JP3994133B1 - Insulated composite engine - Google Patents

Insulated composite engine Download PDF

Info

Publication number
JP3994133B1
JP3994133B1 JP2006102891A JP2006102891A JP3994133B1 JP 3994133 B1 JP3994133 B1 JP 3994133B1 JP 2006102891 A JP2006102891 A JP 2006102891A JP 2006102891 A JP2006102891 A JP 2006102891A JP 3994133 B1 JP3994133 B1 JP 3994133B1
Authority
JP
Japan
Prior art keywords
exhaust
engine
cylinder
steam
positive displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006102891A
Other languages
Japanese (ja)
Other versions
JP2007278114A (en
Inventor
元伸 熊谷
Original Assignee
元伸 熊谷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元伸 熊谷 filed Critical 元伸 熊谷
Priority to JP2006102891A priority Critical patent/JP3994133B1/en
Application granted granted Critical
Publication of JP3994133B1 publication Critical patent/JP3994133B1/en
Publication of JP2007278114A publication Critical patent/JP2007278114A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

【課題】 従来の容積型エンジンでは利用されずに棄てられていた排気損失と、高温のエンジンを冷却後棄てられていた冷却損失を有効利用し熱効率と出力の向上を図る。
【解決手段】 容積型断熱エンジンから排出された排気損失と冷却損失を排気エネルギ回収装置9で回収する。
冷却損失は、容積型断熱エンジンのシリンダ2の側壁に取り付けたノズル5から水または蒸気をまたは圧縮空気を噴射させ、排気行程でシリンダ内壁を冷却するとともに過熱蒸気または膨張空気を発生させ、タービン10に吹き付け動力を得るために有効利用される。
【選択図】 図1
PROBLEM TO BE SOLVED: To improve heat efficiency and output by effectively utilizing exhaust loss discarded without being used in a conventional positive displacement engine and cooling loss discarded after cooling a high-temperature engine.
An exhaust energy recovery device 9 recovers exhaust loss and cooling loss discharged from a positive displacement heat insulating engine.
The cooling loss is caused by injecting water or steam or compressed air from the nozzle 5 attached to the side wall of the cylinder 2 of the positive displacement heat insulating engine, cooling the inner wall of the cylinder in the exhaust stroke, and generating superheated steam or expanded air. Effectively used to obtain spraying power.
[Selection] Figure 1

Description

本発明は、排気エネルギ損失を有効利用することにより熱効率と出力の向上を図った複合エンジンに関する。   The present invention relates to a composite engine that improves thermal efficiency and output by effectively using exhaust energy loss.

従来のエンジンの熱効率はディーゼルエンジンが概ね40%、ガソリンエンジンが概ね30%程度であり、冷却損失と排気損失がそれぞれ概ね30%前後あり、利用されずに棄てられるエネルギが多い。   The thermal efficiency of conventional engines is approximately 40% for diesel engines and approximately 30% for gasoline engines. Cooling loss and exhaust loss are approximately 30% each, and much energy is discarded without being used.

従来の容積型エンジンは筒外を水または空気で冷やすことによりエンジン本体の温度上昇を抑制し、一定の連続運転を可能にしている。   The conventional positive displacement engine cools the outside of the cylinder with water or air, thereby suppressing the temperature rise of the engine body and enabling a constant continuous operation.

筒内に水を噴射することによって筒内の熱を吸収し筒内を冷却するともに気化させ、蒸気の膨張力で出力の増大を図る試みがなされた。(例えば、特許文献1および2参照。) Also vaporized in the cooling and the inside of absorbing heat in the cylinder tube by injecting water into the cylinder, attempts to achieve an increase in output by the expansion force of the vapor has been made. (For example, refer to Patent Documents 1 and 2.)

航空用ディーゼルエンジンと排気タービンを組み合わせた複合エンジンが開発されている。(例えば、非特許文献1参照。)
特開昭60−184923号 特開平3−115743号 内燃機関ハンドブック 朝倉書店 P647 昭和44年発行
A hybrid engine that combines an aircraft diesel engine and an exhaust turbine has been developed. (For example, refer nonpatent literature 1.)
JP-A-60-184923 Japanese Patent Laid-Open No. 3-115743 Internal combustion engine handbook Asakura Shoten P647 Issued in 1969

以上述べたように従来のエンジンでは冷却損失、排気損失として棄てられていたエネルギがあり、これらのエネルギ損失を回収し動力として利用すれば熱効率と出力が向上する。   As described above, there is energy that has been discarded as cooling loss and exhaust loss in the conventional engine, and if these energy losses are recovered and used as power, thermal efficiency and output are improved.

