JP3995406B2 - Aluminum foil for electrolytic capacitors - Google Patents

Aluminum foil for electrolytic capacitors Download PDF

Info

Publication number
JP3995406B2
JP3995406B2 JP2000245145A JP2000245145A JP3995406B2 JP 3995406 B2 JP3995406 B2 JP 3995406B2 JP 2000245145 A JP2000245145 A JP 2000245145A JP 2000245145 A JP2000245145 A JP 2000245145A JP 3995406 B2 JP3995406 B2 JP 3995406B2
Authority
JP
Japan
Prior art keywords
foil
carbon
etching
aluminum foil
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000245145A
Other languages
Japanese (ja)
Other versions
JP2002057075A (en
Inventor
将志 目秦
洋 松岡
雅彦 片野
富美雄 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO ALMINIUM KABUSHIKI KAISHA
Nippon Light Metal Co Ltd
Original Assignee
TOYO ALMINIUM KABUSHIKI KAISHA
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO ALMINIUM KABUSHIKI KAISHA, Nippon Light Metal Co Ltd filed Critical TOYO ALMINIUM KABUSHIKI KAISHA
Priority to JP2000245145A priority Critical patent/JP3995406B2/en
Publication of JP2002057075A publication Critical patent/JP2002057075A/en
Application granted granted Critical
Publication of JP3995406B2 publication Critical patent/JP3995406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エッチング処理によりピット形成して増大させた箔の表面に陽極酸化皮膜を形成するアルミニウム箔であって、静電容量が高く且つ部位によるばらつきの小さい電解コンデンサ用アルミニウム箔に関する。
【0002】
【従来の技術】
アルミニウムは、化学的あるいは電気化学的なエッチング処理により微小ピットを形成して表面積の増大が容易にでき、その表面に化成処理と呼称される陽極酸化処理を施すことにより良質な陽極酸化皮膜が形成できる。しかもこの皮膜が誘電体となるところから、薄く圧延したアルミニウム箔をエッチング処理し、その表面に使用電圧に応じた種々の化成電圧で化成処理して陽極酸化皮膜を形成することにより、使用電圧に適合する各種のコンデンサが製造されている。
【0003】
上記エッチング処理で形成する微小ピットは、使用電圧に応じた化成電圧の高低に適した形状に穿孔される。即ち、使用電圧の高い中高圧用のコンデンサに使用する場合は、化成電圧を高くして厚い化成皮膜を形成する必要があるので、厚い化成皮膜でピットが埋まらないように、ピット形成は直流による電気化学的エッチング処理により行い、ピット形状をトンネルタイプとする。その際、エッチング処理を一次、二次の二段階で行い、一次エッチングでは例えば直流を印加して細いトンネル状の初期ピットを形成し、次いで二次エッチングでは化学的あるいは電気化学的なエッチングを施し初期ピットの径を拡大している。
【0004】
中高圧コンデンサ用のアルミニウム箔は一般に下記のように製造される。すなわち、Si,Fe,Cu,Mn等の各種元素の含有量を調節したアルミニウム溶湯を鋳造し、得られた鋳塊を均質化処理し、熱延、冷延を経て厚さ0.3mm程度の箔地とする。次いで、この箔地を冷間で箔圧延して厚さ約0.1mm程度の目的厚さのアルミニウム箔とし、400〜600mm程度の箔巾でコイル状に巻く。更に、結晶方位調整等のために、コイルに真空または不活性ガス雰囲気の下で最終熱処理を施し、中高圧コンデンサ用のアルミニウム箔とする。この最終熱処理は、470〜600℃程度の加熱温度で行う。
【0005】
【発明が解決しようとする課題】
上記のように製造されたアルミニウム箔は、必要により寸法等を調整した後、上述の如くエッチング処理によりピットを形成して表面積を増大させ、次いで化成処理して電解コンデンサ箔とする。しかし、箔のコイル内位置、すなわちコイルの巾方向および厚さ方向(半径方向)の位置で箔の静電容量に大きな差があった。また、静電容量が箔の部位によりばらつくため、安定して高い静電容量を得ることができないという問題があった。
【0006】
本発明は、部位による静電容量のばらつきを低減し全体的に静電容量の高い電解コンデンサ用アルミニウム箔を提供することを目的とする。
【0007】
【課題を解決するための手段】
即ち本発明は、表面から深さ200nm以上、500nm以下の位置まで炭素が混入し、該深さを超える位置ではオージェ電子分光分析法で炭素が検出できないことを特徴とするエッチングに供する電解コンデンサ用アルミニウム箔である。
本発明者は、従来の箔より深い位置まで炭素を混入させた箔は、エッチング処理によりトンネル状ピットを形成し、化成処理を施こしても全般的に静電容量が高くなると共に、最終熱処理時のコイル内位置による静電容量のばらつきが小さくなる、という新規な事実を見出し、これも基づいて本発明を完成させた。
【0008】
なお、本発明においては、アルミニウム箔表面から深さ方向に沿った炭素の分析は、オージェ電子分光分析法で行い、その際の炭素の検出限界値に基づき、炭素の混入深さを決定した。
本発明において、表面から深さ200nm以上の位置まで炭素が混入しているとの規定は、箔コイルを最終熱処理した後の状態を規定したものである。
【0009】
【発明の実施の形態】
本発明に用いることができるアルミニウムの組成を以下に説明する。ただし、本発明に用いるアルミニウムは下記の組成に限定する必要はなく、高純度のアルミニウムの他、種々のアルミニウム合金も用いることができる。例えば、化成電圧200V程度以上で処理するような中高圧コンデンサ用アルミニウム箔の場合は、好ましくはSi5〜50ppm 、Fe5〜50ppm 、Cu25〜70ppm を含有するアルミニウムや、JIS H 2111に記載される方法に準じて測定されるAl純度99.98wt%以上のアルミニウムの他、更にZn,Ga等の元素を任意に選択して含有させたアルミニウム合金でもよい。
【0010】
なお、Pbは中高圧コンデンサ用アルミニウム箔には通常添加される元素であり、本発明のアルミニウム箔にもPbを添加することが好ましい。即ちPbは箔の表面積増大のためのエッチング処理に使用する電解液との反応を促進して、初期のトンネルピット数を増加させる効果があるので、その後のピット径拡大処理と炭素の深さ方向の存在の効果と相まって、静電容量が高くてばらつきの小さいアルミニウム箔を得る上で有利である。
【0011】
特にPbの含有量を箔の表面から0.1μmの深さ部分に40ppm 〜2000ppm とすると好ましい。箔の表面から0.1μmの深さ部分に含有されるPb量が下限値未満であると上記の効果少なく、一方、上限値を超えると箔表面の過剰溶解を誘起し、静電容量の高い箔が得難くなる。
上記のPb量を達成するには、アルミニウム溶湯中にPbを例えば4ppm 以下添加し、箔コイルの最終熱処理を470℃程度以上の加熱温度で行う。
【0012】
アルミニウム箔表面から深さ方向に沿った炭素の分析は、上述したようにオージェ電子分光分析法で行い、箔表面から深さが増加するのに伴い炭素量が順次低下し、信頼できる分析値として検出できなくなった深さをもって、炭素の混入深さとする。
箔の表面から200nm以上の深さまで炭素を混入させることにより、上述の如き効果が得られる理由は未だ解明されていないが、下記のように推察される。
【0013】
即ち、前述のように、中高圧コンデンサ用に使用されるアルミニウム箔はたとえば400〜600mm巾の箔を後方に張力をかけながらコイル状に巻いた状態で最終熱処理を施す。圧延された箔の厚みや、コイルに巻く際に後方にかける張力は、必ずしも巾方向に均一ではない。更に、コイルの厚さ方向(半径方向)については、箔の巻き始めに相当するコイルの巻き芯部近傍と、巻き終わりに相当するコイル外周部近傍とでは、上下互いに接する箔の接触圧に大きな差がある。このような状態ではコイルの巾および厚さ方向における各位置で箔と箔の間に捕捉されている圧延油残滓、空気等の酸化性物質の量にばらつきがある。その結果、コイルの最終熱処理を真空あるいは不活性ガス雰囲気中で行っても、熱処理中に箔表面のAlと酸化性物質が反応し、反応生成物の量に大きな差が生じ、箔の位置による静電容量のばらつきが大きくなるものと考えられる。
【0014】
これに対して、本発明のように箔表面から深い位置まで炭素が存在すると、箔の表面はエッチング液に対して耐食性を有し、熱処理中に生じた反応生成物の量に従来の如くばらつきがあったとしても、前記箔表面から深い位置にまで炭素が存在することによる箔表面の耐食性向上によって、ビット形成のためのエッチング処理に際して箔表面の過剰溶解を最大限防ぎ、最終的に、コイル内位置によるばらつきが低減し、平均的に静電容量が高くなるものと考えられる。静電容量の向上およびそのためのばらつき低減の効果を得る上では、炭素の混入深さが大きい程好ましく、250nm以上あるいは300nm以上の位置まで混入していることが更に望ましい。ただし、炭素混入深さが大きくなるにしたがって、熱延および冷延等の操業が困難となる。また、炭素混入深さが500nmを越えると、静電容量のばらつき低減の効果の向上は飽和する傾向がみられる。
【0015】
中高圧コンデンサ用アルミニウム箔は、ピット形成による表面積増大のために、典型的には下記のようにエッチングされる。例えば直流による連続エッチング処理でトンネル状ピットを穿孔して表面積を増大させる。このエッチング処理は一次エッチングと二次エッチングの二段階に分けて行い、一次エッチング処理では箔表面に初期トンネルピットを多数形成し、次いで二次エッチング処理では処理条件を変えて初期トンネルピットの径を拡大する。
【0016】
一次エッチング処理で使用する電解液は、塩酸、硫酸、燐酸、硝酸等を含有する酸水溶液等の公知の液でよく、特に限定されるものではない。電解液の温度が高いと反応が促進されて好ましいが、高温に過ぎると反応が速過ぎて箔表面の溶解が激しく均一な初期トンネルピットを形成し難くなる。好ましい液温度は60〜95℃である。また好ましい処理時間は2〜4分程度である。電気量は15〜30クーロン/cm2 、電流密度は100〜300mA/cm2 が好ましい。
【0017】
二次エッチング処理による初期トンネルピット径の拡大処理は、直流電解処理、化学処理、または両者を併用して、一次エッチングで形成した初期のピットの径を拡大して表面積を増大させる。トンネル状ピットの長さは、箔厚さとエッチング処理された箔の用途等によって異なるが、一般的に数十μmである。
二次エッチング処理の条件は、本発明を限定するものではないが、例えば電解液としては、塩酸に少量の硫酸、燐酸、蓚酸等を加えた酸水溶液や硝酸を加えた酸水溶液が好ましい。電解液の温度は60〜95℃、電流密度は60〜200mA/cm2 が好ましい。処理時間は、トンネルピットの拡径の寸法にもよるが2〜20分程度が適当である。
【0018】
本発明の如くアルミニウム箔の表面から深い位置まで炭素が存在することにより、箔表面の耐食性が向上し、従来の如く最終焼鈍を施こして箔表面の状態に均一性が欠けたとしても箔表面の過剰溶解の発生し易い部位の過剰溶解が防がれトンネルピットの形崩れが抑制されて全体的静電容量が向上し、コイル内位置による静電容量のばらつきが低減されると考えられる。
【0019】
エッチング処理によりピットを形成して表面積を増大させたアルミニウム箔に、この箔を陽極とした化成処理を施す。化成処理は公知の条件で行えばよく、例えば電解液としては、硼酸アンモニウム、りん酸アンモニウム、有機酸アンモニウムなどの緩衝溶液を用いて、コンデンサの用途によって約200V以上の電圧を一段または多段階で印加して化成皮膜すなわち誘電体皮膜を形成する。
【0020】
中高圧コンデンサ用アルミニウム箔は、エッチング処理に先だって、アルミニウム箔の表面を脱脂および表面調整等のために酸またはアルカリ液による処理を行ってもよい。この処理は、例えば処理液としては0.05〜1モル/リットルの硝酸または苛性ソーダ水溶液を用い、温度は40〜60℃で処理する。
本発明の箔は、最終熱処理後の状態として、表面から深さ200nm以上の位置まで炭素が混入しているアルミニウム箔である。このように深い位置まで炭素が混入している箔を得るには、例えば箔地または箔を得るための冷間圧延の諸条件を調整する。即ち冷間圧延工程で用いられる条件のうち、例えば冷間圧延油、圧延速度、ワークロール径、圧下率等を組み合わせて冷間圧延する。ただし、上記の方法に限定する必要はない。
【0021】
以上、本発明を中高圧コンデンサ用のアルミニウム箔について詳述したが、本発明はこれに限定する必要はなく、最終熱処理を行う箔であれば低圧コンデンサ用アルミニウム箔および陰極用アルミニウム箔についても適用できる。
【0022】
【実施例】
〔試料の作製〕
Pb0.8ppm 、Si15ppm 、Fe10ppm 、Cu50ppm を含有するAl純度99.99wt%のアルミニウム溶湯を半連続鋳造して厚さ530mmの鋳塊を得、該鋳塊を600℃×10時間の均質化処理し、室温で両面を15mm面削した。再加熱して鋳塊温度520℃で熱間圧延を開始し、厚さ6〜10mmの熱延板とした。熱間圧延はロールをブラシで清掃しつつ行い、終了温度は300℃であった。次いで冷間圧延機のワークロールの粗度、圧延油粘度、ワークロール径、圧下率を変化させて冷間圧延し、厚さ0.25mmの箔地を得た。このときの条件を表1に示す。次いで表1の各条件で得た箔地を箔圧延して厚さ106μmの箔としてコイル状に巻き取った。箔の幅は500mmである。この巻き取ったコイルをアルゴンガス雰囲気中で530℃×6時間の最終熱処理を施し、(100)面を圧延面に揃えた。最終熱処理後に箔の表面から深さ0.1μmまでの部分のPb量を化学分析したところ800ppm であった。
【0023】
〔箔表面層の炭素の測定〕
図1に示すように、コイルの芯部、中間部および外周部の3位置について、幅方向の中央部および両端部(箔端から中央部へ向けて80mmの位置)の合計9箇所の箔をサンプルとして採取した。
このサンプルをオージェ電子分光分析法によって炭素が検出限界値となるまで測定し、炭素の存在する深さ位置とした。表面のエッチングはアルゴンイオンを用いた。以下に測定条件を示す。測定結果を表2に示す。
【0024】
〔オージェ電子分光分析法による箔表層の炭素量測定〕
<電子線系>
測定装置:VG社製MICROLAB310D
電子線源:LaB6 フィラメント
加速電圧:10kV
フィラメント電流:0.1mA
測定領域:約100μm×100μm
照射電流:約20nA〜30nA(ファラデーカップ計測)
<イオン銃系>
イオン銃:VG社製EX050イオン銃
加速電圧:3kV
フィラメント電流:5mA
照射電流:約500nA(ファラデーカップ計測)
Arイオンエッチング速度はAl2 3 換算で約4nm/分とし、1試料当り5点を測定してその平均値を求めた。
【0025】
〔エッチング処理〕
上記各位置のサンプルに対して、前処理に次いでエッチング処理し、箔表面積を増大した。以下に処理条件を示す。
<処理条件>
・前処理
液 :0.1モル/リットル水酸化ナトリウム、50℃
条件:浸漬60秒
・1次エッチング
液 :1モル/リットル塩酸、3モル/リットル硫酸混合液、85℃
電解:直流、200mA/cm2 ×120秒
・2次エッチング
液 :同上液
条件:浸漬15分
エッチング後、硼酸系水溶液で200V化成処理を施した。
【0026】
〔箔の静電容量の測定〕
各試料に対して静電容量を硼酸アンモニウム水溶液中で測定した。サンプル番号3のコイルの半径方向中間部の幅方向中央部の静電容量を100として他のサンプルの容量を表示した。結果を表3に示す。
表2および表3の結果から、測定点において、表面から200nm以上の深い位置まで炭素の存在する本発明例(番号3,4,6,7)は、コイル内位置によるばらつきが1.0〜1.9と小さいこと、また、全体的に静電容量が高くなっていることが判かる。一方、炭素の存在する位置が200nm未満である比較例(番号1,2,5)は、静電容量が極端に低い個所があり、コイルにおける箔位置による容量のばらつきが5.0〜5.9と大きいこと、また、全般的に静電容量が低いことが判かる。
【0027】
【表1】

Figure 0003995406
【0028】
【表2】
Figure 0003995406
【0029】
【表3】
Figure 0003995406
【0030】
【発明の効果】
上述した如く、本発明の電解コンデンサ用アルミニウム箔は、化成処理を施こしても全般的に静電容量高く、しかもコイル内位置による静電容量のばらつきが小さいから、信頼性の高いコンデンサが製作できる。
【図面の簡単な説明】
【図1】図1は、コイル内サンプル採取位置を示す部分断面図かつ斜視図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum foil for electrolytic capacitors that forms an anodic oxide film on the surface of a foil that has been increased by forming pits by etching, and has a high capacitance and a small variation depending on the part.
[0002]
[Prior art]
Aluminum can easily increase the surface area by forming fine pits by chemical or electrochemical etching, and a high-quality anodic oxide film is formed by subjecting the surface to anodization called chemical conversion treatment. it can. Moreover, since this film becomes a dielectric, the thin rolled aluminum foil is subjected to etching treatment, and the surface is subjected to chemical conversion treatment with various conversion voltages according to the use voltage to form an anodized film. A variety of compatible capacitors are manufactured.
[0003]
The minute pits formed by the etching process are drilled into a shape suitable for the level of the formation voltage according to the operating voltage. In other words, when used for a medium- and high-voltage capacitor with a high working voltage, it is necessary to form a thick chemical film by increasing the chemical voltage. Therefore, the pit is formed by direct current so that the pit is not filled with the thick chemical film. It is performed by electrochemical etching, and the pit shape is a tunnel type. At that time, the etching process is performed in two stages, primary and secondary. In the primary etching, for example, direct current is applied to form a thin tunnel-shaped initial pit, and in the secondary etching, chemical or electrochemical etching is performed. The diameter of the initial pit is expanded.
[0004]
An aluminum foil for a medium to high voltage capacitor is generally manufactured as follows. That is, cast aluminum molten metal containing various elements such as Si, Fe, Cu, Mn, etc., and homogenize the obtained ingot, and after hot rolling and cold rolling, a thickness of about 0.3 mm Use foil. Next, this foil is cold-rolled to obtain an aluminum foil having a target thickness of about 0.1 mm and wound in a coil shape with a foil width of about 400 to 600 mm. Further, for adjusting the crystal orientation and the like, the coil is subjected to a final heat treatment in a vacuum or an inert gas atmosphere to obtain an aluminum foil for a medium-high voltage capacitor. This final heat treatment is performed at a heating temperature of about 470 to 600 ° C.
[0005]
[Problems to be solved by the invention]
The aluminum foil manufactured as described above is adjusted in dimensions or the like as necessary, and then formed by etching as described above to form pits to increase the surface area, followed by chemical conversion to obtain an electrolytic capacitor foil. However, there was a large difference in the capacitance of the foil at the position in the coil of the foil, that is, the position in the width direction and thickness direction (radial direction) of the coil. Further, since the capacitance varies depending on the portion of the foil, there is a problem that a high capacitance cannot be obtained stably.
[0006]
An object of the present invention is to provide an aluminum foil for an electrolytic capacitor that reduces variation in electrostatic capacitance depending on a portion and has a high overall capacitance.
[0007]
[Means for Solving the Problems]
That is, the present invention is for an electrolytic capacitor used for etching, characterized in that carbon is mixed from the surface to a depth of 200 nm or more and 500 nm or less , and carbon cannot be detected by Auger electron spectroscopy at a position exceeding the depth . Aluminum foil.
The present inventor found that the foil mixed with carbon up to a deeper position than the conventional foil forms tunnel-like pits by etching, and the overall capacitance increases even when chemical conversion is applied, and the final heat treatment The present inventors have found a novel fact that the variation in capacitance due to the position in the coil at the time becomes small, and based on this fact, the present invention has been completed.
[0008]
In the present invention, the analysis of carbon along the depth direction from the surface of the aluminum foil was performed by Auger electron spectroscopy, and the mixing depth of carbon was determined based on the detection limit value of carbon at that time.
In the present invention, the definition that carbon is mixed from the surface to a position having a depth of 200 nm or more defines the state after the final heat treatment of the foil coil.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The composition of aluminum that can be used in the present invention will be described below. However, the aluminum used in the present invention need not be limited to the following composition, and various aluminum alloys can be used in addition to high-purity aluminum. For example, in the case of an aluminum foil for medium- and high-voltage capacitors that is processed at a formation voltage of about 200 V or more, aluminum containing Si 5 to 50 ppm, Fe 5 to 50 ppm, Cu 25 to 70 ppm or a method described in JIS H2111 is preferable. In addition to aluminum having an Al purity of 99.98 wt% or more measured in accordance with the above, an aluminum alloy may be used that contains an element such as Zn and Ga arbitrarily selected.
[0010]
In addition, Pb is an element normally added to the aluminum foil for medium- and high-voltage capacitors, and it is preferable to add Pb also to the aluminum foil of the present invention. That is, Pb has an effect of increasing the initial number of tunnel pits by promoting the reaction with the electrolyte used in the etching process for increasing the surface area of the foil. In combination with the effect of the presence of aluminum, it is advantageous in obtaining an aluminum foil having a high capacitance and a small variation.
[0011]
In particular, the Pb content is preferably 40 ppm to 2000 ppm in a depth portion of 0.1 μm from the surface of the foil. When the amount of Pb contained in the depth portion of 0.1 μm from the surface of the foil is less than the lower limit, the above effect is small. On the other hand, when the upper limit is exceeded, excessive dissolution of the foil surface is induced and the capacitance is high. It becomes difficult to obtain foil.
In order to achieve the above Pb amount, for example, 4 ppm or less of Pb is added to the molten aluminum, and the final heat treatment of the foil coil is performed at a heating temperature of about 470 ° C. or more.
[0012]
The analysis of carbon along the depth direction from the aluminum foil surface is performed by Auger electron spectroscopy as described above, and as the depth increases from the foil surface, the carbon content decreases sequentially, and as a reliable analytical value The depth at which carbon can no longer be detected is defined as the carbon mixing depth.
The reason why the above-described effect can be obtained by mixing carbon from the surface of the foil to a depth of 200 nm or more has not been clarified yet, but is presumed as follows.
[0013]
That is, as described above, the aluminum foil used for the medium- and high-voltage capacitors is subjected to final heat treatment in a state where, for example, a foil having a width of 400 to 600 mm is wound backward in a coil shape. The thickness of the rolled foil and the tension applied backward when it is wound around the coil are not necessarily uniform in the width direction. Further, in the thickness direction (radial direction) of the coil, the contact pressure of the foil in contact with the upper and lower sides is large in the vicinity of the coil core corresponding to the start of winding of the foil and in the vicinity of the outer periphery of the coil corresponding to the end of winding. There is a difference. In such a state, there is a variation in the amount of oxidizing substances such as rolling oil residue and air trapped between the foils at each position in the width and thickness direction of the coil. As a result, even if the final heat treatment of the coil is performed in a vacuum or in an inert gas atmosphere, Al on the foil surface reacts with the oxidizing substance during the heat treatment, resulting in a large difference in the amount of reaction products, depending on the position of the foil It is considered that the variation in capacitance increases.
[0014]
In contrast, when carbon is present from the foil surface to a deep position as in the present invention, the foil surface has corrosion resistance to the etching solution, and the amount of reaction products generated during the heat treatment varies as in the past. Even if there is, there is an increase in the corrosion resistance of the foil surface due to the presence of carbon from the foil surface to a deep position, thereby preventing excessive dissolution of the foil surface during the etching process for bit formation, and finally the coil It is considered that variation due to the inner position is reduced, and the capacitance is increased on average. In order to obtain the effect of improving the electrostatic capacity and reducing variations therefor, it is preferable that the carbon mixing depth is large, and it is more preferable that the carbon is mixed up to a position of 250 nm or more or 300 nm or more. However, as the carbon mixing depth increases, operations such as hot rolling and cold rolling become difficult. Moreover, when the carbon mixing depth exceeds 500 nm, the improvement in the effect of reducing the variation in capacitance tends to be saturated.
[0015]
The aluminum foil for medium and high voltage capacitors is typically etched as follows to increase the surface area due to pit formation. For example, the surface area is increased by drilling tunnel-like pits by continuous etching using direct current. This etching process is divided into two stages of primary etching and secondary etching. In the primary etching process, a large number of initial tunnel pits are formed on the foil surface, and in the secondary etching process, the processing conditions are changed to change the diameter of the initial tunnel pits. Expanding.
[0016]
The electrolytic solution used in the primary etching process may be a known solution such as an acid aqueous solution containing hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and the like, and is not particularly limited. When the temperature of the electrolytic solution is high, the reaction is promoted, which is preferable. However, when the temperature is too high, the reaction is too fast and the foil surface is so melted that it becomes difficult to form uniform initial tunnel pits. A preferable liquid temperature is 60 to 95 ° C. Moreover, a preferable processing time is about 2 to 4 minutes. The amount of electricity is preferably 15 to 30 coulomb / cm 2 and the current density is preferably 100 to 300 mA / cm 2 .
[0017]
The initial tunnel pit diameter enlargement process by the secondary etching process increases the surface area by increasing the diameter of the initial pit formed by the primary etching by using a direct current electrolytic process, a chemical process, or a combination of both. The length of the tunnel-like pit varies depending on the foil thickness and the use of the etched foil, but is generally several tens of μm.
The conditions of the secondary etching treatment do not limit the present invention. For example, the electrolyte solution is preferably an acid aqueous solution obtained by adding a small amount of sulfuric acid, phosphoric acid, oxalic acid or the like to hydrochloric acid, or an acid aqueous solution obtained by adding nitric acid. The temperature of the electrolytic solution is preferably 60 to 95 ° C., and the current density is preferably 60 to 200 mA / cm 2 . The treatment time is appropriately about 2 to 20 minutes although it depends on the diameter of the tunnel pit.
[0018]
The presence of carbon from the surface of the aluminum foil to the deep position as in the present invention improves the corrosion resistance of the foil surface, and even if the final annealing is performed and the state of the foil surface is not uniform, It is considered that the excessive dissolution of the portion where the excessive dissolution is likely to occur is prevented, the deformation of the tunnel pit is suppressed, the overall capacitance is improved, and the variation in the capacitance depending on the position in the coil is reduced.
[0019]
An aluminum foil having a surface area increased by forming pits by etching treatment is subjected to chemical conversion treatment using this foil as an anode. The chemical conversion treatment may be performed under known conditions. For example, as an electrolytic solution, a buffer solution such as ammonium borate, ammonium phosphate, or organic acid ammonium is used, and a voltage of about 200 V or more is applied in one or more stages depending on the application of the capacitor. A chemical conversion film, that is, a dielectric film is formed by application.
[0020]
Prior to the etching treatment, the surface of the aluminum foil for medium- and high-voltage capacitors may be treated with an acid or an alkali solution for degreasing and surface adjustment. In this treatment, for example, 0.05 to 1 mol / liter of nitric acid or caustic soda aqueous solution is used as a treatment solution, and the treatment is carried out at a temperature of 40 to 60 ° C.
The foil of the present invention is an aluminum foil in which carbon is mixed from the surface to a depth of 200 nm or more as a state after the final heat treatment. In order to obtain a foil in which carbon is mixed to a deep position as described above, for example, various conditions of cold rolling for obtaining a foil or a foil are adjusted. That is, among the conditions used in the cold rolling process, for example, cold rolling is performed by combining cold rolling oil, rolling speed, work roll diameter, reduction ratio, and the like. However, it is not necessary to limit to the above method.
[0021]
As mentioned above, the present invention has been described in detail for the aluminum foil for medium- and high-voltage capacitors. However, the present invention is not limited to this, and can be applied to the aluminum foil for low-voltage capacitors and the aluminum foil for cathodes as long as the final heat treatment is performed. it can.
[0022]
【Example】
[Sample preparation]
Semi-continuous casting of an Al purity 99.99wt% aluminum alloy containing 0.8ppm of Pb, 15ppm of Si, 10ppm of Fe and 50ppm of Cu gives a 530mm-thick ingot, and the ingot is homogenized at 600 ° C for 10 hours. The both sides were cut by 15 mm at room temperature. It was reheated and hot rolling was started at an ingot temperature of 520 ° C. to obtain a hot rolled sheet having a thickness of 6 to 10 mm. Hot rolling was performed while cleaning the roll with a brush, and the end temperature was 300 ° C. Subsequently, cold rolling was performed by changing the roughness, rolling oil viscosity, work roll diameter, and rolling reduction of the work roll of the cold rolling mill to obtain a foil having a thickness of 0.25 mm. Table 1 shows the conditions at this time. Subsequently, the foil obtained under each condition shown in Table 1 was rolled and wound into a coil having a thickness of 106 μm. The width of the foil is 500 mm. The wound coil was subjected to a final heat treatment at 530 ° C. for 6 hours in an argon gas atmosphere, and the (100) plane was aligned with the rolled surface. When the amount of Pb in the portion from the foil surface to a depth of 0.1 μm after the final heat treatment was chemically analyzed, it was 800 ppm.
[0023]
[Measurement of carbon in foil surface layer]
As shown in FIG. 1, about three positions of the coil core part, the intermediate part, and the outer peripheral part, a total of nine foils including a central part in the width direction and both end parts (positions of 80 mm from the foil end toward the central part). Collected as a sample.
This sample was measured by Auger electron spectroscopy until carbon reached the detection limit, and the depth position where carbon was present was determined. Argon ions were used for etching the surface. The measurement conditions are shown below. The measurement results are shown in Table 2.
[0024]
[Measurement of carbon content of foil surface layer by Auger electron spectroscopy]
<Electron beam system>
Measuring device: MICROLAB310D manufactured by VG
Electron beam source: LaB 6 filament acceleration voltage: 10 kV
Filament current: 0.1 mA
Measurement area: about 100 μm × 100 μm
Irradiation current: About 20nA-30nA (Faraday cup measurement)
<Ion gun system>
Ion gun: VG EX050 ion gun acceleration voltage: 3kV
Filament current: 5mA
Irradiation current: Approximately 500nA (Faraday cup measurement)
The Ar ion etching rate was about 4 nm / min in terms of Al 2 O 3 , and 5 points per sample were measured to obtain the average value.
[0025]
[Etching treatment]
The sample at each position was etched after the pretreatment to increase the foil surface area. The processing conditions are shown below.
<Processing conditions>
-Pretreatment liquid: 0.1 mol / liter sodium hydroxide, 50 ° C
Conditions: immersion 60 seconds, primary etching solution: 1 mol / liter hydrochloric acid, 3 mol / liter sulfuric acid mixed solution, 85 ° C.
Electrolysis: DC, 200 mA / cm 2 × 120 sec. Secondary etching solution: Same as above Liquid condition: After immersion for 15 minutes, 200 V chemical conversion treatment was performed with a boric acid aqueous solution.
[0026]
[Measurement of foil capacitance]
The capacitance was measured for each sample in an aqueous ammonium borate solution. The capacitance of the other sample was displayed with the electrostatic capacity at the center in the width direction of the intermediate portion in the radial direction of the coil of sample number 3 being 100. The results are shown in Table 3.
From the results shown in Tables 2 and 3, the present invention example (numbers 3, 4, 6, and 7) in which carbon exists from the surface to a deep position of 200 nm or more at the measurement point has a variation of 1.0 to It can be seen that it is as small as 1.9 and that the overall capacitance is high. On the other hand, in the comparative examples (numbers 1, 2, and 5) where the position where carbon is present is less than 200 nm, there are places where the electrostatic capacity is extremely low, and the variation in capacity depending on the foil position in the coil is 5.0-5. It can be seen that it is as large as 9, and that the capacitance is generally low.
[0027]
[Table 1]
Figure 0003995406
[0028]
[Table 2]
Figure 0003995406
[0029]
[Table 3]
Figure 0003995406
[0030]
【The invention's effect】
As described above, the aluminum foil for electrolytic capacitors of the present invention is generally high in capacitance even when subjected to chemical conversion treatment, and the variation in capacitance due to the position in the coil is small, so a highly reliable capacitor can be manufactured. it can.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view and a perspective view showing a sampling position in a coil.

Claims (1)

表面から深さ200nm以上、500nm以下の位置まで炭素が混入し、該深さを超える位置ではオージェ電子分光分析法で炭素が検出できないことを特徴とするエッチングに供する電解コンデンサ用アルミニウム箔。An aluminum foil for electrolytic capacitors to be used for etching, characterized in that carbon is mixed from the surface to a depth of 200 nm or more and 500 nm or less , and carbon cannot be detected by Auger electron spectroscopy at a position exceeding the depth .
JP2000245145A 2000-08-11 2000-08-11 Aluminum foil for electrolytic capacitors Expired - Fee Related JP3995406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000245145A JP3995406B2 (en) 2000-08-11 2000-08-11 Aluminum foil for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000245145A JP3995406B2 (en) 2000-08-11 2000-08-11 Aluminum foil for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2002057075A JP2002057075A (en) 2002-02-22
JP3995406B2 true JP3995406B2 (en) 2007-10-24

Family

ID=18735719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000245145A Expired - Fee Related JP3995406B2 (en) 2000-08-11 2000-08-11 Aluminum foil for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3995406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174949A (en) * 2003-11-18 2005-06-30 Toyo Aluminium Kk Method of producing aluminum foil for electrolytic capacitor
KR100843566B1 (en) * 2007-04-30 2008-07-30 조선대학교산학협력단 Buckle assembly apparatus for seat belt
JP6374196B2 (en) * 2014-03-27 2018-08-15 三菱アルミニウム株式会社 Aluminum foil for electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002057075A (en) 2002-02-22

Similar Documents

Publication Publication Date Title
JP2006135310A (en) Electrode sheet for capacitor and its manufacturing method, and electrolytic capacitor
JP3995406B2 (en) Aluminum foil for electrolytic capacitors
JP5019371B2 (en) Aluminum foil material for electrolytic capacitor electrodes
JP2009084658A (en) Aluminum alloy foil for electrolytic capacitor
JP5934129B2 (en) Aluminum alloy foil for electrolytic capacitor and manufacturing method thereof
JP5104525B2 (en) Aluminum foil for electrolytic capacitors
JP2004319794A (en) Aluminum material for electrolytic capacitor electrode, its manufacturing method and electrolytic capacitor
JPH1116787A (en) Manufacture of aluminum electrode foil for electrolytic capacitor large in electrostatic capacitance per unit loss of weight on etching
JP2793964B2 (en) Aluminum foil for cathode of electrolytic capacitor
JP2003229334A (en) Aluminum foil for electrolytic capacitor
JP2005015916A (en) Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP3676601B2 (en) Method for producing aluminum foil for electrolytic capacitor electrode
JP2010100917A (en) Aluminum foil for electrolytic capacitor electrode
JP5921951B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4958464B2 (en) Aluminum foil for electrolytic capacitor electrode
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
JP3537127B2 (en) Aluminum foil for electrolytic capacitor electrodes
JP2002057076A (en) Aluminum foil for electrolytic capacitor and its manufacturing method
JPH1187189A (en) Manufacture of aluminum foil for electrolytic capacitor
JP4497595B2 (en) Aluminum alloy foil for electrolytic capacitors
JP4539912B2 (en) Aluminum foil for electrolytic capacitor anode and manufacturing method thereof
JPH1136033A (en) Aluminum material for electrolytic capacitor
JPH04213810A (en) Aluminum foil for electrode of electrostatic capacitor
KR20000058136A (en) Refined aluminum foil for electrolytic capacitors
JP3945597B2 (en) Aluminum material for electrolytic capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3995406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140810

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees