JP3997018B2 - Anchor for heat and fireproof coating and heat and fireproof coating layer - Google Patents

Anchor for heat and fireproof coating and heat and fireproof coating layer Download PDF

Info

Publication number
JP3997018B2
JP3997018B2 JP36678498A JP36678498A JP3997018B2 JP 3997018 B2 JP3997018 B2 JP 3997018B2 JP 36678498 A JP36678498 A JP 36678498A JP 36678498 A JP36678498 A JP 36678498A JP 3997018 B2 JP3997018 B2 JP 3997018B2
Authority
JP
Japan
Prior art keywords
heat
resistant
fire
anchor
resistant coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36678498A
Other languages
Japanese (ja)
Other versions
JP2000193374A (en
Inventor
満 渋沢
安彦 今本
創爾 矢野
冬比古 石川
謙一 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP36678498A priority Critical patent/JP3997018B2/en
Publication of JP2000193374A publication Critical patent/JP2000193374A/en
Application granted granted Critical
Publication of JP3997018B2 publication Critical patent/JP3997018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱耐火被覆材用のアンカー、耐熱耐火被覆層、及び焼却溶融装置に関し、更に詳細には、従来のインコネル製アンカーと同等の耐久性及び機械的強度を有するアンカー、そのアンカーを使った耐熱耐火被覆層、及びその耐熱耐火被覆層を使った焼却溶融装置に関するものである。
【0002】
【従来の技術】
有機物、無機物、金属等の廃材、廃棄物を焼却溶融する焼却溶融装置には、その種類が種々あるものの、その一つとして、炉体を正逆両方向に回動させるようにした回動式焼却溶融装置が、効率的な焼却炉として、従来から高く評価されている。
ここで、図5及び図6を参照して、従来の回動式焼却溶融装置の基本的な構成を説明する。図5は従来の回動式焼却溶融装置の構成を示す側面図、図6はその模式的断面図である。尚、従来の回動式焼却溶融装置の構成は、特公平2−58524号公報に詳細に記載されている。
従来の回動式焼却溶融装置10は、図5に示すように、機台11上に設けられ、長手方向中心軸を回動軸12(図6参照)として正逆両方向に回動する横型円筒状炉体14と、炉体14を正逆両方向に回動させる駆動装置16と、炉体14に隣接して設けられているフード18とを備えている。
【0003】
炉体14は、図6に示すように、金属製の円筒体20と、円筒体20の内側を被覆した耐熱耐火被覆層22とから構成され、被焼却物を焼却する燃焼用空間として機能する炉体14の中空部23を有する円筒体として形成されている。
中空部23で被焼却物を焼却するために、バーナ(図示せず)及び燃焼用の2次空気送入口(図示せず)が、炉体14を半径方向に貫通して設けてある。
また、炉体14は、炉体14の一方の端壁に炉体14の回動軸12から偏心した位置に出湯口24を、他方の端壁に被焼却物投入口26を備え、かつ、被焼却物投入口26から出湯口24に向かって傾斜して設けられている。
【0004】
また、炉体14の被焼却物投入口26は、図5に示すように、被焼却物供給器56から被焼却物を供給する供給パイプ58と、摺動自在に接続されている。
駆動装置16は、正逆両方向に回転するモータ28と、モータ28と同軸で回転するピニオン30と、炉体14の一方の端部に一体的に設けられ、ピニオン30と噛み合ってピニオン30の回転に合わせて回転することにより炉体14を回動させるギヤ32と、炉体14の両方の端部に設けられた案内ローラ34A、Bと、案内ローラ34A、Bと対のローラ36A、Bとから構成されている。
【0005】
また、フード18は、図6に示すように、フード18は、金属製の外壁40と、外壁40の内側を被覆した耐熱耐火被覆層42とから形成されて、炉体14の出湯口24側の端部を回動自在に収容、連結する炉体14との連結部と、炉体14の中空部23と連通する中空部38からなる煙道部とを有する筒体として構成されている。
フード18には、炉体14の出湯口24に対向するように、バーナ44と、2次空気送入口46とが設けてある。
また、フード18の底部には、溶融湯の通る通湯口48と、通湯口48を開閉するための耐火、断熱材製のスライド式ダンパ50が設けてあり、通湯口48の下には、溶融物を受ける受器52と、受器52を昇降させるジャッキ等の昇降機54とが設けてある。
【0006】
次に、図5及び図6を参照して、焼却溶融装置10の運転方法を簡単に説明する。
先ず、出湯口24が上部に位置するように、炉体14を回動させる。次いで、炉体14のバーナ(図示せず)に点火し、被焼却物を被焼却物供給器56から供給パイプ58及び被焼却物投入口26を介して炉体14の中空部23に連続的又は間欠的に投入し、焼却、溶融する。
被焼却物の焼却、溶融中、モータ28を間欠的に正逆両方向に回転させ、炉体14を正逆両方向に回動し、揺動させることにより、炉体14内の被焼却物を攪拌する。
【0007】
炉体14での被焼却物の焼却により発生したガスは、出湯口24からフード18の中空部38に流出する。ガス中に可燃性ガス又は可燃性ダストが含まれているときには、フード18のバーナ44を点火して燃焼させる。
被焼却物が焼却された時点で、出湯口24が下になるように炉体14を回動して、そこに停止させ、ダンパ50を開放して出湯口24から溶融湯を受器52に受ける。
【0008】
上述した従来の回動式焼却溶融装置10は、比較的簡単な機構で被焼却物を効率的に焼却、溶融できるという高い評価を受けている。
【0009】
【発明が解決しようとする課題】
ところで、上述の従来の回動式焼却溶融装置の炉体及びフードを被覆している耐熱耐火被覆層のアンカーには、被焼却物の焼却雰囲気に対する耐熱性、耐浸炭性、及び耐浸珪性と、揺動に抗する機械的強度を考慮して、インコネル(Inconel 601)製の高価なアンカーが、使用されている。
しかし、インコネル製アンカーは、高価な上に、アンカーの納期が長く、市場で簡単に入手し難いので、その結果、耐熱耐火被覆層のコストが嵩むという問題があった。そのために、インコネル製アンカーに代わる経済的でかつ強度の高いアンカーが、要望されていた。
【0010】
そこで、本発明の目的は、経済的であって、しかもインコネル製アンカーと同等以上の耐久性及び機械的強度を有す耐熱耐火被覆層形成用のアンカー、機械的繰り返し荷重、例えば絶えず揺動する部材上に被覆されても、耐久性の高い耐熱耐火被覆層、及び耐熱耐火被覆層の保守費の嵩まない回動式焼却溶融装置を提供することである。
【0011】
【課題を解決するための手段】
本発明者は、インコネル製のアンカーと同程度の耐熱性、耐腐食性、機械的強度を有する材料として、先ず、オーステナイト系ステンレス鋼に注目し、アンカーを試作し、試作アンカーで耐熱耐火被覆層を形成して、運転を継続したところ、オーステナイト系ステンレス鋼製のアンカーが破損し、耐熱耐火被覆層が欠落することが判った。
即ち、オーステナイト系ステンレス鋼のアンカーでは、耐熱性、耐腐食性、機械的強度のいずれかが不足している。
【0012】
そこで、本発明者は、オーステナイト系ステンレス鋼の母材にアルミナイズ処理を施したアンカー、及びオーステナイト系ステンレス鋼の母材にアルミナイズ処理を施し、次いで700℃で拡散浸透熱処理を施したアンカーを試作し、耐火材中にアンカーを埋め込み、その状態を温度1350℃で7日間保持するという試験条件で耐久試験を行って、それぞれを評価した。その評価結果は、表1に示す通りである。
【表1】

Figure 0003997018
【0013】
表1で、試料番号1は参考例としたインコネル601製アンカー、試料番号2は同じく参考例であって表面処理を行わなかったSUS310S製アンカー、試料番号3はアルミナイズ処理のみを施したSUS310S製アンカー、及び、試料番号4はアルミナイズ処理及び拡散浸透熱処理を施したSUS310S製アンカーである。
アルミナイズ処理の条件は、700℃、10分間である。また、拡散浸透熱処理の条件は、710℃、3時間である。
【0014】
表1から、アルミナイズ処理及び拡散浸透熱処理を施した試料番号4は、減肉率がインコネル601製アンカーの試料番号1より小さいことが判った。また、アルミナイズ処理のみを施した試料番号3の減肉率は、アルミナイズ処理を施さなかった試料番号2と同等であることが判り、アルミナイズ処理のみでは、効果が殆ど無いことが判った。
【0015】
上記目的を達成するために、上述の知見に基づいて、本発明に係る耐熱耐火被覆材用のアンカーは、耐熱耐火被覆材用のアンカーであって、
オーステナイト系又はフェライト系ステンレス鋼からなる母材にアルミナイズ処理、次いでアルミニウム原子の拡散浸透熱処理を施してなることを特徴としている。
【0016】
また、本発明に係る耐熱耐火被覆層は、オーステナイト系又はフェライト系ステンレス鋼からなる母材にアルミナイズ処理、次いでアルミニウム原子の拡散浸透熱処理を施してなる耐熱耐火被覆材用のアンカーと、耐熱耐火被覆材用のアンカーにより保持された耐熱耐火被覆材の被覆層とからなることを特徴としている。
【0017】
更には、本発明に係る焼却溶融装置は、耐熱耐火被覆層で被覆された内壁で囲まれた中空部及び中空部に燃焼手段を有する筒状横型炉体と、炉体を正逆両方向に回転させる駆動手段とを備え、炉体の中空部で被焼却物を焼却、溶融する焼却溶融装置において、
炉体の耐熱耐火被覆層が、オーステナイト系又はフェライト系ステンレス鋼からなる母材にアルミナイズ処理、次いでアルミニウム原子の拡散浸透熱処理を施してなる耐熱耐火被覆材用のアンカーと、耐熱耐火被覆材用のアンカーにより保持された耐熱耐火被覆材の被覆層とから形成されていることを特徴としている。
【0018】
【発明の実施の形態】
以下に、添付図面を参照し、実施形態例を挙げて本発明の実施の形態を具体的かつ詳細に説明する。
アンカーの実施形態例
本実施形態例は、本発明に係る耐熱耐火被覆材用のアンカーの実施形態の一例であって、図1は本実施形態例のアンカーの側面図、図2は本実施形態例のアンカーの表面層の模式的断面である。
本実施形態例のアンカー60は、径13mmの棒材で形成され、図1に示すように、高さH1 が100mmで挟角θが約60°の二股状のアンカー上部62と、アンカー上部62の二股基部から二股とは反対方向に延びる、高さH2 が100mmのアンカー下部64とから構成されている。
アンカー下部64は、下端66で金属保持板68に溶接接合され、金属保持板68に対して直交する方向に自立する。アンカー上部62は、耐熱耐火被覆層内に貫入して耐熱耐火被覆層を保持する機能を有する。
【0019】
アンカー60は、図2に示すように、オーステナイト系スレンレス鋼、例えばSUS310Sからなる母材で形成されたアンカー部材70と、アンカー部材70に表面処理を施してなる表面層72とから構成されている。
表面層72は、Al層74と、Alと母材系金属との合金からなる層、即ちAl−Fe−Cr−Niからなる合金層76と、合金層76から母材にAlが拡散した拡散層78とから構成されている。
【0020】
以下に、図3を参照して、アンカー60の作製方法を説明する。図3(a)及び(b)は、アンカー60を作製する際の工程毎のアンカーの表面層の構成を示す模式図である。
先ず、SUS310Sからなるアンカー部材70にアルミナイズ処理を施す。本実施形態例のアルミナイズ処理では、アンカー部材70を溶融アウミニウム中に浸漬して、アンカー部材70の表面にアルミニウムメッキを施す。これにより、図3(a)に示すように、アンカー部材70にAl層74及び合金層76を有する一次表面層を形成する。一次表面層であるAl層74及び合金層76の厚さは合計で約60μm から70μm の範囲の厚さになる。Al層74自体の厚さは10μm 以上になるようにする。
次いで、アルミナイズ処理したアンカー部材70に、温度710℃で熱処理を約3時間施す。これにより、図3(b)に示すように、アンカー部材70の表面は、Al層74、合金層76、及びAl拡散層78とからなる表面層72を形成することができる。
【0021】
本実施形態例では、SUS310Sを母材とするアンカー部材70にアルミナイズ処理、次いで拡散浸透熱処理を施すことにより、耐熱耐火性に優れ、減肉率の低いアンカー60を形成することができる。
【0022】
耐熱耐火被覆層の実施形態例
本実施形態例は、本発明に係る耐熱耐火被覆層の実施形態の一例であって、図4は本実施形態例の耐熱耐火被覆層の側面図である。
本実施形態例の耐熱耐火被覆層80は、耐熱耐火被覆される金属板82上に形成された断熱層84と、本発明に係るアンカー86と、アンカー86に保持された耐熱耐火被覆層本体88とから構成されている。
断熱層84は、アルミナ系の断熱材で形成された厚さ約80mmの断熱層である。アンカー86は、例えば実施形態例1のアンカー60と同じ構成を備えていて、下端で金属板82に溶接接合されている。耐熱耐火被覆層本体88は、炭化珪素系の耐熱耐火材で形成された厚さ約170mmの被覆層である。
【0023】
焼却溶融装置の実施形態例
本実施形態例は、本発明に係る焼却溶融装置の実施形態の一例である。
本実施形態例の焼却溶融装置は、炉体14及びフード18に設けた耐熱耐火被覆層の構成が、インコネル製アンカーを使った従来の耐熱耐火被覆層22及び42とは異なり、上述の耐熱耐火被覆層80と同じであることを除いて、前述した焼却溶融装置10と同じ構成を備えている。
【0024】
本実施形態例の焼却溶融装置の耐熱耐火被覆層は、本発明に係る経済的でかつ減肉率の低いアンカーを使用しているので、従来のインコネル製アンカーを使った耐熱耐火被覆層と同じ耐久性を有し、しかも経済性に優れている。
【0025】
【発明の効果】
本発明の構成によれば、オーステナイト系又はフェライト系ステンレス鋼からなる母材にアルミナイズ処理、次いでアルミニウム原子の拡散浸透熱処理を施すことにより、従来のインコネル製アンカーと同等以上の減肉率であって、耐熱耐火性に優れたアンカーを経済的に実現している。
また、本発明に係るアンカーを耐熱耐火被覆層に適用し、また、その耐熱耐火被覆層を焼却溶融装置の炉体及びフードの耐熱耐火被覆層として使用することにより、経済的で、耐久性に優れ、寿命の長い耐熱耐火被覆層、及び長期間の使用でも、耐熱耐火被覆層が欠落しないので、長期にわたる連続運転が可能で、保守コストの嵩まない焼却溶融装置を実現している。
【図面の簡単な説明】
【図1】実施形態例のアンカーの側面図である。
【図2】実施形態例のアンカーの表面層の模式的断面である。
【図3】図3(a)及び(b)は、アンカーを作製する際の工程毎のアンカーの表面層の構成を示す模式図である。
【図4】実施形態例の耐熱耐火被覆層の側面図である。
【図5】従来の回動式焼却溶融装置の構成を示す側面図である。
【図6】図5の回動式焼却溶融装置のの模式的断面図である。
【符号の説明】
10 回動式焼却溶融装置
11 機台
12 回動軸
14 横型円筒状炉体
16 駆動装置
18 フード
20 金属製円筒体
22 耐熱耐火被覆層
23 中空部
24 出湯口
26 被焼却物投入口
28 モータ
30 ピニオン
32 ギヤ
34 案内ローラ
36 対のローラ
38 中空部
40 金属製の外壁
42 耐熱耐火被覆層
44 バーナ
46 2次空気送入口
48 通湯口
50 断熱材製のスライド式ダンパ
52 受器
54 昇降機
56 被焼却物供給器
58 供給パイプ
60 実施形態例のアンカー
62 アンカー上部
64 アンカー下部
66 下端
68 金属保持板
70 アンカー部材
72 表面層
74 Al層
76 合金層
78 拡散層
80 実施形態例の耐熱耐火被覆層
82 金属板
84 断熱層
86 アンカー
88 耐熱耐火被覆層本体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anchor for a heat-resistant and fire-resistant coating material, a heat-resistant and fire-resistant coating layer, and an incineration melting apparatus, and more specifically, an anchor having durability and mechanical strength equivalent to a conventional Inconel anchor, and using the anchor The present invention relates to a heat-resistant and fire-resistant coating layer and an incineration melting apparatus using the heat-resistant and fire-resistant coating layer.
[0002]
[Prior art]
There are various types of incineration and melting equipment for incinerating and melting waste materials such as organic matter, inorganic materials, metals, etc., but as one of them, rotary incineration that rotates the furnace body in both forward and reverse directions The melting apparatus has been highly evaluated as an efficient incinerator.
Here, with reference to FIG.5 and FIG.6, the basic structure of the conventional rotation type incineration melting apparatus is demonstrated. FIG. 5 is a side view showing a configuration of a conventional rotary incineration melting apparatus, and FIG. 6 is a schematic sectional view thereof. The structure of a conventional rotary incineration and melting apparatus is described in detail in Japanese Patent Publication No. 2-58524.
As shown in FIG. 5, a conventional rotary incineration and melting apparatus 10 is provided on a machine base 11, and is a horizontal cylinder that rotates in both forward and reverse directions with a central axis in the longitudinal direction as a rotary shaft 12 (see FIG. 6). And a hood 18 provided adjacent to the furnace body 14 and a drive device 16 that rotates the furnace body 14 in both forward and reverse directions.
[0003]
As shown in FIG. 6, the furnace body 14 includes a metal cylindrical body 20 and a heat-resistant and fire-resistant coating layer 22 that covers the inside of the cylindrical body 20, and functions as a combustion space that incinerates the incineration object. It is formed as a cylindrical body having a hollow portion 23 of the furnace body 14.
In order to incinerate the incinerated object in the hollow portion 23, a burner (not shown) and a secondary air inlet for combustion (not shown) are provided through the furnace body 14 in the radial direction.
Further, the furnace body 14 includes a hot water outlet 24 at a position eccentric from the rotating shaft 12 of the furnace body 14 on one end wall of the furnace body 14, and an incineration object inlet 26 on the other end wall; The incineration object inlet 26 is provided to be inclined toward the hot water outlet 24.
[0004]
Further, as shown in FIG. 5, the incinerated material inlet 26 of the furnace body 14 is slidably connected to a supply pipe 58 that supplies the incinerated material from the incinerated material supplier 56.
The drive device 16 is integrally provided at one end of the furnace body 14 with a motor 28 that rotates in both forward and reverse directions, a pinion 30 that rotates coaxially with the motor 28, and meshes with the pinion 30 to rotate the pinion 30. A gear 32 that rotates the furnace body 14 by rotating in accordance with the guide rollers 34A and B provided at both ends of the furnace body 14, and rollers 36A and B paired with the guide rollers 34A and 34B. It is composed of
[0005]
Further, as shown in FIG. 6, the hood 18 is formed of a metal outer wall 40 and a heat-resistant and fire-resistant coating layer 42 that covers the inside of the outer wall 40, and the outlet 14 side of the furnace body 14. It is comprised as a cylindrical body which has a connection part with the furnace body 14 which accommodates and connects the edge part of this, and the flue part which consists of the hollow part 38 connected with the hollow part 23 of the furnace body 14. As shown in FIG.
The hood 18 is provided with a burner 44 and a secondary air inlet 46 so as to face the outlet 24 of the furnace body 14.
Further, at the bottom of the hood 18, a hot water inlet 48 through which the molten water passes and a sliding damper 50 made of a heat-resistant and heat insulating material for opening and closing the hot water inlet 48 are provided. A receiver 52 for receiving an object and an elevator 54 such as a jack for raising and lowering the receiver 52 are provided.
[0006]
Next, with reference to FIG.5 and FIG.6, the operating method of the incineration melting apparatus 10 is demonstrated easily.
First, the furnace body 14 is rotated so that the outlet 24 is located at the upper part. Next, a burner (not shown) of the furnace body 14 is ignited, and the incinerated material is continuously supplied from the incinerated material supply device 56 to the hollow portion 23 of the furnace body 14 through the supply pipe 58 and the incinerated material inlet 26. Or throw it in intermittently, incinerate and melt.
During incineration and melting of the incinerator, the motor 28 is intermittently rotated in both forward and reverse directions, and the furnace body 14 is rotated in both forward and reverse directions to swing, thereby stirring the incinerator in the furnace body 14. To do.
[0007]
The gas generated by the incineration of the incinerated object in the furnace body 14 flows out from the hot water outlet 24 into the hollow portion 38 of the hood 18. When the combustible gas or combustible dust is contained in the gas, the burner 44 of the hood 18 is ignited and burned.
When the incineration object is incinerated, the furnace body 14 is rotated so that the hot water outlet 24 faces downward, is stopped there, the damper 50 is opened, and the molten water is supplied from the hot water outlet 24 to the receiver 52. receive.
[0008]
The above-described conventional rotary incineration and melting apparatus 10 is highly evaluated for being able to efficiently incinerate and melt an incinerated object with a relatively simple mechanism.
[0009]
[Problems to be solved by the invention]
By the way, the anchor of the heat-resistant and fire-resistant coating layer covering the furnace body and the hood of the above-described conventional rotary incineration melting apparatus has heat resistance, carburization resistance, and siliconization resistance against the incineration atmosphere of the incineration object. In consideration of mechanical strength against rocking, an expensive anchor made of Inconel 601 is used.
However, Inconel anchors are expensive and have a long delivery time and are not easily available on the market. As a result, there is a problem that the cost of the heat-resistant and fire-resistant coating layer increases. Therefore, there has been a demand for an economical and high-strength anchor that can replace Inconel anchors.
[0010]
Accordingly, an object of the present invention is an anchor for forming a heat-resistant and fire-resistant coating layer that is economical and has durability and mechanical strength equal to or higher than that of an Inconel anchor, mechanical repeated load, for example, constantly oscillating. The object is to provide a heat-resistant and fire-resistant coating layer having a high durability and a rotary incineration and melting apparatus that does not require a large maintenance cost even when coated on a member.
[0011]
[Means for Solving the Problems]
As a material having the same heat resistance, corrosion resistance, and mechanical strength as Inconel anchors, the present inventor first focused on austenitic stainless steel, prototyped the anchors, and made a heat-resistant and fire-resistant coating layer with the prototype anchors. As a result of the operation, the austenitic stainless steel anchor was broken and the heat-resistant and fire-resistant coating layer was missing.
That is, an austenitic stainless steel anchor lacks any of heat resistance, corrosion resistance, and mechanical strength.
[0012]
Therefore, the present inventor has prepared an anchor obtained by subjecting an austenitic stainless steel base material to aluminization treatment, and an austenitic stainless steel base material subjected to aluminization treatment, and then subjected to diffusion penetration heat treatment at 700 ° C. A prototype was built, an anchor was embedded in the refractory material, and an endurance test was conducted under the test condition of maintaining the state at a temperature of 1350 ° C. for 7 days to evaluate each. The evaluation results are as shown in Table 1.
[Table 1]
Figure 0003997018
[0013]
In Table 1, Sample No. 1 is an Inconel 601 anchor as a reference example, Sample No. 2 is also a reference example and an SUS310S anchor that has not been subjected to surface treatment, and Sample No. 3 is an SUS310S made only by aluminizing treatment. The anchor and sample number 4 are SUS310S anchors that have been subjected to aluminizing treatment and diffusion infiltration heat treatment.
The conditions for the aluminizing treatment are 700 ° C. and 10 minutes. The conditions for the diffusion and penetration heat treatment are 710 ° C. and 3 hours.
[0014]
From Table 1, it was found that Sample No. 4 subjected to aluminizing treatment and diffusion infiltration heat treatment had a thickness reduction rate smaller than Sample No. 1 of Inconel 601 anchor. Moreover, it turned out that the thinning rate of the sample number 3 which performed only the aluminizing process is equivalent to the sample number 2 which did not perform the aluminizing process, and it turned out that there is almost no effect only by the aluminizing process. .
[0015]
In order to achieve the above object, based on the above knowledge, the anchor for a heat and fire resistant coating material according to the present invention is an anchor for a heat and fire resistant coating material,
It is characterized in that a base material made of austenitic or ferritic stainless steel is subjected to aluminizing treatment and then diffusion penetration heat treatment of aluminum atoms.
[0016]
Further, the heat-resistant and fire-resistant coating layer according to the present invention includes an anchor for a heat-resistant and fire-resistant coating material obtained by subjecting a base material made of austenitic or ferritic stainless steel to aluminizing treatment and then diffusion diffusion heat treatment of aluminum atoms, It is characterized by comprising a coating layer of a heat and fire resistant coating material held by an anchor for the coating material.
[0017]
Furthermore, the incineration melting apparatus according to the present invention comprises a hollow horizontal section surrounded by an inner wall covered with a heat-resistant fireproof coating layer and a cylindrical horizontal furnace body having combustion means in the hollow section, and the furnace body is rotated in both forward and reverse directions. And an incineration melting apparatus that incinerates and melts the incinerated object in the hollow part of the furnace body,
An anchor for a heat-resistant and fire-resistant coating material in which the heat-resistant and fire-resistant coating layer of the furnace body is aluminized on a base material made of austenitic or ferritic stainless steel and then subjected to diffusion penetration heat treatment of aluminum atoms, and for a heat-resistant and fire-resistant coating material And a coating layer of a heat-resistant and fire-resistant coating material held by an anchor.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below specifically and in detail with reference to the accompanying drawings.
Example Embodiment of Anchor This example embodiment is an example of an embodiment of an anchor for a heat and fire resistant covering material according to the present invention, and FIG. 1 is a side view of the anchor of this example embodiment, and FIG. These are the typical cross sections of the surface layer of the anchor of this embodiment example.
The anchor 60 of the present embodiment is formed of a bar having a diameter of 13 mm, and as shown in FIG. 1, a bifurcated anchor upper portion 62 having a height H 1 of 100 mm and an included angle θ of about 60 °, and an anchor upper portion An anchor lower portion 64 having a height H 2 of 100 mm and extending in the opposite direction from the bifurcated base portion of 62.
The anchor lower portion 64 is welded and joined to the metal holding plate 68 at the lower end 66 and is self-supporting in a direction orthogonal to the metal holding plate 68. The anchor upper part 62 has a function of penetrating into the heat and fire resistant coating layer and holding the heat resistant and fire resistant coating layer.
[0019]
As shown in FIG. 2, the anchor 60 includes an anchor member 70 formed of a base material made of austenitic stainless steel, for example, SUS310S, and a surface layer 72 formed by subjecting the anchor member 70 to surface treatment. .
The surface layer 72 includes an Al layer 74, a layer made of an alloy of Al and a base metal, that is, an alloy layer 76 made of Al—Fe—Cr—Ni, and diffusion in which Al diffuses from the alloy layer 76 into the base material. Layer 78.
[0020]
Below, with reference to FIG. 3, the production method of the anchor 60 is demonstrated. FIGS. 3A and 3B are schematic views showing the structure of the surface layer of the anchor for each process when the anchor 60 is manufactured.
First, the anchor member 70 made of SUS310S is aluminized. In the aluminizing process according to this embodiment, the anchor member 70 is immersed in molten aluminum and the surface of the anchor member 70 is plated with aluminum. Thereby, as shown in FIG. 3A, a primary surface layer having an Al layer 74 and an alloy layer 76 is formed on the anchor member 70. The total thickness of the Al layer 74 and the alloy layer 76 as the primary surface layer is in the range of about 60 μm to 70 μm. The thickness of the Al layer 74 itself is set to 10 μm or more.
Next, the aluminized anchor member 70 is heat-treated at a temperature of 710 ° C. for about 3 hours. As a result, as shown in FIG. 3B, a surface layer 72 composed of an Al layer 74, an alloy layer 76, and an Al diffusion layer 78 can be formed on the surface of the anchor member 70.
[0021]
In the present embodiment, the anchor member 70 having SUS310S as a base material is subjected to aluminizing treatment and then diffusion infiltration heat treatment, whereby the anchor 60 having excellent heat resistance and fire resistance and low thickness reduction can be formed.
[0022]
Embodiment of heat-resistant and fire-resistant coating layer This embodiment is an example of an embodiment of the heat-resistant and fire-resistant coating layer according to the present invention, and FIG. 4 is a side view of the heat-resistant and fire-resistant coating layer of this embodiment. It is.
The heat-resistant and fire-resistant coating layer 80 of the present embodiment includes a heat insulating layer 84 formed on a metal plate 82 to be heat- and fire-resistant coated, an anchor 86 according to the present invention, and a heat-resistant and fire-resistant coating layer main body 88 held by the anchor 86. It consists of and.
The heat insulating layer 84 is a heat insulating layer having a thickness of about 80 mm formed of an alumina heat insulating material. The anchor 86 has the same configuration as the anchor 60 of the first embodiment, for example, and is welded to the metal plate 82 at the lower end. The heat and fire resistant coating layer main body 88 is a coating layer having a thickness of about 170 mm formed of a silicon carbide heat and fire resistant material.
[0023]
Embodiment of incineration and melting apparatus This embodiment is an example of an embodiment of an incineration and melting apparatus according to the present invention.
The incineration and melting apparatus of the present embodiment is different from the conventional heat and fire resistant coating layers 22 and 42 using Inconel anchors in the configuration of the heat and fire resistant coating layers provided on the furnace body 14 and the hood 18. Except for being the same as the coating layer 80, it has the same configuration as the incineration melting apparatus 10 described above.
[0024]
Since the heat-resistant and fire-resistant coating layer of the incineration melting apparatus of the present embodiment uses an economical and low-thickness anchor according to the present invention, the same heat-resistant and fire-resistant coating layer using a conventional Inconel anchor is used. It has durability and is economical.
[0025]
【The invention's effect】
According to the configuration of the present invention, the base metal made of austenitic or ferritic stainless steel is subjected to aluminizing treatment and then diffusion diffusion heat treatment of aluminum atoms, so that the thinning rate is equal to or higher than that of a conventional Inconel anchor. Thus, an anchor with excellent heat resistance and fire resistance is economically realized.
In addition, by applying the anchor according to the present invention to a heat-resistant and fire-resistant coating layer, and using the heat-resistant and fire-resistant coating layer as a heat-resistant and fire-resistant coating layer for furnace bodies and hoods of incineration and melting apparatuses, it is economical and durable. Since the heat-resistant and fire-resistant coating layer is excellent and has a long life, and the heat-resistant and fire-resistant coating layer is not lost even during long-term use, an incineration and melting apparatus that can be continuously operated for a long period of time and has low maintenance costs has been realized.
[Brief description of the drawings]
FIG. 1 is a side view of an anchor according to an embodiment.
FIG. 2 is a schematic cross section of a surface layer of an anchor according to an embodiment.
FIGS. 3A and 3B are schematic views showing the structure of the surface layer of the anchor for each process when producing the anchor.
FIG. 4 is a side view of the heat-resistant and fire-resistant coating layer according to the embodiment.
FIG. 5 is a side view showing a configuration of a conventional rotary incineration melting apparatus.
6 is a schematic cross-sectional view of the rotary incineration melting apparatus of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Rotation-type incineration melting apparatus 11 Machine stand 12 Rotation shaft 14 Horizontal cylindrical furnace body 16 Drive apparatus 18 Hood 20 Metal cylindrical body 22 Heat-resistant fireproof coating layer 23 Hollow part 24 Hot water outlet 26 Incineration object inlet 28 Motor 30 Pinion 32 Gear 34 Guide roller 36 Pair roller 38 Hollow part 40 Metal outer wall 42 Heat-resistant fireproof coating layer 44 Burner 46 Secondary air inlet 48 Hot water inlet 50 Sliding damper 52 made of heat insulating material Receiver 54 Elevator 56 Incineration Material feeder 58 Supply pipe 60 Anchor 62 of embodiment example Anchor upper part 64 Anchor lower part 66 Lower end 68 Metal holding plate 70 Anchor member 72 Surface layer 74 Al layer 76 Alloy layer 78 Diffusion layer 80 Heat-resistant fireproof coating layer 82 example embodiment metal Plate 84 Heat insulation layer 86 Anchor 88 Heat-resistant fire-resistant coating layer body

Claims (3)

耐熱耐火被覆材用のアンカーであって、
オーステナイト系又はフェライト系ステンレス鋼からなる母材にアルミナイズ処理、次いでアルミニウム原子の拡散浸透熱処理を施してなることを特徴とする耐熱耐火被覆層用のアンカー。
An anchor for a heat and fire resistant coating material,
An anchor for a heat-resistant and fire-resistant coating layer, which is obtained by subjecting a base material made of austenitic or ferritic stainless steel to aluminizing treatment and then diffusion diffusion heat treatment of aluminum atoms.
オーステナイト系又はフェライト系ステンレス鋼からなる母材にアルミナイズ処理、次いでアルミニウム原子の拡散浸透熱処理を施してなる耐熱耐火被覆材用のアンカーと、耐熱耐火被覆材用のアンカーにより保持された耐熱耐火被覆材の被覆層とからなることを特徴とする耐熱耐火被覆層。An anchor for a heat-resistant and fire-resistant coating material obtained by subjecting a base material made of austenitic or ferritic stainless steel to aluminizing treatment and then diffusion diffusion heat treatment of aluminum atoms, and a heat-resistant and fire-resistant coating held by the anchor for the heat-resistant and fire-resistant coating material A heat-resistant and fire-resistant coating layer comprising a coating layer of a material. 耐熱耐火被覆層で被覆された内壁で囲まれた中空部及び中空部に燃焼手段を有する筒状横型炉体と、炉体を正逆両方向に回転させる駆動手段とを備え、炉体の中空部で被焼却物を焼却、溶融する焼却溶融装置において、
炉体の耐熱耐火被覆層が、オーステナイト系又はフェライト系ステンレス鋼からなる母材にアルミナイズ処理、次いでアルミニウム原子の拡散浸透熱処理を施してなる耐熱耐火被覆材用のアンカーと、耐熱耐火被覆材用のアンカーにより保持された耐熱耐火被覆材の被覆層とから形成されていることを特徴とする焼却溶融装置。
A hollow part surrounded by an inner wall covered with a heat-resistant and fire-resistant coating layer and a cylindrical horizontal furnace body having combustion means in the hollow part, and a drive means for rotating the furnace body in both forward and reverse directions, the hollow part of the furnace body In incineration and melting equipment that incinerates and melts the incinerated materials
An anchor for a heat-resistant and fire-resistant coating material in which the heat-resistant and fire-resistant coating layer of the furnace body is aluminized on a base material made of austenitic or ferritic stainless steel and then subjected to diffusion penetration heat treatment of aluminum atoms, and for a heat-resistant and fire-resistant coating material An incineration and melting apparatus comprising: a heat-resistant and fire-resistant coating material layer held by an anchor.
JP36678498A 1998-12-24 1998-12-24 Anchor for heat and fireproof coating and heat and fireproof coating layer Expired - Fee Related JP3997018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36678498A JP3997018B2 (en) 1998-12-24 1998-12-24 Anchor for heat and fireproof coating and heat and fireproof coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36678498A JP3997018B2 (en) 1998-12-24 1998-12-24 Anchor for heat and fireproof coating and heat and fireproof coating layer

Publications (2)

Publication Number Publication Date
JP2000193374A JP2000193374A (en) 2000-07-14
JP3997018B2 true JP3997018B2 (en) 2007-10-24

Family

ID=18487669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36678498A Expired - Fee Related JP3997018B2 (en) 1998-12-24 1998-12-24 Anchor for heat and fireproof coating and heat and fireproof coating layer

Country Status (1)

Country Link
JP (1) JP3997018B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245989A (en) * 2008-12-12 2011-11-16 维苏维尤斯·克鲁斯布公司 Cement plant refractory anchor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826323B2 (en) * 2006-04-14 2011-11-30 住友金属工業株式会社 Refractory lining structure in rotary melting furnace and rotary melting furnace
CA2690908A1 (en) 2007-06-15 2008-12-18 Palmer Linings Pty Ltd Anchor system for refractory lining
JP2014169800A (en) * 2013-03-01 2014-09-18 Ngk Spark Plug Co Ltd Glow plug and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245989A (en) * 2008-12-12 2011-11-16 维苏维尤斯·克鲁斯布公司 Cement plant refractory anchor

Also Published As

Publication number Publication date
JP2000193374A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
ES2288030T3 (en) WATER REFRIGERATION SHIRTS FOR ELECTRIC ARC OVEN.
TWI356154B (en) Apparatus for the combustion of gas exiting from a
JP3997018B2 (en) Anchor for heat and fireproof coating and heat and fireproof coating layer
JP4948834B2 (en) Corrosion-resistant coating alloy and member coated therewith
CA2365597A1 (en) Ash melting device
JP2006342301A (en) Carbonization apparatus
RU2754257C1 (en) Gas crucible furnace
CN211952790U (en) Sludge incineration device
JP3678937B2 (en) Ceramic tube for heat exchanger
JPH11277030A (en) Pyrolysis furnace for waste and carbonizing method for waste
JPH1030897A (en) Boiler high temperature pipe and manufacture thereof
KR920004505B1 (en) Apparatus for and method of chromizing articles
JPH10300356A (en) External heat type rotary kiln
CN219829485U (en) Burner device special for car hearth furnace
JP2005274109A (en) Air heater
RU2824148C1 (en) Two-bath reflecting furnace for remelting aluminium scrap
JPS582520A (en) Waste gas burning device
RU2001110158A (en) METHOD FOR CARBONING IRON
RU2799640C1 (en) Shaft reverberatory furnace for metal remelting
JPH06221766A (en) Muffle for muffle furnace
CN108006248A (en) A kind of smoke wind pipe tertiary air tube shut-off device valve
WO2024157555A1 (en) Structure, usage method for rotary kiln device, and manufacturing method for structure
DE278519C (en)
JP2005233602A (en) Incineration device
US912394A (en) Universal ore-treating furnace.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees