JP3995301B2 - Composite of layered double hydroxide and saccharide, method for producing the same, and saccharide recovery material - Google Patents

Composite of layered double hydroxide and saccharide, method for producing the same, and saccharide recovery material Download PDF

Info

Publication number
JP3995301B2
JP3995301B2 JP09448597A JP9448597A JP3995301B2 JP 3995301 B2 JP3995301 B2 JP 3995301B2 JP 09448597 A JP09448597 A JP 09448597A JP 9448597 A JP9448597 A JP 9448597A JP 3995301 B2 JP3995301 B2 JP 3995301B2
Authority
JP
Japan
Prior art keywords
saccharide
ldh
complex
layered double
double hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09448597A
Other languages
Japanese (ja)
Other versions
JPH10279307A (en
Inventor
榮一 成田
芳生 梅津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Co Op Chemical Co Ltd
Original Assignee
Co Op Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Co Op Chemical Co Ltd filed Critical Co Op Chemical Co Ltd
Priority to JP09448597A priority Critical patent/JP3995301B2/en
Publication of JPH10279307A publication Critical patent/JPH10279307A/en
Application granted granted Critical
Publication of JP3995301B2 publication Critical patent/JP3995301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は層状複水酸化物と糖類の複合体及びその製造方法、並びに糖類の回収材に関する。
【0002】
【従来の技術】
ハイドロタルサイト(Mg6 Al2 (OH)16CO3 ・4H2 O)、及びMg−Alが他の2価−3価金属に置換し、CO3 が他の陰イオンに置換したハイドロタルサイトと同じ結晶構造を有する化合物は、天然にも産出するが、化学的にも容易に合成し得ることが知られている。ハイドロタルサイトを含むこれら一連の化合物を本特許では、層状複水酸化物(以下LDHと略称する。)と仮称する。これらの化合物はアニオン交換性を示すことから最近注目されている化合物であり、次の一般式(5)で表わされる。
【化7】

Figure 0003995301
【0003】
LDHはブルーサイト〔Mg(OH)2 〕類似のプラスに荷電した基本層と、アニオンと層間水からなるマイナスに荷電した中間層とからなる層状構造化合物であり、基本層は、M3+がM2+を置換し、その置換量によって基本層の層電荷が決まる。この層電荷を中間層のアニオンが中和して、結晶全体では電荷がバランスしている。
層間(本特許では中間層を層間ともいう。)のアニオンはイオン交換性であり、LDHでは、層電荷にもよるが、アニオン交換容量が約4meq/gと大きいことと、CO3 2-イオンに対する選択性が極めて大きいことが特徴である。
【0004】
このLDHを加熱すると、層間水は約300℃迄にほぼ完全に脱水し、300℃以上ではOH基の縮合脱水とCO2 の脱離が起こり、約500〜700℃で式(6):
【化8】
Figure 0003995301
で示される熱分解物が生成することが知られている。この熱分解物は水と反応して、元のLDH構造に戻るという特徴を有する。その際、純水の系では、層間陰イオンとして、OHを取り込み、陰イオンを共存させておけば、その陰イオンを層間に取り込む。
【0005】
上記の熱分解物がLDHに戻る際の陰イオンの取り込みを利用して所望の陰イオンを層間に導入する手法は再構築法と呼ばれ、有害物質や産業廃液中の陰イオン性物質(例えば廃液中のアニオン染料)の除去、また逆にアニオン系染料を層間に取り込むことにより安定な着色物を得るといった用途も開発されつつある。
【0006】
本発明は、従来より数多く行われている陰イオンのインターカレーションに関するものではなく、ゲスト物質として負電荷を持たない糖類に関するものである。
先行技術として、上記の熱分解物の1種であるMg−Al系LDHの熱分解物を用いる再構築法による負電荷を持たないシクロデキストリン類のインターカレーションに関する研究が報告されており、また、ホストとしてモンモリロナイトや層状リン酸ジルコニウムを用いたシクロデキストリン類のインターカレーションについての報告もある。
しかし、層状複水酸化物の層間に、単糖類、二糖類もしくは三糖類の1種又は2種以上よりなる糖類が取り込まれている複合体及びその製造法、並びにそれらの技術を応用した糖類の回収材についての報告はない。
【0007】
【発明が解決しようとする課題】
本発明は、LDHと単糖類、二糖類もしくは三糖類の1種又は2種以上よりなる糖類の複合体及びその製造方法、並びに糖類の回収法を提供するものである。
【0008】
【課題を解決するための手段】
本発明者等はLDHと糖類の複合体を得るために、鋭意研究を続けた結果、ある種のLDHを加熱して得られる(M2+、M3+)Oタイプの熱分解物を用いると、再構築法でLDH構造を再生する際、負電荷を持たない糖類もLDH層間に取り込まれることが分かり、本発明を完成するに至った。
【0009】
即ち、本発明は以下の発明を包含する。
(1) 式(2):
【化10】
Figure 0003995301
で示される層状複水酸化物の層間に、単糖類、二糖類もしくは三糖類の1種又は2種以上よりなる糖類が取り込まれている複合体。
(2) 層状複水酸化物を加熱して得られる式(4):
【化12】
Figure 0003995301
で示される熱分解物を、単糖類、二糖類もしくは三糖類の1種または2種以上よりなる糖類の水溶液に加え、窒素雰囲気下で反応させることを特徴とする前記()に記載の複合体の製造方法。
(3) 熱分解物が層状複水酸化物を加熱して得られる式(4):
【化14】
Figure 0003995301
で示される熱分解物を主成分とする、単糖類、二糖類もしくは三糖類の1種又は2種以上よりなる糖類の回収材。
【0010】
【発明の実施の形態】
本発明は、前記したように、LDHの層間にある種の糖類が取り込まれている複合体とその製造法、並びにそれらの発明を応用した糖類の回収法に関するものである。
本発明の出発原料として用いられるLDHは、一般式(7)示される。
【化15】
Figure 0003995301
【0011】
より好ましい出発原料として用いられるLDHは、一般式(8)で示される。
【化16】
Figure 0003995301
なお、一般式(8)で示される(CO3 )形LDHを製造するには、例えばMgCl2 (又はZnCl2 )水溶液とAlCl3 水溶液の混合液(Mg(又はZn):Al=2〜4:1,モル比)にAlの半分のモル数に相当するNa2 CO3 水溶液を加え、場合によりHCl水溶液又はNaOH水溶液で液のpHを9〜10程度に調整し、20〜90℃程度に保ち、反応・熟成させた後、沈澱した生成物を分離・洗浄し、40〜70℃で乾燥することにより得られる。
【0012】
また、一般式(7)で示されるLDHを製造するには、Mg或いはAl塩以外に、他の2価及び3価の金属塩も原料の対象とし、上記とほぼ同様の方法で造られるが、(CO3 )形でないLDHを製造するには、脱炭酸水を使用したり、窒素雰囲気下で反応させる等反応中にCO3 イオンが入らないようにする工夫が必要である。
なお、市販品(例えば、キョーワード500、キョーワード1000 協和化学工業(株)製)を利用してもよい。
【0013】
次に、一般式(7)、(8)示されるLDHを出発原料として本発明のLDHと糖類との複合体の製造法について述べるが、これに限定されるものではない。
なお、本発明に係る研究の一環として、吸着法或いはイオン交換法で糖類との複合体が生成するかどうか調べるため、炭酸型LDH或いは塩化物型LDHを用い、それらを糖類溶液と作用させてみたが、LDHに取り込まれた糖類は微量であった。これより、実質的に糖類との複合体は生成しないものと判断される。
本発明では、上記の一般式(7)または(8)で示されるLDHを用い、これを加熱して得られる式(3):
【化17】
Figure 0003995301
で示される熱分解物(以下、「(M2+、M3+)O熱分解物」と略称する。)或いは式(4):
【化18】
Figure 0003995301
で示される熱分解物(以下、「(M2+、Al3+)O熱分解物」と略称する。)を用い、再構築法でLDH構造を再生する際に負電荷を持たない糖類をLDH層間に取り込んで、糖類との複合体を生成する点に特徴がある。LDHから(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物を得るための加熱温度は300〜800℃、好ましくは500〜700℃であり、加熱時間は1〜10時間程度である。
【0014】
加熱して得られた(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物との複合体を生成する糖類は、本発明では単糖類、二糖類もしくは三糖類の1種又は2種以上よりなる。
単糖類としては、フルクトース、ガラクトース、マンノース、グルコースなどのヘキソースや、アラビノース、リボース、キシロースなどのペントース、二糖類としてはスクロース、マルトース、ラクトースなど、三糖類としてはラフィノース、マルトトリオース、メレチトースなどが例示されるが、これらに限定されるものではない。これらの糖類は1種でもまた2種以上の混合物でもよい。
これらの糖類の中で、(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物に取り込まれる糖類の量が多い点から、単糖類が最も好ましい。
【0015】
再構築法で(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物と糖類を反応させて、複合体を生成するには、糖類水溶液に(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物を添加し、窒素雰囲気下、室温程度の液温で反応させる。その後、固液分離・洗浄し、40〜80℃で乾燥することにより得られる。
窒素雰囲気下にする理由は、溶液中にCO3 2-イオンか含まれないようにするためであり、他の方法でも同じ効果が得られれば窒素雰囲気下にこだわらない。
(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物は再構築反応により、OHイオンと水分子を取り込んでLDH構造を再生するが、その際糖類も一緒に層間に取り込まれる点に本発明の特徴がある。
【0016】
再生したLDHは水溶液中にCO 2−イオンが含まれない点から、式(2):
【化20】
Figure 0003995301
で示される層状複水酸化物になっていると判断される。
【0017】
層間に取り込まれる糖類の量は糖類の種類とその水溶液濃度により異なる。
例えば、フルクトースの場合、その取り込まれる量(吸着量 m mol/(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物の量,g)は1〜5程度である。
一般的には、単糖類が最も取り込まれ易く、また、その取り込まれる量(吸着量 m mol/(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物の量,g)は(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物と反応させる糖類水溶液濃度(m mol/dm3 )が高いほど多く、この両者の関係は式(9):
【化21】
Figure 0003995301
で示されるフロイントリッヒ(Freundlich)の等温吸着式によく適合する。
【0018】
上式において、テストの範囲では、n≧2となることから、(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物は再構築法を利用することにより、糖類の回収材(或いは吸着材)として優れていると判断できる。
【0019】
再生したLDHと糖類との複合体について、粉末法によるX線回折スペクトルより底面間隔値(d003 )を調べると、単糖類(フルクトース、ガラクトース、マンノース、グルコース等)との複合体の場合は何れも7.6Åであり、LDH基本層に対して水平方向に1分子層を形成して配位している場合の予想値と一致する。二糖類であるスクロースの場合は取り込まれる量が少ないため、水酸化物型の複合体が主となり、底面間隔値(d003 )は7.6Åになる。
このように、糖類が取り込まれるのは、再生したLDHの層間(中間層)であり、この理由として糖類のOH基がLDH基本層と水素結合を形成するためと考えられる。
【0020】
反応生成物の乾燥品のFT−IRスペクトルより、その2925cm-1付近のC−H伸縮振動、1200cm-1付近のC−O伸縮、O−H面内変角振動、1095cm-1付近のC−O−C伸縮振動の吸収ピークは糖に比べて4cm-1とわずかではあるが高波数側にシフトしているのは、糖類とLDH基本層とが水素結合している結果と判断される。
【0021】
単糖類で、分子量が同じで構造が似ているフルクトース、ガラクトース、マンノース、グルコースの間で取り込まれる量を比較すると、フルクトース>ガラクトース>マンノース>グルコースの順となり差がみられるが、この理由の1つとして、OH基はアキシアル位またはエクアトリアル位に配位するが、アキシアル位のOHはLDH基本層と水素結合を形成し易くなっており、アキシアル位のOH基の数(α形、β形)がフルクトース(3個、3個)(六員環の存続率80%)、ガラクトース(2個、1個)、マンノース(2個、1個)、グルコース(1個、0個)とこの順に減少しているためにそのような順になったものと判断される。
なお、(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物へ糖類が取り込まれる速度はかなり遅く、48時間程度でほぼ平衡に達する。
二糖類であるスクロースは、分子の形状が折れ曲がっていることから、層間(中間層)に取り込まれ難くなっていると判断される。
これらの結果から、糖類の取り込まれる量は、分子の大きさや形状、或いはLDH基本層との水素結合を形成するOH基の位置や数によって大きく影響を受けると判断できる。
【0022】
LDHへ取り込まれた糖類を放出(デインターカレーション)するには、CO3 2-イオンを含む水溶液(例えばNa2 CO3 水溶液)と複合体を接することにより、CO3 2-イオンを層間(中間層)へ取り込むとともに糖類を水溶液側へ移行させることができる。糖類の水溶液への移行率はLDH中のMg(又はZn)/Al(モル比)や溶液中のCO3 2-濃度、反応温度等により異なり、CO3 2-濃度、反応温度が高くなる程糖類の水溶液への移行率は高まるが、LDHと単糖類よりなる複合体1gを100〜1000m mol/dm3 のNa2 CO3 水溶液(25〜80℃)に添加して浸透すると糖類の20〜60%が水溶液側へ移行する。この操作を数回くり返せば、糖類のほぼ100%近くが水溶液側へ移行する。
【0023】
本発明の再構築法を用いて回収した糖類を再利用するには、このデインターカレーション反応を利用して水に溶出させ、水溶液にしてから再利用するのが好ましい。
【0024】
糖類が取り除かれたLDHは層間の陰イオンが(OH- )から(CO3 2-)に交換しており、これを分離・洗浄し、加熱処理することにより出発原料のLDHになり、これを300〜800℃に加熱処理することにより(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物が得られ、くり返し使用することができる。
【0025】
また、普通の水はCO3 2-イオンを含んでおり、複合体をそこへ入れると、CO3 2-イオンが層間(中間層)に取り込まれるにつれ徐々に糖類が溶出するので、この反応を活用した用途開発も有望と考えられる。
【0026】
【実施例】
以下に実施例によって本発明をさらに詳しく説明するが、本発明の主旨を逸脱しない限り、本発明は実施例に限定されるものではない。なお、合成用の原料は何れも試薬グレードのものを使用した。なお、Mg、ZnおよびAl等は原子吸光光度計で測定し、炭酸イオンは二酸化炭素分析装置で測定した。層間水量(中間層の水分量)は熱分析による重量減少曲線で180〜220℃付近の変曲点迄の重量減少量より求めた。
【0027】
(合成例1) LDHの合成1
1mol/dm3 塩酸を適量加えpH=10に調製した1mol/dm3 Na2 CO3 水溶液350cm3 をビーカーに入れ、攪拌しながら40℃に保った。そこへ1mol/dm3 MgCl2 水溶液400cm3 と1mol/dm3 AlCl3 水溶液200cm3 の混合物を滴下した。この間、2mol/dm3 NaOH水溶液を滴下し液のpHを10に保った。
滴下終了後、40℃で1時間攪拌しながら熟成した。24時間静置後、デカンテーションでCl- イオンを除去し、更に1mol/dm3 Na2 CO3 水溶液350cm3 を加え、5時間加熱還流することにより再び熟成をおこなった。
加熱還流終了後、固体生成物を遠心分離し、十分水洗いした後、60℃で24時間減圧乾燥した。得られた生成物は、式〔Mg0.67Al0.33(OH)2 0.33+ 〔(CO3 0.165 ・0.5H2 O〕0.33- で示される層状複水酸化物(LDH)であった。
【0028】
(合成例2) LDHの合成2
1mol/dm3 塩酸を適量加えpH=9に調製した1mol/dm3 Na2 CO3 水溶液350cm3 をビーカーに入れ、攪拌しながら40℃に保った。そこへ1mol/dm3 ZnCl2 水溶液400cm3 と1mol/dm3 AlCl3 水溶液200cm3 の混合物を滴下した。この間、2mol/dm3 NaOH水溶液を滴下し液のpHを9に保った。
滴下終了後、40℃で1時間攪拌しながら熟成した。24時間静置後、デカンテーションでCl- イオンを除去し、更に1mol/dm3 Na2 CO3 水溶液350cm3 を加え、5時間加熱還流することにより再び熟成をおこなった。
加熱還流終了後、固体生成物を遠心分離し、十分水洗いした後、60℃で24時間減圧乾燥した。得られた生成物は、式〔Zn0.67Al0.33(OH)2 0.33+ 〔(CO3 0.165 ・0.5H2 O〕0.33- で示される層状複水酸化物(LDH)であった。
【0029】
【実施例1】
(Mg2+、Al3+)O熱分解物の生成
合成例1で得られた層状複水酸化物(LDH)を電気炉で空気雰囲気中、500℃、2時間加熱処理することにより、Mg0.67Al0.33OH1.165 で示される熱分解物を得た。
【0030】
【実施例2】
(Zn2+、Al3+)O熱分解物の生成
合成例2で得られた層状複水酸化物(LDH)を電気炉で空気雰囲気中、500℃、2時間加熱処理することにより、Zn0.67Al0.331.165 で示される熱分解物を得た。
【0031】
【実施例3】
(Mg2+、Al3+)O熱分解物と糖類との複合体の生成
実施例1で得られた熱分解物0.2gを一定濃度の糖類水溶液50cm3 に添加し、窒素雰囲気下で、25℃で48時間振とうした。糖類として、フルクトース、ガラクトース、マンノース、グルコース等の単糖類と二糖類のスクロースを用いた。反応後、固液分離し、固体生成物は60℃で24時間減圧乾燥し、糖類が層間(中間層)に取り込まれた本発明の複合体を得た。複合体に取り込まれた糖類の量(吸着量)は固液分離した際の上澄み液中の糖類をTOC計(全有機炭素分析計)によって分析し、反応前後の濃度差より求めた。水溶液中の糖類濃度、C(m mol/dm3 )と吸着量、X/M(m mol/熱分解物、g)の関係を、図1に示した。糖の種類により吸着量は異なり、二糖類のスクロースは単糖類よりも吸着量ははるかに少ない。また、各々の糖では水溶液中の濃度の増加とともに吸着量は直線的に増加しているのが分かる。
図1に示された関係に基づいて、式(10):
【化22】
Figure 0003995301
で示されるフロイントリッヒ(Freundlich)の等温吸着式を適応し、その定数(k、n)を求め、表1に示した。
【0032】
【表1】
Figure 0003995301
【0033】
表1より、いずれの場合もn≧2となることから、本発明の実施例1に示した(Mg2+、Al3+)O熱分解物は再構築法を利用することにより、糖類の回収材(或いは吸着材)として優れていると判断できる。
【0034】
生成した本発明の複合体について、粉末法によるX線回析スペクトルより底面間隔値(d003 )を調べると、フルクトース、ガラクトース、マンノース、グルコース等の単糖類が0.7〜3.0(m mol/熱分解物、g)吸着した複合体の場合は何れも7.6Åであり、また二糖類のスクロースが0.2〜0.3(m mol/熱分解物、g)吸着した複合体の場合は取り込まれた量が少ないため、水酸化物型層状複水酸化物(LDH)が主となり底面間隔値(d003 )は7.6Åとなった。これらの値は層間(中間層)に糖類が取り込まれている結果と判断される。
【0035】
生成した本発明の複合体は式(11):
【化23】
Figure 0003995301
で示されるものと判断される。
【0036】
【実施例4】
LDHと糖類との複合体より糖類の溶出−1
一定濃度のNa2 CO3 水溶液50mlに、実施例3の固液分離後の乾燥前の複合体(糖類の担持量0.1〜0.8m mol相当量)を添加し、窒素雰囲気下、一定温度(表2の反応温度)で48時間振とうした。反応後、固液分離し、固体生成物は60℃で24時間減圧乾燥した。複合体より溶出した糖類の量(吸着量)は固液分離した際の上澄み液中の糖類をTOC計(全有機炭素分析計)によって分析した値から求め、反応前に複合体に含まれていた糖類の量との比較より溶出率をもとめ、その結果を表2に示した。
【0037】
【表2】
Figure 0003995301
固液分離した固体生成物は60℃で24時間減圧乾燥後、600℃で3時間加熱処理した。加熱処理後の生成物はいずれも、Mg0.67Al0.331.165 で示される熱分解物であった。
【0038】
【実施例5】
LDHと糖類との複合体より糖類の溶出−2
水道水50mlに、実施例3の固液分離後の乾燥前の複合体(糖類の担持量0.1〜0.8m mol相当量)を添加し、大気にさらしながら室温でゆっくり振とうして、糖類を溶出させた。一定時間振とう後、固液分離し、複合体より溶出した糖類の量(吸着量)を固液分離した際の上澄み液中の糖類をTOC計(全有機炭素分析計)によって分析した値から求め、反応前に複合体に含まれていた糖類の量との比較より溶出率をもとめ、その結果を表3に示した。
【0039】
【表3】
Figure 0003995301
【0040】
【発明の効果】
本発明の層状複水酸化物の層間に、糖類が取り込まれている複合体は、通常のCO3 2-イオンを含む水に徐々に糖類を溶出すると考えられるため、徐放性植物栄養素としての用途が期待される。植物体の組織の1部を培養して得られる不定胚、不定芽、カルス、苗状原基等の活性植物組織を用いて、均一で優れた形質を有する植物体を得ることができるが、これらの活性植物組織を効率よく発芽、発根させて成長させるための栄養分の供給源として特に有望と考えられる。
また、層状複水酸化物を加熱して得られる(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物は、廃液よりの糖類の回収材として利用することができる。回収した糖類は炭酸イオンを含む溶液と接触することにより糖類を水中に溶出させることができ、糖類が取り除かれたLDHは層間の陰イオンが(OH- )から(CO3 2-)に交換しており、これを分離・洗浄し、加熱処理することにより出発原料のLDHになり、これを300〜800℃に加熱処理することにより(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物が得られ、くり返し使用することができる点から、(M2+、M3+)O熱分解物或いは(M2+、Al3+)O熱分解物は糖類の回収材として極めて有利に利用することができる。
【図面の簡単な説明】
【図1】実施例3の水溶液中の糖類濃度,C(m mol/dm3 )と吸着量,X/M(m mol/熱分解物,g)の関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite of a layered double hydroxide and a saccharide, a method for producing the same, and a saccharide recovery material.
[0002]
[Prior art]
Hydrotalcite (Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O) and hydrotalcite in which Mg-Al is substituted with other divalent and trivalent metals and CO 3 is substituted with other anions It is known that a compound having the same crystal structure as is produced naturally, but can be easily synthesized chemically. In this patent, these series of compounds including hydrotalcite are temporarily referred to as layered double hydroxide (hereinafter abbreviated as LDH). These compounds are recently attracting attention because they exhibit anion exchange properties, and are represented by the following general formula (5).
[Chemical 7]
Figure 0003995301
[0003]
LDH is a brucite [Mg (OH) 2] and the base layer charged positively similar, layered structure compound comprising a middle layer which is negatively charged consisting of anions and interlayer water, the basic layer, M 3+ is M 2+ is substituted, and the layer charge of the basic layer is determined by the amount of substitution. This layer charge is neutralized by the anion of the intermediate layer, and the charge is balanced throughout the crystal.
The anion in the interlayer (in this patent, the intermediate layer is also referred to as the interlayer) is ion-exchangeable. In LDH, although depending on the layer charge, the anion exchange capacity is as large as about 4 meq / g, and CO 3 2- ion It is characterized by extremely high selectivity for.
[0004]
When this LDH is heated, the interlayer water is almost completely dehydrated by about 300 ° C., and at 300 ° C. or more, condensation dehydration of OH groups and elimination of CO 2 occur, and at about 500 to 700 ° C., the formula (6):
[Chemical 8]
Figure 0003995301
It is known that a thermal decomposition product represented by This pyrolyzate is characterized by reacting with water and returning to its original LDH structure. At that time, in the pure water system, OH is taken in as an interlayer anion, and if the anion coexists, the anion is taken in between the layers.
[0005]
The above-described method of introducing a desired anion between layers using the anion incorporation when the pyrolyzate returns to LDH is called a restructuring method, which is a harmful substance or an anionic substance in an industrial waste liquid (for example, Applications such as removal of anionic dyes from waste liquids and conversely obtaining an anionic dye between layers to obtain a stable colored product are being developed.
[0006]
The present invention is not related to anion intercalation, which has been carried out many times, but relates to a saccharide having no negative charge as a guest substance.
As a prior art, research on intercalation of cyclodextrins having no negative charge by a reconstruction method using a thermal decomposition product of Mg-Al-based LDH, which is one of the above thermal decomposition products, has been reported. There are also reports on the intercalation of cyclodextrins using montmorillonite or layered zirconium phosphate as the host.
However, a complex in which a saccharide consisting of one or more of monosaccharide, disaccharide or trisaccharide is incorporated between layers of layered double hydroxides, a method for producing the same, and saccharides to which those techniques are applied There are no reports on recovered materials.
[0007]
[Problems to be solved by the invention]
The present invention provides a complex of a saccharide comprising LDH and one or more of monosaccharide, disaccharide or trisaccharide, a method for producing the same, and a method for recovering the saccharide.
[0008]
[Means for Solving the Problems]
As a result of continual research to obtain a complex of LDH and saccharides, the present inventors use (M 2+ , M 3+ ) O-type thermal decomposition products obtained by heating certain types of LDH. Thus, when the LDH structure was regenerated by the reconstruction method, it was found that saccharides having no negative charge were also taken in between the LDH layers, and the present invention was completed.
[0009]
That is, the present invention includes the following inventions.
(1) Formula (2):
[Chemical Formula 10]
Figure 0003995301
In the layers of the layered double hydroxide shown, monosaccharides, multiple coalesced disaccharide or trisaccharide of one or more than made saccharides that have been taken.
(2) Formula (4) obtained by heating the layered double hydroxide:
Embedded image
Figure 0003995301
The complex according to ( 1 ) above, wherein the pyrolyzate represented by is added to an aqueous solution of a saccharide comprising one or more of monosaccharide, disaccharide or trisaccharide, and reacted in a nitrogen atmosphere. Body manufacturing method.
(3) Formula (4) obtained when the thermal decomposition product is obtained by heating the layered double hydroxide:
Embedded image
Figure 0003995301
A saccharide recovery material comprising one or more monosaccharides, disaccharides or trisaccharides, the main component of which is a thermal decomposition product represented by
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the present invention relates to a complex in which a certain kind of saccharide is incorporated between layers of LDH, a method for producing the same, and a method for recovering saccharides to which those inventions are applied.
LDH used as a starting material of the present invention is represented by the general formula (7).
Embedded image
Figure 0003995301
[0011]
LDH used as a more preferable starting material is represented by the general formula (8).
Embedded image
Figure 0003995301
In order to manufacture the (CO 3 ) type LDH represented by the general formula (8), for example, a mixed solution of MgCl 2 (or ZnCl 2 ) aqueous solution and AlCl 3 aqueous solution (Mg (or Zn): Al = 2 to 4 : 1, the aqueous solution of Na 2 CO 3, which corresponds to the number of moles of half of Al added to molar ratio), when the pH of the solution with aqueous HCl or NaOH aqueous solution was adjusted to about 9-10 by, at about 20 to 90 ° C. It is obtained by keeping, reacting and aging, separating and washing the precipitated product, and drying at 40 to 70 ° C.
[0012]
In addition, in order to produce LDH represented by the general formula (7), in addition to Mg or Al salt, other divalent and trivalent metal salts are also used as raw materials, and are produced by the same method as described above. In order to produce LDH that is not in the (CO 3 ) form, it is necessary to devise measures to prevent CO 3 ions from entering during the reaction, such as using decarbonated water or reacting in a nitrogen atmosphere.
In addition, you may utilize a commercial item (For example, Kyoward 500, Kyoward 1000 Kyowa Chemical Industry Co., Ltd. product).
[0013]
Next, the general formula (7), (8) the LDH represented by As will be described for the complex of the preparation of the LDH and the saccharide of the present invention as a starting material, but is not limited thereto.
As part of the research related to the present invention, in order to investigate whether or not a complex with a saccharide is produced by an adsorption method or an ion exchange method, carbonic acid type LDH or chloride type LDH is used, and these are reacted with a saccharide solution. As seen, the amount of saccharide incorporated into LDH was very small. From this, it is judged that the complex with saccharides is not produced | generated substantially.
In the present invention, the LDH represented by the above general formula (7) or (8) is used and heated to formula (3):
Embedded image
Figure 0003995301
(Hereinafter abbreviated as “(M 2+ , M 3+ ) O thermal decomposition product”) or formula (4):
Embedded image
Figure 0003995301
(Hereinafter, abbreviated as “(M 2+ , Al 3+ ) O pyrolyzate ”), a sugar having no negative charge is regenerated between the LDH layers when the LDH structure is regenerated by the reconstruction method. And is characterized by the formation of a complex with saccharides. The heating temperature for obtaining (M 2+ , M 3+ ) O thermal decomposition product or (M 2+ , Al 3+ ) O thermal decomposition product from LDH is 300 to 800 ° C., preferably 500 to 700 ° C., and the heating time is 1 About 10 hours.
[0014]
In the present invention, a saccharide that forms a complex with (M 2+ , M 3+ ) O pyrolysis product or (M 2+ , Al 3+ ) O pyrolysis product obtained by heating is a monosaccharide, two It consists of one or more of saccharides or trisaccharides.
Monosaccharides include hexoses such as fructose, galactose, mannose and glucose; pentoses such as arabinose, ribose and xylose; disaccharides such as sucrose, maltose and lactose; and trisaccharides such as raffinose, maltotriose and meletitol Although illustrated, it is not limited to these. These saccharides may be one kind or a mixture of two or more kinds.
Among these saccharides, monosaccharides are most preferred because of the large amount of saccharides incorporated into (M 2+ , M 3+ ) O pyrolysis product or (M 2+ , Al 3+ ) O pyrolysis product. .
[0015]
In order to generate a complex by reacting (M 2+ , M 3+ ) O pyrolysis product or (M 2+ , Al 3+ ) O pyrolysis product with saccharides by the reconstruction method, M 2+ , M 3+ ) O pyrolyzate or (M 2+ , Al 3+ ) O pyrolyzate is added and reacted at a liquid temperature of about room temperature in a nitrogen atmosphere. Then, it is obtained by solid-liquid separation and washing, and drying at 40 to 80 ° C.
The reason for using a nitrogen atmosphere is to prevent the CO 3 2- ions from being contained in the solution. If the same effect can be obtained by other methods, the nitrogen atmosphere is not particular.
The (M 2+ , M 3+ ) O pyrolyzate or (M 2+ , Al 3+ ) O pyrolyzate regenerates the LDH structure by incorporating OH ions and water molecules through a restructuring reaction. A feature of the present invention is that saccharides are also taken together between layers.
[0016]
Since the regenerated LDH does not contain CO 3 2- ion in the aqueous solution , the formula (2):
Embedded image
Figure 0003995301
It is judged that it becomes the layered double hydroxide shown by.
[0017]
The amount of saccharide taken in between the layers varies depending on the type of saccharide and the concentration of the aqueous solution.
For example, in the case of fructose, the amount (the amount of adsorption mmol / (M 2+ , M 3+ ) O pyrolyzate or the amount of (M 2+ , Al 3+ ) O pyrolyzate , g) is 1 It is about ~ 5.
In general, monosaccharides are most easily taken up, and the amount taken up (adsorption amount mol / (M 2+ , M 3+ ) O thermal decomposition product or (M 2+ , Al 3+ ) O heat The amount of decomposition product, g) is high in the concentration of aqueous saccharide solution (m mol / dm 3 ) to be reacted with (M 2+ , M 3+ ) O thermal decomposition product or (M 2+ , Al 3+ ) O thermal decomposition product. The relationship between the two is formula (9):
Embedded image
Figure 0003995301
It is well suited to the Freundlich isothermal adsorption formula shown in FIG.
[0018]
In the above equation, n ≧ 2 in the test range, so the (M 2+ , M 3+ ) O pyrolysis product or (M 2+ , Al 3+ ) O pyrolysis product uses the reconstruction method. By doing so, it can be judged that it is excellent as a saccharide recovery material (or adsorbent).
[0019]
When the base distance (d 003 ) is examined from the X-ray diffraction spectrum by the powder method for the complex of the regenerated LDH and saccharide, any complex with a monosaccharide (fructose, galactose, mannose, glucose, etc.) Is also 7.6 mm, which is in agreement with the expected value when a single molecular layer is formed in the horizontal direction with respect to the LDH basic layer. In the case of sucrose which is a disaccharide, since the amount taken up is small, a hydroxide-type complex is mainly used, and the bottom face distance value (d 003 ) is 7.6 mm.
As described above, the saccharide is taken in between the regenerated LDH layers (intermediate layer). This is probably because the OH group of the saccharide forms a hydrogen bond with the LDH basic layer.
[0020]
From FT-IR spectrum of the dried product of the reaction products, the 2925 cm -1 C-H stretching vibration in the vicinity of, C-O stretch in the vicinity of 1200 cm -1, O-H plane bending vibration, C near 1095 cm -1 The absorption peak of —O—C stretching vibration is slightly 4 cm −1 compared to sugar, but shifted to the high wavenumber side is considered to be a result of hydrogen bonding between the sugar and the LDH base layer. .
[0021]
Comparing the amounts taken up between fructose, galactose, mannose, and glucose, which are monosaccharides with the same molecular weight and similar structure, there is a difference in the order of fructose>galactose>mannose> glucose. As an example, the OH group is coordinated at the axial position or the equatorial position, but the OH at the axial position easily forms a hydrogen bond with the LDH basic layer, and the number of OH groups at the axial position (α form, β form). Decreases in this order, fructose (3, 3) (survival rate of 6-membered ring 80%), galactose (2, 1), mannose (2, 1), glucose (1, 0) Therefore, it is judged that it was in such order.
The rate of saccharide incorporation into the (M 2+ , M 3+ ) O pyrolyzate or the (M 2+ , Al 3+ ) O pyrolyzate is rather slow, reaching almost equilibrium in about 48 hours.
Since sucrose, which is a disaccharide, has a bent molecular shape, it is judged that it is difficult to be taken into the interlayer (intermediate layer).
From these results, it can be determined that the amount of sugar taken in is greatly influenced by the size and shape of the molecule, or the position and number of OH groups that form hydrogen bonds with the LDH base layer.
[0022]
To release the sugars incorporated into LDH (deintercalation), by contacting the complex with an aqueous solution containing CO 3 2- ions (e.g. aqueous Na 2 CO 3), CO 3 2- ions interlayer ( The saccharide can be transferred to the aqueous solution side while being taken into the intermediate layer. The transfer rate of saccharides to an aqueous solution varies depending on Mg (or Zn) / Al (molar ratio) in LDH, CO 3 2− concentration in the solution, reaction temperature, etc., and the higher the CO 3 2− concentration and reaction temperature, the higher the rate. Although the transfer rate of saccharides to an aqueous solution increases, 1 g of a complex composed of LDH and a monosaccharide is added to 100 to 1000 mmol / dm 3 Na 2 CO 3 aqueous solution (25 to 80 ° C.) and penetrated to give 20 to 20 saccharides. 60% moves to the aqueous solution side. If this operation is repeated several times, nearly 100% of the saccharide moves to the aqueous solution side.
[0023]
In order to reuse the saccharide recovered using the restructuring method of the present invention, it is preferable to use this deintercalation reaction to elute it into water and make it into an aqueous solution before reuse.
[0024]
In LDH from which saccharides have been removed, the anion between layers is changed from (OH ) to (CO 3 2− ), and this is separated, washed, and heated to become LDH as a starting material. By heat-treating at 300 to 800 ° C., (M 2+ , M 3+ ) O pyrolyzate or (M 2+ , Al 3+ ) O pyrolyzate can be obtained and used repeatedly.
[0025]
Ordinary water contains CO 3 2- ions, and when the complex is put there, saccharides gradually elute as CO 3 2- ions are taken into the interlayer (intermediate layer). It is considered promising to develop applications.
[0026]
【Example】
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. The raw materials for synthesis were all reagent grade. Mg, Zn, Al, etc. were measured with an atomic absorption photometer, and carbonate ions were measured with a carbon dioxide analyzer. The amount of interlayer water (the amount of water in the intermediate layer) was obtained from the weight reduction amount up to the inflection point in the vicinity of 180 to 220 ° C. by a weight reduction curve by thermal analysis.
[0027]
Synthesis Example 1 Synthesis 1 of LDH
350 cm 3 of 1 mol / dm 3 Na 2 CO 3 aqueous solution adjusted to pH = 10 by adding an appropriate amount of 1 mol / dm 3 hydrochloric acid was placed in a beaker and kept at 40 ° C. with stirring. To that added dropwise a mixture of 1mol / dm 3 MgCl 2 solution 400 cm 3 and 1mol / dm 3 AlCl 3 solution 200 cm 3 therein. During this time, a 2 mol / dm 3 NaOH aqueous solution was added dropwise to maintain the pH of the solution at 10.
After completion of dropping, the mixture was aged with stirring at 40 ° C. for 1 hour. After standing for 24 hours, Cl - ions were removed by decantation, and 1 cm / dm 3 Na 2 CO 3 aqueous solution (350 cm 3) was further added, followed by aging again by heating to reflux for 5 hours.
After completion of heating and refluxing, the solid product was centrifuged, washed thoroughly with water, and then dried under reduced pressure at 60 ° C. for 24 hours. The obtained product was a layered double hydroxide (LDH) represented by the formula [Mg 0.67 Al 0.33 (OH) 2 ] 0.33+ [(CO 3 ) 0.165 · 0.5H 2 O] 0.33- .
[0028]
(Synthesis Example 2) Synthesis 2 of LDH
350 cm 3 of 1 mol / dm 3 Na 2 CO 3 aqueous solution adjusted to pH = 9 by adding an appropriate amount of 1 mol / dm 3 hydrochloric acid was placed in a beaker and kept at 40 ° C. with stirring. To that added dropwise a mixture of 1mol / dm 3 ZnCl 2 solution 400 cm 3 and 1mol / dm 3 AlCl 3 solution 200 cm 3 therein. During this time, 2 mol / dm 3 NaOH aqueous solution was added dropwise to maintain the pH of the solution at 9.
After completion of dropping, the mixture was aged with stirring at 40 ° C. for 1 hour. After standing for 24 hours, Cl - ions were removed by decantation, and 1 cm / dm 3 Na 2 CO 3 aqueous solution (350 cm 3) was further added, followed by aging again by heating to reflux for 5 hours.
After completion of heating and refluxing, the solid product was centrifuged, washed thoroughly with water, and then dried under reduced pressure at 60 ° C. for 24 hours. The obtained product was a layered double hydroxide (LDH) represented by the formula [Zn 0.67 Al 0.33 (OH) 2 ] 0.33+ [(CO 3 ) 0.165 · 0.5H 2 O] 0.33- .
[0029]
[Example 1]
Formation of (Mg 2+ , Al 3+ ) O pyrolyzate The layered double hydroxide (LDH) obtained in Synthesis Example 1 was heat-treated in an electric furnace at 500 ° C. for 2 hours in an air furnace, whereby Mg A thermal decomposition product represented by 0.67 Al 0.33 OH 1.165 was obtained.
[0030]
[Example 2]
Formation of (Zn 2+ , Al 3+ ) O pyrolyzate The layered double hydroxide (LDH) obtained in Synthesis Example 2 was heat-treated in an electric furnace in an air atmosphere at 500 ° C. for 2 hours to obtain Zn A thermal decomposition product represented by 0.67 Al 0.33 O 1.165 was obtained.
[0031]
[Example 3]
(Mg 2+, Al 3+) was added to O thermal decomposition product and saccharide with thermal decomposition product of 0.2g certain concentration sugar solution 50 cm 3 obtained in generating Example 1 of the complex, under a nitrogen atmosphere And shaken at 25 ° C. for 48 hours. As sugars, monosaccharides such as fructose, galactose, mannose, glucose and disaccharide sucrose were used. After the reaction, solid-liquid separation was performed, and the solid product was dried under reduced pressure at 60 ° C. for 24 hours to obtain a complex of the present invention in which saccharides were taken into the interlayer (intermediate layer). The amount of saccharide taken into the complex (adsorption amount) was determined from the difference in concentration before and after the reaction by analyzing the saccharide in the supernatant liquid after solid-liquid separation with a TOC meter (total organic carbon analyzer). The relationship between the saccharide concentration in the aqueous solution, C (m mol / dm 3 ), the amount of adsorption, and X / M (m mol / thermal decomposition product, g) is shown in FIG. The amount of adsorption varies depending on the type of sugar, and the disaccharide sucrose absorbs much less than the monosaccharide. In addition, it can be seen that the amount of adsorption increases linearly with the concentration of each sugar in the aqueous solution.
Based on the relationship shown in FIG.
Embedded image
Figure 0003995301
The constant (k, n) was determined by applying the Freundlich's isothermal adsorption equation shown in Table 1 and shown in Table 1.
[0032]
[Table 1]
Figure 0003995301
[0033]
From Table 1, since n ≧ 2 in all cases, the (Mg 2+ , Al 3+ ) O pyrolyzate shown in Example 1 of the present invention can be obtained by utilizing a reconstitution method. It can be judged that it is excellent as a recovery material (or adsorbent).
[0034]
For the complex of the resulting present invention, by examining the basal spacing value by X-ray diffraction spectrum by powder method (d 003), fructose, galactose, mannose, monosaccharides such as glucose 0.7 to 3.0 (m mol / pyrolysate, g) In the case of the adsorbed complex, all are 7.6 mm, and the disaccharide sucrose is 0.2-0.3 (m mol / pyrolyzate, g) adsorbed complex In this case, since the amount incorporated was small, hydroxide type layered double hydroxide (LDH) was mainly used, and the bottom face distance value (d 003 ) was 7.6 mm. These values are judged to be the result of saccharides incorporated into the interlayer (intermediate layer).
[0035]
The resulting composite of the present invention has the formula (11):
Embedded image
Figure 0003995301
It is judged that
[0036]
[Example 4]
Elution of saccharides from complex of LDH and saccharides-1
To 50 ml of a constant concentration Na 2 CO 3 aqueous solution, the complex before drying after solid-liquid separation in Example 3 (equivalent amount of saccharide supported 0.1 to 0.8 mmol) was added and constant in a nitrogen atmosphere. Shake at temperature (reaction temperature in Table 2) for 48 hours. After the reaction, solid-liquid separation was performed, and the solid product was dried under reduced pressure at 60 ° C. for 24 hours. The amount of saccharide eluted from the complex (adsorption amount) is determined from the value obtained by analyzing the saccharide in the supernatant when solid-liquid separated with a TOC meter (total organic carbon analyzer) and contained in the complex before the reaction. The dissolution rate was determined by comparison with the amount of saccharide, and the results are shown in Table 2.
[0037]
[Table 2]
Figure 0003995301
The solid product separated into solid and liquid was dried under reduced pressure at 60 ° C. for 24 hours and then heat-treated at 600 ° C. for 3 hours. All the products after the heat treatment were thermal decomposition products represented by Mg 0.67 Al 0.33 O 1.165 .
[0038]
[Example 5]
Elution of sugar from complex of LDH and sugar-2
To 50 ml of tap water, the composite before drying after solid-liquid separation in Example 3 (equivalent amount of saccharide supported 0.1 to 0.8 mmol) is added and slowly shaken at room temperature while exposed to the atmosphere. The saccharide was eluted. After shaking for a certain period of time, solid-liquid separation was performed, and the amount of saccharide eluted from the complex (adsorption amount) was analyzed from the value obtained by analyzing the saccharide in the supernatant liquid by solid-liquid separation using a TOC meter (total organic carbon analyzer). The elution rate was determined by comparison with the amount of saccharide contained in the complex before the reaction, and the results are shown in Table 3.
[0039]
[Table 3]
Figure 0003995301
[0040]
【The invention's effect】
Since the complex in which saccharides are incorporated between the layers of the layered double hydroxide of the present invention is considered to gradually elute saccharides in water containing normal CO 3 2- ions, Applications are expected. Using active plant tissues such as adventitious embryos, adventitious buds, callus, seedling primordia obtained by culturing a part of the plant tissue, a plant body having a uniform and excellent trait can be obtained. It is considered particularly promising as a nutrient source for efficiently germinating, rooting and growing these active plant tissues.
In addition, the (M 2+ , M 3+ ) O pyrolysis product or (M 2+ , Al 3+ ) O pyrolysis product obtained by heating the layered double hydroxide is used as a material for recovering saccharides from the waste liquid. Can be used. The recovered saccharide can be eluted in water by contacting with a solution containing carbonate ions, and LDH from which the saccharide has been removed exchanges an anion between the layers from (OH ) to (CO 3 2− ). This is separated, washed, and heat-treated to obtain LDH as a starting material. By heat-treating this to 300 to 800 ° C., (M 2+ , M 3+ ) O pyrolyzate or (M 2+ , Al 3+ ) O pyrolyzate is obtained and can be used repeatedly, so that (M 2+ , M 3+ ) O pyrolyzate or (M 2+ , Al 3+ ) O pyrolyzate The product can be used very advantageously as a saccharide recovery material.
[Brief description of the drawings]
1 is a graph showing the relationship between the saccharide concentration, C (m mol / dm 3 ) and the amount of adsorption, and X / M (m mol / thermal decomposition product, g) in an aqueous solution of Example 3. FIG.

Claims (3)

式(2):
Figure 0003995301
(式中、M2+:MgまたはZn。
y:0より大きい実数。
0.2≦x<0.4を表す。)
で示される層状複水酸化物の層間に、単糖類、二糖類もしくは三糖類の1種又は2種以上よりなる糖類が取り込まれている複合体。
Formula (2):
Figure 0003995301
( Wherein M 2+ : Mg or Zn.
y: Real number greater than 0.
It represents 0.2 ≦ x <0.4. )
The composite_body | complex in which the saccharide | sugar which consists of 1 type, or 2 or more types of a monosaccharide, a disaccharide, or a trisaccharide is taken in between the layers of the layered double hydroxide shown by.
層状複水酸化物を加熱して得られる式(4):
Figure 0003995301
(式中、M2+:MgまたはZn。
0.2≦x<0.4を表す。)
で示される熱分解物を、単糖類、二糖類もしくは三糖類の1種または2種以上よりなる糖類の水溶液に加え、窒素雰囲気下で反応させることを特徴とする請求項記載の複合体の製造方法。
Formula (4) obtained by heating the layered double hydroxide:
Figure 0003995301
( Wherein M 2+ : Mg or Zn.
It represents 0.2 ≦ x <0.4. )
The complex of claim 1, wherein the thermal decomposition product represented by the formula ( 1 ) is added to an aqueous solution of saccharides comprising one or more of monosaccharides, disaccharides or trisaccharides and reacted in a nitrogen atmosphere. Production method.
熱分解物が層状複水酸化物を加熱して得られる式(4):
Figure 0003995301
(式中、M2+:MgまたはZn。
0.2≦x<0.4を表す。)
で示される熱分解物を主成分とする、単糖類、二糖類もしくは三糖類の1種又は2種以上よりなる糖類の回収材。
Formula (4) obtained by heating pyrolyzed layered double hydroxide:
Figure 0003995301
( Wherein M 2+ : Mg or Zn.
It represents 0.2 ≦ x <0.4. )
A saccharide recovery material comprising one or more monosaccharides, disaccharides or trisaccharides, the main component of which is a thermal decomposition product represented by
JP09448597A 1997-03-31 1997-03-31 Composite of layered double hydroxide and saccharide, method for producing the same, and saccharide recovery material Expired - Lifetime JP3995301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09448597A JP3995301B2 (en) 1997-03-31 1997-03-31 Composite of layered double hydroxide and saccharide, method for producing the same, and saccharide recovery material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09448597A JP3995301B2 (en) 1997-03-31 1997-03-31 Composite of layered double hydroxide and saccharide, method for producing the same, and saccharide recovery material

Publications (2)

Publication Number Publication Date
JPH10279307A JPH10279307A (en) 1998-10-20
JP3995301B2 true JP3995301B2 (en) 2007-10-24

Family

ID=14111594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09448597A Expired - Lifetime JP3995301B2 (en) 1997-03-31 1997-03-31 Composite of layered double hydroxide and saccharide, method for producing the same, and saccharide recovery material

Country Status (1)

Country Link
JP (1) JP3995301B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2285668C2 (en) 2000-07-27 2006-10-20 Джемко Инк. Method and material for treatment of the fluorine compound
JP2003285075A (en) * 2002-01-25 2003-10-07 Jiemuko:Kk Recovery method for fluorine-containing emulsifier
JP2003285076A (en) * 2002-01-25 2003-10-07 Jiemuko:Kk Recovery method for fluorine-containing emulsifier
DE10237517B4 (en) * 2002-08-16 2012-04-12 Süd-Chemie AG Process for the enrichment or depletion of biomolecules from liquid or fluid media using layered double hydroxides and use of biomolecules attached or embedded in a layered double hydroxide as an inorganic vector
JP5065777B2 (en) * 2007-06-26 2012-11-07 テイカ株式会社 Powder for cosmetics that selectively adsorbs unsaturated fatty acids

Also Published As

Publication number Publication date
JPH10279307A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
CN1054354C (en) Alumino-silicate derivatives
CN104203824B (en) The contact decomposing catalyzer of the manufacture method and paraffin of zeolite and the zeolite
US6254845B1 (en) Synthesis method of spherical hollow aluminosilicate cluster
Aisawa et al. Intercalation behavior of L-ascorbic acid into layered double hydroxides
JPWO2009072488A1 (en) Method for producing anion-exchange layered double hydroxide
CN104874365A (en) Carboxymethyl cellulose ion intercalated hydrotalcite-like composite material, and preparation method and application thereof
JP2017534444A (en) Adsorbent for recovering valuable lithium from brine
CN111978557B (en) Preparation method of hydroxyl-modified metal organic framework material fluorescent probe and fluoride detection application thereof
JP2021036002A (en) Crystals of 6&#39;-sialyl lactose sodium salt and method for producing the same
JP3995301B2 (en) Composite of layered double hydroxide and saccharide, method for producing the same, and saccharide recovery material
US20040110950A1 (en) Porous polymeric coordination compounds
Komarneni et al. Anionic clays as potential slow-release fertilizers: Nitrate ion exchange
US5559070A (en) Synthetic inorganic porous material and method for the preparation thereof
JP2005335965A (en) Good quality layered composite hydroxide obtained by uniform precipitation method using hexamethylene tetramine, and its use
EP1043329A1 (en) Crystal of diuridine tetraphosphate or salt thereof and method for preparing the same, and method for producing said compound
JP4228077B2 (en) Method for producing layered hydroxide having ion-exchangeable anions by decarboxylation of hydrotalcite
EP4276067A1 (en) Method for producing layered silicate and application thereof in silica nanosheet production, etc.
Singer et al. Humic acid effect on aluminum interlayering in montmorillonite
Situmorang Fabrication of silica-based chitosan biocomposite material from volcanic ash and shrimp husk by sol gel method for adsorbent of cadmium (II) Ions
CN102259887A (en) Method for improving regularity of porous channels of mesoporous molecular sieve synthesized in alkali environment
Eiden-Assmann New heavy metal-hydro-sodalites containing Cd2+, Ag+ or Pb2+: synthesis by ion-exchange and characterisation
CN1046488C (en) Preparation process of fine-grain NaY zeolite
CN109810696A (en) The preparation method of carbon quantum dot
Ghazali et al. Synthesis and applications of calcium-aluminum layered double hydroxides-an overview
JP6807572B2 (en) Method for producing crystalline metal oxide and crystalline metal oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term