従来の容積型エンジンの小型を除くほとんどは、筒外を水または空気で冷却するための強制冷却用装置を有し、かつ強制冷却用の動力を必要としていた。   Most of the conventional positive displacement engines except the small size have a forced cooling device for cooling the outside of the cylinder with water or air, and require power for forced cooling.

特開昭60−184923号の水噴射式断熱セラミックディーゼルエンジンの目的は、圧縮行程の次の膨張行程において、水の噴射による気化熱の吸収によって断熱エンジンの欠点である新気の吸入効率の低下を補完し単位燃料当たりの出力を増大させるとしているが、燃焼中の熱エネルギの一部を噴射された水が気化熱として奪うため燃焼温度を低下させることはできるが出力を増大させることは困難である。
また、特開平3−115743号の6サイクル断熱エンジンにおいて、ここで云う6サイクルとは吸入、圧縮、膨張、排気、膨張、排気行程であるが、2回目の膨張行程で噴射された水は気化され膨張し、筒内の圧力が上がり膨張仕事を行うことができるとあるが、2回目の膨張行程における水の気化による蒸気の膨張速度は燃料の燃焼速度と異なるため、容積型エンジンを用いて2回目の膨張行程で仕事をする(動力を得る)のは困難である。
The purpose of the water injection type adiabatic ceramic diesel engine disclosed in Japanese Patent Application Laid-Open No. 60-184923 is to reduce the intake efficiency of fresh air, which is a disadvantage of the heat insulation engine, due to the absorption of the heat of vaporization by the water injection in the expansion stroke following the compression stroke However, it is difficult to increase the output because it is possible to reduce the combustion temperature because the injected water takes part of the heat energy during combustion as the heat of vaporization. It is.
In the six-cycle heat insulation engine disclosed in Japanese Patent Laid-Open No. 3-115743, the six cycles referred to here are suction, compression, expansion, exhaust, expansion, and exhaust stroke, but the water injected in the second expansion stroke is vaporized. It is said that the expansion pressure of the cylinder rises and the expansion work can be performed, but the expansion speed of the steam due to the vaporization of water in the second expansion stroke is different from the combustion speed of the fuel. It is difficult to work (get power) in the second expansion stroke.

過去に開発された複合エンジンは燃費が良かったが、構造が複雑なため実用には至らなかったとされている。   The composite engine developed in the past has good fuel efficiency, but it is said that it has not been put into practical use due to its complicated structure.

容積型エンジンの燃焼により発生した排気損失である排気ガスは、ターボを回し過給することにより有効利用されているが、熱効率の向上には繋がっていない。また、冷却損失については排気損失と同量程度のエネルギを占めているにもかかわらず、ほとんど利用されてこなかったばかりか、冷却するための装置と動力が必要であった。これは筒外冷却をするので冷却損失となるのであって、筒内冷却し吸収した熱で過熱蒸気を発生させれば、筒外冷却のための装置も動力も不要であるうえ過熱蒸気を用いて軸流タービンやラジアルタービンを効率よく回すことができこの動力を利用することができる。勿論、タービンは単段でも多段でもよい。   Exhaust gas, which is an exhaust loss generated by combustion of a positive displacement engine, is effectively utilized by turning a turbo and supercharging it, but does not lead to an improvement in thermal efficiency. In addition, although the cooling loss occupies the same amount of energy as the exhaust loss, it has hardly been utilized, and a cooling device and power are required. This is a cooling loss due to the outside-cylinder cooling, and if superheated steam is generated by the heat absorbed by the in-cylinder, the equipment and power for outside-cylinder cooling are not required and superheated steam is used. Thus, the axial flow turbine and the radial turbine can be efficiently rotated, and this power can be utilized. Of course, the turbine may be single-stage or multi-stage.

4サイクルエンジンを筒内冷却するには、シリンダに小さな穴を開けここにノズルを取り付け、膨張行程でピストンが下死点に到達する直前に水または蒸気を噴射し、高温になったピストン上部とシリンダ内壁とシリンダヘッドを冷却することができる。また、水または蒸気だけではなく圧縮空気をノズルから噴射することもできる。 筒内温度が常に設定温度近傍で適量の水または蒸気が噴射されるように自動制御するため、筒外温度と排気ガス温度を計測し設定温度より低い場合は噴射を遮断する。また、水は水タンクに補給する方式でもよく、排気管を冷却し水滴を少しずつ回収する循環方式でもよく、また、その両方を装備してもよいが、地域によっては冬季の凍結対策が必要になる。   To cool the 4-cycle engine in the cylinder, a small hole is made in the cylinder, a nozzle is attached here, water or steam is injected just before the piston reaches bottom dead center in the expansion stroke, and the upper part of the piston becomes hot. The cylinder inner wall and the cylinder head can be cooled. Moreover, not only water or steam but also compressed air can be injected from the nozzle. Since the in-cylinder temperature is automatically controlled so that an appropriate amount of water or steam is injected in the vicinity of the set temperature, the in-cylinder temperature and the exhaust gas temperature are measured. When the temperature is lower than the set temperature, the injection is shut off. In addition, water may be supplied to the water tank, or the exhaust pipe may be cooled to collect water droplets little by little, or both may be equipped, but depending on the region, measures against freezing in winter are required. become.

排気タービンのように速度型エンジンは熱効率やレスポンスが悪いため、例えば部分負荷でかつ負荷変動の大きい自動車の動力とする場合、運転条件に対応した最適設定をするには構造が複雑になる。そこで、容積型エンジンと速度型エンジンを組み合わせた複合エンジンにおいては補助機関である排気タービンの動力は主機関である容積型エンジンの出力軸へ伝達されるようにし、逆に容積型エンジンの動力は排気タービンの出力軸に伝達されないようにワンウェイクラッチを採用した動力伝達機構とすれば、構造が簡単でタービンからの動力を効率よく取り出せる。ただし、タービンとコンプレッサを直結させ過給も行わせる場合には、加速時の過給不足を補うため、ワンウェイクラッチは必ずしも必要とせずフライホイールに直結すると、構造がさらに簡単になる。
排気タービンの出力軸には発電機を取り付けることもできる。
Since a speed engine such as an exhaust turbine has poor thermal efficiency and response, for example, in the case of power of an automobile with a partial load and a large load fluctuation, the structure becomes complicated for optimal setting corresponding to the operating conditions. Therefore, in a combined engine that combines a positive displacement engine and a speed engine, the power of the exhaust turbine, which is the auxiliary engine, is transmitted to the output shaft of the positive displacement engine, which is the main engine. If the power transmission mechanism adopts a one-way clutch so that it is not transmitted to the output shaft of the exhaust turbine, the structure is simple and the power from the turbine can be taken out efficiently. However, when the turbine and the compressor are directly connected to perform supercharging, the structure is further simplified if the one-way clutch is not necessarily required and is directly connected to the flywheel in order to compensate for insufficient supercharging during acceleration.
A generator can be attached to the output shaft of the exhaust turbine.

上述したように本発明の断熱複合エンジンは、膨張行程の終了直前に水または蒸気が直接筒内に噴射されることにより筒内を冷却するとともに、筒内の熱を吸収して過熱蒸気が発生するので、タービンを回す強力な動力源となる。従来のエンジンでは冷却を筒外で行っていたので冷却損失を有効利用できなかったが、筒内冷却型の断熱複合エンジンでは排気損失だけではなく冷却損失を含めたエネルギ損失を有効利用することができる。
このため、熱効率と出力が向上し燃費を改善することができ、CO2だけではなくNOXやPMなどの有害物質も削減できる。また、過熱蒸気は洗浄能力が大きいため筒内や排気弁や排気系統を洗浄する効果もある。
As described above, the heat insulating composite engine of the present invention cools the inside of the cylinder by directly injecting water or steam into the cylinder immediately before the end of the expansion stroke, and absorbs the heat in the cylinder to generate superheated steam. Therefore, it becomes a powerful power source to turn the turbine. In conventional engines, the cooling loss cannot be effectively utilized because the cooling is performed outside the cylinder. However, in the in-cylinder cooling type heat insulating composite engine, not only the exhaust loss but also the energy loss including the cooling loss can be effectively utilized. it can.
For this reason, thermal efficiency and output can be improved and fuel consumption can be improved, and not only CO2 but also harmful substances such as NOX and PM can be reduced. Moreover, since superheated steam has a large cleaning ability, it also has an effect of cleaning the cylinder, the exhaust valve, and the exhaust system.

以下、本発明の最良の実施形態を図1〜図8に基づいて説明する。   Hereinafter, the best embodiment of the present invention will be described with reference to FIGS.

図1および図2に示す断熱複合エンジンは、ピストン1とシリンダ2と吸気弁6と排気弁7を有する通常の直噴式4サイクルエンジンに水または蒸気噴射ノズル5と排気エネルギ回収装置9を取り付け、シリンダ2とシリンダヘッド3を断熱にしたものである。図1はその断面構造であり、図2は4気筒4サイクルエンジンと排気エネルギ回収装置9の主要部分を示した平面断面構造図である。この図では排気系は2バルブ方式でタービンは2気筒当たり1基となっているが、1気筒当たり1基でも多気筒当たり1基でもよい。   1 and 2, a water or steam injection nozzle 5 and an exhaust energy recovery device 9 are attached to a normal direct injection four-cycle engine having a piston 1, a cylinder 2, an intake valve 6 and an exhaust valve 7. The cylinder 2 and the cylinder head 3 are insulated. FIG. 1 is a cross-sectional structure thereof, and FIG. 2 is a plan cross-sectional structure diagram showing main parts of a four-cylinder four-cycle engine and an exhaust energy recovery device 9. In this figure, the exhaust system is a two-valve system and the turbine is one unit per two cylinders, but it may be one unit per cylinder or one unit per multi-cylinder.

排気エネルギ回収装置9はタービン10とコンプレッサ11と小歯車12とそれぞれを繋ぐ軸13と軸受14とケーシング15で構成され、タービンの駆動力が小歯車12から歯車列16で減速しフライホイール17に伝達される。タービンは排気エネルギをできるだけ冷やさないよう効率よく回収するため、できるだけ排気弁7に近づけて取り付ける構造にする。また、タービンの種類はラジアルタービンでも軸流タービンでもどちらでもよい。   The exhaust energy recovery device 9 includes a shaft 13, a bearing 14, and a casing 15 that connect the turbine 10, the compressor 11, and the small gear 12, and the turbine driving force is decelerated from the small gear 12 by the gear train 16 to the flywheel 17. Communicated. The turbine is structured to be mounted as close to the exhaust valve 7 as possible in order to efficiently collect the exhaust energy so as not to be cooled as much as possible. The type of turbine may be either a radial turbine or an axial flow turbine.

熱エネルギのうち動力に変換されなかった廃熱をできるだけ筒外に放出させないで有効利用するため、シリンダ2とシリンダヘッド3などを断熱材8で覆う。   In order to effectively use waste heat that has not been converted into motive power out of thermal energy without releasing it outside the cylinder as much as possible, the cylinder 2 and the cylinder head 3 are covered with a heat insulating material 8.

水または蒸気噴射ノズル5は上死点からストロークの4分の3近傍に取り付けられ、ピストン1が噴射ノズル下端位置を通過した直後か、またはピストン1が下死点の時に水または蒸気を噴射するようになっている。筒外温度および排気ガス温度によって適量の水または蒸気が噴霧されるようになっている。   The water or steam injection nozzle 5 is mounted in the vicinity of three-quarters of the stroke from the top dead center, and injects water or steam immediately after the piston 1 passes the lower end position of the injection nozzle or when the piston 1 is at the bottom dead center. It is like that. An appropriate amount of water or steam is sprayed depending on the temperature outside the cylinder and the exhaust gas temperature.

蒸気を発生させるには、タービン出口側の排気管の外周に小径パイプを巻き付けこのパイプに水を通したり、排気管を覆って二重管にし外側の管に水を通したりすることにより容易に発生させることができる。 温度管理は小径パイプまたは二重管の出口近傍に温度計を取り付け、送水量を制御して行う。また、タービン出口側を冷やすことによりタービン効率と出力が向上し、さらに排気ガスの圧力と体積が減少するため、消音装置(図示なし)は同出力の通常のエンジンに比べ小規模で済む。   In order to generate steam, it is easy to wrap a small diameter pipe around the outer periphery of the exhaust pipe on the turbine outlet side and pass water through this pipe, or cover the exhaust pipe to make a double pipe and pass water through the outer pipe. Can be generated. Temperature control is performed by attaching a thermometer near the outlet of a small diameter pipe or double pipe and controlling the amount of water delivered. Further, cooling the turbine outlet side improves the turbine efficiency and output, and further reduces the pressure and volume of the exhaust gas. Therefore, the muffler (not shown) can be smaller than a normal engine with the same output.

燃料噴射方式はディーゼルエンジンの場合は通常の燃料噴射ノズル4でよく、ガソリンエンジンの場合は通常の筒内直噴方式のほか吸気管内噴射方式またはキャブレタ方式でも適用可能である。   The fuel injection method may be a normal fuel injection nozzle 4 in the case of a diesel engine, and in the case of a gasoline engine, it may be applied to an intake pipe injection method or a carburetor method in addition to a normal in-cylinder direct injection method.

図3は通常の4サイクルエンジンの吸入、圧縮、膨張、排気の各行程と排気行程に水または蒸気噴射行程を加えた作動状態図である。丸1は吸入、丸2は吸入完了、丸3は圧縮、丸4は燃料噴射し膨張開始、丸5は排気開始、丸6は排気と水または蒸気噴射と筒内冷却開始、丸7は排気と筒内冷却と過熱蒸気発生、丸8は排気完了で丸1から丸8までの行程で2回転し4サイクルが完了する。   FIG. 3 is an operational state diagram in which water or steam injection strokes are added to the suction, compression, expansion, and exhaust strokes and the exhaust stroke of a normal four-cycle engine. Circle 1 is inhaled, Circle 2 is inhaled, Circle 3 is compressed, Circle 4 is fuel injection and expansion starts, Circle 5 is exhausted, Circle 6 is exhaust and water or steam injection and in-cylinder cooling is started, and Circle 7 is exhausted In-cylinder cooling and superheated steam generation, round 8 completes exhaust, and rotates twice in the process from round 1 to round 8, completing four cycles.

図4は吸入、圧縮、爆発・膨張、排気・筒内冷却の各行程に対する吸入弁、排気弁、燃料噴射、水または蒸気噴射の作動タイミングを示した線図である。膨張行程が4分の3程度過ぎた付近で排気弁を開け、燃焼圧力が未だ高く勢いのある排気ガスをタービンに勢いよく吹きかけ、筒内圧力が下がってきたピストンの下死点付近で水または蒸気を噴射すると噴射圧力が小さくて済み、さらにシリンダ壁面に沿って噴射するとより効果的にシリンダ壁面の温度を下げられ、排気ガスの熱エネルギを余り奪うことなくシリンダ壁面から吸熱し過熱蒸気を発生することができる。
なお、行程番号は図3の作動状態の番号と一致する。
FIG. 4 is a diagram showing the operation timings of the intake valve, exhaust valve, fuel injection, water or steam injection for each process of intake, compression, explosion / expansion, and exhaust / cylinder cooling. The exhaust valve is opened near the expansion stroke of about three-quarters, and the exhaust pressure is still high and the exhaust gas is blown vigorously to the turbine. When steam is injected, the injection pressure is small, and when it is injected along the cylinder wall surface, the temperature of the cylinder wall surface can be lowered more effectively, and heat is absorbed from the cylinder wall surface without generating too much heat energy of the exhaust gas, and superheated steam is generated. can do.
The stroke number corresponds to the number of the operation state in FIG.

図5は断熱複合エンジンの別の一例である。排気弁27と掃気孔26を有する容積型断熱エンジンと排気エネルギ回収装置を組み合わせたもので、排気エネルギ回収装置は図2のものと同じである。容積型断熱エンジンの構造はユニフロー式2サイクルエンジンに似ているが、通常の2サイクルエンジンとの違いは、2回転に1回燃料噴射ノズル24から燃料を噴射すること、掃排気行程が2回あり、そのため排気弁27を2回開けられるようカム29に山を2つ設けてあること、筒内冷却するための蒸気または圧縮空気噴射ノズル25がシリンダヘッド23に取り付けてあることである。   FIG. 5 shows another example of the heat insulating composite engine. A positive displacement heat insulating engine having an exhaust valve 27 and a scavenging hole 26 and an exhaust energy recovery device are combined, and the exhaust energy recovery device is the same as that of FIG. The structure of a positive displacement adiabatic engine is similar to a uniflow type two-cycle engine, but the difference from a normal two-cycle engine is that fuel is injected from the fuel injection nozzle 24 once every two revolutions, and the scavenging stroke is twice. Therefore, two peaks are provided in the cam 29 so that the exhaust valve 27 can be opened twice, and a steam or compressed air injection nozzle 25 for in-cylinder cooling is attached to the cylinder head 23.

1回目の掃排気行程で排気ガスと筒内の廃熱を吸収し膨張した空気が発生し、ピストン21が上死点に達すると蒸気または圧縮空気が噴射されピストンの下降とともに筒内の残留廃熱を吸収し過熱蒸気または膨張空気が発生する。1回目の掃排気行程の排気ガスと膨張空気と、2回目の掃排気行程の過熱蒸気または膨張空気を、ピストンが行程の4分の3程度下降したところで排気弁27を開きタービン20に吹き付ける。
なお、ガソリンエンジンに適用する場合は燃料筒内直噴方式に限られる。
In the first scavenging process, the exhaust gas and waste heat in the cylinder are absorbed and expanded air is generated. When the piston 21 reaches top dead center, steam or compressed air is injected, and the residual waste in the cylinder is lowered as the piston descends. Heat is absorbed and superheated steam or expanded air is generated. The exhaust valve 27 is opened and blown to the turbine 20 when the piston descends about three-fourths of the stroke of the exhaust gas and the expansion air of the first scavenging stroke and the superheated steam or the expansion air of the second scavenging stroke.
In addition, when applied to a gasoline engine, it is limited to the fuel cylinder direct injection method.

図6は排気弁用のカムの形状図である。形状の異なる山が2つあり、2回の掃排気行程を設定したタイミングで行うような形状になっている。クランクシャフト2回転に対しカムシャフト1回転で1過程が終了する。
なお、カムの外周の番号は図7の作動状態の番号と位置関係においてほぼ一致する。
FIG. 6 is a shape diagram of the cam for the exhaust valve. There are two peaks with different shapes, and the shape is such that it is performed at the timing when two scavenging strokes are set. One process is completed with one rotation of the camshaft with respect to two rotations of the crankshaft.
Note that the numbers on the outer periphery of the cam substantially coincide with the operating state numbers in FIG.

図7は掃気、圧縮、燃料噴射・爆発・膨張、掃排気、蒸気または圧縮空気噴射、排気の各行程を示す作動状態図である。丸1は排気・掃気、丸2は圧縮、丸3は燃料噴射・爆発、丸4は排気開始、丸5は掃気、丸6は掃排気、丸7蒸気または圧縮空気噴射丸8は排気で丸1から丸8までの行程で2回転し1過程が終了する。


FIG. 7 is an operational state diagram showing each process of scavenging, compression, fuel injection / explosion / expansion, scavenging and exhausting, steam or compressed air injection, and exhausting. Circle 1 is exhaust / scavenging, Circle 2 is compression, Circle 3 is fuel injection / explosion, Circle 4 is exhausted, Circle 5 is scavenging, Circle 6 is scavenging, Circle 7 is steam or compressed air injection , Circle 8 is exhaust In the process from circle 1 to circle 8, it is rotated twice and one process is completed.


図8は掃気、圧縮、燃料噴射・爆発・膨張、掃排気、蒸気または圧縮空気噴射、排気のタイミングを示した線図である。
なお、行程番号は図7の作動状態の番号と一致する。
FIG. 8 is a diagram showing the timing of scavenging, compression, fuel injection / explosion / expansion, scavenging / exhaust, steam or compressed air injection, and exhaust.
The stroke number corresponds to the number of the operation state in FIG.

本発明の実施形態を示す筒内冷却方式断熱複合エンジンの断面図Sectional drawing of the cylinder cooling system heat insulation composite engine which shows embodiment of this invention 筒内冷却方式断熱複合エンジンの主要部分平面断面図Cross-sectional plan view of the main part of an in-cylinder cooling type heat insulation composite engine 吸気から排気までの各行程の作動状態図Operation state diagram of each stroke from intake to exhaust 吸気弁と排気弁と燃料噴射と水または蒸気噴射のタイミング線図Timing diagram of intake valve, exhaust valve, fuel injection and water or steam injection 本発明の別の実施形態を示す筒内冷却方式断熱複合エンジンの断面図Sectional drawing of the in-cylinder cooling system heat insulation composite engine which shows another embodiment of this invention 排気弁用の2山を有するカム形状図Cam shape with two ridges for exhaust valve 掃気から排気までの各行程の作動状態図Operational diagram of each stroke from scavenging to exhaust 掃気孔と排気弁と燃料噴射と蒸気または圧縮空気噴射のタイミング線図Scavenging hole, exhaust valve, fuel injection, steam or compressed air injection timing diagram

符号の説明Explanation of symbols

1,21・・・ピストン
2,22・・・シリンダ
3,23・・・シリンダヘッド
4,24・・・燃料噴射ノズル
5,25・・・水または蒸気または圧縮空気噴射ノズル
6・・・吸入弁
26・・・掃気孔
7,27・・・排気弁
8,28・・・断熱材
9・・・排気エネルギ回収装置
10,20・・・タービン
11・・・コンプレッサ
12・・・小歯車
13・・・軸
14・・・軸受
15・・・ケーシング
16・・・歯車列
17・・・フライホイール
1,21 ... Piston 2,22 ... Cylinder 3,23 ... Cylinder head 4,24 ... Fuel injection nozzle 5,25 ... Water or steam or compressed air injection nozzle 6 ... Suction Valve 26 ... Scavenging hole 7, 27 ... Exhaust valve 8, 28 ... Heat insulation 9 ... Exhaust energy recovery device 10, 20 ... Turbine 11 ... Compressor 12 ... Small gear 13 ... Shaft 14 ... Bearing 15 ... Casing 16 ... Gear train 17 ... Flywheel

Claims (2)

吸・排気弁を有し吸入、圧縮、膨張行程と排気・水または蒸気噴射による筒内冷却行程を実行する容積型断熱エンジンと、該容積型断熱エンジンから排出される排気ガスと過熱蒸気を動力源とする排気タービンと減速機とワンウェイクラッチによってクランクシャフトに動力を伝達する排気エネルギ回収装置とを有する4サイクル断熱複合エンジンにおいて、膨張行程終了前に排気弁を開け高温高圧の排気ガスを排出した後、筒内を冷却するとともに筒内の熱を吸収して過熱蒸気を発生させるための水または蒸気を噴射するノズルと、筒外温度と排気温度を計測し筒内温度が設定温度になるよう水または蒸気の噴射量を制御することと、筒内からの放熱を防ぐためシリンダとシリンダヘッドを断熱材で覆うことと、排気ガスと過熱蒸気を動力源とする排気タービンと、排気タービンの高速回転を容積型断熱エンジンの回転数に合うように減速するための減速機と、排気タービンからの動力をクランクシャフトへ一方向に伝達するためのワンウェイクラッチとから構成される前記4サイクル断熱複合エンジン。 A positive displacement heat insulation engine that has intake / exhaust valves and performs intake / compression / expansion stroke and in-cylinder cooling stroke by exhaust / water or steam injection, and powers exhaust gas and superheated steam discharged from the positive displacement heat insulation engine In a 4-cycle adiabatic combined engine having an exhaust turbine as a source, a speed reducer, and an exhaust energy recovery device that transmits power to the crankshaft by a one-way clutch , an exhaust valve was opened and high-temperature and high-pressure exhaust gas was discharged before the end of the expansion stroke After that, the inside of the cylinder is cooled and the nozzle that injects water or steam to absorb the heat inside the cylinder to generate superheated steam, and the outside temperature and the exhaust temperature are measured so that the inside temperature becomes the set temperature. and controlling the injection quantity of water or steam, and covering the cylinder and cylinder head with a heat insulating material to prevent heat dissipation from the cylinder, the power and exhaust gas superheated steam And an exhaust turbine, the reduction gear for decelerating to fit the high-speed rotation of the exhaust turbine to the speed of the positive displacement heat insulating engine, the one-way clutch for transmitting power from the exhaust turbine in one direction to the crankshaft The four-cycle adiabatic composite engine comprising: 掃気孔と排気弁を有し圧縮、膨張、排気・掃気行程と蒸気または圧縮空気噴射による筒内冷却・排気・掃気行程を実行する容積型断熱エンジンと、前記排気エネルギ回収装置を有する4サイクル断熱複合エンジンにおいて、タイミングの異なる2度の排気弁開に対応した異形2山カムと、前記過熱蒸気または膨張空気を発生させるための蒸気または圧縮空気を噴射するノズルと、前記蒸気または圧縮空気の噴射量を制御することと、前記断熱材で覆うことと、前記排気タービンと、前記減速機と、前記ワンウェイクラッチとから構成される請求項1に記載の4サイクル断熱複合エンジン。A positive displacement heat-insulating engine having scavenging holes and exhaust valves for performing in-cylinder cooling / exhaust / scavenging stroke by compression, expansion, exhaust / scavenging stroke and steam or compressed air injection, and four-cycle heat insulation having the exhaust energy recovery device In a combined engine, a modified double cam corresponding to opening of an exhaust valve twice at different timings, a nozzle for injecting steam or compressed air for generating the superheated steam or expanded air, and injection of the steam or compressed air The four-cycle adiabatic composite engine according to claim 1, wherein the four-cycle adiabatic composite engine is configured by controlling an amount, covering with the heat insulating material, the exhaust turbine, the speed reducer, and the one-way clutch.
JP2006102891A 2006-04-04 2006-04-04 Insulated composite engine Expired - Fee Related JP3994133B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006102891A JP3994133B1 (en) 2006-04-04 2006-04-04 Insulated composite engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006102891A JP3994133B1 (en) 2006-04-04 2006-04-04 Insulated composite engine

Publications (2)

Publication Number Publication Date
JP3994133B1 true JP3994133B1 (en) 2007-10-17
JP2007278114A JP2007278114A (en) 2007-10-25

Family

ID=38679816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006102891A Expired - Fee Related JP3994133B1 (en) 2006-04-04 2006-04-04 Insulated composite engine

Country Status (1)

Country Link
JP (1) JP3994133B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519470A (en) * 2015-06-29 2018-07-19 ラッセル エナジー コーポレーション Internal combustion engine / generator with pressure boost

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826344B2 (en) * 2006-06-02 2011-11-30 元伸 熊谷 2-piston insulated composite engine
JP5112991B2 (en) * 2008-08-27 2013-01-09 日野自動車株式会社 NOx reduction method
JP7004887B2 (en) * 2019-12-03 2022-02-07 寛治 泉 An engine that burns hydrogen and oxygen.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018519470A (en) * 2015-06-29 2018-07-19 ラッセル エナジー コーポレーション Internal combustion engine / generator with pressure boost
JP7153445B2 (en) 2015-06-29 2022-10-14 ラッセル エナジー コーポレーション Internal combustion engine/generator with pressure boost

Also Published As

Publication number Publication date
JP2007278114A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
US6095100A (en) Combination internal combustion and steam engine
US8371256B2 (en) Internal combustion engine utilizing dual compression and dual expansion processes
CN102094708B (en) Self-cooling backheating movable cylinder fuel-air engine and Stirling engine
JP7030822B2 (en) Internal combustion steam engine
US20070022977A1 (en) Method and apparatus for operating an internal combustion engine
JP2010506072A (en) Combustion engine with self-ignition of air-fuel mixture
WO2013023434A1 (en) Two-stroke reciprocating piston combustion engine
WO2006024209A1 (en) An engine of a gas-steam turbine type
US6119650A (en) Energy conservation cycle engine
JP3994133B1 (en) Insulated composite engine
CN2760254Y (en) Internal combustion steam engine
WO2013026260A1 (en) Internal combustion and steam combined engine
JP4286419B2 (en) Piston type internal combustion engine
JP2019534974A (en) Spark ignition internal combustion engine
JP3944539B2 (en) 6 cycle compound engine
JP5066723B2 (en) 2-stroke insulated composite engine
GB2481980A (en) I.c. engine in which water is recovered from the exhaust and re-used
JP4826344B2 (en) 2-piston insulated composite engine
CN102852577B (en) Four-stroke internal combustion engine including exhaust cam provided with two bulges
WO2007147292A1 (en) Rotary piston engine
JPS60184923A (en) Water-injection heat-insulated ceramic diesel engine
RU71382U1 (en) POWER UNIT WITH SEPARATED COMPRESSION-EXPANSION PROCESSES
JPH1054306A (en) Internal combustion steam engine
RU28382U1 (en) A steam engine with a heat accumulator for the utilization of the heat of exhaust gas from an internal combustion engine
AU717934B2 (en) Combination internal combustion and steam engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees