JP3997114B2 - Arginine-containing peptide having cholecystokinin secretion promoting activity and food containing the same - Google Patents

Arginine-containing peptide having cholecystokinin secretion promoting activity and food containing the same Download PDF

Info

Publication number
JP3997114B2
JP3997114B2 JP2002168694A JP2002168694A JP3997114B2 JP 3997114 B2 JP3997114 B2 JP 3997114B2 JP 2002168694 A JP2002168694 A JP 2002168694A JP 2002168694 A JP2002168694 A JP 2002168694A JP 3997114 B2 JP3997114 B2 JP 3997114B2
Authority
JP
Japan
Prior art keywords
peptide
amino acid
conglycinin
acid sequence
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002168694A
Other languages
Japanese (ja)
Other versions
JP2004010569A (en
JP2004010569A5 (en
Inventor
隆司 西
博 原
冨田房男
浅野行蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A Hitbio
Original Assignee
A Hitbio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A Hitbio filed Critical A Hitbio
Priority to JP2002168694A priority Critical patent/JP3997114B2/en
Publication of JP2004010569A publication Critical patent/JP2004010569A/en
Publication of JP2004010569A5 publication Critical patent/JP2004010569A5/ja
Application granted granted Critical
Publication of JP3997114B2 publication Critical patent/JP3997114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Peptides Or Proteins (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、消化管ホルモンであるコレシストキニンの分泌を促進することによって食欲抑制作用を発揮する食品素材に関するものである。
【0002】
【従来の技術】
コレシストキニン(以降CCKと称す)は、十二指腸粘膜細胞から分泌される消化管ホルモンであり、脂肪の摂取に伴って分泌され、胆嚢の収縮および膵酵素の分泌を促進する。直鎖のポリペプチドで33個のアミノ酸残基からなるホルモンであり、特にC末端のオクタペプチドが活性をもっている。
【0003】
CCKの生理作用として注目されるのは、摂食した食品の胃排出を抑制する作用、あるいは膵酵素分泌促進能を有すること、さらに、満腹感を与えて摂食行動を抑制することが知られている(Weller,A.ら、Science、247巻、1589-1591頁、1990年、およびWoltman、TとReidelberger, R. American Journal of Physiology 276巻、R1701-R1709頁、1999年)。また、血糖値を調節するホルモンであるインスリンの分泌を促すことも知られている(Rossetti,L.ら、Diabetes、36巻、1212-1215頁、1987年、および、Ruchakoff、R.J.ら、Journal of Clinical Endocrinological Metabolism、65巻、395-401頁、1987年)。これらの作用を利用し、肥満や糖尿病あるいは、膵炎等の生活習慣病の予防および治療を行おうとする例がある。従来は、体外から血管中にCCKを投与する方法しかなかった。そのためには、CCKを注射等で投与する場合は、生理レベルを超えた多量のCCKが、必要であった。また、病気治療のため毎日の投与を要する場合には、毎日の投与の煩雑さに加えて、費用が多額となってしまう欠点があった。
【0004】
体外からCCKを投与する方法に対し、食事成分のタンパク質(ペプチド)、アミノ酸あるいは脂肪酸によって、小腸粘膜にあるCCK産生細胞から分泌される内因性のCCKを利用する手段もある。食品を用いる方法ならば、薬と比べて安価である。ただし、脂肪酸、すなわち脂質の摂取は、それ自体が生活習慣病のリスクファクターとなることから、内因性CCK分泌の刺激因子として用いることは不適当であった。食欲抑制食品を作るために、CCK分泌促進作用を持った適切な食品素材の開発求められていた。
【0005】
タンパク質やその分解ペプチドによる内因性CCK分泌作用について、最近になってタンパク質やペプチド自身が直接小腸細胞に働き掛けてCCK分泌を促す機構の存在が提唱されている(Ritter, R.C.ら、Neuropeptides 33巻、387-399頁、1999年)。現在、培養細胞を用いた研究等によって食品系タンパク質の直接作用によるCCK分泌での細胞内情報伝達機構は徐々に明らかになりつつある。しかし、細胞に作用する経口摂取されたタンパク質側、特にタンパク質を構成するアミノ酸の配列からのアプローチはほとんど行われておらず、小腸細胞刺激を介したCCK分泌活性を有する食品由来の機能性ペプチドの開発は遅れていた。
【0006】
【発明が解決しようとする課題】
解決しようとする問題点は、小腸粘膜から分泌される内因性のCCKの分泌促進を行い、食欲抑制効果を有する食品素材を開発することであり、しかも安全で安価な食品素材でなくてはならない。
【0007】
【課題を解決するための手段】
本発明は、CCK分泌促進し、そのことによって食欲抑制機能を発揮させるために、特定のアミノ酸配列、すなわち特定の位置にアルギニンが結合したアルギニン含有ペプチドを用いることを最も主要な特徴としている。さらに、特定のアミノ酸配列のアルギニン含有ペプチドが、従来の食品素材の中にも存在することを発見し、特定の加工法によって食欲抑制作用のある食品素材にすることを特徴としている。
すなわち、本発明は、〔1〕以下のものから選択される特定のオリゴペプチド:
連続した7個のアミノ酸の配列のN端から3番目および5番目にアルギニンが位置する配列表の配列番号9記載のアミノ酸配列を含むアルギニン含有ペプチド;
連続した7個のアミノ酸の配列のN端から2番目および5番目にアルギニンが位置する配列表の配列番号10記載のアミノ酸配列を含むアルギニン含有ペプチド;
連続した7個のアミノ酸の配列のN端から2番目および6番目にアルギニンが位置する配列表の配列番号11記載のアミノ酸配列を含むアルギニン含有ペプチド;
連続した7個のアミノ酸の配列のN端から2番目、4番目および6番目にアルギニンが位置する配列表の配列番号13記載のアミノ酸配列を含むアルギニン含有ペプチド;
配列表の配列番号1記載のアミノ酸配列を含んだアルギニン含有ペプチド;
配列表の配列番号2記載のアミノ酸配列を含んだアルギニン含有ペプチド;
配列表の配列番号3記載のアミノ酸配列を含んだアルギニン含有ペプチド;
配列表の配列番号4記載のアミノ酸配列を含んだアルギニン含有ペプチド;
配列表の配列番号5記載のアミノ酸配列を含んだアルギニン含有ペプチド;
配列表の配列番号14記載のアミノ酸配列を含んだアルギニン含有ペプチド;
を含む、配列表の配列番号1〜5、9〜11、13および14から選択されるいずれか1つのアミノ酸配列からなり、コレシストキニン分泌促進活性又は小腸刷子縁膜可溶性成分に対する結合能を有する食欲抑制用ペプチド、〔2〕大豆β−コングリシニンのアミノ酸配列から得られる前記ペプチド、〔〕このようなペプチドの一種または複数種を含有する食欲抑制用食品素材、〔〕大豆β−コングリシニンのペプシン分解物である前記食品素材、および〔〕このような食品素材を含有する食欲抑制用食品を提供する。
【0008】
【発明の実施の形態】
小腸粘膜細胞からのCCKの分泌を促進する因子の研究を鋭意行い、特定のアミノ酸配列を持ったアルギニン含有ペプチドが、腸管細胞に特異的に結合することをきっかけに、CCK分泌を促進することを発見した。CCK分泌促進によって、これらのアルギニン含有ペプチドが、食欲抑制作用を持つことを明らかにした。さらに、これらの特定のアミノ酸配列を持ったアルギニン含有ペプチドが、従来の食品素材中に存在していることも明らかにした。これらの発見を利用して、食欲抑制作用のある食品素材を従来の食品素材を加工することによって実現した。
発明者の一連の研究結果から、摂取したタンパク質やペプチド自身が、直接消化管に結合してCCK分泌促進する機構の存在を見出した。このようにタンパク質やペプチドを消化管が直接認識して何らかの生理現象を発現させるといった報告は、過去にはない。食品の第3次機構である生体調節機能の面から見たタンパク質やペプチドの新たなる可能性である。
【0009】
【実施例1】
種々のペプチドのCCK分泌促進活性を調べるために、配列表の配列番号6〜12記載のアミノ酸配列に相当する7種のペプチドを単離ラット小腸粘膜細胞と反応させて小腸細胞から分泌したCCK量を測定した。
【0010】
実験に使用したアルギニン含有ペプチドは、以下の7種類のペプチドである。いずれもそれぞれの配列に合成したものであり、それぞれの実験区には、この配列以外のペプチドはなかった。
ペプチド1、配列表の配列番号6記載のアミノ酸配列からなるペプチド、(GGGRGGG)
ペプチド2、配列表の配列番号7記載のアミノ酸配列からなるペプチド、(GGGGGGR)
ペプチド3、配列表の配列番号8記載のアミノ酸配列からなるペプチド、(GGGRRGG)
ペプチド4、配列表の配列番号9記載のアミノ酸配列からなるペプチド、(GGRGRGG)
ペプチド5、配列表の配列番号10記載のアミノ酸配列からなるペプチド、(GRGGRGG)
ペプチド6、配列表の配列番号11記載のアミノ酸配列からなるペプチド、(GRGGGRG)
ペプチド7、配列表の配列番号12記載のアミノ酸配列からなるペプチド、(GRGRGRG)
【0011】
小腸粘膜細胞の単離と調製方法: 全ての実験にはSprague-Dawley系の雄ラット、初体重約250gのものを使用した。飼料として25%カゼイン食を与え、12時間の明暗周期で飼育した。一夜絶食したラットを屠殺後、十二指腸の総胆管開口部を起点に20 cmの小腸を摘出し、管腔内に生理食塩水を通して洗浄した。小腸を反転し、10mM EDTAを含んだ10 mlのKrebs-Henseleit bicarbonate (KHB)溶液(37、pH 7.4、酸素通気済み)中に入れて37で5分間振とうしながらインキュベートした。インキュベート終了後、プラスチック製スティックを用いて小腸粘膜を剥ぎ取り、KHB溶液に混合してよく撹拌した後、500rpmで3分間遠心分離した。上清を除去し、沈殿を5mlのKHB溶液(EDTA含有、37、pH 7.4、酸素通気済み)中に入れ、ピペットマンのチップを用いて細胞を分散させてから37で5分間振とうしながらインキュベートし、反応終了後、500rpmで3分間遠心分離した。この作業を2度行い、単離小腸粘膜細胞を調製した。ラット3匹分の小腸粘膜細胞を一つに合わせ、200倍量のHEPES緩衝液(37、pH7.4、酸素通気済み)中に分散させた。そのまま1時間37で振とうしながらインキュベートして細胞を平衡化した後、緩衝液を新鮮なものと交換した。
【0012】
試験試料と小腸粘膜細胞との反応方法: あらかじめ200 nmol/mlの濃度で各合成ペプチドを精製水(ミリQ水)に溶解した物を1mlずつプラスチックのバイアルに入れ、凍結乾燥して水分を飛ばした。そこに小腸粘膜細胞懸濁液1mlを添加し、37で30分間振とうしながらインキュベートした。インキュベート終了後、内容物を小型遠心管に移して10,000rpmで7秒間遠心分離し、上清0.7mlを回収した。その内の0.5 mlをSep-pak C18カートリッジに通し、50 %アセトニトリルでCCKを抽出した。回収したCCKは凍結乾燥後、膵腺房細胞を用いたバイオアッセイ法で定量した。
【0013】
オリゴペプチドによるCCK分泌促進試験の結果、対照区(ペプチドを加えなかった実験区)と比較して、いずれのペプチド添加区においてもCCK分泌が促進されていた(図1)。なかでもペプチド4,5,6,および7においては、CCK分泌が強く促進された。
【0014】
発明者の研究での重要な発見の1つは、CCK分泌促進を行う物質が、小腸刷子縁膜可溶化成分と特異的な結合を行うことを発見したことである。
各種ペプチドと小腸刷子縁膜可溶化成分との結合を分子間相互作用解析装置(BIACORE3000)を用いて測定した(Hira, T.ら、Bioscience Biotechnology Biochemistry、65巻、1007-1015頁、2001年)。ラット小腸粘膜細胞より回収した細胞膜可溶化成分を分子間相互作用解析装置のセンサーチップに固定化させ、そこに種々のペプチドを流して細胞膜成分との結合量を測定した。全ての実験にはSprague-Dawley系の雄ラット、初体重約250gのものを使用した。飼料として25%カゼイン食を与え、12時間の明暗周期で飼育した。ラット空腸部位の粘膜に塩化カルシウムおよびKSCN処理と超遠心分離を施して得た刷子縁膜小胞を0.1%濃度となるようにTriton X-100に加えてよく撹拌し、4で1時間振とう後、超遠心分離して得た上清を小腸刷子縁膜可溶化成分とした。Exratcti Gel D affinity Pak column を用いて可溶化成分中からTriton X-100を除去した後、10 mM 酢酸緩衝液 (pH 4.0)で希釈したものをセンサーチップCM5に固定化した。結合試験は、各種ペプチドをHEPES緩衝液(10mM HEPES, 0.15M NaCl, 3 mM EDTA, pH7.4)に、種々の濃度(0, 50, 100, 200, 500 micro g/ml)で溶解し、分子間相互作用解析装置(BIACORE3000)にインジェクトした。
【0015】
各種アルギニン含有ペプチドと小腸刷子縁膜可溶化成分との結合試験の結果を図2に示した。図中、実線で示した4種類のアルギニン含有ペプチド(ペプチド4:配列表の配列番号9記載のアミノ酸配列からなるペプチド(GGRGRGG、ペプチド5:配列表の配列番号10記載のアミノ酸配列からなるペプチド(GRGGRGG、ペプチド6:配列表の配列番号11記載のアミノ酸配列からなるペプチド(GRGGGRG、および、ペプチド7:配列表の配列番号12記載のアミノ酸配列からなるペプチド(GRGRGRG)で容量依存的な小腸膜成分との結合が観察された。これに対し、ペプチド7のグリシン部分をプロリンに置き換えたペプチド8(配列表の配列番号13記載のアミノ酸配列からなるペプチド)では、結合量が低くなったものの結合活性が存在することが示された。
【0016】
これらの結果より、アルギニンを複数有し且つその間に別のアミノ酸を挟む構造を持つペプチドに小腸細胞膜に直接結合する能力が存在することが示され、その直接作用に伴ってCCK分泌が刺激されることが示唆された。
また、これらの結果から、CCKの分泌促進活性の強さは、ペプチドが、ラット小腸粘膜細胞の表面に存在する特異的受容体に結合する活性と相関があることがわかった。この結合活性は、分子間相互作用解析装置を用いて厳密に測定することができることもわかった。
【0017】
【実施例2】
天然に存在する食品ペプチドの中で配列表の配列番号6〜12記載のアルギニン含有ペプチドに類似した構造を分子中に多数含む大豆β−コングリシニンについて、(1)小腸刷子縁膜可溶化成分との結合活性、(2)CCK分泌促進活性、および、(3)摂食抑制効果について調べた。
全ての実験にはSprague-Dawley系の雄ラット、初体重約250gのものを使用した。飼料として25%カゼイン食を与え、12時間の明暗周期で飼育した。
【0018】
β−コングリシニンの単離とペプシン分解物の調製方法: 脱脂大豆粉末を15倍容量のTris-HCl緩衝液(pH8.0)と混合し、室温で1時間撹拌した。ガーゼ濾過を施した後、遠心分離(8,000rpm、20分、4)して上清を回収した。上清をpH6.0に調整後、低温室で一夜放置し、再度遠心分離(8,000rpm、20分、4)して上清を回収した。続けて上清をpH 4.8に調整して遠心分離(8,000rpm、30分、4)し、沈殿を回収した。得られた沈殿を3%濃度になるように標準緩衝液(35mM Potassium phosphate, 0.4 M NaCl, 10 mM 2-メルカプトエタノール、pH7.6)に溶解し、低温室で一夜放置した。これに75%濃度になるように硫安を添加し、この可溶化成分にさらに90%濃度になるように硫安を添加した。得られた沈殿をミリQ水に溶解して流水透析した後、凍結乾燥してβ−コングリシニンを得た。このβ−コングリシニン2gを100倍量のリン酸溶液と混合し、pH1.85に調整後、37に保温した。ここにペプシン溶液(20 mg/ml)を1 ml添加し、37で10分間振とうしながらインキュベートした。反応終了後、溶液を煮沸してペプシンを失活させた。溶液を冷却した後、遠心分離(3,000rpm、20分、4)して上清を回収した。水酸化カルシウムを用いて上清を中和した後、遠心分離(3,000rpm、20分、4)して塩を除去し、凍結乾燥によりβ−コングリシニン・ペプシン分解物を回収した。
【0019】
β−コングリシニンのペプシン分解物と小腸刷子縁膜可溶化成分との結合試験方法: β−コングリシニン・ペプシン分解物と小腸刷子縁膜可溶化成分との結合は分子間相互作用解析装置 (BIACORE 3000)を用いて測定した。ラット空腸部位の粘膜に塩化カルシウムおよびKSCN処理と超遠心分離を施して得た刷子縁膜小胞を0.1%濃度となるようにTriton X-100に加えてよく撹拌し、4で1時間振とう後、超遠心分離して得た上清を小腸刷子縁膜可溶化成分とした。Exratcti Gel D affinity Pak columnを用いて可溶化成分中からTriton X-100を除去した後、10 mM酢酸緩衝液(pH 4.0)で希釈したものをセンサーチップCM5に固定化した。β−コングリシニンのペプシン分解物は、HEPES緩衝液(10 mM HEPES, 0.15M NaCl, 3 mM EDTA, pH7.4)にそれぞれ(0, 50, 100,250, 500micro g/ml)濃度で溶解し、アナライトとして分子間相互作用解析装置(BIACORE3000)にインジェクトした。ペプシン分解処理を行わなかったβ−コングリシニンも同様にアナライトとして用いた。
【0020】
β−コングリシニンのペプシン分解物と小腸刷子縁膜可溶化成分との結合試験の結果を図3に示した。未分解のβ−コングリシニン、β−コングリシニンのペプシン分解物共に容量依存的な小腸膜成分との結合を示した。しかし、結合能はβ−コングリシニンのペプシン分解物の方が未分解のβ−コングリシニンと比べて3〜4倍高く、ペプシン分解によってβ−コングリシニンの小腸細胞膜への結合能が増加することが示された。
【0021】
β−コングリシニンのペプシン分解物によるin vitro でのCCK分泌促進試験方法: (1)小腸粘膜細胞の単離と調製: 一夜絶食したラットを屠殺後、十二指腸の総胆管開口部を起点に20cmの小腸を摘出し、管腔内に生理食塩水を通して洗浄した。小腸を反転し、10mM EDTAを含んだ10 mlのKrebs-Henseleit bicarbonate (KHB)溶液(37、pH7.4、酸素通気済み)中に入れて37で5分間振とうしながらインキュベートした。反応終了後、プラスチックスティックを用いて小腸粘膜を剥ぎ取り、KHB溶液に混合してよく撹拌した後500rpmで3分間遠心分離した。上清を除去し、沈殿を5ml のKHB溶液(EDTA含有、37、pH 7.4、酸素通気済み)中に入れ、ピペットマンのチップを用いて細胞を分散させてから3で5分間振とうしながらインキュベートし、終了後500rpmで3分間遠心分離した。この作業を2度行い、単離小腸粘膜細胞を調製した。ラット3匹分の小腸粘膜細胞を一つに合わせ、200倍量のHEPES緩衝液(37、pH7.4、酸素通気済み)中に分散させた。そのまま1時間37で振とうしながらインキュベートして細胞を平衡化した後、緩衝液を新鮮なものと交換した。
【0022】
(2)試験試料と小腸粘膜細胞との反応方法: 未分解のβ−コングリシニン及びβ−コングリシニンのペプシン分解物をそれぞれミリQ水に溶解 (200もしくは、500 micro g/ml)したものを1mlずつプラスチックのバイアルに入れ、凍結乾燥して水分を飛ばした。そこに小腸粘膜細胞懸濁液1mlを添加し、37で30分間振とうしながらインキュベートした。終了後、内容物を小型遠心管に移して10,000rpmで7秒間遠心分離し、上清0.7mlを回収した。その内の0.5 mlをSep-pak C18カートリッジに通し、50 %アセトニトリルでCCKを抽出した。回収したCCKは凍結乾燥後膵腺房細胞を用いたバイオアッセイ法により定量した。
【0023】
β−コングリシニンのペプシン分解物によるin vitroでのCCK分泌促進試験の結果を図4に示した。未分解のβ−コングリシニンは小腸細胞との反応で多少のCCK分泌を示すものの、対照区でのCCK分泌量と比較して有意な差は観察されなかった。これに対してβ−コングリシニンのペプシン分解物ではコントロールでのCCK分泌量と比較して有意に大きいCCK分泌量が観察された。大豆β−コングリシニンのペプシン分解物が、CCK分泌促進活性を持つことが証明された。
さらに、合成トリプシンインヒビターのcamostat (0.25 microg/ml)を投与したラットの餌の摂取量を測定したところ、未分解のβ−コングリシニンでのCCK分泌量は、さらに減少し、摂食抑制効果は、全く認められなかった。一方、大豆β−コングリシニンのペプシン分解物でのCCK分泌活性は、camostatが共存していても、非存在時と変わらず、強い分泌促進活性を示した。
【0024】
in vitro実験において強いCCK分泌促進活性を示したβ−コングリシニンのペプシン分解物が、実験動物を用いたin vivoモデルにおいても血中CCK濃度上昇作用を示し、CCKの生理作用の一つである摂食抑制効果を発揮することを次に示す。
【0025】
β−コングリシニン ペプシン分解物による摂食抑制試験方法: (1) ラットの外科的準備: 実験動物にはSD系雄ラットを選び、実験前にあらかじめ十二指腸部位にカテーテル留置を施した。一夜絶食したラットに麻酔をかけ、幽門より1cm下部の十二指腸部位にカテーテルを挿入した。挿入したカテーテルは腹壁に固定した後、皮下を通して後、背部の首の付け根より外部に出し、塩化ビニル製のプロテクターにて保護した。ラットは一週間の回復期間をおいた後、実験に使用した。
(2) 摂食抑制試験方法: 一夜絶食したラットに2 mg/ml濃度のβ−コングリシニンのペプシン分解物水溶液2.5 mlをシリンジポンプを用いて、流速0.5 ml/minで十二指腸に投与した。投与15分後から1時間、25 %カゼイン食をラットに自由摂取させ、摂食した餌の重量を測定した。実験最終日にβ−コングリシニンのペプシン分解物水溶液を投与した45分後にエーテル麻酔下で門脈血を採取した。血漿中のCCK濃度を膵腺房細胞を用いたバイオアッセイ法にて定量した。
【0026】
β-コングリシニン・ペプシン分解物水溶液を投与し、45分後にラットを開腹し、門脈血を採取後直ちに遠心分離して血漿を回収した。その結果、β-コングリシニンのペプシン分解物投与群で対照区と比較して有意な血中CCK濃度の上昇が観察された(図5)。
【0027】
摂食量の変化も顕著であった。β-コングリシニン・ペプシン分解物水溶液を流速0.5mlで十二指腸に投与15分後に餌を与え、1時間摂食させた後餌を回収して摂食量を測定した。その結果、β-コングリシニンペプシン分解物投与群で溶媒投与群と比較して有意な摂食量の低下が観察された(図6)。また、β−コングリシニンペプシン分解物の十二指腸投与は、30分程度の早い時点からでも摂食抑制を引き起こすことも判明した。
【0028】
【実施例3】
大豆β-コングリシニンのアミノ酸配列中のアルギニン局在部位が、ラット小腸細胞膜に対して極めて高い結合活性を示し、かつ摂食抑制効果も強いことを以下の実験より証明した。なお、実験方法は、実施例2と同様である。
【0029】
β−コングリシニンのアミノ酸配列の中からアルギニンが局在する部分のペプチドを合成し、それらについてラット小腸細胞膜可溶化成分との結合と摂食抑制作用を評価した。実験に供したペプチドは、次のごとくである。ペプチドAは、大豆ペプトンであり、ペプチドBは、大豆β−コングリシニンのペプシン分解物である。ペプチドCは、配列表の配列番号1記載のアミノ酸配列からなるペプチドであり、β−コングリシニンのβサブユニットの51−63番目の配列である。ペプチドDは、配列表の配列番号2記載のアミノ酸配列からなるペプチドであり、β−コングリシニンのβサブユニットの53−63番目の配列である。
ペプチドEは、配列表の配列番号3記載のアミノ酸配列からなるペプチドであり、β−コングリシニンのβサブユニットの51−59番目の配列である。ペプチドFは、配列表の配列番号14記載のアミノ酸配列からなるペプチドであり、連続した7個のアミノ酸の配列のN端から2番目および6番目にアルギニンが位置するという条件を満たす最小単位の配列である。ペプチドGは、配列表の配列番号4記載のアミノ酸配列からなるペプチドであり、β−コングリシニンのαサブユニットの配列である。ペプチドHは、配列表の配列番号5記載のアミノ酸配列からなるペプチドであり、β−コングリシニンのαプライム・サブユニットの配列である。各ペプチド溶液は 100 micro g/mlの濃度で使用した。
【0030】
小腸粘膜可溶化成分との結合は分子間相互作用解析装置(BIACORE 3000)を用いて測定した結果、β−コングリシニンのβサブユニットの51−63番目の配列を持つペプチド(配列表の配列番号1記載のアミノ酸配列参照)が、β−コングリシニンペプシン分解物の約3.5倍、大豆タンパク質ペプシン分解物の約15倍という大きな結合活性を示した(図7)。結合活性は、連続した7個のアミノ酸の配列のN端から2番目および6番目にアルギニンが位置するという条件を満たす最小単位の配列表の配列番号14記載のアミノ酸配列からなるペプチド(Ile−Arg−Leu−Leu−Gln−Arg−Phe)でもβ−コングリシニンペプシン分解物と同程度であり、連続した7個のアミノ酸の配列のN端から3番目および5番目にアルギニンが位置する、連続した7個のアミノ酸の配列のN端から2番目および5番目にアルギニンが位置する、連続した7個のアミノ酸の配列のN端から2番目および6番目にアルギニンが位置する、という条件を満たす部分の数が多くなるほど細胞膜成分との結合量は、増加することを発見した。
【0031】
配列表の配列番号1記載のアミノ酸配列のペプチドと類似したアミノ酸配列が、β−コングリシニンのαサブユニット(配列表の配列番号4記載のアミノ酸配列参照)並びに、αプライム・サブユニット(配列表の配列番号5記載のアミノ酸配列参照)にも存在する。これらの細胞膜成分との結合能についても調べた。その結果、β−コングリシニンペプシン分解物と比べてより多い結合量を示し、CCK分泌促進効果を期待できることがわかった。しかし、単位重量あたりの結合活性は、配列表の配列番号1記載のアミノ酸配列のペプチドと比較すると半分程度であった(図7)。
【0032】
これらのペプチドについて摂食抑制効果を調べた。ペプチド溶液の十二指腸投与によって摂食量は有意に抑えられた。
【0033】
【発明の効果】
本発明のオリゴペプチドは、摂食されて小腸内に達すると、コレシストキニン(CCK)の分泌を著しく促進し、その結果、CCKは脳中枢に作用して、摂食抑制作用を引き起こす。同時に胃に作用して、胃排泄抑制を行い満腹感を与える。本発明のこの性質を利用することによって過食予防食品など、食べることによって食欲を抑える食品及び食品素材を作ることができ、肥満や過食症の予防食品となりうる。
【0034】
【配列表】

Figure 0003997114
Figure 0003997114
Figure 0003997114
Figure 0003997114
Figure 0003997114

【図面の簡単な説明】
【図1】 アルギニン含有ペプチドのコレシストキニン分泌促進活性
請求項1から7のペプチドを含む7種のアルギニン含有合成ペプチドを単離ラット小腸粘膜細胞と反応させた際のCCK分泌活性を表した図である。対照区(ペプチドを加えなかった実験区)でのCCK分泌量を100%として表示した。(実施例1)
【符号の説明】
ペプチド1:配列表の配列番号6記載のアミノ酸配列からなるペプチド
ペプチド2:配列表の配列番号7記載のアミノ酸配列からなるペプチド
ペプチド3:配列表の配列番号8記載のアミノ酸配列からなるペプチド
ペプチド4:配列表の配列番号9記載のアミノ酸配列からなるペプチド
ペプチド5:配列表の配列番号10記載のアミノ酸配列からなるペプチド
ペプチド6:配列表の配列番号11記載のアミノ酸配列からなるペプチド
ペプチド7:配列表の配列番号12記載のアミノ酸配列からなるペプチド
【図2】 アルギニン含有ペプチドの小腸粘膜への特異的結合能
請求項1から7のペプチドを含む8種のアルギニン含有合成ペプチドとラット小腸粘膜細胞膜可溶化成分との結合量を表した図である。小腸粘膜可溶化成分との結合は分子間相互作用解析装置(BIACORE 3000)を用いて測定した。(実施例1)
【符号の説明】
- -- -(破線):配列表の配列番号6記載のアミノ酸配列からなるペプチド
- -- -(破線):配列表の配列番号7記載のアミノ酸配列からなるペプチド
- -- -(破線):配列表の配列番号8記載のアミノ酸配列からなるペプチド
−◇−(実線):配列表の配列番号9記載のアミノ酸配列からなるペプチド
−△−(実線):配列表の配列番号10記載のアミノ酸配列からなるペプチド
−□−(実線):配列表の配列番号11記載のアミノ酸配列からなるペプチド
−○−(実線):配列表の配列番号12記載のアミノ酸配列からなるペプチド
- -×- -(破線):配列表の配列番号13記載のアミノ酸配列からなるペプチド
【図3】 大豆β−コングリシニンおよびそのペプシン分解物の小腸粘膜への特異的結合
β-コングリシニン及びそのペプシン分解物とラット小腸粘膜細胞膜可溶化成分との結合量を表した図である。小腸粘膜可溶化成分との結合は分子間相互作用解析装置(BIACORE 3000)を用いて測定した。(実施例2)
【符号の説明】
−○−:大豆β-コングリシニン
−●−:大豆β-コングリシニンのペプシン分解物
【図4】 大豆β−コングリシニンおよびそのペプシン分解物のコレシストキニン分泌促進活性
β-コングリシニン及びそのペプシン分解物を単離ラット小腸粘膜細胞と反応させた際のCCK分泌率を表した図である。(実施例2)
【符号の説明】
*:コントロール群に対し危険率5%で有意差有り
【図5】 ラット血中におけるコレシストキニン濃度
ラット小腸にβ-コングリシニンペプシン分解物溶液を投与して45分後の門脈血中CCK濃度を表した図である。(実施例2)
【符号の説明】
*:コントロール群に対し危険率5%で有意差有り
【図6】 摂食量抑制効果
β-コングリシニンペプシン分解物溶液を小腸に投与したラットの一時間の摂食量を表した図である。(実施例2)
【符号の説明】
*:コントロール群に対し危険率5%で有意差有り
【図7】 大豆βコングリシニンのアルギニン含有ペプチド部分の小腸粘膜との特異的結合活性
大豆タンパク質ペプシン分解物、大豆β-コングリシニンのペプシン分解物、および請求項8から12のペプチドを含む6種のアルギニン含有ペプチドとラット小腸細胞膜可溶化成分との結合を表した図である。小腸粘膜可溶化成分との結合は分子間相互作用解析装置(BIACORE 3000)を用いて測定した。なお、各ペプチド溶液は100 micro g/mlの濃度で使用した。(実施例3)
【符号の説明】
ペプチドA:大豆タンパク質ペプシン分解物
ペプチドB:大豆β-コングリシニンのペプシン分解物
ペプチドC配列表の配列番号1記載のアミノ酸配列からなるペプチド
ペプチドD配列表の配列番号2記載のアミノ酸配列からなるペプチド
ペプチドE配列表の配列番号3記載のアミノ酸配列からなるペプチド
ペプチドF配列表の配列番号14記載のアミノ酸配列からなるペプチド
ペプチドG配列表の配列番号4記載のアミノ酸配列からなるペプチド
ペプチドH配列表の配列番号5記載のアミノ酸配列からなるペプチド [0001]
[Technical field to which the invention belongs]
  The present invention relates to a food material that exerts an appetite suppressing action by promoting the secretion of cholecystokinin, which is a gastrointestinal hormone.
[0002]
[Prior art]
  Cholecystokinin (hereinafter referred to as CCK) is a gastrointestinal hormone secreted from duodenal mucosal cells, secreted with fat intake, and promotes gallbladder contraction and pancreatic enzyme secretion. It is a straight-chain polypeptide and a hormone consisting of 33 amino acid residues, and the C-terminal octapeptide is particularly active.
[0003]
  It is known that the physiological action of CCK has the effect of suppressing gastric emptying of foods eaten, or the ability to promote pancreatic enzyme secretion, and it also gives a feeling of satiety to suppress eating behavior. (Weller, A. et al., Science, 247, 1589-1591, 1990, and Woltman, T and Reidelberger, R. American Journal of Physiology, 276, R1701-R1709, 1999). It is also known to stimulate the secretion of insulin, a hormone that regulates blood sugar levels (Rossetti, L. et al., Diabetes, 36, 1212-1215, 1987, and Ruchakoff, RJ et al., Journal of Clinical Endocrinological Metabolism, 65, 395-401, 1987). There are examples of using these actions to prevent and treat lifestyle-related diseases such as obesity, diabetes, and pancreatitis. Conventionally, there was only a method of administering CCK from outside the body into the blood vessel. For that purpose, when CCK was administered by injection or the like, a large amount of CCK exceeding the physiological level was required. In addition, when daily administration is required for disease treatment, there is a disadvantage that the cost becomes large in addition to the complexity of daily administration.
[0004]
  In contrast to the method of administering CCK from outside the body, there is also a means of utilizing endogenous CCK secreted from CCK producing cells in the small intestinal mucosa by dietary protein (peptide), amino acid or fatty acid. A method that uses food is less expensive than medicine. However,fatty acid,In other words, since lipid intake itself is a risk factor for lifestyle-related diseases, it was inappropriate to use it as a stimulating factor for endogenous CCK secretion. Appropriate with CCK secretion promoting action to make an appetite-suppressing foodFood materialdevelopment ofButIt was sought after.
[0005]
  Regarding the endogenous CCK secretion action by proteins and their degradation peptides, the existence of a mechanism that promotes CCK secretion by directly acting on proteins and peptides themselves in the small intestinal cells has recently been proposed (Ritter, R.C., et al.,Neuropeptides 33, 387-399, 1999). At present, the mechanism of intracellular signal transduction in CCK secretion by direct action of food-based proteins is gradually becoming clear by research using cultured cells. However, few approaches have been taken from the side of orally ingested proteins that act on cells, especially the amino acid sequences that make up proteins, and food-derived functional peptides that have CCK secretion activity via small intestinal cell stimulation. Development was delayed.
[0006]
[Problems to be solved by the invention]
  The problem to be solved is to promote the secretion of endogenous CCK secreted from the small intestinal mucosa and have an appetite suppressing effectFood materialIs safe and cheap to developFood materialIt must be.
[0007]
[Means for Solving the Problems]
  The main feature of the present invention is to use a specific amino acid sequence, that is, an arginine-containing peptide in which arginine is bound at a specific position, in order to promote CCK secretion and thereby exert an appetite suppression function. Furthermore, the present invention is characterized in that an arginine-containing peptide having a specific amino acid sequence is also found in a conventional food material, and is made into a food material having an appetite suppressing action by a specific processing method.
  That is, the present invention provides [1] a specific oligopeptide selected from the following:
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 9 in the sequence listing wherein arginine is located at the 3rd and 5th positions from the N-terminus of the sequence of 7 consecutive amino acids;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 10 in the sequence listing wherein arginine is located at the 2nd and 5th positions from the N-terminus of the sequence of 7 consecutive amino acids;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing wherein arginine is located at the 2nd and 6th positions from the N-terminus of the sequence of 7 consecutive amino acids;
Sequence listing wherein arginine is located at the 2nd, 4th and 6th positions from the N-terminus of the sequence of 7 consecutive amino acidsArrangement ofAn arginine-containing peptide comprising the amino acid sequence of column number 13;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 1 in the Sequence Listing;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 2 in the Sequence Listing;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 3 in the Sequence Listing;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 4 in the Sequence Listing;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 5 in the Sequence Listing;
An arginine-containing peptide comprising the amino acid sequence set forth in SEQ ID NO: 14 in the Sequence Listing;
SEQ ID NOs: 1 to 5 in the sequence listing, 9-11, 13 andAny one amino acid sequence selected from 14ColumnAn appetite-suppressing peptide having cholecystokinin secretion promoting activity or binding ability to a small intestinal brush border membrane soluble component, [2〕BigThe peptide obtained from the amino acid sequence of bean β-conglycinin, [3An appetite-suppressing food material containing one or more of such peptides,4The food material which is a pepsin degradation product of soybean β-conglycinin, and [5An food for suppressing appetite containing such a food material is provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  Research into factors that promote CCK secretion from small intestinal mucosal cells, and to promote CCK secretion triggered by the specific binding of arginine-containing peptides with specific amino acid sequences to intestinal cells. discovered. It was clarified that these arginine-containing peptides have an appetite suppressing effect by promoting CCK secretion. Furthermore, it was clarified that arginine-containing peptides having these specific amino acid sequences exist in conventional food materials. Using these discoveries, we can develop food ingredients that have an appetite-suppressing effect.,Realized by processing conventional food ingredients.
  Based on the inventor's series of research results, ingested proteins and peptides themselves directly bind to the digestive tract and promote CCK secretion.DoI found the existence of the mechanism. There has been no report in the past that a digestive tract directly recognizes a protein or peptide to express some physiological phenomenon. This is a new possibility of proteins and peptides from the viewpoint of the bioregulatory function that is the tertiary mechanism of food.
[0009]
[Example 1]
  In order to examine the CCK secretion promoting activity of various peptides,Sequence number 6-12 description of a sequence tableThe amount of CCK secreted from the small intestinal cells was measured by reacting seven peptides corresponding to the amino acid sequence with isolated rat small intestinal mucosal cells.
[0010]
  Arginine-containing peptides used in the experiment are the following seven types of peptides. All were synthesized into each sequence, and there were no peptides other than this sequence in each experimental group.
Peptide 1,A peptide comprising the amino acid sequence set forth in SEQ ID NO: 6 in the sequence listing, (GGGRGGG)
Peptide 2,A peptide comprising the amino acid sequence set forth in SEQ ID NO: 7 in the sequence listing, (GGGGGGR)
Peptide 3,A peptide comprising the amino acid sequence set forth in SEQ ID NO: 8 in the sequence listing, (GGGRRGG)
Peptide 4,A peptide comprising the amino acid sequence set forth in SEQ ID NO: 9 in the Sequence Listing, (GGRGRGG)
Peptide 5,A peptide comprising the amino acid sequence set forth in SEQ ID NO: 10 in the sequence listing, (GRGGRGG)
Peptide 6,A peptide comprising the amino acid sequence set forth in SEQ ID NO: 11 in the Sequence Listing, (GRGGGRG)
Peptide 7,A peptide comprising the amino acid sequence set forth in SEQ ID NO: 12 in the Sequence Listing, (GRGRGRG)
[0011]
  Isolation and preparation of small intestinal mucosal cells: All experiments used Sprague-Dawley male rats with an initial weight of about 250 g. A 25% casein diet was fed as a feed, and the animals were bred with a 12-hour light-dark cycle. Rats fasted overnight were sacrificed, and the small intestine of 20 cm was removed from the common bile duct opening of the duodenum and washed with saline in the lumen. Invert the small intestine and add 10 ml Krebs-Henseleit bicarbonate (KHB) solution containing 10 mM EDTA (37, PH 7.4, oxygenated) 37Incubated for 5 minutes with shaking. After the incubation was completed, the small intestinal mucosa was peeled off using a plastic stick, mixed with the KHB solution and stirred well, and then centrifuged at 500 rpm for 3 minutes. The supernatant was removed, and the precipitate was washed with 5 ml of KHB solution (containing EDTA, 37, PH 7.4, oxygenated), and use a Pipetman tip to disperse the cells.Incubated for 5 minutes with shaking, and after the reaction, centrifuged at 500 rpm for 3 minutes. This operation was performed twice to prepare isolated small intestinal mucosal cells. Combine the small intestinal mucosa cells of three rats into one, and add 200 times the amount of HEPES buffer (37, PH 7.4, oxygen aerated). 1 hour 37After equilibrating the cells by incubating with shaking, the buffer was replaced with fresh.
[0012]
  Method of reaction between test sample and small intestinal mucosal cellsPurified water (Milli-Q water)1 ml of the solution dissolved in each was put into a plastic vial and freeze-dried to remove water. Add 1 ml of small intestinal mucosal cell suspension and add 37Incubated for 30 minutes with shaking. After completion of the incubation, the contents were transferred to a small centrifuge tube and centrifuged at 10,000 rpm for 7 seconds, and 0.7 ml of the supernatant was collected. 0.5 ml of the solution was passed through a Sep-pak C18 cartridge, and CCK was extracted with 50% acetonitrile. The recovered CCK was lyophilized and quantified by a bioassay method using pancreatic acinar cells.
[0013]
  As a result of the CCK secretion promotion test using an oligopeptide, CCK secretion was promoted in any peptide-added group as compared to the control group (experiment group in which no peptide was added) (FIG. 1). In particular, CCK secretion was strongly promoted in peptides 4, 5, 6, and 7.
[0014]
  One important finding in the inventors' research is the promotion of CCK secretionDoIt was discovered that the substance specifically binds to the small intestinal brush border membrane solubilizing component.
  Binding between various peptides and small intestinal brush border membrane solubilized components was measured using an intermolecular interaction analyzer (BIACORE3000) (Hira, T. et al., Bioscience Biotechnology Biochemistry, 65, 1007-1015, 2001) . Cell membrane solubilized components recovered from rat small intestinal mucosal cells were immobilized on a sensor chip of an intermolecular interaction analyzer, and various peptides were flowed there to measure the amount of binding to cell membrane components. In all experiments, male Sprague-Dawley rats with an initial weight of about 250 g were used. A 25% casein diet was fed as a feed, and the animals were bred with a 12-hour light-dark cycle. Brush border membrane vesicles obtained by applying calcium chloride and KSCN treatment and ultracentrifugation to mucous membrane of rat jejunum were added to Triton X-100 to a concentration of 0.1% and stirred well.After shaking for 1 hour, the supernatant obtained by ultracentrifugation was used as a small intestine brush border membrane solubilizing component. Triton X-100 was removed from the solubilized components using Exratcti Gel D affinity Pak column, and then diluted with 10 mM acetate buffer (pH 4.0) was immobilized on sensor chip CM5. In the binding test, various peptides were dissolved in HEPES buffer (10 mM HEPES, 0.15 M NaCl, 3 mM EDTA, pH 7.4) at various concentrations (0, 50, 100, 200, 500 microg / ml) It was injected into the intermolecular interaction analyzer (BIACORE3000).
[0015]
  The results of the binding test between various arginine-containing peptides and the small intestinal brush border membrane solubilizing component are shown in FIG. In the figure, four types of arginine-containing peptides (peptide 4:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 9 in the sequence listing (GGRGRGG)Peptide 5:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 10 in the sequence listing (GRGGRGG)Peptide 6:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 11 in the sequence listing (GRGGGRG)And peptide 7:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 12 in the sequence listing (GRGRGRG)) Was observed to bind to the small intestinal membrane component. In contrast, peptide 8 in which the glycine part of peptide 7 is replaced with proline.(Peptide consisting of the amino acid sequence described in SEQ ID NO: 13 in the Sequence Listing)It was shown that the binding activity was present although the binding amount was low.
[0016]
  These results indicate that a peptide having a structure with multiple arginines and sandwiching another amino acid between them has the ability to directly bind to the small intestinal cell membrane, and its direct action stimulates CCK secretion. It has been suggested.
  In addition, these results indicate that the strength of CCK secretion promoting activity correlates with the activity of the peptide binding to specific receptors present on the surface of rat small intestinal mucosal cells. It was also found that this binding activity can be measured strictly using an intermolecular interaction analyzer.
[0017]
[Example 2]
  Among the naturally occurring food peptidesSequence number 6-12 description of a sequence tableAs for soybean β-conglycinin having a structure similar to the arginine-containing peptide in the molecule, (1) binding activity with a solubilized component of the small intestine brush border membrane, (2) CCK secretion promoting activity, and (3) feeding The inhibitory effect was investigated.
In all experiments, male Sprague-Dawley rats with an initial weight of about 250 g were used. A 25% casein diet was fed as a feed and reared in a 12-hour light-dark cycle.
[0018]
  Isolation of β-conglycinin and preparation method of pepsin degradation product: The defatted soybean powder was mixed with 15 volumes of Tris-HCl buffer (pH 8.0) and stirred at room temperature for 1 hour. After gauze filtration, centrifuge (8,000 rpm, 20 minutes, 4And the supernatant was collected. After adjusting the supernatant to pH 6.0, leave it overnight in a cold room and centrifuge again (8,000 rpm, 20 minutes, 4And the supernatant was collected. Subsequently, the supernatant is adjusted to pH 4.8 and centrifuged (8,000 rpm, 30 minutes, 4And the precipitate was recovered. The obtained precipitate was dissolved in a standard buffer (35 mM Potassium phosphate, 0.4 M NaCl, 10 mM 2-mercaptoethanol, pH 7.6) so as to have a concentration of 3%, and left overnight in a low temperature room. To this, ammonium sulfate was added to a concentration of 75%, and ammonium sulfate was further added to the solubilized component to a concentration of 90%. The obtained precipitate was dissolved in Milli-Q water, dialyzed against running water, and then freeze-dried to obtain β-conglycinin. This β-conglycinin 2g was mixed with 100 times the amount of phosphoric acid solution, adjusted to pH 1.85, 37Kept warm. Add 1 ml of pepsin solution (20 mg / ml),And incubated for 10 minutes with shaking. After completion of the reaction, the solution was boiled to inactivate pepsin. After cooling the solution, centrifuge (3,000 rpm, 20 minutes, 4And the supernatant was collected. After neutralizing the supernatant with calcium hydroxide, centrifugation (3,000 rpm, 20 minutes, 4The salt was removed, and the β-conglycinin / pepsin degradation product was recovered by lyophilization.
[0019]
  Binding test method for β-conglycinin pepsin degradation product and small intestinal brush border membrane solubilization component: Binding between β-conglycinin pepsin degradation product and small intestinal brush border membrane solubilization component is an intermolecular interaction analyzer (BIACORE 3000) It measured using. Brush border membrane vesicles obtained by applying calcium chloride and KSCN treatment and ultracentrifugation to mucous membrane of rat jejunum were added to Triton X-100 to a concentration of 0.1% and stirred well.After shaking for 1 hour, the supernatant obtained by ultracentrifugation was used as a small intestine brush border membrane solubilizing component. Triton X-100 was removed from the solubilized components using Exratcti Gel D affinity Pak column, and then diluted with 10 mM acetate buffer (pH 4.0) was immobilized on sensor chip CM5. The pepsin degradation product of β-conglycinin is dissolved in HEPES buffer (10 mM HEPES, 0.15 M NaCl, 3 mM EDTA, pH 7.4) at a concentration of (0, 50, 100, 250, 500 micro g / ml), respectively. Was injected into the intermolecular interaction analyzer (BIACORE3000). Β-conglycinin that was not subjected to pepsin degradation was also used as the analyte.
[0020]
  The result of the binding test between the pepsin degradation product of β-conglycinin and the small intestinal brush border membrane solubilizing component is shown in FIG. Both undegraded β-conglycinin and pepsin degradation products of β-conglycinin showed a dose-dependent binding to small intestinal membrane components. However, β-conglycinin pepsin degradation product is 3 to 4 times higher than undegraded β-conglycinin, indicating that pepsin degradation increases the binding ability of β-conglycinin to the small intestinal cell membrane. It was.
[0021]
  Method for promoting CCK secretion in vitro by pepsin degradation product of β-conglycinin: (1) Isolation and preparation of small intestinal mucosal cells: After killing overnight fasted rats, 20 cm small intestine starting from the common bile duct opening of the duodenum Was removed and washed with physiological saline in the lumen. Invert the small intestine and add 10 ml Krebs-Henseleit bicarbonate (KHB) solution containing 10 mM EDTA (37, PH 7.4, oxygen aerated) 37Incubated for 5 minutes with shaking. After completion of the reaction, the small intestinal mucosa was peeled off using a plastic stick, mixed with the KHB solution, stirred well, and then centrifuged at 500 rpm for 3 minutes. The supernatant was removed, and the precipitate was washed with 5 ml of KHB solution (containing EDTA, 37, PH 7.4, oxygen-vented) and disperse the cells using a Pipetman tip.And incubated for 5 minutes with shaking, and after completion, the mixture was centrifuged at 500 rpm for 3 minutes. This operation was performed twice to prepare isolated small intestinal mucosal cells. Combine the small intestinal mucosa cells of three rats into one, and add 200 times the amount of HEPES buffer (37, PH 7.4, oxygen aerated). 1 hour 37After equilibrating the cells by incubating with shaking, the buffer was replaced with fresh.
[0022]
  (2) Method of reaction between test sample and small intestinal mucosa cells: 1 ml each of undegraded β-conglycinin and β-conglycinin pepsin degradation product dissolved in milli-Q water (200 or 500 microg / ml) It was placed in a plastic vial and freeze-dried to remove water. Add 1 ml of small intestinal mucosal cell suspension and add 37Incubated for 30 minutes with shaking. After completion, the contents were transferred to a small centrifuge tube and centrifuged at 10,000 rpm for 7 seconds, and 0.7 ml of supernatant was collected. 0.5 ml of the solution was passed through a Sep-pak C18 cartridge, and CCK was extracted with 50% acetonitrile. The recovered CCK was quantified by a bioassay method using pancreatic acinar cells after lyophilization.
[0023]
  The results of an in vitro CCK secretion enhancement test using a pepsin degradation product of β-conglycinin are shown in FIG. Although undegraded β-conglycinin showed some CCK secretion in the reaction with small intestinal cells, no significant difference was observed compared with the amount of CCK secretion in the control group. On the other hand, in the pepsin degradation product of β-conglycinin, a significantly larger amount of CCK secretion was observed compared with the amount of CCK secretion in the control. It was proved that the pepsin degradation product of soybean β-conglycinin has CCK secretion promoting activity.
  Furthermore, when the amount of food intake of rats administered with the synthetic trypsin inhibitor camostat (0.25 microg / ml) was measured, the amount of CCK secreted by undegraded β-conglycinin was further decreased, It was not recognized at all. On the other hand, the CCK secretion activity in the pepsin degradation product of soybean β-conglycinin was the same as that in the absence of camostat, and showed strong secretion promoting activity.
[0024]
  A pepsin degradation product of β-conglycinin, which showed strong CCK secretion-promoting activity in in vitro experiments, showed an increase in blood CCK concentration even in an in vivo model using experimental animals, which is one of the physiological functions of CCK. Demonstrate the effect of suppressing food.
[0025]
  Test method for inhibition of eating by β-conglycinin pepsin degradation product: (1) Surgical preparation of rats: SD male rats were selected as experimental animals, and catheters were placed in the duodenum before the experiment. Rats fasted overnight were anesthetized, and a catheter was inserted into the duodenum, 1 cm below the pylorus. The inserted catheter was fixed to the abdominal wall, then passed through under the skin, then taken out from the base of the back neck and protected by a vinyl chloride protector. Rats were used for experiments after a one week recovery period.
  (2) Feeding suppression test method: Rats fasted overnight were administered 2.5 ml of a 2 mg / ml β-conglycinin pepsin degradation product aqueous solution into the duodenum using a syringe pump at a flow rate of 0.5 ml / min. Rats were allowed to freely take a 25% casein diet for 1 hour from 15 minutes after the administration, and the weight of the fed food was measured. On the last day of the experiment, portal vein blood was collected under ether anesthesia for 45 minutes after administration of an aqueous solution of β-conglycinin pepsin degradation product. The CCK concentration in plasma was quantified by a bioassay method using pancreatic acinar cells.
[0026]
  A β-conglycinin / pepsin degradation product aqueous solution was administered, and after 45 minutes, the rat was laparotomized, and portal blood was collected and centrifuged immediately to collect plasma. As a result, a significant increase in blood CCK concentration was observed in the group administered with the pepsin degradation product of β-conglycinin compared with the control group (FIG. 5).
[0027]
  Changes in food intake were also significant. The aqueous solution of β-conglycinin / pepsin degradation product was fed to the duodenum at a flow rate of 0.5 ml 15 minutes after feeding and fed for 1 hour, and then the food was collected and the amount of food intake was measured. As a result, a significant decrease in food intake was observed in the β-conglycinin pepsin degradation product administration group compared to the solvent administration group (FIG. 6). In addition, it was also found that duodenal administration of a β-conglycinin pepsin degradation product causes feeding suppression even as early as 30 minutes.
[0028]
[Example 3]
  The following experiment proved that the arginine localization site in the amino acid sequence of soybean β-conglycinin showed extremely high binding activity to the rat small intestinal cell membrane and also had a strong feeding-suppressing effect. The experimental method is the same as in Example 2.
[0029]
  From the amino acid sequence of β-conglycinin, peptides in which arginine was localized were synthesized, and their binding to the rat small intestinal cell membrane solubilizing component and feeding inhibition were evaluated. The peptides subjected to the experiment are as follows. Peptide A is soybean peptone, and peptide B is a pepsin degradation product of soybean β-conglycinin. Peptide C is a peptide consisting of the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing., Β-It is the 51st to 63rd sequence of the β subunit of conglycinin. Peptide D is a peptide consisting of the amino acid sequence set forth in SEQ ID NO: 2 in the Sequence Listing., Β-It is the 53rd to 63rd sequence of the β subunit of conglycinin.
  Peptide E is a peptide consisting of the amino acid sequence set forth in SEQ ID NO: 3 in the sequence listing., Β-It is the 51st-59th arrangement | sequence of the beta subunit of conglycinin. Peptide F is a peptide consisting of the amino acid sequence set forth in SEQ ID NO: 14 in the sequence listing,Arginine is located at the 2nd and 6th positions from the N-terminus of the sequence of 7 consecutive amino acids.An array of the smallest unit that satisfies the condition. Peptide G is a peptide consisting of the amino acid sequence set forth in SEQ ID NO: 4 in the Sequence Listing., ΒThe sequence of the α subunit of conglycinin. Peptide H is, ArrangementA peptide consisting of the amino acid sequence set forth in SEQ ID NO: 5, ΒThe sequence of the α-prime subunit of conglycinin. Each peptide solution was used at a concentration of 100 microg / ml.
[0030]
Results of measurement of binding to solubilized small intestinal mucosa using an intermolecular interaction analyzer (BIACORE 3000), Β-A peptide having the sequence 51-63 of the β subunit of conglycinin (refer to the amino acid sequence described in SEQ ID NO: 1 in the sequence listing) is about 3.5 times the β-conglycinin pepsin degradation product, soy protein pepsin degradation product It showed a large binding activity of about 15 times (FIG. 7). The binding activity isArginine is located at the 2nd and 6th positions from the N-terminus of the sequence of 7 consecutive amino acids.A peptide comprising the amino acid sequence set forth in SEQ ID NO: 14 in the sequence listing of the smallest unit that satisfies the conditions(Ile-Arg-Leu-Leu-Gln-Arg-Phe)However, it is similar to β-conglycinin pepsin degradation product,Arginine is located at the 3rd and 5th positions from the N-terminus of the sequence of 7 consecutive amino acids, and 7 consecutive arginines are located at the 2nd and 5th position from the N-terminus of the sequence of 7 consecutive amino acids Arginine is located at the second and sixth positions from the N-terminus of the amino acid sequence ofIt has been found that the amount of binding to the cell membrane component increases as the number of portions satisfying the condition increases.
[0031]
Of the amino acid sequence described in SEQ ID NO: 1 in the sequence listingAmino acid sequences similar to peptides are also present in β-conglycinin α subunit (see amino acid sequence described in SEQ ID NO: 4 in the sequence listing) and α prime subunit (see amino acid sequence described in SEQ ID NO: 5 in the sequence listing). Exists. The ability to bind to these cell membrane components was also examined. As a result, it was found that the binding amount was higher than that of the β-conglycinin pepsin degradation product, and the CCK secretion promoting effect could be expected. However, the binding activity per unit weight isOf the amino acid sequence described in SEQ ID NO: 1 in the sequence listingIt was about half compared with the peptide (FIG. 7).
[0032]
  These peptides were examined for feeding suppression effects. Food consumption was significantly reduced by duodenal administration of the peptide solution.
[0033]
【The invention's effect】
  When the oligopeptide of the present invention is ingested and reaches the small intestine, the secretion of cholecystokinin (CCK) is remarkably promoted. As a result, CCK acts on the brain center and causes an antifeedant effect. At the same time, acting on the stomach to suppress gastric excretionConductGives a feeling of fullness. By taking advantage of this property of the present invention, such as overeating preventive foods, eating appetitesuppressFood andFood materialCan be a food that prevents obesity and bulimia.
[0034]
[Sequence Listing]
Figure 0003997114
Figure 0003997114
Figure 0003997114
Figure 0003997114
Figure 0003997114

[Brief description of the drawings]
FIG. 1 Cholecystokinin secretion promoting activity of arginine-containing peptides
  It is a figure showing the CCK secretion activity at the time of making seven types of arginine containing synthetic peptides containing the peptide of Claims 1-7 react with an isolated rat small intestinal mucosa cell. The amount of CCK secretion in the control group (experiment group in which no peptide was added) was displayed as 100%. Example 1
[Explanation of symbols]
Peptide 1:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 6 in the sequence listing
Peptide 2:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 7 in the sequence listing
Peptide 3:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 8 in the sequence listing
Peptide 4:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 9 in the Sequence Listing
Peptide 5:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 10 in the sequence listing
Peptide 6:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 11 in the Sequence Listing
Peptide 7:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 12 in the Sequence Listing
[Figure 2] Specific binding ability of arginine-containing peptides to the small intestinal mucosa
  It is a figure showing the binding amount of eight kinds of arginine containing synthetic peptides containing the peptide of Claims 1-7, and a rat small intestine mucosa cell membrane solubilization component. The binding to the small intestinal mucosa solubilizing component was measured using an intermolecular interaction analyzer (BIACORE 3000). Example 1
[Explanation of symbols]
----(Dashed line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 6 in the sequence listing
----(Dashed line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 7 in the sequence listing
----(Dashed line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 8 in the sequence listing
-◇-(solid line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 9 in the Sequence Listing
-△-(solid line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 10 in the sequence listing
-□-(solid line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 11 in the Sequence Listing
-○-(solid line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 12 in the Sequence Listing
--×--(dashed line):A peptide comprising the amino acid sequence set forth in SEQ ID NO: 13 in the sequence listing
FIG. 3 Specific binding of soybean β-conglycinin and its pepsin degradation product to the small intestinal mucosa.
  It is a figure showing the binding amount of β-conglycinin and its pepsin degradation product and rat small intestinal mucosa cell membrane solubilizing component. The binding to the small intestinal mucosa solubilizing component was measured using an intermolecular interaction analyzer (BIACORE 3000). (Example 2)
[Explanation of symbols]
-○-: Soybean β-conglycinin
-●-: Pepsin degradation product of soybean β-conglycinin
FIG. 4 Cholecystokinin secretion promoting activity of soybean β-conglycinin and its pepsin degradation product
  It is a figure showing the CCK secretion rate at the time of making beta-conglycinin and its pepsin degradation product react with an isolated rat small intestinal mucosa cell. (Example 2)
[Explanation of symbols]
*: Significant difference at 5% risk with respect to control group
FIG. 5: Cholecystokinin concentration in rat blood
  It is a figure showing the CCK density | concentration in portal vein blood 45 minutes after administering the beta-conglycinin pepsin degradation product solution to a rat small intestine. (Example 2)
[Explanation of symbols]
*: Significant difference at 5% risk with respect to control group
[Fig. 6] Food intake suppression effect
  It is a figure showing the food intake per hour of the rat which administered the beta-conglycinin pepsin degradation product solution to the small intestine. (Example 2)
[Explanation of symbols]
*: Significant difference at 5% risk with respect to control group
FIG. 7 Specific binding activity of arginine-containing peptide part of soybean β-conglycinin with small intestinal mucosa.
  It is a figure showing the coupling | bonding of the soy protein pepsin degradation product, the pepsin degradation product of soybean beta-conglycinin, and six types of arginine containing peptides containing the peptide of Claims 8-12, and a rat small intestine cell membrane solubilization component. The binding to the small intestinal mucosa solubilized component was measured using an intermolecular interaction analyzer (BIACORE 3000). Each peptide solution was used at a concentration of 100 microg / ml. (Example 3)
[Explanation of symbols]
Peptide A: Soy protein pepsin degradation product
Peptide B: Soybean β-conglycinin degradation product of pepsin
Peptide C:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 1 in the Sequence Listing
Peptide D:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 2 in the sequence listing
Peptide E:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 3 in the sequence listing
Peptide F:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 14 in the sequence listing
Peptide G:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 4 in the sequence listing
Peptide H:A peptide comprising the amino acid sequence set forth in SEQ ID NO: 5 in the sequence listing

Claims (5)

配列表の配列番号1〜5、9〜11、13および14から選択されるいずれか1つのアミノ酸配列からなり、コレシストキニン分泌促進活性又は小腸刷子縁膜可溶性成分に対する結合能を有する食欲抑制用ペプチド。SEQ ID NO: 1-5 of the Sequence Listing, appetite capable of binding to any one of the amino acid sequence or Rannahli, cholecystokinin secretion promoting activity or small intestine brush Enmaku soluble component selected from 9~11,13 and 14 Inhibitory peptide. アミノ酸配列が、大豆β−コングリシニンのアミノ酸配列から得られる、請求項記載のペプチド。Amino acid sequences are obtained from soybean β- conglycinin amino acid sequence of claim 1, wherein the peptide. 請求項1または2記載のペプチドの一種または複数種を含有する食欲抑制用食品素材。An appetite-suppressing food material containing one or more of the peptides according to claim 1 or 2 . 大豆β−コングリシニンのペプシン分解物である、請求項記載の食品素材。The food material according to claim 3 , which is a pepsin degradation product of soybean β-conglycinin. 請求項記載の食品素材を含有する食欲抑制用食品。An appetite-suppressing food containing the food material according to claim 4 .
JP2002168694A 2002-06-10 2002-06-10 Arginine-containing peptide having cholecystokinin secretion promoting activity and food containing the same Expired - Fee Related JP3997114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002168694A JP3997114B2 (en) 2002-06-10 2002-06-10 Arginine-containing peptide having cholecystokinin secretion promoting activity and food containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002168694A JP3997114B2 (en) 2002-06-10 2002-06-10 Arginine-containing peptide having cholecystokinin secretion promoting activity and food containing the same

Publications (3)

Publication Number Publication Date
JP2004010569A JP2004010569A (en) 2004-01-15
JP2004010569A5 JP2004010569A5 (en) 2005-04-14
JP3997114B2 true JP3997114B2 (en) 2007-10-24

Family

ID=30435531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002168694A Expired - Fee Related JP3997114B2 (en) 2002-06-10 2002-06-10 Arginine-containing peptide having cholecystokinin secretion promoting activity and food containing the same

Country Status (1)

Country Link
JP (1) JP3997114B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132273A1 (en) * 2005-06-08 2006-12-14 A-Hitbio Inc. Composition comprising peptide having suppressive effect on food intake
JP4929455B2 (en) * 2006-03-03 2012-05-09 国立大学法人北海道大学 Composition comprising pork-derived peptide having antifeedant action
TWI353845B (en) 2008-03-19 2011-12-11 Food Industry Res & Dev Inst Process for preparing peptide products for promoti
JPWO2012070554A1 (en) * 2010-11-22 2014-05-19 国立大学法人京都大学 peptide
JP5951426B2 (en) 2012-09-14 2016-07-13 株式会社J−オイルミルズ Cholecystokinin secretion promoting composition
EP3916006A1 (en) 2020-05-26 2021-12-01 Consejo Superior de Investigaciones Científicas (CSIC) Peptides capable of inducing anorexic hormones, compositions and uses thereof
CN116143869A (en) * 2022-12-16 2023-05-23 上海理工大学 Highland barley source active oligopeptide and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004010569A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US20070265598A1 (en) Device and Method for Treating Weight Disorders
JP2961045B2 (en) Intestinal mucosa enhancement promoter
EP1350519A1 (en) Drugs and foods improving the quality of life and process for producing the same
TWI353845B (en) Process for preparing peptide products for promoti
WO2004037859A1 (en) Glp-1 derivatives and transmicosal absorption preparations thereof
JP2805194B2 (en) Peptide for increasing blood triglyceride concentration and blood triglyceride concentration increase inhibitor containing the peptide as an active ingredient
CN113248628B (en) Milk-derived polypeptide derivative and application thereof in preparation of obesity prevention and treatment medicines, health-care products and food additives
AU5076099A (en) Peptides based on the sequence of human lactoferrin and their use
JP3997114B2 (en) Arginine-containing peptide having cholecystokinin secretion promoting activity and food containing the same
JP4808218B2 (en) Protein hydrolyzate with anti-diabetic activity
JP2764276B2 (en) Functional novel peptides and their use
JP3691685B2 (en) Blood sugar level rise inhibitor
JP2004010569A5 (en)
JP2800877B2 (en) Peptide for increasing blood triglyceride concentration and blood triglyceride concentration increase inhibitor containing the peptide as an active ingredient
JP2017523203A (en) Marine peptides and fish nucleotides, their compositions and their use to lower blood sugar
EP4126003A1 (en) Glp-1/glp-2 dual agonists
JPH1059864A (en) Cancer metastasis suppressing agent for oral administration
JPWO2002072629A1 (en) Immune enhancer
WO2000057898A1 (en) Compositions for reducing blood cholesterol
JPH07138187A (en) Oral tolerogen, oral therapeutic agent for rheumatoid arthritis and functional food
Liu et al. Applications in nutrition: clinical nutrition
JP2022177648A (en) Hypoglycemic composition, and hypoglycemic agent containing the same
Takamatsu Soy peptides As Functional Food Material
JPH10101576A (en) Treating medicine for digestive organ disease
EA023447B1 (en) Insulsin derivative with antihyperglycemic activity at oral administration, method for the production thereof and dosage forms based thereon

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20030811

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031021

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees