JP3994802B2 - Malfunction prevention circuit and integrated circuit device using the same - Google Patents

Malfunction prevention circuit and integrated circuit device using the same Download PDF

Info

Publication number
JP3994802B2
JP3994802B2 JP2002177844A JP2002177844A JP3994802B2 JP 3994802 B2 JP3994802 B2 JP 3994802B2 JP 2002177844 A JP2002177844 A JP 2002177844A JP 2002177844 A JP2002177844 A JP 2002177844A JP 3994802 B2 JP3994802 B2 JP 3994802B2
Authority
JP
Japan
Prior art keywords
output
circuit
pulse
delay
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002177844A
Other languages
Japanese (ja)
Other versions
JP2004023576A (en
Inventor
和夫 尾頃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002177844A priority Critical patent/JP3994802B2/en
Publication of JP2004023576A publication Critical patent/JP2004023576A/en
Application granted granted Critical
Publication of JP3994802B2 publication Critical patent/JP3994802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Manipulation Of Pulses (AREA)
  • Dc Digital Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は誤動作防止回路及びそれを用いた集積回路装置に関し、特に集積回路の入力端子と内部回路との間に設けられて静電気やサージ電圧等の影響による誤動作を防止する誤動作防止回路に関するものである。
【0002】
【従来の技術】
ディジタル論理回路をIC化した集積回路装置は、TTL(Transistor transistor Logic )やC−MOS(Complementary-MOS )タイプの論理回路構成とされ、各種電子装置に広く利用されている。このような集積回路装置の入力端子のインピーダンスは、一般的に非常に高く、そのために、静電気やサージ電圧等の影響を受け易いことが知られている。
【0003】
この様な回路のうち、特にクロックやストローブ等に使用される信号線に、静電気やサージが重畳されると、それがたとえ一瞬のノイズ状のものであっても、回路が誤動作することになる。そこで、従来においては、該当する信号線に、RC(抵抗、コンデンサ)による平滑回路を挿入し、その時定数を、信号パルスに悪影響を与えないぎりぎりの大きさに設定する。こうすることにより、信号は通過し、静電気やサージはこのRC平滑回路により平滑化されて、IC内部の論理回路のスレッシュホールド(論理変化点)を超えないようにすることができ、よって静電気やサージによる誤作動が防止可能となるのである。
【0004】
【発明が解決しようとする課題】
この様に、集積回路装置の誤作動防止回路として、RC平滑回路を用いると、信号として高速なものを用いることができず、よって論理回路の動作速度の低下を招来する。また、静電耐量を増やすためには、RC平滑回路の時定数を大きくする以外に方法がなく、その結果、必然的に信号の低速化をもたらすことになる。更に、ICの内部論理回路の入力に、信号の立ち上りや立下り特性が劣化した過度応答を有する波形が印加されることになるので、回路内での貫通電流(特に、C−MOS回路では、相補的な導電型のMOSトランジスタが同時にオンすることがなく、貫通電流が少いという利点があるにもかかわらず)が増大するという欠点もある。
【0005】
本発明の目的は、信号の低速化や貫通電流の増大をなくして、静電気やサージ等による誤動作を有効に防止可能な誤動作防止回路及びそれを用いた集積回路装置を提供することである。
【0006】
【課題を解決するための手段】
本発明による誤動作防止回路は、集積回路の入力端子と内部回路との間に設けられ静電気やサージによる誤動作を防止するための誤動作防止回路であって、前記入力端子に印加されかつ電源電圧より高いレベル及びグランド電位より低いレベルの重畳パルスを検出するパルス検出手段と、少なくとも前記パルス検出手段における遅延時間より大なる時間だけ前記入力信号を遅延する遅延手段と、遅延時間より大なる時間だけ前記パルス検出手段の検出出力を引延ばす引延ばし手段と、前記引延ばし手段の出力の非存在期間は前記遅延手段の出力をそのまま導出し、存在期間はその直前の前記遅延手段の出力レベルを保持して導出するレベル保持手段とを含むこと特徴とする。そして、前記レベル保持手段は、前記検出出力に応答して直前の入力信号レベルをラッチするレベルラッチ手段であることを特徴とする。
【0007】
本発明による他の誤動作防止回路は、集積回路の入力端子と内部回路との間に設けられ静電気やサージによる誤動作を防止するための誤動作防止回路であって、前記入力端子に印加されかつ電源電圧より高いレベル及びグランド電位より低いレベルの重畳パルスを検出するパルス検出手段と、少なくとも前記パルス検出手段における遅延時間より大なる時間だけ前記入力信号を遅延する遅延手段と、遅延時間より大なる時間だけ前記パルス検出手段の検出出力を引延ばす引延ばし手段と、前記引延ばし手段の出力に応じて前記遅延手段の出力をオンオフ制御するゲート手段とを含むこと特徴とする。そして、前記ゲート手段は、前記遅延手段の出力と前記検出出力との論理積をなす論理積回路であることを特徴とする。
【0008】
また、前記パルス検出手段は、正及び負の前記重畳パルスを検出する正及び負パルス検出手段と、これ等正及び負パルス検出手段の検出出力を論理和合成する論理和手段とを有し、この論理和出力を前記検出出力としたことを特徴とする。
【0009】
【発明の実施の形態】
以下に、本発明の実施例について図面を参照して説明する。図1は本発明の一実施例のブロック図である。図1を参照すると、入力信号Aは論理ICの入力端子1から正パルス検出回路2、負パルス検出回路3及び遅延回路6へ供給される。正パルス検出回路2は電源電圧を超えるような大きな正電圧パルスを検出する。また、負パルス検出回路3はグランド電位を下回るような、負の大きなパルスを検出する。
【0010】
これ等両パルス検出回路2,3の検出出力である検出パルスB,Cは論理和回路4へ入力される。この論理和出力Dはパルス引延ばし回路5により、パルス幅が引延ばされてレベル保持回路7の制御信号Eとなる。遅延回路6により遅延された入力信号Fは所定時間だけ遅延されて(G)、レベル保持回路7を介してIC内部の図示せぬ論理回路へ供給される。
【0011】
このレベル保持回路7はパルス引延ばし回路5の出力パルスEの非存在期間は、入力された信号Fをそのまま通し、出力パルスEの存在期間は、その直前のレベルを保持して出力する機能を有しており、後述するがラッチ回路を用いることができる。
【0012】
図2は図1の回路の動作を示す各部波形の例であり、図2のA〜Gは図1のA〜Gの各信号の波形に対応しているものとする。入力端子1に図2Aに示す入力信号が印加されたとする。
【0013】
図中のXで示す静電気等のノイズが重畳されるまでは、正及び負パルス検出回路2,3からは検出パルスが出力されないので、パルス引延ばし回路5からの制御信号Eも出力されない。よって、レベル保持回路7はその入力Fをそのまま導出することになる。
【0014】
次のXで示す正パルスが入力されると、正パルス検出回路2により電源電圧より高いこのパルスXが検出され、その区間はハイの検出パルスBが出力される。また、Yの部分では、負パルス検出回路3によりグランド電位より低いパルスが検出され、その区間はハイの検出パルスCが出力される。これ等両検出パルスの論理和が演算され、静電気等による重畳パルスの印加タイミングを示す信号Dが論理和回路4から出力されることになる。
【0015】
このタイミングでの入力信号を確実に遮断するために、パルス引延ばし回路5において、この信号Dに遅延を施すなどして、パルス幅の引延ばしが行われ、制御信号Eとしてレベル保持回路7へ入力される。ここで、入力信号Aそのものは、正負パルス検出回路、論理和回路、パルス引延ばし回路等での信号遅延を考慮して、適切な遅延が、遅延回路6により施され、レベル保持回路7へ入力される。
【0016】
レベル保持回路7では、前述した如く、制御信号Eの非存在期間(ローレベル期間)は、入力信号がそのまま通り、存在期間(ハイレベル期間)は、その直前のレベルを保持しつつ導出する。こうすることにより、IC内部の論理回路へは、図2Gの波形の信号が供給され、静電気等の重畳パルスが除去される。よって、誤動作防止が可能となるのである。
【0017】
次に、静電気等が印加された瞬間の波形と各部信号波形のタイミングとの関係を、図3を用いて説明する。図3においては図2の100で示す部分を拡大したものであり、A〜Dの符号は図2のそれと同一である。
【0018】
図3において、aは原信号Aのハイから、ローへの遷移に要する遷移時間を示し、bは正パルス検出回路2の遅延時間を示し、cは論理和回路4の遅延時間を示し、dはパルス引延ばし回路5での引延ばし時間を示し、eは遅延回路6の遅延時間を示している。また、x,yはタイミングマージンを表わしている。
【0019】
このとき、適切なタイミングマージンx,y(回路の信号速度、周囲回路、想定される静電気等のふるまい等で変化するパラメータ)に対して、a+b+c+x>eでかつd>e+yになるように、遅延時間d,eを設定すれば、図3のGに示すように、入力信号Aから静電気等の影響を完全に除去することができる。
【0020】
図4は図1の回路の具体例を示す図であり、正パルス検出回路2は入力信号が正電源Vccを大きく超えると、トランジスタQ1とダイオードD1とが導通して、トランジスタQ1にコレクタ電流が流れ、よってコレクタ抵抗R1及びバッファG1を介してハイパルスが出力される。負パルス検出回路3においても、入力信号がグランド電位を大きく超えると、トランジスタQ2とダイオードD2とが導通して、同様に抵抗R2及びインバータI1を介してハイパルスが出力される。
【0021】
パルス引延ばし回路5は、抵抗R3とコンデンサC1とによる遅延パルスと入力パルスとのオアをオアゲート51によりとることで、容易に実現できる。遅延回路6は信号伝達を遅らせるためのものであるから、ゲート(True Gates)G1〜G5を複数段直列に設けることで実現できる。
【0022】
図5は図1,4におけるレベル保持回路7の例を示しており、制御信号Eを反転するインバータ72とこのインバータ72の出力によりレベルラッチ制御がなされるレベルラッチ回路71とを有している。制御信号Eがローレベルのとき、入力Fがそのまま出力Gとなり、ハイレベルのとき直前の入力Fのレベルをラッチしつつ出力するものである。
【0023】
図6はパルス引延ばし回路5の他の例を示しており、RCの遅延回路(図4参照)の代わりに、ゲート(True Gates)52〜55を複数段直列に接続したものを用いる。
【0024】
図7は本発明の他の実施例のブロック図であり、図1と同等部分は同一符号により示している。本例では、図1のレベル保持回路7の代わりに、ゲート回路9を用いたものであり、他の構成は図1のそれと同一である。すなわち、パルス引延ばし回路5の出力パルスEが存在している間(パルスEがハイレベルの間)は、ゲート回路9により入力信号Fを完全に遮断し、それ以外の期間は、入力信号Fをそのまま通すものであり、図8にそのゲート回路9の一例を示している。
【0025】
すなわち、制御信号(ゲート信号)Eの反転信号と入力信号Fとの論理積を、アンドゲート91により演算して出力Gとするようになっている。この例では、図1の例と異なり、ゲート信号Eが存在している間は、完全に入力信号を遮断しているために、図2の100で示した部分、すなわち、入力信号Aがハイパルス2の期間に、ノイズが重畳すると、その間は、出力Gはローレベルとなるが、この信号Aの用途によっては、そうなっても差しつかえない場合があり、その様な場合に用いられることになる。その例としては、信号Aがクロック信号やストローブ信号等が考えられる。
【0026】
【発明の効果】
以上述べた如く、本発明によれば、信号波形に大きく影響する平滑回路等の時定数回路を用いる必要がないので、信号の低速度化や貫通電流の増大なく、誤動作防止が可能になるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例のブロック図である。
【図2】図1のブロックの動作を示す各部のタイミングチャートである。
【図3】図2の100で示す部分を時間的に拡大して示したタイミングチャートである。
【図4】図1のブロックの具体例を示す図である。
【図5】図1,4におけるレベル保持回路の例を示す図である。
【図6】パルス引延ばし回路の他の例を示す図である。
【図7】本発明の他の実施例のブロック図である
【図8】図7のゲート回路9の例を示す図である。
【符号の説明】
1 入力端子
2 正パルス検出回路
3 負パルス検出回路
4 論理和回路
5 パルス引延ばし回路
6 遅延回路
7 レベル保持回路
9 ゲート回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a malfunction prevention circuit and an integrated circuit device using the malfunction prevention circuit, and more particularly to a malfunction prevention circuit provided between an input terminal of an integrated circuit and an internal circuit to prevent malfunction due to the influence of static electricity or surge voltage. is there.
[0002]
[Prior art]
An integrated circuit device obtained by converting a digital logic circuit into an IC has a TTL (Transistor Transistor Logic) or C-MOS (Complementary-MOS) type logic circuit configuration and is widely used in various electronic devices. It is known that the impedance of the input terminal of such an integrated circuit device is generally very high, and is therefore easily affected by static electricity, surge voltage, and the like.
[0003]
Among these circuits, especially when static electricity or surge is superimposed on signal lines used for clocks, strobes, etc., the circuit will malfunction even if it is momentary noise. . Therefore, conventionally, a smoothing circuit using RC (resistor, capacitor) is inserted into the corresponding signal line, and its time constant is set to the limit that does not adversely affect the signal pulse. By doing so, the signal passes, and static electricity and surge are smoothed by this RC smoothing circuit, so that it does not exceed the threshold (logic change point) of the logic circuit inside the IC. It is possible to prevent malfunction due to surge.
[0004]
[Problems to be solved by the invention]
As described above, when an RC smoothing circuit is used as a malfunction prevention circuit of an integrated circuit device, a high-speed signal cannot be used, and thus the operation speed of the logic circuit is lowered. Further, in order to increase the electrostatic resistance, there is no method other than increasing the time constant of the RC smoothing circuit, and as a result, the signal speed is inevitably reduced. Furthermore, since a waveform having an excessive response in which the rising and falling characteristics of the signal are deteriorated is applied to the input of the internal logic circuit of the IC, a through current in the circuit (especially in a C-MOS circuit, The complementary conductivity type MOS transistors are not turned on at the same time, and there is also a disadvantage that the number of through currents is small).
[0005]
An object of the present invention is to provide a malfunction prevention circuit capable of effectively preventing malfunctions due to static electricity, surges, etc., and an integrated circuit device using the same, without slowing down the signal and increasing the through current.
[0006]
[Means for Solving the Problems]
A malfunction prevention circuit according to the present invention is a malfunction prevention circuit provided between an input terminal of an integrated circuit and an internal circuit for preventing malfunction due to static electricity or surge, and is applied to the input terminal and higher than a power supply voltage. A pulse detecting means for detecting a superposed pulse at a level lower than the level and the ground potential; a delay means for delaying the input signal by at least a time longer than a delay time in the pulse detecting means; and the pulse for a time longer than the delay time. The extension means for extending the detection output of the detection means, and the non-existence period of the output of the extension means derives the output of the delay means as it is, and the existence period holds the output level of the delay means immediately before And a level holding means for deriving. The level holding means is level latch means for latching the immediately preceding input signal level in response to the detection output.
[0007]
Another malfunction prevention circuit according to the present invention is a malfunction prevention circuit provided between an input terminal of an integrated circuit and an internal circuit for preventing malfunction due to static electricity or surge, and is applied to the input terminal and supplied with a power supply voltage. A pulse detection means for detecting a superposed pulse of a higher level and a level lower than the ground potential ; a delay means for delaying the input signal by at least a time longer than a delay time in the pulse detection means; and a time longer than the delay time. It includes an extending means for extending the detection output of the pulse detecting means, and a gate means for on / off controlling the output of the delay means in accordance with the output of the extending means. The gate means is a logical product circuit that performs a logical product of the output of the delay means and the detection output.
[0008]
The pulse detection means includes positive and negative pulse detection means for detecting the positive and negative superimposed pulses, and logical sum means for combining the detection outputs of these positive and negative pulse detection means. This logical sum output is used as the detection output.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention. Referring to FIG. 1, an input signal A is supplied from an input terminal 1 of a logic IC to a positive pulse detection circuit 2, a negative pulse detection circuit 3, and a delay circuit 6. The positive pulse detection circuit 2 detects a large positive voltage pulse that exceeds the power supply voltage. The negative pulse detection circuit 3 detects a large negative pulse that is lower than the ground potential.
[0010]
The detection pulses B and C which are detection outputs of both the pulse detection circuits 2 and 3 are input to the OR circuit 4. The logical sum output D is extended by the pulse extension circuit 5 to become the control signal E of the level holding circuit 7 by extending the pulse width. The input signal F delayed by the delay circuit 6 is delayed by a predetermined time (G) and supplied to a logic circuit (not shown) inside the IC via the level holding circuit 7.
[0011]
The level holding circuit 7 has a function of passing the input signal F as it is during the non-existence period of the output pulse E of the pulse stretching circuit 5, and holding and outputting the level immediately before the existence period of the output pulse E. As will be described later, a latch circuit can be used.
[0012]
FIG. 2 is an example of the waveform of each part showing the operation of the circuit of FIG. 1. Assume that A to G in FIG. 2 correspond to the waveforms of the signals A to G in FIG. Assume that the input signal shown in FIG. 2A is applied to the input terminal 1.
[0013]
Until the noise such as static electricity indicated by X in the figure is superimposed, the detection pulse is not output from the positive and negative pulse detection circuits 2 and 3, and therefore the control signal E from the pulse stretching circuit 5 is not output. Therefore, the level holding circuit 7 derives the input F as it is.
[0014]
When the next positive pulse indicated by X is input, the positive pulse detection circuit 2 detects this pulse X higher than the power supply voltage, and a high detection pulse B is output during that interval. In the portion Y, a pulse lower than the ground potential is detected by the negative pulse detection circuit 3, and a high detection pulse C is output during that interval. The logical sum of these two detection pulses is calculated, and a signal D indicating the application timing of the superimposed pulse due to static electricity or the like is output from the logical sum circuit 4.
[0015]
In order to reliably cut off the input signal at this timing, the pulse extending circuit 5 extends the pulse width by delaying the signal D or the like, and the control signal E is sent to the level holding circuit 7. Entered. Here, the input signal A itself is given an appropriate delay by the delay circuit 6 in consideration of the signal delay in the positive / negative pulse detection circuit, the OR circuit, the pulse extension circuit, etc., and is input to the level holding circuit 7. Is done.
[0016]
In the level holding circuit 7, as described above, the non-existing period (low level period) of the control signal E is derived as it is while the input signal passes as it is, and the existing period (high level period) is derived while holding the previous level. By doing so, the signal having the waveform of FIG. 2G is supplied to the logic circuit inside the IC, and the superimposed pulse such as static electricity is removed. Therefore, it is possible to prevent malfunction.
[0017]
Next, the relationship between the waveform at the moment when static electricity or the like is applied and the timing of each part signal waveform will be described with reference to FIG. 3 is an enlarged view of a portion indicated by 100 in FIG. 2, and the reference numerals A to D are the same as those in FIG.
[0018]
In FIG. 3, a indicates the transition time required for transition from high to low of the original signal A, b indicates the delay time of the positive pulse detection circuit 2, c indicates the delay time of the OR circuit 4, and d Indicates the extension time in the pulse extension circuit 5, and e indicates the delay time of the delay circuit 6. X and y represent timing margins.
[0019]
At this time, with respect to appropriate timing margins x and y (parameters that vary depending on circuit signal speed, surrounding circuit, assumed static electricity behavior, etc.), the delay is set so that a + b + c + x> e and d> e + y. If the times d and e are set, the influence of static electricity or the like can be completely removed from the input signal A as shown by G in FIG.
[0020]
FIG. 4 is a diagram showing a specific example of the circuit of FIG. 1. In the positive pulse detection circuit 2, when the input signal greatly exceeds the positive power supply Vcc, the transistor Q1 and the diode D1 are brought into conduction, and the collector current is supplied to the transistor Q1. Therefore, a high pulse is output via the collector resistor R1 and the buffer G1. Also in the negative pulse detection circuit 3, when the input signal greatly exceeds the ground potential, the transistor Q2 and the diode D2 become conductive, and similarly, a high pulse is output via the resistor R2 and the inverter I1.
[0021]
The pulse stretching circuit 5 can be easily realized by taking the OR of the delayed pulse by the resistor R3 and the capacitor C1 and the input pulse by the OR gate 51. Since the delay circuit 6 is for delaying signal transmission, it can be realized by providing a plurality of stages of gates (True Gates) G1 to G5 in series.
[0022]
FIG. 5 shows an example of the level holding circuit 7 in FIGS. 1 and 4, which includes an inverter 72 that inverts the control signal E and a level latch circuit 71 that performs level latch control by the output of the inverter 72. . When the control signal E is at the low level, the input F becomes the output G as it is, and when the control signal E is at the high level, the level of the previous input F is latched and output.
[0023]
FIG. 6 shows another example of the pulse stretcher circuit 5. Instead of the RC delay circuit (see FIG. 4), gates (True Gates) 52 to 55 connected in series are used.
[0024]
FIG. 7 is a block diagram of another embodiment of the present invention, and the same parts as those in FIG. In this example, a gate circuit 9 is used instead of the level holding circuit 7 of FIG. 1, and the other configuration is the same as that of FIG. That is, the input signal F is completely cut off by the gate circuit 9 while the output pulse E of the pulse extension circuit 5 is present (while the pulse E is at a high level), and during the other periods, the input signal F As shown in FIG. 8, an example of the gate circuit 9 is shown.
[0025]
That is, the logical product of the inverted signal of the control signal (gate signal) E and the input signal F is calculated by the AND gate 91 to obtain an output G. In this example, unlike the example of FIG. 1, the input signal is completely cut off while the gate signal E is present. Therefore, the portion indicated by 100 in FIG. When noise is superimposed during period 2, the output G is at a low level during that period. However, depending on the use of the signal A, it may not be possible, and it is used in such a case. Become. For example, the signal A may be a clock signal or a strobe signal.
[0026]
【The invention's effect】
As described above, according to the present invention, since it is not necessary to use a time constant circuit such as a smoothing circuit that greatly affects the signal waveform, it is possible to prevent malfunction without reducing the signal speed and increasing the through current. effective.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention.
FIG. 2 is a timing chart of each part showing the operation of the block of FIG. 1;
FIG. 3 is a timing chart showing an enlarged portion indicated by 100 in FIG. 2 in terms of time.
FIG. 4 is a diagram showing a specific example of the block of FIG. 1;
5 is a diagram illustrating an example of a level holding circuit in FIGS. 1 and 4. FIG.
FIG. 6 is a diagram illustrating another example of a pulse stretching circuit.
7 is a block diagram of another embodiment of the present invention. FIG. 8 is a diagram showing an example of the gate circuit 9 of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input terminal 2 Positive pulse detection circuit 3 Negative pulse detection circuit 4 OR circuit 5 Pulse extension circuit 6 Delay circuit 7 Level holding circuit 9 Gate circuit

Claims (6)

集積回路の入力端子と内部回路との間に設けられ静電気やサージによる誤動作を防止するための誤動作防止回路であって、
前記入力端子に印加されかつ電源電圧より高いレベル及びグランド電位より低いレベルの重畳パルスを検出するパルス検出手段と、
少なくとも前記パルス検出手段における遅延時間より大なる時間だけ前記入力信号を遅延する遅延手段と、
遅延時間より大なる時間だけ前記パルス検出手段の検出出力を引延ばす引延ばし手段と、
前記引延ばし手段の出力の非存在期間は前記遅延手段の出力をそのまま導出し、存在期間はその直前の前記遅延手段の出力レベルを保持して導出するレベル保持手段とを含むこと特徴とする誤動作防止回路。
A malfunction prevention circuit provided between an input terminal of an integrated circuit and an internal circuit for preventing malfunction due to static electricity or surge ,
Pulse detecting means for detecting a superimposed pulse applied to the input terminal and having a level higher than a power supply voltage and a level lower than a ground potential ;
Delay means for delaying the input signal by a time at least greater than the delay time in the pulse detection means;
An extension means for extending the detection output of the pulse detection means by a time greater than the delay time;
The malfunction is characterized in that the non-existence period of the output of the stretching means derives the output of the delay means as it is, and the existence period includes level holding means that holds and derives the output level of the delay means immediately before Prevention circuit.
前記レベル保持手段は、前記検出出力に応答して直前の入力信号レベルをラッチするレベルラッチ手段であることを特徴とする請求項1記載の誤動作防止回路。  2. The malfunction prevention circuit according to claim 1, wherein the level holding means is level latch means for latching a previous input signal level in response to the detection output. 集積回路の入力端子と内部回路との間に設けられ静電気やサージによる誤動作を防止するための誤動作防止回路であって、
前記入力端子に印加されかつ電源電圧より高いレベル及びグランド電位より低いレベルの重畳パルスを検出するパルス検出手段と、
少なくとも前記パルス検出手段における遅延時間より大なる時間だけ前記入力信号を遅延する遅延手段と、
遅延時間より大なる時間だけ前記パルス検出手段の検出出力を引延ばす引延ばし手段と、
前記引延ばし手段の出力に応じて前記遅延手段の出力をオンオフ制御するゲート手段とを含むこと特徴とする誤動作防止回路。
A malfunction prevention circuit provided between an input terminal of an integrated circuit and an internal circuit for preventing malfunction due to static electricity or surge ,
Pulse detecting means for detecting a superimposed pulse applied to the input terminal and having a level higher than a power supply voltage and a level lower than a ground potential ;
Delay means for delaying the input signal by a time at least greater than the delay time in the pulse detection means;
An extension means for extending the detection output of the pulse detection means by a time greater than the delay time;
And a gate means for controlling on / off of the output of the delay means in accordance with the output of the extension means.
前記ゲート手段は、前記遅延手段の出力と前記検出出力との論理積をなす論理積回路であることを特徴とする請求項3記載の誤動作防止回路。  4. The malfunction prevention circuit according to claim 3, wherein the gate means is a logical product circuit that makes a logical product of the output of the delay means and the detection output. 前記パルス検出手段は、正及び負の前記重畳パルスを検出する正及び負パルス検出手段と、これ等正及び負パルス検出手段の検出出力を論理和合成する論理和手段とを有し、この論理和出力を前記検出出力としたことを特徴とする請求項1〜4いずれか記載の誤動作防止回路。  The pulse detection means includes positive and negative pulse detection means for detecting the positive and negative superimposed pulses, and logical sum means for logically combining the detection outputs of these positive and negative pulse detection means. 5. The malfunction prevention circuit according to claim 1, wherein a sum output is used as the detection output. 請求項1〜5いずれか記載の誤動作防止回路を含むことを特徴とする集積回路装置。  An integrated circuit device comprising the malfunction prevention circuit according to claim 1.
JP2002177844A 2002-06-19 2002-06-19 Malfunction prevention circuit and integrated circuit device using the same Expired - Fee Related JP3994802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177844A JP3994802B2 (en) 2002-06-19 2002-06-19 Malfunction prevention circuit and integrated circuit device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177844A JP3994802B2 (en) 2002-06-19 2002-06-19 Malfunction prevention circuit and integrated circuit device using the same

Publications (2)

Publication Number Publication Date
JP2004023576A JP2004023576A (en) 2004-01-22
JP3994802B2 true JP3994802B2 (en) 2007-10-24

Family

ID=31175728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177844A Expired - Fee Related JP3994802B2 (en) 2002-06-19 2002-06-19 Malfunction prevention circuit and integrated circuit device using the same

Country Status (1)

Country Link
JP (1) JP3994802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893008B2 (en) 2006-02-08 2012-03-07 富士通セミコンダクター株式会社 Surge detection circuit for sensors
JP6304966B2 (en) * 2013-08-05 2018-04-04 三菱電機株式会社 Semiconductor drive device and semiconductor device

Also Published As

Publication number Publication date
JP2004023576A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US7667500B1 (en) Glitch-suppressor circuits and methods
US6924669B2 (en) Output buffer circuit and control method therefor
US6535057B2 (en) Programmable glitch filter
EP0463854B1 (en) Clocked driver circuit
JP3763775B2 (en) Level converter circuit with stable operation at power-on
JP3795685B2 (en) Tri-state sensing circuit and signal generation circuit having the same
JPH10508998A (en) CMOS Schmitt trigger
US6417705B1 (en) Output driver with DLL control of output driver strength
JP2007531417A (en) Fast change resistant differential level shift device
US5945850A (en) Edge signal restoration circuit and method
EP0642226A2 (en) Translator circuits with symmetrical switching delays
JP4808053B2 (en) Interface circuit and control method thereof
JPS62214714A (en) Lsi device equipped with noise countermeasure circuit
JP3994802B2 (en) Malfunction prevention circuit and integrated circuit device using the same
KR100902055B1 (en) Data receiver of semiconductor integrated circuit and control method of the same
KR910006478B1 (en) Semiconductor integrated circuit
WO1997023045A1 (en) Asynchronous self-adjusting input circuit
US8020010B2 (en) Memory power controller
US6577152B1 (en) Noise suppression circuit for suppressing above-ground noises
US6785828B2 (en) Apparatus and method for a low power, multi-level GTL I/O buffer with fast restoration of static bias
KR100524947B1 (en) Open drain output buffer
JP3899472B2 (en) Output buffer circuit with preset function
US5057706A (en) One-shot pulse generator
US20060097760A1 (en) Differential signal generating circuit, differential signal transmitting circuit and differential signal transceiver system
JP3245573B2 (en) Bidirectional buffer circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees