性能を同時に実現した集塵装置の説明と試験結果を以下に示す。脱臭性能は悪臭成分の中で除去しにくいとされるアセトアルデヒドの濃度を時間ごとに測定し、濃度減衰の速度を評価することによって行った。具体的な評価試験方法は以下のとおりである。容積が約200Lとなるアクリル製の密閉式ボックスの中に、評価を行う集塵装置を置く。集塵装置の大きさは前述の実施例1と同様に132mm×122mmの断面積のものとした。そしてアセトアルデヒド溶液を入れ、加熱によって蒸発気化させることでアクリルボックスの中のアセトアルデヒド濃度を約100ppmにした。その後集塵装置に付属してあるファンを運転して0.5m/s(0.48m3/min)の風速(風量)で通風し、時間ごとのボックス内のアセトアルデヒド濃度を測定することによってそれぞれの集塵装置の脱臭性能を評価した。アセトアルデヒド濃度は水素炎検出機(FID)が付属したガスクロマトグラフ(GLサイエンス製GC353B)を用いて測定を行った。今回はそれぞれの集塵装置の脱臭性能を簡単に比較できるように、試験開始直後と30分後のアセトアルデヒド濃度(それぞれD(0)とD(30)とする)から求められる臭気除去率Hを以下の式で求め、それを比較に用いた。
【0089】
H=1−D(30)/D(0) (%)
また、集塵効率ηは前述の実施例1に記載したとおりの方法とまったく同じように測定して評価を行った。試験によって得た各装置の脱臭・集塵性能を表2に示す。
【0090】
【表2】
【0091】
従来例であるNo.1の集塵装置の脱臭性能を評価したところ臭気除去率は8%であり、ブランクが7%であることから、従来の集塵装置はほとんど脱臭性能がないことがわかった。
【0092】
参考例であるNo.11の集塵装置の構成を図9に示す。構造としては前述のNo.2とほぼ同じであるが、吸着性を持つ特殊ゼオライトを38重量%含有した波シート状の吸着コルゲート紙6を絶縁体ハニカム1として用いている。またプラス電極板105とマイナス電極板106には両方とも幅132mm、奥行き20mm、厚さ0.1mmのアルミ板を用いている。吸着コルゲート紙6は以下のようにして作成した。4000ccの水に1μmの粒径を持つ特殊ゼオライト粉末(ユニオン昭和製smellrite)、パルプ繊維、ポリエステル繊維をそれぞれ定量加えて撹拌混合した後、カチオン系界面活性剤を加えてよく撹拌した。その後アニオン系界面活性剤を加えて分散していたパルプ繊維をある程度凝固させた後、細かい目の開いた金属製の紙すき板が底についている箱に流し込み、紙すき板の下から吸引して水を吸い取り、特殊ゼオライト粉末を絡め取ったパルプ繊維などの固形分を紙すき板の上に積層させてシート状の紙にした。そしてプレス、乾燥を経て厚さ約0.3mmの吸着コルゲート紙6を得た。吸着コルゲート紙6はコルゲート高さが上下合わせて約2mmとなっており、この紙を挟んで2mmの間隔で、プラス電極板105とマイナス電極板106が交互に積層されている。両方の電極板の奥行きは前述のとおり20mmであり、また特殊ゼオライトを含むコルゲート紙の奥行きは電極板の間の絶縁を保つために30mmとなっており、吸着コルゲート紙6が前後で5mmづつ余るような配置で積層した。そして集塵部104の風上に置いた従来型荷電部101の線状電極102に+5.7kVの電圧を印加し、54μAの放電電流が流れるコロナ放電を起こさせた。そして集塵部104のプラス電極板105に+1kVの電圧を印加し、マイナス電極板106をアースにつないで電位をゼロにした状態で付属のファンの運転を開始し、臭気除去率を測定したところ84%となり高い脱臭性能を示した。また、集塵効率を測定したところ風速0.5m/sで95%となり、非常に高い集塵性能を持っていることが分かった。
【0093】
参考例であるNo.12の集塵装置の構成を図10に示す。実施例であるNo.12の集塵装置はNo.11とほぼ同じ構成だが、プラス電極板105およびマイナス電極板106に粒径10μの特殊活性炭を30重量%含んだ導電性活性炭紙7を用いている。プラス電極板105とマイナス電極板106はともに幅132mm、奥行き20mmの寸法となっている。導電性活性炭紙7の作成方法は前述の吸着コルゲート紙6の作成方法と同じで、成分を特殊ゼオライトから10μmの粒径かつ導電性を持つ特殊活性炭9(キャタラー工業製FM−C)に変更したものである。導電性活性炭紙7の電気抵抗をデジタルマルチメーターで測定したところ1cmのプローブ距離で600kΩとなり、電極板として必要とされるだけの導電性を持ち合わせていることがわかった。集塵部104の風上に置いた従来型の荷電部101において+5.7kVの電圧を線状電極102に印加し、54μAの放電電流が流れるコロナ放電を起こさせた。そしてプラス電極板105に用いた導電性紙7に+2kVの電圧を印加し、マイナス電極板106をアースにつないで電位をゼロにした状態で付属のファンの運転を開始し、臭気除去率を測定したところ96%となり非常に高い脱臭性能を示した。また、集塵効率を測定したところ風速0.5m/sで80%となり、十分高い集塵性能を持っていることが分かった。このように吸着性能を持つ材料を含んだ吸着コルゲート紙6を絶縁ハニカム1として用いたり、吸着性能と導電性を併せ持つ導電性活性炭紙7を電極板として用いたりすることにより、集塵と同時に高い脱臭性能を発揮し、総合的に空質を向上することができる集塵装置が得られることが分かった。
【0094】
また、図には記載していないが、参考例であるNo.12の集塵装置の吸着コルゲート紙6および導電性活性炭紙7に酸化チタン粉末(チタン工業製TKP102)を6重量%含ませた実施例No.9の集塵装置の脱臭性能を測定したところ、初回のアセトアルデヒド臭気除去率はNo.8と同様に96%だった。No.8では脱臭試験を数回行ってアセトアルデヒドを除去していくうちに、臭気除去率は徐々に下がる結果となった。これは吸着材料の持つ臭気吸着量に限界があるためである。そこでNo.9の集塵装置で数回脱臭試験を行い、臭気除去率が80%以下になったのを確認した後に天日干しを8時間行い、その後改めて同様の脱臭試験を行った結果、臭気除去率は90%以上に回復した。これは天日干しによって熱エネルギーを受けて臭気を放出するのと同時に、太陽の光によって酸化チタンが励起して吸着したアセトアルデヒドを分解したことによる。このように光触媒である酸化チタンを絶縁体ハニカム1や電極板に担持させ、太陽光などの光や熱エネルギーを受けることによって酸化チタンを励起して吸着した有害ガスを分解し、脱臭性能を再生することによって何度も使用することができるということが分かった。
【0095】
参考例であるNo.13の集塵装置の構成を図11に示す。風上側から順番に、鋭い先端を持ち、高電圧が印加されて放電を起こす長さ25mmの棒状針電極8、分極性のあるガラス繊維を材質とした濾材108(北越製紙製H720、棒状針電極8に電圧をかけない時の集塵効率は40%前後)、通気性を持つ導電性シート109(倉敷繊維加工製MS−60)が設けられており、濾材108と導電性シート109はシートを空気が通るときのシート面速度を下げて集塵性能と臭気除去性能を高めるためにプリーツ状に折られている。そして濾材108と導電性シート109の間には導電性活性炭9(キャタラー工業製FM−C)が挟まれている。ちなみに導電性活性炭9が粉落ちしないよう、導電性シート109の表面にはアクリルゴム系の接着剤が塗られている。そして棒状針電極8に−6kVの電圧を線状電極102に印加し、導電性シート109をアースに接続して運転を開始し、臭気除去率を測定したところ94%となり非常に高い脱臭性能を示した。また、上記の条件で集塵効率を測定したところ風速0.5m/sで98%となり、非常に高い集塵性能を持っていることが分かった。ちなみにその時の放電電流は1μAと微小であり、そのため発生オゾン濃度は2ppb以下と非常に小さくなった。高電圧が印加されて放電を起こす棒状針電極8と通気性を持つ導電性シート109の間に分極性を持つ濾材108を置いて、棒状針電極8からイオンを発生すると同時に濾材を分極して集塵効率を高める集塵装置において、活性炭やゼオライトなど吸着性能を持つ材料を濾材108と導電性シート109の間に挟む、もしくは濾材108または導電性シート109に担持させることにより、集塵と同時に高い脱臭性能を発揮し、総合的に空質を向上することができる集塵装置が得られることが分かった。
【0096】
なお、本参考例においては臭気除去用の吸着剤として導電性活性炭9を用いたが、除去対象の臭気成分を吸着できる他の吸着剤を用いても同様の効果が得られる。
【0097】
なお、本参考例においては濾材108としてガラス繊維を構成要素としたのものを用いたが、分極性を持つものであればどのような材料や形状のものを用いてもよく、たとえばポリプロピレンなどの樹脂材料を用いたものや、繊維状のものではなく細孔を持つシート状のものを用いても同様の効果が得られる。
【0098】
(参考例3)
セル構造を持つ絶縁体が無機材料でできており、電極板やセル構造を持つ絶縁体に熱が与えられることによって集塵脱臭を同時に行い、吸着した有害ガスのみではなく捕集した粉塵も分解して常時メンテナンスが行える集塵装置の例を図12に示す。下から順にプラス電極板105、絶縁ハニカム1、マイナス電極板106、絶縁ハニカム1を積層し、4つのシートをロール状に巻くことによって円筒状の形をした集塵部104となっている。プラス電極板105とマイナス電極板106には空気をイオン化して粉塵を帯電する突起状電極2が設けられている。そして絶縁ハニカム1は紙でできており、パルプ繊維やガラス繊維、もしくはセラミックス繊維などで作られている。2つの電極板にはステンレスやアルミ、銅など導電性の高い材料をシート状にしたものを用いている。水などを溶媒にして、ゼオライトなどの吸着作用を持つ材料、水ガラスなどの無機バインダー成分、そして白金、ロジウムなどの貴金属やコバルトもしくはマンガンといった熱によって励起し活性を得る熱触媒を含み、ボールミルなどにかけてよく分散して混ざり合った混合液に上記集塵部104を浸漬し、液切りをした後、300〜600℃で焼成を行う。担持量が多すぎてコルゲートが目詰まりを起こすなど問題がある場合は焼成前に通気乾燥を行う。絶縁体ハニカム1がパルプ繊維を用いている場合は焼成温度を400℃以上にすることによってパルプ繊維を燃焼分解してデバイスの燃焼成分を除去することができる。このように吸着剤や熱触媒を絶縁ハニカム1や電極板に添着固定し、焼成することによって無機成分のみで集塵部104を構成することができる。特に絶縁ハニカム1に繊維質のシートを用いている場合は繊維の中にまで混合液が浸透するため、シートの内部にまで吸着剤や熱触媒を担持させることができる。そして集塵部104の風上や周囲にヒーター10を設けることによって、集塵部104を100℃以上に加熱する、もしくは集塵部104加熱された空気を送り込むことができるようになっている。プラス電極板105にプラス極性の高電圧を印加し、マイナス電極板106にマイナス極性の高電圧を印加することによって、突起状電極のイオン放出により帯電した粉塵を集塵部104の絶縁体ハニカム1やプラス電極板105、マイナス電極板106に捕集することができる。さらに吸着剤が担持されているため、空気中の悪臭成分といった有害ガスを吸着除去することができる。そして、ヒーター10により装置が100℃以上に加熱されているために、前述の熱触媒が活性を得て吸着した有害ガスおよび捕集した粉塵をCO2やH2Oなどの気体に燃焼分解し除去することができるため、メンテナンスに手間をかける必要なく装置を清浄に保つことができる。
【0099】
なお、本参考例に示した集塵装置はヒーター10で常時加熱する必要は必ずしもなく、装置内をきれいにしたいときだけヒーター10で加熱して粉塵や有害ガスを分解除去しても同様の効果が得られる。
【0100】
なお、本参考例ではイオン放出手段として突起状電極を用いたが、従来の線状電極を用いた荷電部など他のイオン放出手段を用いても同様の効果が得られる。
【0101】
なお、図12においては集塵部の風上側にヒーター10をおいた構造となっているが、集塵部に担持されている触媒に熱が与えられる位置であればヒーター10はどの部分に設置しても同様の効果を得られる。
【0102】
なお、本参考例に示した集塵装置は長い電極板と長い絶縁体ハニカムを重ねて巻くことによって形成されているが、短い電極板と絶縁体ハニカムを積層した構造においても効果に差は生じない。
【0111】
【発明の効果】
以上の説明から明らかなように、本発明によれば、プラスマイナスのイオンを同時に放出して帯電を中和することによって、装置近傍が汚れにくくなる集塵装置を提供することができる。
【0112】
また、放電領域をイオン化手段の前方向に拡張することによって、高くて安定した集塵性能を持つ集塵装置を提供することができる。
【図面の簡単な説明】
【図1】 参考例の集塵部電極板の間に絶縁体ハニカムを設けた電気集塵式集塵装置の構成図
【図2】 参考例の集塵部のプラスもしくはマイナス電極板の風上側端部に突起状電極を設けてイオン放出手段と集塵部を一体化した電気集塵式集塵装置の構成図
【図3】 参考例の集塵部のプラスもしくはマイナス電極板の風上側端部に突起状針電極を設けてイオン放出手段と集塵部を一体化した電気集塵式集塵装置の構成図
【図4】 参考例の図3の集塵装置に設けられた突起状電極の風上側に網状対向電極を設けた電気集塵式集塵装置の構成図
【図5】 参考例の図3の集塵装置に設けられた突起状電極の風上側に、突起状電極を挟むように格子状対向電極を設けた電気集塵式集塵装置の構成図
【図6】 実施例の集塵部のプラスおよびマイナス電極板両方の風上側端部に突起状針電極を設けてイオン放出手段と集塵部を一体化した電気集塵式集塵装置の構成図
【図7】 実施例の図6の集塵装置に設けられた突起状電極の風上側に網状対向電極を設けた電気集塵式集塵装置の構成図
【図8】 実施例の集塵部のプラスおよびマイナス電極板両方の風上側および風下側端部に突起状針電極を設け、それぞれの突起状電極の手前に突起状電極を挟むように格子状対向電極を設けた電気集塵式集塵装置の構成図
【図9】 参考例の絶縁体ハニカムとして吸着コルゲート紙を用いた電気集塵式集塵装置の構成図
【図10】 参考例の絶縁体ハニカムとして吸着コルゲート紙を、集塵部電極板として導電性活性炭紙をそれぞれ用いた電気集塵式集塵装置の構成図
【図11】 参考例の導電性活性炭を濾材と導電性シートの間に備えた電気集塵式集塵装置の構成図
【図12】 参考例の絶縁体ハニカムに吸着剤と触媒を担持し、ヒーターを設けた電気集塵式集塵装置の構成図
【図13】 従来の電気集塵式集塵装置の構成図
【図14】 濾材を用いた従来の電気式集塵装置の構成図
【符号の説明】
1 絶縁体ハニカム
2 突起状電極
3 突起状針電極
4 網状対向電極
5 格子状対向電極
6 吸着コルゲート紙
7 導電性活性炭紙
8 棒状針電極
9 導電性活性炭
10 ヒーター[0001]
BACKGROUND OF THE INVENTION
The present invention is a dust collector that collects atmospheric dust, indoor dust, dust and the like in the air conditioning and industrial fields, and also has a function of collecting other dust and deodorizing and dehumidifying and simultaneously performing other air cleaning and air purification functions. It is about.
[0002]
[Prior art]
Conventionally, as this type of dust collector, for example, one described in JP-A-6-31200 is known. Hereinafter, the dust collector will be described with reference to FIG. As shown in FIG. 8, the charging unit 101 includes a linear electrode 102 and a counter electrode plate 103 that is connected to a normal ground and has a zero potential, and serves as an ion emission means. A dust collecting unit 104 including a plus electrode plate 105 and a minus electrode plate 106 is provided on the downstream side of the charging unit 101 in the ventilation direction. Usually, the charging unit 101 has a potential difference of 5 to 15 kV between the linear electrode 102 and the counter electrode plate 103 and a potential difference of 2 to 6 kV between the positive electrode plate 105 and the negative electrode plate 106 of the dust collecting unit 104. Further, a high voltage is applied to the linear electrode 102 and the plus electrode plate 105 by the high-voltage stabilized power source 107. In the above configuration, a high voltage is applied to the linear electrode 102 in the charging unit 101, and a very strong electric field is created in the vicinity of the linear electrode 102. Therefore, a substance having a charge in the air collides with air molecules, and electrons are separated from the air molecules, or the separated electrons adhere to other air molecules to become air ions. This is called air ionization. A discharge phenomenon in which air existing between the counter electrode plates 103 causes dielectric breakdown and ionization of the air with a certain large discharge current is called corona discharge. Ions generated by corona discharge are collected by a dust collector. It adheres to the dust contained in the air supplied to and charges the dust. The charged dust is introduced into the dust collecting unit 104 along the flow of the air flow, and is removed by adhering to either of the electrode plates under the force of the electric field between the positive electrode plate 105 and the negative electrode plate 106. Air is blown out from the rear of the dust collection unit 104. Further, in the above conventional example, the discharge electrode is shown in a linear shape, but other shapes that form an unequal electric field, for example, a needle-like electrode can be used. Corona discharge occurs with a constant current flowing between the plates 103, and dust is charged and collected by the same mechanism.
[0003]
A dust collector of the type in which the dust collecting unit 104 is replaced with a filter medium 108 is conventionally known. Hereinafter, the dust collector will be described with reference to FIG. As shown in FIG. 9, a charging unit 101 and a filter medium 108 including a linear electrode 102 and a counter electrode plate 103 are provided in order from the ventilation direction. An air-permeable conductive sheet 109 is installed behind the filter medium 108 and connected to the ground. Usually, in the charging unit 101, a voltage is applied to the linear electrode 102 by the high-voltage stabilizing power source 107 so as to have a potential difference of 5 to 15 kV between the linear electrode 102 and the counter electrode plate 103.
[0004]
In the above configuration, the charging unit 101 applies a voltage to the linear electrode 102 as described above, thereby causing corona discharge in the vicinity of the linear electrode 102 to charge dust, and at the same time, the linear electrode 102 and the conductive sheet 109. An electric field is generated between them, and the filter medium 108 is polarized by the electric field. The charged dust introduced into the filter medium 108 is subjected to a force toward the filter medium fiber surface along the polarization electric field inside the filter medium. As a result, it is easy to be collected by the filter medium, and the dust collection performance of the filter medium 108 is improved, but since the corona discharge using the linear electrode 102 is caused, the discharge current is large, and the counter electrode plate is provided. In addition, the electric field between the filter medium and the linear electrode does not increase, and as a result, the degree of polarization of the filter medium 108 is small.
[0005]
[Patent Document 1]
JP-A-6-31200
[0006]
[Problems to be solved by the invention]
In such a conventional dust collector, the distance between the electrodes having different polarities in the dust collector increases, and the distance of dust movement until it is collected by the electrodes increases. Also, in order to allow air containing dust to pass, it is necessary to stack electrodes with different polarities while leaving a certain space, and therefore a spacer to be placed on the surface of the electrode, or an alternative process for projecting the electrode surface is required. Become. In particular, when providing protrusions on the electrode surface, it is necessary to coat the electrodes with an insulator so that the electrodes with different polarities do not come into contact with each other. A dust collector that achieves high dust collection performance with a simple structure is required.
[0007]
In addition, since conventional electric dust collectors often use metals and resins as materials, there is a problem that processing is difficult and costly, and it is necessary to realize low cost using materials that are easy to process and inexpensive. Has been.
[0008]
In addition, most of the conventional dust collectors are specialized for dust collection, and there is a problem that there is no other action such as collection and decomposition of harmful gases. There is a need for a dust collector to have.
[0009]
In addition, in the conventional dust collector, there is a problem that it is necessary to periodically remove the collected dust by washing in order to maintain the dust collection performance and the aesthetics of the device, and it is possible to decompose the collected dust. There is a need for a possible dust collector.
[0010]
Moreover, the structure which comprises a charge part and a dust collection part separately has the subject that it becomes high cost, and it is requested | required to set it as the structure which integrated the charge part and the dust collection part.
[0011]
Further, when the discharge electrode is unipolar only, there is a problem that the vicinity of the apparatus may be charged, which may cause contamination, and there is a demand for preventing the vicinity of the apparatus from being charged.
[0012]
Further, there is a problem that a large amount of ozone is generated from the ion emission means, and it is required to charge dust without emitting ozone.
[0013]
The present invention solves such a conventional problem, realizes high dust collection performance with a simple structure, achieves low cost by using an inexpensive material with good workability, and collects the dust. Provides air-cleaning action other than dust, can disassemble the collected dust, and can maximize the dust collection performance without affecting the surroundings. It aims at providing the dust collector which can be made into a thing.
[0040]
[Means for Solving the Problems]
In order to achieve the above-mentioned goal, the dust collector of the present invention is the dust collector according to claim 1, wherein the minus electrode plate and the plus electrode plate are alternately laminated while sandwiching the insulator having the cell structure, and the dust collector is alternately laminated. Provided with a protruding electrode with a sharp tip at the end of the negative electrode plate and the end of the positive electrode plate, applying a negative voltage to the negative electrode plate, applying a positive voltage to the positive electrode plate, Equivalent amount of positive ion and negative ionA voltage of +3.1 kV is applied to the positive electrode plate, and a voltage of -2.9 kV is applied to the negative electrode plate.It is characterized by collecting dust by discharging. The dust collecting apparatus according to claim 2, wherein negative electrode plates and positive electrode plates are alternately stacked while sandwiching an insulator having a cell structure, and ends of the negative electrode plates and the positive electrodes that are alternately stacked. A grid electrode is installed in front of the protruding electrode with a sharp tip provided at the end of the plate so as to surround the tip of the protruding electrode, and this is set to zero potential, and a negative voltage is applied to the negative electrode plate. Apply a positive voltage to the positive electrode plate so that positive ions and negative ions are output in equal amounts.A voltage of +3.1 kV is applied to the positive electrode plate, and a voltage of -2.9 kV is applied to the negative electrode plate.It is characterized by collecting dust by discharging.
more than
[0041]
And according to this invention, the dust collector which can discharge | release a plus-minus ion simultaneously is obtained.
[0061]
DETAILED DESCRIPTION OF THE INVENTION
The dust collector of the present invention isThe electrode plates that are alternately stacked and have different polarities have positive and negative polarities with respect to zero potential. By laminating electrode plates with sharp projections at the ends with positive and negative polarities and sandwiching insulators with a cell structure, positive ions from the positive polarity electrode plates are negative. Negative polarity ions are simultaneously released from the projections of the polarity electrode plate. By doing so, dust is charged to either positive polarity or negative polarity and collected by the force of the electric field of the dust collector, but dust and ions that could not be collected are negative and positive. Since polar materials come out from the device at an equal amount, dust that could not be collected does not adhere to the vicinity of the device by canceling out the electric charge, and the charge in the vicinity of the device is electrically neutralized. It has the effect of being able to.
[0065]
【Example】
Example 1
First, an experimental apparatus was created based on a conventional dust collector as shown in FIG. The apparatus will be described with reference to FIG. 13. In the middle of a duct having an opening size of 132 mm × 122 mm, a linear electrode 102 using a tungsten wire having a wire diameter of 0.15 mm and a length of 132 mm is arranged in the cross-sectional direction of the duct. Six charging units 101 were installed at intervals of 20 mm, and a charging unit 101 was provided in which steel counter electrode plates 103 having a depth length of 16 mm and a width of 132 mm as viewed from the ventilation direction were arranged at equal intervals so as to be in the middle. By applying a voltage of −5.8 kV to the linear electrode 102, a corona discharge in which a discharge current of 50 μA flows is generated, and air is easily ionized in the vicinity of the linear electrode 102. And a fan is installed at the end of the duct, and the air flow rate in the duct is 0.48m.ThreeVentilation was performed under the conditions of / min, and dust collection efficiency η (%) and generated ozone concentration (ppb) were measured. The duct wind speed at this time is about 0.5 m / s. The dust collection efficiency was obtained by measuring the dust concentration immediately before the charging unit 101 and immediately after the dust collecting unit 104 using a particle counter KC-01C manufactured by Lion. The dust concentration was measured by a coefficient method, and 0.167 liters of air was sampled and the total number of dust particles having a particle size of 0.3 μm or more contained therein was measured. Assuming that the dust concentration immediately before the charging unit 101 is Cf and the dust concentration immediately after the dust collection unit 104 is Cb, the dust collection efficiency η can be obtained by the following equation.
[0066]
η = (1−Cb / Cf) × 100 (%)
The generated ozone concentration was measured by sampling the air in the duct immediately after the dust collector 104 and using an ozone monitor EG2001F manufactured by Sugawara Jitsugyo. The unit is ppb and indicates a mass concentration of 1 billion.
[0067]
Details of the conditions and configuration of each dust collector were described with reference to FIGS. 1, 2, 3, 4, 5, 6, 7, 8, and 13. Table 1 shows the experimental results of each dust collector.
[0068]
[Table 1]
[0069]
No. which is a comparative example. No. 1 dust collector has the same configuration as that of FIG. 13 of the conventional example, and a stainless steel plate having a thickness of 0.5 mm, a depth of 20 mm, and a width of 132 mm is stacked at an interval of 10 mm, and every other stainless steel plate is connected to the ground. The dust collecting part 104 made by using the electrode plate 105 (potential is zero) and forming the minus electrode plate 106 by applying a voltage of −6 kV to the stainless steel plates located on both sides with the plus electrode plate 105 interposed therebetween is described above. The charging unit 101 is installed behind the charging unit 101. Then, −5.8 kV was applied to the linear electrode 102 of the charging unit 101 using the high-voltage stabilized power source 107. The dust collection efficiency of the dust collection unit 104 was 43% as shown in Table 1, and high dust collection performance was not obtained. Further, since the linear electrode 102 of the charging unit 101 applied a negative polarity voltage and caused a corona discharge of 50 μA, the ozone generation concentration was as high as 56 ppb.
[0070]
referenceNo. The configuration of the dust collector 2 is shown in FIG. The charging unit 101 is a comparative example. The conventional one shown in 1 is used as it is. The dust collecting portion 104 is an insulator honeycomb 1 having a number of corrugated cells by laminating a corrugated sheet made of polypropylene and a flat sheet on a stainless steel plate having a thickness of 0.5 mm, a depth of 20 mm, and a width of 132 mm. Overlay each other at 10mm intervals and connect every other stainless steel plate to the ground to make a positive electrode plate 105 (potential is zero). The negative electrode plate 106 is formed by applying the negative electrode plate 106. The dimensions of the insulator honeycomb 1 are 10 mm in height and 20 mm in depth, and a corrugated cell having a width of about 2.5 mm × height of about 1.7 mm × depth of 20 mm is 100 mm.2There are about 24 per cross-sectional area. When a voltage of −5.8 kV was applied to the linear electrode 102 with this configuration, the dust collection efficiency was 77%. The dust collection performance was higher than that of No. 1 dust collector. Assuming that the average moving distance of dust required to be collected is half of the distance of the electrode plate, the insulator honeycomb 1 having fine cells is provided between the electrode plates, so that it was 5 mm so far. This is because it becomes about 0.8 mm and becomes about 1/6 and dust is easily collected. In addition, since the insulating honeycomb 1 having elasticity is provided between the electrode plates, no. It was found that the strength against the pressing force was improved as compared with the one dust collecting portion 102, and deformation was difficult.
[0071]
referenceNo. The configuration of the dust collector of No. 3 is No. 3. Insulator honeycomb 1 in which the corrugated sheet forming the cell and the flat sheet are polarized on the front and back sides is used. When installed so that the polarization of the sheet of the insulator honeycomb 1 is opposite to the direction of the electric field between the electrode plates, the dust collection efficiency was 99%, indicating a very high performance. This is considered to be because a stronger electric field was formed in the cell by polarizing the sheet forming the cell in the front and back direction. Although not described in Table 1, when the sheet was installed so that the polarization of the sheet was the same as the direction of the electric field between the electrode plates, the dust collection efficiency was 90%. This is because the sheet forming the cell is polarized so as to be in the direction opposite to the electric field between the electrode plates.
[0072]
referenceNo. The configuration of the dust collector 4 is shown in FIG. The configuration of the dust collecting unit 104 is No. 1. 3 is the same as 3 except that the protruding electrode 2 made by processing an aluminum plate with a thickness of 0.3 mm so that the base is 3 mm and the length from the base to the apex is 5 mm is a negative electrode. At the upstream end of the plate 106 at intervals of 45 mm, In the dust collectors 1, 2, and 3, the conventional charging unit 101 used is removed from the experimental apparatus. In this experiment, three are provided for one electrode as shown in FIG. 2, and since six negative electrode plates 106 are used, a total of 18 protruding electrodes are provided. Since this protruding electrode 2 is electrically connected to the negative electrode plate 106, the same −6 kV as that of the negative electrode plate 106 is applied. Then, a discharge in which a 1.2 μA discharge current flows between the positive electrode plate 105 and the air is ionized to release ions. When the dust collection efficiency was measured, it was 94%, indicating a very high dust collection performance. Further, by adopting a structure in which ions can be emitted from the dust collecting portion in this way, the conventional charging portion 101 using the linear electrode 102 can be omitted, and the overall size of the apparatus can be reduced. Moreover, when the ozone generation concentration was measured, it was 2 ppb or less, and it was found that the ozone generation amount can be made extremely small while maintaining sufficient dust collection performance by reducing the discharge current and generating only ions.
[0073]
referenceNo. FIG. 3 shows the configuration of the dust collector 5. The basic structure is No. 4 is substantially the same as 4 except that a steel protruding needle electrode 3 having a length of 8 mm and a sharp tip is provided at the windward end of the negative electrode plate instead of the triangular protruding electrode 2. is there. The same -6 kV as that of the negative electrode plate 106 is applied to the protruding needle electrode 3, causing a discharge in which a discharge current of 1.5 μA flows between the positive electrode plate 105, ionizing air and releasing ions. Yes. The dust collection efficiency was measured to be 98%. The dust collection performance was as high as 4 or more. It was found that ions can be more efficiently released by making the protruding electrode 2 more sharp. When the ozone generation concentration was measured, It was found that the amount of ozone generation can be made extremely small while maintaining sufficient dust collection performance by reducing the discharge current and generating only ions as in the case of 4.
[0074]
No. which is a comparative example. The configuration of the dust collector 6 is shown in FIG. As shown in FIG. 4, a mesh-like counter electrode 4 made of stainless steel having a mesh number of 10 / inch is provided at a position 30 mm before the protruding electrode 2 of the dust collecting apparatus 4, and the mesh-like counter electrode 4 is connected to the ground so as to have a zero potential. The triangular protrusion is applied with −6 kV, which is the same as that of the negative electrode plate 106, and causes a discharge in which a total discharge current of 12 μA flows between the positive electrode plate 105 and the net-like counter electrode 4, thereby ionizing the air and ionizing the ions. Released. However, only 70% of dust collection efficiency can be obtained. The dust collection performance was lower than 4. When the counter electrode is placed at the closest vertical position from the tip of the protruding electrode 2, ions are released only in a narrow range connecting the tip and the counter electrode with a line, and the ions do not spread uniformly in front of the protruding electrode 2. I understood. Further, when the ozone generation concentration was measured, it was 5 ppb. It was slightly larger than 4. This is because if the counter electrode is provided at a position closest to the tip of the protruding electrode 2, the discharge current increases and the amount of ozone generated also increases.
[0075]
Comparative Example No. Against 6referenceNo. FIG. 5 shows the configuration of the dust collector 7. As shown in FIG. A grid-like counter electrode 5 made of stainless steel having a width of 3 mm and a thickness of 0.2 mm so as to sandwich the protruding electrode 2 at a distance of 45 mm centering on the tip of the protruding electrode 2 at a position 30 mm before the protruding electrode 2 of 4. , And the grid-like counter electrode 5 is connected to the ground so as to have a zero potential. The triangular protrusion is applied with −6 kV, which is the same as that of the negative electrode plate 106, and ionization is performed by ionizing air by causing a discharge in which a discharge current of a total of 4 μA flows between the positive electrode plate 105 and the grid-like counter electrode 5. Has been released. When the dust collection efficiency was measured, it was 99%. The dust collection performance was as high as 4 or more. By providing the grid-like counter electrode 5 in front so that the protruding electrode 2 is sandwiched, ions can be released not only in a narrow range in front of the tip of the protruding electrode 2 but also in a wide range in front. I knew it was possible. When the ozone generation concentration was measured, It was found that the amount of ozone generation can be made extremely small while maintaining sufficient dust collection performance by reducing the discharge current and generating only ions as in the case of 4.
[0076]
To summarize the above, No. 1 as a comparative example. As shown in FIG. 1, when the insulator honeycomb 1 is not sandwiched between the electrode plates, the dust collection performance is low.referenceNo. 2 or No. As shown in FIG. 3, when the insulator honeycomb 1 having fine cells is sandwiched between the electrode plates, high dust collection performance can be realized. Further, when the conventional charging unit 101 using the linear electrode 102 is used, the amount of ozone generated is very large.referenceNo. 4 or No. As shown in FIG. 5, when only the ions are generated with a discharge current of about several μA, ozone generation can be suppressed as much as possible while maintaining the dust collection performance. It was also found that the size of the entire dust collector can be made compact by providing means for releasing ions in the dust collector. Further, in the structure in which the protruding electrode 2 is provided on the electrode plate of the dust collecting portion 104 and the dust collecting portion and the ion emitting means are integrated, the vertical position closest to the tip of the protruding electrode 2 is not No. By providing the grid-like counter electrode 5 as shown in FIG. 6 in front of the protruding electrode 2 so as to sandwich the protruding electrode 2, ions can be emitted so as to spread uniformly in front of the protruding electrode 2, which is higher. It was found that dust collection performance can be obtained.
[0077]
Next, it was evaluated how much positive and negative ions were generated in each dust collector shown below. The air ion concentration is sampled from the air in the duct at a position 300 mm behind the dust collector, and the electric mobility is 0.4 cm.2It measured using FISA ion tester FIC-2000 which can measure the number density | concentration of the small ion of / V * sec or more. The unit is pieces / cc. Details of each dust collector will be described with reference to FIGS. Table 1 shows the results of ion generation and dust collection efficiency.
[0078]
No. As a result of measuring the amount of generated ions using the dust collector of No. 1, 20,000 / cc negative ions were generated, but 0 / cc positive ions. No. 1 is exactly the same as that generally used in the past, and a voltage of −5.8 kV is applied to the linear electrode 102 of the charging unit 101 in FIG. 13 and a discharge current of 50 μA flows. This is because only negative ions are generated.
[0079]
No. as an example. The configuration of the dust collector 8 is shown in FIG. The basic structure is No. in the example. 4 is the same as the dust collector of FIG. 4, but as shown in FIG. 6, the protruding electrode 2 having a triangular shape with a base of 3 mm and a length from the base to the apex of 5 mm is an upstream end of the negative electrode plate 106. In addition, three (18 in total) are provided at intervals of 45 mm, and two (14 in total) are provided at the upstream end of the positive electrode plate 105 at intervals of 45 mm. Then, a voltage of +3.1 kV was applied to the positive electrode plate 105 and a voltage of -2.9 kV was applied to the negative electrode plate 106 to cause a discharge with a discharge current of 10 μA. As a result of measuring the amount of generated ions using this dust collector, the number of detected negative ions and positive ions was 0 / cc, and a high dust collection efficiency of 91% was obtained. This is because discharge occurs between the positive electrode plate 105 and the negative electrode plate 106, and negative ions are generated from the protruding electrodes 2 provided on the negative electrode plate 106, and positive ions are output from the protruding electrodes 2 provided on the positive electrode plate 105. By each being released. Each ion adheres to the dust and charges the dust to the respective polarity. The charged dust is collected on the cell wall surface of the insulator honeycomb 1 under the force of the electric field generated by the two electrode plates. Dust and ions that have passed through the device without being collected have a positive or negative charge, and dust and ions of different polarities are combined to cancel each other's charge and to be electrically neutralized. In this way, it was found that by discharging so as to produce equal amounts of positive ions and negative ions, it was possible to neutralize the charge of ions and dust that could not be collected while having high dust collection performance. .
[0080]
No. as an example. The configuration of the dust collector 9 is shown in FIG. This dust collector No. No. 9 is No.9. The tip of the protruding electrode 2 provided on each of the positive electrode plate 105 and the negative electrode plate 106 at a position 30 mm above the protruding electrode 2 provided on each of the negative electrode plate and the positive electrode plate of the dust collector 8. Is provided with a grid-like counter electrode 5 having a width of 3 mm with an interval of 22 mm. Then, a voltage of +3.1 kV was applied to the positive electrode plate 105 and a voltage of -2.9 kV was applied to the negative electrode plate 106 to cause a discharge with a discharge current of 12 μA. As a result of measuring the amount of generated ions using this dust collector, the number of detected negative ions and positive ions was 0 / cc, and the dust collection efficiency was 92%. A dust collection performance higher than that of the dust collector of 8 was obtained. By providing the grid-like counter electrode 5, ions are emitted from the projecting electrodes to which voltage is applied positively and negatively so as to spread uniformly, and the dust is efficiently charged in a wide range to increase the dust collection efficiency. It was found that the charge of ions and dust that could not be collected could be neutralized.
[0081]
No. as an example. The structure of 10 dust collectors is shown in FIG. This dust collector No. No. 10 is No. In the dust collector of No. 9, a protruding electrode is provided on the leeward side end of each of the positive electrode plate 105 and the negative electrode plate 106 as in the case of the leeward side. In the apparatus evaluated this time, protruding electrodes were provided so as to have the same arrangement and number as the windward side. No. on both the windward and leeward sides. A grid-like counter electrode 5 was provided in the same arrangement as in FIG. Then, a voltage of +3.1 kV was applied to the positive electrode plate 105 and a voltage of -2.9 kV was applied to the negative electrode plate 106 to cause a discharge with a discharge current of 23 μA. As a result of measuring the amount of generated ions using this dust collector, the number of detected negative ions and positive ions was 700,000 / cc, and the dust collection efficiency was 92%. As with 9 dust collectors, high dust collection performance was obtained. By providing the protruding electrode 2 at the leeward side end of each of the positive electrode plate 5 and the negative electrode plate 6 in this way, a large amount of positive ions and negative ions are released, and the dust collector is made up of positive ions and negative ions. It was found that a device that can neutralize the charge of an object in the vicinity and eliminate the charge can be obtained.
[0082]
As a result of the above, No. By realizing a structure that discharges equal amounts of positive ions and negative ions like the dust collectors of 8, 9, and 10, the dust is charged and collected at the same polarity, and at the same time, the vicinity of the device is not charged. It was found that a dust collector capable of eliminating charging near the device with positive ions and negative ions can be obtained.
[0083]
In this embodiment, the insulator honeycomb 1 having a cell size in which about six corrugated cells are included in the interval 10 mm between the plus electrode plate 105 and the minus electrode plate 106 in FIG. 2 is used. If the cell is sandwiched between the plates, the same effect can be obtained regardless of the distance between the electrode plates and the number and size of the sandwiched cells.
[0084]
In this embodiment, the insulator honeycomb 1 having corrugated cells is used. However, the same effect can be obtained even if the shape of the cell is other than round or square as long as the shape of the cell can be ventilated. Is obtained.
[0085]
In addition, although the steel triangular projection electrode and the needle | hook which sharply sharpened the front-end | tip were used as the projection electrode 2, if the air can be ionized, the thing of another material with conductivity will be used instead. However, there is no difference in the effect.
[0086]
In this embodiment, a stainless steel plate having a width of 3 mm and a thickness of 0.2 mm is used as the material of the grid-like counter electrode 5. However, it can be provided so as to sandwich the tip of the protruding electrode 2 and has conductivity. As long as they are of any size and material, there will be no difference in the effect.
[0087]
In this embodiment, twelve protruding electrodes 2 are provided on the positive electrode plate 105 to provide a voltage of +3.1 kV, and eighteen protruding electrodes are provided to the negative electrode plate 106 to provide a voltage of -2.9 kV. Although it is applied, any conditions may be used as long as an equal amount of positive ions and negative ions are produced, and the number and arrangement of the protruding electrodes and the applied voltage are not limited to this.
[0088]
(referenceExample1)
The explanation and test results of the dust collector that simultaneously achieved deodorizing performance in addition to dust collection are shown below. The deodorizing performance was measured by measuring the concentration of acetaldehyde, which is considered difficult to remove among malodorous components, every time and evaluating the rate of concentration decay. The specific evaluation test method is as follows. A dust collector for evaluation is placed in an acrylic sealed box having a volume of about 200 L. The size of the dust collector was set to have a cross-sectional area of 132 mm × 122 mm as in Example 1 described above. Then, the acetaldehyde solution was added and evaporated by heating to make the acetaldehyde concentration in the acrylic box about 100 ppm. After that, the fan attached to the dust collector is operated to 0.5 m / s (0.48 mThree/ Min), the deodorizing performance of each dust collector was evaluated by measuring the acetaldehyde concentration in the box every hour. The acetaldehyde concentration was measured by using a gas chromatograph (GC353B manufactured by GL Science) with a hydrogen flame detector (FID). This time, in order to easily compare the deodorizing performance of each dust collector, the odor removal rate H calculated from the acetaldehyde concentration immediately after the start of the test and after 30 minutes (referred to as D (0) and D (30), respectively). It calculated | required with the following formula | equation and used it for the comparison.
[0089]
H = 1-D (30) / D (0) (%)
The dust collection efficiency η was measured and evaluated in exactly the same manner as described in Example 1 above. Table 2 shows the deodorization and dust collection performance of each device obtained by the test.
[0090]
[Table 2]
[0091]
No. which is a conventional example. When the deodorizing performance of No. 1 dust collector was evaluated, the odor removal rate was 8% and the blank was 7%. Therefore, it was found that the conventional dust collecting device has almost no deodorizing performance.
[0092]
referenceNo. The structure of 11 dust collectors is shown in FIG. As the structure, the above-mentioned No. 1 is used. The corrugated sheet corrugated paper 6 containing 38% by weight of special zeolite having adsorptive properties is used as the insulator honeycomb 1. The positive electrode plate 105 and the negative electrode plate 106 are both aluminum plates having a width of 132 mm, a depth of 20 mm, and a thickness of 0.1 mm. Adsorption corrugated paper 6 was prepared as follows. A special zeolite powder having a particle size of 1 μm (union Showa Smellrite), pulp fibers, and polyester fibers were added to 4000 cc of water in a fixed amount and stirred and mixed, and then a cationic surfactant was added and stirred well. Then, after adding some anionic surfactant to coagulate the dispersed pulp fiber to some extent, pour it into a box with a fine open metal paper board, and suck it from under the paper board. Solid matter such as pulp fibers sucked up and entangled with special zeolite powder was laminated on a paper board to form a sheet of paper. Then, the corrugated paper 6 having a thickness of about 0.3 mm was obtained through pressing and drying. The adsorbing corrugated paper 6 has a corrugated height of approximately 2 mm in the vertical direction, and the plus electrode plates 105 and the minus electrode plates 106 are alternately stacked at intervals of 2 mm across the paper. The depth of both electrode plates is 20 mm as described above, and the depth of corrugated paper containing special zeolite is 30 mm to maintain insulation between the electrode plates, so that the adsorbing corrugated paper 6 is left behind by 5 mm. Laminated in place. A voltage of +5.7 kV was applied to the linear electrode 102 of the conventional charging unit 101 placed on the windward side of the dust collecting unit 104 to cause corona discharge in which a discharge current of 54 μA flowed. Then, a voltage of +1 kV was applied to the positive electrode plate 105 of the dust collector 104, the negative electrode plate 106 was connected to the ground, the operation of the attached fan was started with the potential being zero, and the odor removal rate was measured. It was 84% and showed high deodorizing performance. Further, when the dust collection efficiency was measured, it was 95% at a wind speed of 0.5 m / s, and it was found that the dust collection efficiency was very high.
[0093]
referenceNo. The structure of 12 dust collectors is shown in FIG. No. as an example. No. 12 dust collector is No. 12. 11, but the conductive activated carbon paper 7 containing 30% by weight of special activated carbon having a particle diameter of 10 μm is used for the plus electrode plate 105 and the minus electrode plate 106. Both the positive electrode plate 105 and the negative electrode plate 106 have dimensions of a width of 132 mm and a depth of 20 mm. The production method of the conductive activated carbon paper 7 is the same as the production method of the adsorption corrugated paper 6 described above, and the component was changed from special zeolite to special activated carbon 9 having a particle size of 10 μm and conductivity (FM-C manufactured by Caterer Industries). Is. When the electrical resistance of the conductive activated carbon paper 7 was measured with a digital multimeter, it was 600 kΩ at a probe distance of 1 cm, and it was found that the conductive carbon paper 7 had the necessary conductivity as an electrode plate. A voltage of +5.7 kV was applied to the linear electrode 102 in a conventional charging unit 101 placed on the windward side of the dust collecting unit 104 to cause corona discharge in which a discharge current of 54 μA flowed. Then, apply a voltage of +2 kV to the conductive paper 7 used for the positive electrode plate 105, connect the negative electrode plate 106 to the ground, and start the operation of the attached fan with the potential set to zero, and measure the odor removal rate. As a result, it was 96%, indicating a very high deodorizing performance. Further, when the dust collection efficiency was measured, it was 80% at a wind speed of 0.5 m / s, and it was found that the dust collection performance was sufficiently high. Thus, by using the adsorption corrugated paper 6 containing the material having the adsorption performance as the insulating honeycomb 1 or using the conductive activated carbon paper 7 having both the adsorption performance and the conductivity as the electrode plate, it is high simultaneously with dust collection. It was found that a dust collector capable of exhibiting deodorizing performance and improving air quality comprehensively can be obtained.
[0094]
Although not shown in the figure,referenceNo. In Example No. 12, the adsorption corrugated paper 6 and the conductive activated carbon paper 7 of the dust collector of No. 12 contained 6% by weight of titanium oxide powder (TKP102 manufactured by Titanium Industry). The deodorizing performance of the dust collector of No. 9 was measured. As with 8, it was 96%. No. In No. 8, the deodorization rate was gradually lowered while removing the acetaldehyde by performing the deodorization test several times. This is because the adsorbent material has a limited amount of odor adsorption. No. As a result of performing a deodorization test several times with the dust collector of No. 9 and confirming that the odor removal rate was 80% or less and then drying in the sun for 8 hours, and then performing a similar deodorization test again, the odor removal rate was It recovered to 90% or more. This is due to the decomposition of acetaldehyde adsorbed by the excitation of titanium oxide by the sunlight, as well as the release of odors by receiving heat energy from sun drying. In this way, titanium oxide, which is a photocatalyst, is supported on the insulator honeycomb 1 and the electrode plate, and receives harmful light such as sunlight and heat energy to decompose the adsorbed harmful gas and regenerate the deodorizing performance. It turns out that it can be used over and over again.
[0095]
referenceNo. The configuration of 13 dust collectors is shown in FIG. In order from the windward side, a rod-shaped needle electrode 8 having a sharp tip and generating a discharge when a high voltage is applied thereto, a filter medium 108 made of polarizable glass fiber (Hoshikoshi H720, rod-shaped needle electrode) 8 is provided with an air-permeable conductive sheet 109 (MS-60 manufactured by Kurashiki Fiber Processing Co., Ltd.). It is folded in a pleated shape to reduce the sheet surface speed when air passes and to improve dust collection performance and odor removal performance. And between the filter medium 108 and the electroconductive sheet 109, the electroconductive activated carbon 9 (Cataler Industries make FM-C) is pinched | interposed. Incidentally, an acrylic rubber adhesive is applied to the surface of the conductive sheet 109 so that the conductive activated carbon 9 does not fall off. Then, a voltage of −6 kV is applied to the rod-like needle electrode 8 to the linear electrode 102, the operation is started with the conductive sheet 109 connected to the ground, and the odor removal rate is measured to be 94%, resulting in a very high deodorizing performance. Indicated. Further, when the dust collection efficiency was measured under the above conditions, it was found that the wind speed was 98% at 0.5 m / s, and the dust collection performance was very high. Incidentally, the discharge current at that time was as small as 1 μA, and therefore the generated ozone concentration was very small at 2 ppb or less. A polarizable filter medium 108 is placed between the rod-shaped needle electrode 8 that generates a discharge when a high voltage is applied and the air-permeable conductive sheet 109, and ions are generated from the rod-shaped needle electrode 8 and simultaneously the filter medium is polarized. In a dust collector that increases dust collection efficiency, a material having an adsorption performance such as activated carbon or zeolite is sandwiched between the filter medium 108 and the conductive sheet 109 or is supported on the filter medium 108 or the conductive sheet 109, thereby simultaneously collecting dust. It was found that a dust collector capable of exhibiting high deodorizing performance and improving air quality comprehensively can be obtained.
[0096]
BookreferenceIn the example, the conductive activated carbon 9 is used as an adsorbent for removing odor, but the same effect can be obtained by using another adsorbent capable of adsorbing the odor component to be removed.
[0097]
BookreferenceIn the example, the filter material 108 is made of glass fiber as a constituent element, but any material or shape may be used as long as it has polarizability. For example, a resin material such as polypropylene is used. The same effect can be obtained by using a sheet having pores instead of a fibrous one.
[0098]
(referenceExample 3)
The insulator with a cell structure is made of an inorganic material, and heat is applied to the electrode plate and the insulator with the cell structure to simultaneously collect dust and deodorize, and decompose not only the adsorbed harmful gas but also the collected dust. FIG. 12 shows an example of a dust collector that can always perform maintenance. The positive electrode plate 105, the insulating honeycomb 1, the negative electrode plate 106, and the insulating honeycomb 1 are laminated in order from the bottom, and a dust collecting portion 104 having a cylindrical shape is formed by winding four sheets in a roll shape. The positive electrode plate 105 and the negative electrode plate 106 are provided with protruding electrodes 2 that ionize air and charge dust. The insulating honeycomb 1 is made of paper, and is made of pulp fiber, glass fiber, ceramic fiber, or the like. The two electrode plates are made of a highly conductive material such as stainless steel, aluminum, or copper in the form of a sheet. Including water and other solvents, materials that have an adsorbing action such as zeolite, inorganic binder components such as water glass, and precious metals such as platinum and rhodium and thermal catalysts that are activated by heat such as cobalt or manganese, ball mills, etc. The dust collection unit 104 is dipped in a mixed solution that is well dispersed and mixed over the surface, drained, and then fired at 300 to 600 ° C. If there is a problem such as the corrugated clogging due to too much loading, ventilation drying is performed before firing. In the case where the insulator honeycomb 1 uses pulp fibers, the firing temperature can be set to 400 ° C. or higher, whereby the pulp fibers can be burned and decomposed to remove the burning components of the device. As described above, the adsorbent and the thermal catalyst are attached and fixed to the insulating honeycomb 1 and the electrode plate, and then fired, so that the dust collecting portion 104 can be configured with only the inorganic component. In particular, when a fibrous sheet is used for the insulating honeycomb 1, the mixed solution penetrates into the fiber, so that the adsorbent and the thermal catalyst can be supported inside the sheet. And by providing the heater 10 on the windward side or the periphery of the dust collecting unit 104, the dust collecting unit 104 can be heated to 100 ° C. or higher, or the air heated by the dust collecting unit 104 can be fed. By applying a positive high voltage to the positive electrode plate 105 and applying a negative high voltage to the negative electrode plate 106, dust charged by the ion emission of the protruding electrodes is collected in the insulator honeycomb 1 of the dust collecting portion 104. Or the positive electrode plate 105 and the negative electrode plate 106. Furthermore, since the adsorbent is carried, harmful gases such as malodorous components in the air can be adsorbed and removed. Since the apparatus is heated to 100 ° C. or more by the heater 10, the above-described thermal catalyst obtains activity and adsorbs the harmful gas and the collected dust.2And H2Since it can be burned and decomposed into a gas such as O and removed, the apparatus can be kept clean without requiring maintenance.
[0099]
BookreferenceThe dust collecting apparatus shown in the example does not necessarily have to be constantly heated by the heater 10, and the same effect can be obtained even if the dust and harmful gases are decomposed and removed by heating with the heater 10 only when the inside of the apparatus is desired to be cleaned.
[0100]
BookreferenceIn the example, a protruding electrode is used as the ion emitting means, but the same effect can be obtained by using other ion emitting means such as a charged portion using a conventional linear electrode.
[0101]
In FIG. 12, the heater 10 is disposed on the windward side of the dust collection unit. However, the heater 10 is installed in any position where heat is applied to the catalyst supported on the dust collection unit. However, the same effect can be obtained.
[0102]
BookreferenceThe dust collector shown in the example is formed by stacking a long electrode plate and a long insulator honeycomb, but there is no difference in effect even in a structure in which a short electrode plate and an insulator honeycomb are laminated.
[0111]
【The invention's effect】
As is clear from the above description, according to the present invention,By discharging positive and negative ions at the same time to neutralize the charge, it is possible to provide a dust collecting device in which the vicinity of the device is less likely to become dirty.
[0112]
In addition, it is possible to provide a dust collector having a high and stable dust collection performance by extending the discharge region in front of the ionization means.
[Brief description of the drawings]
[Figure 1]Reference exampleConfiguration diagram of an electrostatic precipitator with an insulator honeycomb between dust collector electrode plates
[Figure 2]Reference exampleConfiguration diagram of an electrostatic precipitator type dust collector in which a protruding electrode is provided at the windward end of the positive or negative electrode plate of the dust collector and the ion emission means and dust collector are integrated.
[Fig. 3]Reference exampleConfiguration diagram of an electrostatic precipitator type dust collector in which a protruding needle electrode is provided at the windward end of the positive or negative electrode plate of the dust collector and the ion emission means and dust collector are integrated.
[Fig. 4]Reference exampleConfiguration diagram of an electrostatic precipitator type dust collector in which a net-like counter electrode is provided on the windward side of the protruding electrode provided in the dust collector of FIG.
[Figure 5]Reference exampleConfiguration diagram of an electrostatic precipitator type dust collector in which a grid-like counter electrode is provided on the windward side of the projecting electrode provided in the dust collector of FIG. 3 so as to sandwich the projecting electrode.
[Fig. 6]Example ofConfiguration diagram of an electrostatic precipitator type dust collector in which protruding needle electrodes are provided at the windward end of both the positive and negative electrode plates of the dust collector and the ion emission means and the dust collector are integrated.
[Fig. 7]Example ofFIG. 6 is a configuration diagram of an electric dust collection type dust collector in which a net-like counter electrode is provided on the windward side of the protruding electrode provided in the dust collector of FIG.
[Fig. 8]Example ofProtruding needle electrodes are provided on the windward and leeward ends of both the positive and negative electrode plates of the dust collector, and a grid-like counter electrode is provided so that the protruding electrodes are sandwiched in front of each protruding electrode. Configuration diagram of dust collector
FIG. 9Reference exampleConfiguration diagram of electrostatic precipitator using suction corrugated paper as insulator honeycomb
FIG. 10Reference exampleConfiguration diagram of an electrostatic precipitator that uses adsorption corrugated paper as an insulator honeycomb and conductive activated carbon paper as a dust collector electrode plate
FIG. 11Reference exampleConfiguration diagram of electrostatic precipitator equipped with conductive activated carbon between filter medium and conductive sheet
FIG.Reference exampleConfiguration diagram of electrostatic precipitator type dust collector with adsorbent and catalyst supported on an insulator honeycomb and provided with a heater
FIG. 13 is a configuration diagram of a conventional electrostatic precipitator type dust collector.
FIG. 14 is a configuration diagram of a conventional electric dust collector using a filter medium.
[Explanation of symbols]
1 Insulator honeycomb
2 Projection electrode
3 Protruding needle electrode
4 Reticulated counter electrode
5 Lattice counter electrode
6 Adsorption corrugated paper
7 Conductive activated carbon paper
8 Rod needle electrode
9 Conductive activated carbon
10 Heater
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003091188A JP3997941B2 (en) | 2003-03-28 | 2003-03-28 | Dust collector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003091188A JP3997941B2 (en) | 2003-03-28 | 2003-03-28 | Dust collector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004298660A JP2004298660A (en) | 2004-10-28 |
JP3997941B2 true JP3997941B2 (en) | 2007-10-24 |
Family
ID=33404614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003091188A Expired - Fee Related JP3997941B2 (en) | 2003-03-28 | 2003-03-28 | Dust collector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3997941B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106660055A (en) * | 2014-07-08 | 2017-05-10 | Lg电子株式会社 | Electric dust collecting device and air conditioner including the same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4525395B2 (en) * | 2005-03-14 | 2010-08-18 | パナソニック株式会社 | Electric dust collector and air conditioner equipped with the same |
JP2007196199A (en) * | 2006-01-30 | 2007-08-09 | Daikin Ind Ltd | Discharge device, air cleaning apparatus and air-flow generating device equipped with the discharge device |
WO2011099257A1 (en) * | 2010-02-09 | 2011-08-18 | パナソニック株式会社 | Electrode plate, process for producing same, and electric dust collector using same |
CN104759348A (en) * | 2015-02-05 | 2015-07-08 | 镇江汉邦科技有限公司 | Positive and negative high voltage dust collector |
CN106345615A (en) * | 2016-11-01 | 2017-01-25 | 张青政 | High-efficiency multifunctional purification plant |
KR20200070216A (en) * | 2017-10-30 | 2020-06-17 | 파나소닉 아이피 매니지먼트 가부시키가이샤 | Electrostatic precipitator |
JP2022024254A (en) * | 2020-07-13 | 2022-02-09 | 三菱重工パワー環境ソリューション株式会社 | Air cleaning device and air conditioning device |
JPWO2022064977A1 (en) * | 2020-09-24 | 2022-03-31 | ||
KR20230043449A (en) * | 2021-09-24 | 2023-03-31 | 삼성전자주식회사 | Electrostatic precipitator and control method thereof |
DE102022203769A1 (en) | 2022-04-14 | 2023-10-19 | Mahle International Gmbh | Air purification device |
-
2003
- 2003-03-28 JP JP2003091188A patent/JP3997941B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106660055A (en) * | 2014-07-08 | 2017-05-10 | Lg电子株式会社 | Electric dust collecting device and air conditioner including the same |
CN106660055B (en) * | 2014-07-08 | 2019-06-18 | Lg电子株式会社 | Electric dust collecting means and air regulator including it |
Also Published As
Publication number | Publication date |
---|---|
JP2004298660A (en) | 2004-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5369210B2 (en) | Dust collector and air conditioner | |
AU2017201354B2 (en) | Electronic air cleaners and associated systems and methods | |
JP5855122B2 (en) | Microbe / virus capture / inactivation apparatus and method thereof | |
JP3997941B2 (en) | Dust collector | |
CN106861340B (en) | Multifunctional air purifying device | |
KR102541787B1 (en) | Corrugated Filtration Media for Polarizing Air Purifiers | |
WO2005021160A1 (en) | Gas treating apparatus | |
JP6263736B2 (en) | Electric dust filter unit | |
JP2009066027A (en) | Air cleaning filter and air cleaner | |
JP2010022998A (en) | Air cleaning apparatus | |
CN218531327U (en) | Electrostatic dust collector capable of inactivating bacteria and viruses | |
KR20210035040A (en) | Filter for trapping microparticulates in air pollutant comprising vertical nano-gap electrode with multiple holes and air conditioning apparatus having the same | |
KR100774484B1 (en) | Air cleaner with electrostatic film and air conditioning system including the same | |
JP2008221078A (en) | Air cleaning apparatus and filter | |
KR20190076432A (en) | Plasma wire having carbon coating layer and dust collector using the same | |
JP7196550B2 (en) | air purifier | |
KR20200019646A (en) | Plasma wire having carbon coating layer and dust collector using the same | |
JP3709449B1 (en) | Gas processing equipment | |
JPH09206628A (en) | Apparatus for cleaning air | |
CN114950733A (en) | Electrostatic dust collector capable of inactivating bacteria and viruses | |
JP2001334123A (en) | Exhaust gas deodorizing treating apparatus | |
JP4591086B2 (en) | Discharge device and air purification device | |
JPS6359963A (en) | Electronic type gas cleaning apparatus | |
RU68365U1 (en) | ELECTROSTATIC FILTER | |
JP2006015282A (en) | Air cleaner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050527 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050614 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070404 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070508 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070717 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070730 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100817 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110817 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120817 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130817 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |