JP3993357B2 - Melting furnace and method for protecting the furnace wall surface - Google Patents

Melting furnace and method for protecting the furnace wall surface Download PDF

Info

Publication number
JP3993357B2
JP3993357B2 JP2000025687A JP2000025687A JP3993357B2 JP 3993357 B2 JP3993357 B2 JP 3993357B2 JP 2000025687 A JP2000025687 A JP 2000025687A JP 2000025687 A JP2000025687 A JP 2000025687A JP 3993357 B2 JP3993357 B2 JP 3993357B2
Authority
JP
Japan
Prior art keywords
furnace
bottom wall
slag
wall surface
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000025687A
Other languages
Japanese (ja)
Other versions
JP2001215085A5 (en
JP2001215085A (en
Inventor
義仁 清水
野間  彰
浩俊 堀添
静生 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000025687A priority Critical patent/JP3993357B2/en
Publication of JP2001215085A publication Critical patent/JP2001215085A/en
Publication of JP2001215085A5 publication Critical patent/JP2001215085A5/ja
Application granted granted Critical
Publication of JP3993357B2 publication Critical patent/JP3993357B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炉本体に灰等の被溶融物の投入口と炉内加熱用のバーナを設け、前記炉内の被溶融物を前記バーナにより加熱して溶融せしめ、溶融スラグを前記炉本体の下部に設けられたスラグ排出口から排出するようにした溶融炉及びその炉壁面の保護方法に関する。
【0002】
【従来の技術】
炉本体に被溶融物である灰の投入口と炉内加熱用のバーナを設け、前記炉内の灰を前記バーナにより加熱して溶融せしめ、溶融スラグを前記炉本体の下部に設けられたスラグ排出口から排出するようにした灰溶融炉については、従来より多くの技術が提供されている。
【0003】
かかる灰溶融炉に関する技術の1つとして特開平5−231631号の発明がある。この発明においては、炉本体の側壁部に設けた灰投入口から炉床部に投入した灰を、炉頂部に設けた溶融バーナにより加熱溶融して、炉床部の中央に設けたスラグ排出口から溶融スラグを排出するようにした灰溶融炉において、前記炉床部の周囲に複数の灰プッシャーを設けて、該灰プッシャーにより灰を中央部のスラグ排出口に押し出すように構成されている。
【0004】
【発明が解決しようとする課題】
前記灰溶融炉は、これの立ち上がり時(起動時)の昇温動作時においては、灰投入口から炉内に供給される灰が、炉底壁面全体に十分に広がらず炉底壁面が露出している状態で、溶融バーナからの火炎が炉内に放射され、露出している炉底壁面に火炎が直接当たる事態となることが多々ある。
【0005】
しかしながら、前記従来技術においては、炉底壁面は炉本体の材料がそのまま露出されており、かかる炉底壁面に溶融バーナからの火炎が直接当たると該炉底壁面が高温のバーナ火炎により過熱され、また、前記立ち上がり時に炉内の腐食性ガスが露出している炉底壁面に直接当たることとなり、これらにより、炉底壁面が侵食破壊を引き起こすという問題点を有している。
【0006】
また、前記灰溶融炉においては、炉内に供給される灰の外表面を溶融バーナからの火炎により高温で加熱溶融しているため、耐火材からなる炉壁、殊に炉底壁は高温になり大きな熱応力が発生する。かかる熱応力の低減を図るため、従来より炉底壁の内部に水冷管を埋設し、該水冷管内に冷却水を通流して炉底壁を冷却する手段が提供されている。
【0007】
しかしながら、かかる従来技術にあっては、炉底壁の内部に埋設された水冷管による冷却のみでは十分な伝熱面積が得られ難いため、熱応力の低減効果は十分でなく、過大な熱応力による炉底壁破損の可能性が依然として残る。
さらにかかる灰溶融炉においては従来技術にあっては、特に高温となっているスラグ排出口に形成された堰の部分の冷却を促進するため、この部分で前記水冷管を堰の形に合わせて曲げているが、十分な伝熱面積が得られ難いことに変わりは無いうえ、管の曲げ加工が複雑になる。
【0008】
本発明はかかる従来技術の課題に鑑み、溶融炉の起動時の昇温動作時において、炉底壁面に溶融バーナからの火炎が直接当たるのを回避して、該炉底壁面が高温のバーナ火炎により過熱され侵食破壊を引き起こすのを防止するとともに炉壁内部の過熱による熱応力を低減し、溶融炉の炉壁の耐久性を向上することを目的とする。
【0009】
【課題を解決するための手段】
本発明はかかる課題を解決するため、請求項1記載の発明として、炉本体に灰等の被溶融物の投入口と炉内加熱用のバーナを設け、前記炉内の被溶融物を前記バーナにより加熱して溶融せしめ、溶融スラグを前記炉本体の炉底壁に設けられたスラグ排出口から排出するようにした溶融炉において、
前記炉本体の壁内に埋設され、冷却水が通流する冷却管を、前記スラグ排出口周りの炉底壁部位より該炉底壁外周側に向かって螺旋状に埋設し、前記炉底壁面を含む炉内壁面に保護層を形成することを特徴とする溶融炉を提案する。
【0010】
請求項1において、前記保護層は、炉底壁面に敷設してなる粒体あるいは粉体スラグをバーナにより加熱溶融して、炉底壁面に前記粒体あるいは粉体スラグが溶融して生成された保護層であるのがよい。
【0011】
請求項5記載の発明は、請求項1の発明に係る溶融炉の炉壁面保護方法の発明であり、炉本体に灰等の被溶融物の投入口と炉内加熱用のバーナを設け、前記炉内の被溶融物を前記バーナにより加熱して溶融せしめ、溶融スラグを前記炉本体の炉底壁に設けられたスラグ排出口から排出するようにした溶融炉の炉壁面保護方法において、
前記炉本体の壁内に埋設された冷却水が通流する冷却管を、前記スラグ排出口周りの炉底壁部位より該炉底壁外周側に向かって螺旋状に埋設し、
前記螺旋の起点より冷却水を通流して、炉底壁面を含む炉内壁面へスラグを溶融付着させて保護層を形成することを特徴とする。
【0012】
請求項1、2及び5記載の発明によれば、溶融炉の起動前に、炉本体の炉内壁面の少なくとも炉底壁面全体を、溶融スラグ等の保護材料により被覆し、該溶融炉内を昇温させ前記保護材料を溶融させて炉内壁面に付着させることにより保護層を形成しているので、該溶融炉の起動後において、前記炉内壁面に灰供給層等の被溶融物が形成されてなく、該炉内壁面が炉内に露出している部分があっても、バーナによる加熱時には該バーナからの火炎は該炉内壁面を覆っている耐熱性の大きい前記保護層に当たり、該炉内壁面に直接当たることはない。
これにより、前記炉内壁面がバーナの火炎により過熱され、また起動時に炉内の腐食性ガスが露出している炉内壁面に直接当たることにより、炉内壁面が侵食破壊を引き起こすのが防止される。
【0013】
請求項記載の発明は、前記冷却管の外周に前記冷却管の長手方向に沿って伝熱フィンを固着してなる冷却管を埋設したことを特徴とする。
請求項4記載の発明は、前記前記冷却管に設けた伝熱フィンは、スラグの排出通路となっているスラグタップの堰の内側部位において、該堰の形状に沿って切り欠かれた切欠部を形成されていることを特徴とする。
【0015】
請求項3〜4記載の発明によれば、鋼鈑等の熱伝導の良好な板状体からなるフィンを冷却管の上部外周に該冷却管の長手方向に沿って固着してなるフィン付き冷却管を、炉底壁の内周側を起点として外周へと螺旋状に埋設しているので、冷却管の伝熱面積が増大されて高い冷却効果が得られ、該炉底壁の温度上昇抑制効果が大きくなり、これによって熱応力の低減効果も増大する。
また、冷却管に特殊な曲げ加工を必要とせず、加工工数が低減される。
【0016】
また、最高温域のスラグ排出口が設けられている部位を、冷却管の螺旋の起点として冷却水入口を設けることにより、低温の冷却水を前記最高温域のスラグ排出口近傍に導入し、螺旋状に外周側へと流すので、該炉底壁内が均一に冷却され温度分布が均一化されて、温度分布の不均一による熱応力の低減効果が得られる。
【0017】
さらに、請求項3、4記載の発明における、前記炉底壁のフィン付き冷却管による冷却構造を用いて、該炉底壁の壁温度を制御しながら、請求項1、2、5記載の発明におけるバーナからの加熱による炉内壁面へのスラグの溶融付着を行うことにより、スラグを適正厚さに付着させた保護層を得ることができる。
【0018】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
【0019】
図1は本発明の実施形態の第1実施例に係る灰溶融炉の縦断面図、図2は図1のA−A線断面図、図3は第2実施例を示すスラグ排出口近傍の拡大縦断面図、図4は図3のB―B矢視図である。
【0020】
本発明の第1実施例に係る灰溶融炉を示す図1〜2において、1は炉本体、2はバーナである。該バーナ2は、前記炉本体1を構成する炉周壁1aの中央よりも下部よりの部位に円周方向等間隔にかつ接線方向に複数個(この例では4個)と、必要に応じて中央上部に1個設けられる。7は前記炉本体1の上部に設けられた、燃焼用の空気を炉内に導くための空気通路である。
3は灰投入口であり、前記炉周壁1aの前記バーナ2よりも上部位置に円周方向等間隔に複数個(この例では2個)設けられている。
【0021】
4は前記炉本体1を構成する炉底壁1bの中央部に設けられたスラグ排出口即ちスラグタップ、5は該スラグタップ4の上端部に軸対称に2箇所(3箇所以上でも良い)形成された堰、10は該スラグタップ4のスラグ通路を構成するスラグ取出口である。
以上も構成は従来技術と同様である。本発明においては、前記炉本体1の内壁面の保護手段及び冷却手段を改良している。
【0022】
即ち図1〜2において、6は前記炉本体1の炉内壁面9、特に炉底壁面8全体を被覆した保護層である。該保護層6は、かかる溶融炉で生成されたスラグを破砕して粒状あるいは粉状のスラグとしたものを、前記炉底壁面8全体に広げてこれを被覆している。該保護層6は前記スラグに限らず粒状体あるいは粉状体から形成したものでであればよい。
前記保護層6は該炉底壁面8のみならず、炉周壁1aの炉内壁面9に付着するようにしてもよい。
【0023】
前記保護層6は、図2に示すように、スラグの排出通路となっている前記スラグタップ4の堰5外側に位置するスラグ流路11の部位では、その他部位よりも薄く形成して、スラグの流動を容易化している。
【0024】
かかる構成からなる溶融炉において、該溶融炉の起動前に、前記炉本体1の炉底壁面8全体に、前記粒状あるいは粉状のスラグを付着させて保護層6を形成する。そして、該溶融炉を起動し、前記バーナ2からの加熱により、前記炉底壁面8全体に付着せしめられているスラグを溶融せしめる。
これにより、前記炉底壁面8全体に前記スラグによる保護層6が、該炉底壁面8に確実に付着せしめられて形成される。
【0025】
次いで、前記灰投入口3から焼却灰や飛灰からなる灰を自然落下により前記炉本体1内に供給し、前記炉底壁面8に灰供給層を形成する。そして、前記炉本体1に円周方向等間隔にかつ接線方向に4個設けられたバーナ2及び上部のバーナ2により該灰供給層の表面を加熱しこれを溶融させる。
かかる溶融灰は、溶融スラグとして前記スラグタップ4の堰5からスラグ取出口10に排出される。
【0026】
かかる溶融炉の稼働持において、前記溶融炉の起動前に、前記炉本体1の炉底壁面8全体にスラグを付着させて保護層6を形成しているので、該溶融炉の起動後において、前記炉底壁面8に前記灰供給層が形成されてなく、該炉底壁面8が炉内に露出している部分があっても、前記バーナ2による加熱時には該バーナ2からの火炎は該炉底壁面8を覆っている耐熱性の大きい前記保護層6に当たり、該炉底壁面8に直接当たることはない。また、起動時に炉内の腐食性ガスが露出している炉底壁面8に直接当たることもなくなる。
これにより、前記炉底壁面8はバーナ2の火炎により過熱されるのが回避され、該炉底壁面8の侵食破壊が防止される。
【0027】
本発明の第2実施例を示す図3〜4において、前記炉底壁1bの内部には外周にフィン14が固着された水冷管13が埋設されている。前記フィン14は、鋼鈑等の熱伝導の良好な板状体からなり、前記水冷管13の上部外周に該水冷管13の長手方向に沿って溶接等により固着されており、図4に示されるように、内周側のスラグタップ4内を起点として外周へと螺旋状に埋設されている。
【0028】
そして、前記フィン14は、前記スラグタップ4の堰5の内側部位においては、図3に示すように、該堰5の形状に沿って切り欠かれた切欠部14aが形成されており、前記水冷管13は該堰5の形状に沿って上下に曲げられてなく、滑らかな螺旋状となっている。15は前記水冷管13への冷却水入口で、該水冷管13の最内周側に接続されている。
【0029】
かかる第2実施例において、溶融炉の運転時、前記炉本体1に円周方向等間隔にかつ接線方向に4個設けられたバーナ2及び上部のバーナ2により、炉内に形成された灰供給層の表面を加熱し、これを溶融することにより生成され炉底壁面8上に溜められた高温の溶融スラグは、前記スラグタップ4の堰5を越えてスラグ取出口10に流出せしめられる。かかる高温の溶融スラグにより炉底壁1bは高温に加熱されるが、該炉底壁1b内に螺旋状に埋設されているフィン14付きの水冷管13により冷却されるので、壁温度の上昇が抑制される。
【0030】
ここで、かかる第2実施例においては、鋼鈑等の熱伝導の良好な板状体からなるフィン14を水冷管13の上部外周に該水冷管13の長手方向に沿って固着してなるフィン付き水冷管13を、内周側のスラグタップ4内を起点として外周へと螺旋状に埋設しているので、水冷管13の伝熱面積が増大されて高い冷却効果が得られ、該炉底壁1bの温度上昇抑制効果が大きくなり、これによって熱応力の低減効果も増大する。
【0031】
また、最高温域のスラグタップ4の部位に水冷管13の冷却水入口を設け、低温の冷却水を前記最高温域のスラグタップ4に導入し、螺旋状に外周側へと流すので、該炉底壁1b内が均一に冷却されて、温度分布が均一化されて、温度分布の不均一による熱応力の低減効果が得られる。
【0032】
さらに、かかる第2実施例における、前記炉底壁1bのフィン付き水冷管13による冷却構造を用いて、該炉底壁1bの壁温度を制御しながら、前記第1実施例におけるバーナ2からの加熱による炉底壁面8へのスラグの溶融付着を行うことにより、スラグを所要の厚さに付着させた保護層6を得ることができる。
【0033】
【発明の効果】
以上記載の如く請求項記載の発明によれば、溶融炉の起動後において、炉内壁面に灰供給層等の被溶融物が形成されてなく、該炉内壁面が炉内に露出している部分があっても、バーナによる加熱時には該バーナからの火炎は、起動前に該炉内壁面を覆っている耐熱性の大きい前記保護層に当たり、該炉内壁面に直接当たることはない。
これにより、前記炉内壁面がバーナの火炎により過熱され、また起動時に炉内の腐食性ガスが露出している炉内壁面に直接当たることにより、炉内壁面が侵食破壊を引き起こすのを防止することができる。
【0034】
また、請求項1、5記載の発明によれば、熱伝導の良好な材料からなるフィンを固着してなる冷却管を、前記スラグ排出口周りの炉底壁部位より該炉底壁外周側に向かって螺旋状に埋設しているので、冷却管の伝熱面積が増大されて高い冷却効果が得られ、該炉底壁の温度上昇抑制効果が大きくなり、これによって熱応力の低減効果が増大する。
また、冷却管に特殊な曲げ加工を必要とせず、加工工数が低減される。
【0035】
また、請求項1、5記載の発明によれば、最高温域のスラグ排出口が設けられている部位を、冷却管の螺旋の起点として冷却水入口とすることにより、低温の冷却水を前記最高温域のスラグ排出口近傍に導入し、螺旋状に外周側へと流すので、該炉底壁内が均一に冷却され温度分布が均一化されて、温度分布の不均一による熱応力の低減効果が得られる。
【0036】
さらに、請求項1、3、4記載の発明における、前記炉壁の冷却管による冷却構造を用いて、該炉壁の壁温度を制御しながら、請求項2、5及び6記載の発明におけるバーナからの加熱による炉内壁面へのスラグの溶融付着を行うことにより、スラグを適正厚さに付着させた保護層を得ることができる。
【0037】
以上のように、本発明によれば、炉内壁面に耐熱性の大きい保護層を形成し、また、炉底壁内部を冷却管による冷却構造とすることにより、溶融炉の炉壁の耐久性を向上することができる。
【図面の簡単な説明】
【図1】 本発明の実施形態の第1実施例に係る灰溶融炉の縦断面図、図2は図1のA−A線断面図、図3は第2実施例を示すスラグ排出口近傍の拡大縦断面図、図4は図3のB−B矢視図である
【図2】 図1のA−A線断面図である。
【図3】 第2実施例を示すスラグ排出口近傍の拡大縦断面図である。
【図4】 図3のB−B矢視図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a furnace body with an inlet for an object to be melted such as ash and a burner for heating in the furnace, the object to be melted in the furnace is heated and melted by the burner, and molten slag is added to the furnace body. The present invention relates to a melting furnace that discharges from a slag discharge port provided in a lower part and a method for protecting the furnace wall surface.
[0002]
[Prior art]
The furnace body is provided with an inlet for ash that is to be melted and a burner for heating in the furnace, the ash in the furnace is heated and melted by the burner, and molten slag is provided at the lower part of the furnace body Many technologies have been provided for ash melting furnaces that are discharged from the discharge port.
[0003]
As one of technologies related to such an ash melting furnace, there is an invention of Japanese Patent Laid-Open No. 5-231631. In this invention, the ash introduced into the hearth from the ash inlet provided in the side wall of the furnace body is heated and melted by the melting burner provided in the top of the furnace, and the slag outlet provided in the center of the hearth In the ash melting furnace in which the molten slag is discharged from the furnace, a plurality of ash pushers are provided around the hearth portion, and the ash is pushed out to the slag discharge port in the center by the ash pusher.
[0004]
[Problems to be solved by the invention]
In the ash melting furnace, during the temperature rising operation at the time of startup (starting up), the ash supplied into the furnace from the ash charging port does not spread sufficiently over the entire furnace bottom wall surface, and the furnace bottom wall surface is exposed. In many cases, the flame from the melting burner is radiated into the furnace, and the flame directly hits the exposed wall surface of the furnace bottom.
[0005]
However, in the prior art, the material of the furnace body is exposed as it is on the furnace bottom wall surface, and when the flame from the molten burner directly hits the furnace bottom wall surface, the furnace bottom wall surface is overheated by a high-temperature burner flame, Further, the corrosive gas in the furnace directly hits the exposed furnace bottom wall surface at the time of the start-up, thereby causing a problem that the furnace bottom wall surface causes erosion destruction.
[0006]
Further, in the ash melting furnace, the outer surface of the ash supplied into the furnace is heated and melted at a high temperature by a flame from a melting burner, so that the furnace wall made of a refractory material, particularly the furnace bottom wall, has a high temperature. A large thermal stress is generated. In order to reduce such thermal stress, conventionally, there has been provided means for embedding a water-cooled pipe inside the furnace bottom wall and cooling the furnace bottom wall by flowing cooling water through the water-cooled pipe.
[0007]
However, in such a conventional technique, it is difficult to obtain a sufficient heat transfer area only by cooling with a water-cooled pipe embedded in the furnace bottom wall, so the effect of reducing thermal stress is not sufficient, and excessive thermal stress The possibility of damage to the bottom wall of the furnace remains.
Furthermore, in such ash melting furnaces, in the prior art, in order to promote cooling of the portion of the weir formed at the slag discharge port, which is at a particularly high temperature, the water cooling pipe is matched with the shape of the weir at this portion. Although it is bent, it is still difficult to obtain a sufficient heat transfer area, and the bending of the tube becomes complicated.
[0008]
In view of the problems of the prior art, the present invention avoids that the flame from the melting burner directly hits the furnace bottom wall surface during the heating operation at the time of starting the melting furnace, and the furnace bottom wall surface has a high temperature burner flame. It is intended to improve the durability of the melting furnace wall by preventing thermal stress caused by overheating and reducing the thermal stress due to overheating inside the furnace wall.
[0009]
[Means for Solving the Problems]
In order to solve this problem, the present invention provides a furnace body provided with an inlet for an object to be melted such as ash and a burner for heating in the furnace, and the object to be melted in the furnace is the burner. In a melting furnace in which the molten slag is discharged from a slag discharge port provided in the furnace bottom wall of the furnace body,
A cooling pipe embedded in the wall of the furnace body and through which cooling water flows is embedded in a spiral shape from the furnace bottom wall portion around the slag discharge port toward the outer periphery of the furnace bottom wall , and the furnace bottom wall surface Suggest melting furnace and forming a coercive Mamoruso the furnace wall comprising a.
[0010]
2. The protective layer according to claim 1, wherein the granule or powder slag formed on the furnace bottom wall is heated and melted by a burner, and the granule or powder slag is melted on the furnace bottom wall. It may be a protective layer .
[0011]
The invention according to claim 5 is the invention of the method for protecting the furnace wall surface of the melting furnace according to the invention of claim 1 , wherein the furnace main body is provided with an inlet for melted material such as ash and a burner for heating in the furnace, In the method of protecting the furnace wall of the melting furnace, the melted material in the furnace is heated by the burner and melted, and the molten slag is discharged from the slag discharge port provided in the furnace bottom wall of the furnace body.
A cooling pipe through which the cooling water embedded in the wall of the furnace body flows is embedded in a spiral from the furnace bottom wall portion around the slag discharge port toward the outer periphery side of the furnace bottom wall,
Cooling water is allowed to flow from the starting point of the spiral, and a protective layer is formed by melting and adhering slag to the furnace inner wall surface including the furnace bottom wall surface.
[0012]
According to the first, second, and fifth aspects of the invention, before starting the melting furnace, at least the entire furnace bottom wall surface of the furnace body is covered with a protective material such as molten slag, and the inside of the melting furnace is covered. Since the protective layer is formed by raising the temperature and melting the protective material and adhering it to the inner wall of the furnace, after the start of the melting furnace, a material to be melted such as an ash supply layer is formed on the inner wall of the furnace Even if there is a portion where the inner wall surface of the furnace is exposed in the furnace, the flame from the burner hits the heat-resistant protective layer covering the inner wall surface of the furnace when heated by the burner. There is no direct contact with the furnace wall.
As a result, the furnace inner wall surface is overheated by the flame of the burner, and corrosive gas in the furnace is directly exposed to the exposed furnace wall surface during startup, thereby preventing the furnace inner wall surface from causing erosion destruction. The
[0013]
According to a third aspect of the invention, is characterized in that embedded cold却管ing with longitudinally along fixed heat transfer fins of the condenser tube periphery to said cooling tube.
According to a fourth aspect of the present invention, the heat transfer fin provided in the cooling pipe is a notch portion cut out along the shape of the slag tap at a portion inside the slag tap weir serving as a slag discharge passage. It is characterized by being formed.
[0015]
According to invention of Claims 3-4, the finned cooling formed by adhering the fin which consists of plate-like bodies with favorable heat conductivity, such as a steel plate, to the upper outer periphery of a cooling pipe along the longitudinal direction of this cooling pipe Since the pipe is spirally embedded in the outer periphery starting from the inner peripheral side of the furnace bottom wall, the heat transfer area of the cooling pipe is increased and a high cooling effect is obtained, suppressing the temperature rise of the furnace bottom wall The effect is increased, thereby increasing the effect of reducing thermal stress.
In addition, a special bending process is not required for the cooling pipe, and the number of processing steps is reduced.
[0016]
In addition, by providing a cooling water inlet with the portion where the slag discharge port of the highest temperature range is provided as a starting point of the spiral of the cooling pipe, low temperature cooling water is introduced in the vicinity of the slag discharge port of the highest temperature range, Since it flows to the outer peripheral side spirally, the inside of the furnace bottom wall is uniformly cooled, the temperature distribution is made uniform, and the effect of reducing thermal stress due to the non-uniform temperature distribution is obtained.
[0017]
Further, the invention according to claim 1, 2, 5 while controlling the wall temperature of the bottom wall of the furnace using the cooling structure with finned cooling pipes of the bottom wall of the furnace according to claims 3 and 4. By carrying out the melt adhesion of the slag to the furnace inner wall surface by heating from the burner in, a protective layer having the slag adhered to an appropriate thickness can be obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
[0019]
1 is a longitudinal sectional view of an ash melting furnace according to a first example of the embodiment of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a view of the vicinity of a slag discharge port showing the second example. FIG. 4 is an enlarged longitudinal sectional view, and FIG. 4 is a view taken in the direction of arrows BB in FIG.
[0020]
1 and 2 showing the ash melting furnace according to the first embodiment of the present invention, 1 is a furnace body, and 2 is a burner. The burner 2 includes a plurality of (four in this example) circumferentially equidistantly and in a tangential direction at a portion from the lower side of the center of the furnace peripheral wall 1a constituting the furnace body 1, and a center as required. One is provided at the top. Reference numeral 7 denotes an air passage provided in the upper part of the furnace body 1 for guiding combustion air into the furnace.
Reference numeral 3 denotes an ash inlet, and a plurality (two in this example) are provided at equal intervals in the circumferential direction at a position above the burner 2 of the furnace peripheral wall 1a.
[0021]
4 is a slag discharge port or slag tap provided at the center of the furnace bottom wall 1 b constituting the furnace body 1, and 5 is formed in two axially symmetrical positions (or 3 or more) at the upper end of the slag tap 4. The dam 10 is a slag outlet that constitutes the slag passage of the slag tap 4.
The configuration is the same as that of the prior art. In the present invention, the protection means and cooling means for the inner wall surface of the furnace body 1 are improved.
[0022]
1 and 2, reference numeral 6 denotes a protective layer covering the furnace inner wall surface 9 of the furnace body 1, particularly the entire furnace bottom wall surface 8. The protective layer 6 is formed by crushing the slag produced in the melting furnace into a granular or powdery slag and spreading it over the entire furnace bottom wall surface 8. The protective layer 6 is not limited to the slag, and may be formed from a granular material or a powdery material.
The protective layer 6 may be attached not only to the furnace bottom wall surface 8 but also to the furnace inner wall surface 9 of the furnace peripheral wall 1a.
[0023]
As shown in FIG. 2, the protective layer 6 is formed thinner in the slag flow path 11 located outside the weir 5 of the slag tap 4 serving as a slag discharge passage than in other parts. To facilitate the flow of
[0024]
In the melting furnace having such a configuration, the protective layer 6 is formed by adhering the granular or powdery slag to the entire furnace bottom wall surface 8 of the furnace body 1 before starting the melting furnace. Then, the melting furnace is started, and the slag adhered to the entire furnace bottom wall surface 8 is melted by heating from the burner 2.
As a result, the protective layer 6 made of the slag is securely adhered to the bottom wall surface 8 of the furnace bottom wall 8.
[0025]
Next, ash made of incinerated ash or fly ash is supplied from the ash charging port 3 into the furnace body 1 by natural fall, and an ash supply layer is formed on the furnace bottom wall surface 8. Then, the surface of the ash supply layer is heated and melted by four burners 2 provided in the furnace body 1 at equal intervals in the circumferential direction and in the tangential direction and the upper burners 2.
Such molten ash is discharged as molten slag from the weir 5 of the slag tap 4 to the slag outlet 10.
[0026]
In such operation of the melting furnace, since the protective layer 6 is formed by adhering slag to the entire furnace bottom wall surface 8 of the furnace body 1 before starting the melting furnace, after starting the melting furnace, Even if the ash supply layer is not formed on the furnace bottom wall surface 8 and the furnace bottom wall surface 8 is exposed in the furnace, the flame from the burner 2 is heated by the burner 2 when heated by the burner 2. It hits the heat-resistant protective layer 6 covering the bottom wall surface 8 and does not directly hit the furnace bottom wall surface 8. Further, the corrosive gas in the furnace does not directly hit the furnace bottom wall surface 8 exposed at the time of startup.
Thereby, the furnace bottom wall surface 8 is prevented from being overheated by the flame of the burner 2, and erosion destruction of the furnace bottom wall surface 8 is prevented.
[0027]
In FIGS. 3 to 4 showing the second embodiment of the present invention, a water-cooled tube 13 having fins 14 fixed to the outer periphery is embedded inside the furnace bottom wall 1b. The fins 14 are made of a plate-like body having good heat conductivity such as a steel plate, and are fixed to the upper outer periphery of the water-cooled tube 13 by welding or the like along the longitudinal direction of the water-cooled tube 13, as shown in FIG. As shown, the inner periphery side of the slag tap 4 is helically embedded in the outer periphery starting from the inside.
[0028]
As shown in FIG. 3, the fin 14 is formed with a notch portion 14 a notched along the shape of the weir 5 at the inner portion of the weir 5 of the slag tap 4. The pipe 13 is not bent up and down along the shape of the weir 5, but has a smooth spiral shape. A cooling water inlet 15 is connected to the innermost circumferential side of the water cooling pipe 13.
[0029]
In such a second embodiment, during operation of the melting furnace, the ash supply formed in the furnace by the burner 2 provided in the furnace body 1 at four equal intervals in the circumferential direction and in the tangential direction and the upper burner 2 are provided. The hot molten slag generated by heating the surface of the layer and melting it is accumulated on the furnace bottom wall surface 8 and flows out to the slag outlet 10 through the weir 5 of the slag tap 4. The furnace bottom wall 1b is heated to a high temperature by such high-temperature molten slag, but is cooled by the water-cooled tube 13 with the fins 14 embedded in the furnace bottom wall 1b in a spiral manner, so that the rise in the wall temperature is increased. It is suppressed.
[0030]
Here, in the second embodiment, a fin 14 formed by fixing a fin 14 made of a plate-like body having good heat conduction, such as a steel plate, to the upper outer periphery of the water-cooled tube 13 along the longitudinal direction of the water-cooled tube 13. Since the attached water-cooled pipe 13 is spirally embedded in the outer periphery starting from the inner slag tap 4, the heat transfer area of the water-cooled pipe 13 is increased, and a high cooling effect is obtained. The effect of suppressing the temperature rise of the wall 1b is increased, thereby increasing the effect of reducing the thermal stress.
[0031]
Further, the cooling water inlet of the water cooling pipe 13 is provided at the site of the slag tap 4 in the highest temperature range, and the low temperature cooling water is introduced into the slag tap 4 in the highest temperature range and flows spirally outward. The inside of the furnace bottom wall 1b is uniformly cooled, the temperature distribution is made uniform, and the effect of reducing the thermal stress due to the non-uniform temperature distribution is obtained.
[0032]
Furthermore, using the cooling structure by the finned water cooling tube 13 of the furnace bottom wall 1b in the second embodiment, the wall temperature of the furnace bottom wall 1b is controlled from the burner 2 in the first embodiment. By melting and adhering the slag to the furnace bottom wall surface 8 by heating, the protective layer 6 in which the slag is adhered to a required thickness can be obtained.
[0033]
【The invention's effect】
As described above, according to the second aspect of the present invention, after starting the melting furnace, no melted material such as an ash supply layer is formed on the inner wall surface of the furnace, and the inner wall surface of the furnace is exposed in the furnace. Even if there is a portion, the flame from the burner hits the heat-resistant protective layer covering the furnace inner wall surface before starting and does not directly hit the furnace inner wall surface when heated by the burner.
This prevents the inner wall of the furnace from being overheated by the flame of the burner and causing the corrosive gas in the furnace to directly contact the exposed inner wall of the furnace during startup, thereby preventing the inner wall of the furnace from causing erosion destruction. be able to.
[0034]
According to the invention of claim 1,5, wherein the cold却管ing by fixing the fin made of a material having good thermal conductivity, the furnace bottom wall periphery of the furnace bottom wall portion around the slag discharge port since embedded in a spiral shape toward the side, high cooling effect heat transfer area of the cooling pipe is increased to obtain a temperature rise suppressing effect of furnace bottom wall is increased, thereby reducing the effect of thermal stress Will increase.
In addition, a special bending process is not required for the cooling pipe, and the number of processing steps is reduced.
[0035]
Further , according to the first and fifth aspects of the invention, the portion where the slag discharge port of the highest temperature range is provided is the cooling water inlet with the spiral starting point of the cooling pipe, so that the low-temperature cooling water is Introduced in the vicinity of the slag discharge port in the highest temperature range and spirally flows to the outer peripheral side, so that the inside of the furnace bottom wall is uniformly cooled, the temperature distribution is made uniform, and thermal stress is reduced due to uneven temperature distribution An effect is obtained.
[0036]
Further, according to claim 1, in the invention described 3,4, using a cooling structure according to the cooling tubes of the furnace wall, while controlling the wall temperature of the furnace wall, a burner in the invention of claim 2, 5 and 6, wherein By carrying out the melt adhesion of the slag to the inner wall surface of the furnace by heating from above, a protective layer having the slag adhered to an appropriate thickness can be obtained.
[0037]
As described above, according to the present invention, to form a large protective layer of refractory in the furnace wall, also by the internal Rosokokabe the cooling structure by cold却管, durability of the furnace wall of the melting furnace Can be improved.
[Brief description of the drawings]
1 is a longitudinal sectional view of an ash melting furnace according to a first example of the embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of FIG. 1, and FIG. 3 is a vicinity of a slag discharge port showing the second example. FIG. 4 is an enlarged vertical sectional view of FIG .
FIG. 2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is an enlarged longitudinal sectional view in the vicinity of a slag discharge port showing a second embodiment.
4 is a view taken along arrow BB in FIG. 3;

Claims (5)

炉本体に灰等の被溶融物の投入口と炉内加熱用のバーナを設け、前記炉内の被溶融物を前記バーナにより加熱して溶融せしめ、溶融スラグを前記炉本体の炉底壁に設けられたスラグ排出口から排出するようにした溶融炉において、
前記炉本体の壁内に埋設され、冷却水が通流する冷却管を、前記スラグ排出口周りの炉底壁部位より該炉底壁外周側に向かって螺旋状に埋設し、前記炉底壁面を含む炉内壁面に保護層を形成することを特徴とする溶融炉。
The furnace body is provided with an inlet for the object to be melted such as ash and a burner for heating in the furnace, and the object to be melted in the furnace is heated and melted by the burner, and the molten slag is placed on the furnace bottom wall of the furnace body. In the melting furnace designed to discharge from the provided slag discharge port,
A cooling pipe embedded in the wall of the furnace body and through which cooling water flows is embedded in a spiral shape from the furnace bottom wall portion around the slag discharge port toward the outer periphery of the furnace bottom wall, and the furnace bottom wall surface A melting furnace characterized in that a protective layer is formed on the inner wall surface of the furnace.
前記保護層は、炉底壁面に敷設してなる粒体あるいは粉体スラグをバーナにより加熱溶融して、炉底壁面に前記粒体あるいは粉体スラグが溶融して生成された保護層であることを特徴とする請求項1に記載の溶融炉。  The protective layer is a protective layer produced by heating and melting particles or powder slag laid on the furnace bottom wall surface with a burner, and melting the particles or powder slag on the furnace bottom wall surface. The melting furnace according to claim 1. 前記冷却管の外周に前記冷却管の長手方向に沿って伝熱フィンを固着してなる冷却管を埋設したことを特徴とする請求項1または請求項2に記載の溶融炉。  The melting furnace according to claim 1 or 2, wherein a cooling pipe formed by fixing heat transfer fins along the longitudinal direction of the cooling pipe is embedded in the outer periphery of the cooling pipe. 前記冷却管に設けた伝熱フィンは、スラグの排出通路となっているスラグタップの堰の内側部位において、該堰の形状に沿って切り欠かれた切欠部を形成されていることを特徴とする請求項3に記載の溶融炉。  The heat transfer fin provided in the cooling pipe is characterized in that a notch portion cut out along the shape of the weir is formed in the inner portion of the weir of the slag tap serving as the slag discharge passage. The melting furnace according to claim 3. 炉本体に灰等の被溶融物の投入口と炉内加熱用のバーナを設け、前記炉内の被溶融物を前記バーナにより加熱して溶融せしめ、溶融スラグを前記炉本体の炉底壁に設けられたスラグ排出口から排出するようにした溶融炉の炉壁面保護方法において、
前記炉本体の壁内に埋設された冷却水が通流する冷却管を、前記スラグ排出口周りの炉底壁部位より該炉底壁外周側に向かって螺旋状に埋設し、
前記螺旋の起点より冷却水を通流して、炉底壁面を含む炉内壁面へスラグを溶融付着させて保護層を形成することを特徴とする炉壁面保護方法。
The furnace body is provided with an inlet for the object to be melted such as ash and a burner for heating in the furnace, and the object to be melted in the furnace is heated and melted by the burner, and the molten slag is placed on the furnace bottom wall of the furnace body. In the method of protecting the furnace wall surface of the melting furnace that is designed to discharge from the provided slag discharge port,
A cooling pipe through which the cooling water embedded in the wall of the furnace body flows is embedded in a spiral from the furnace bottom wall portion around the slag discharge port toward the outer periphery side of the furnace bottom wall,
A method for protecting a furnace wall surface, wherein cooling water is passed from the starting point of the spiral to melt and adhere slag to a furnace inner wall surface including a furnace bottom wall surface to form a protective layer.
JP2000025687A 2000-02-02 2000-02-02 Melting furnace and method for protecting the furnace wall surface Expired - Fee Related JP3993357B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000025687A JP3993357B2 (en) 2000-02-02 2000-02-02 Melting furnace and method for protecting the furnace wall surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000025687A JP3993357B2 (en) 2000-02-02 2000-02-02 Melting furnace and method for protecting the furnace wall surface

Publications (3)

Publication Number Publication Date
JP2001215085A JP2001215085A (en) 2001-08-10
JP2001215085A5 JP2001215085A5 (en) 2005-10-13
JP3993357B2 true JP3993357B2 (en) 2007-10-17

Family

ID=18551513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025687A Expired - Fee Related JP3993357B2 (en) 2000-02-02 2000-02-02 Melting furnace and method for protecting the furnace wall surface

Country Status (1)

Country Link
JP (1) JP3993357B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187615B2 (en) * 2006-06-28 2013-04-24 三男 金子 burner
JP2015161462A (en) * 2014-02-27 2015-09-07 三菱日立パワーシステムズ株式会社 Burner and wet furnace including the same

Also Published As

Publication number Publication date
JP2001215085A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
US4021603A (en) Roof for arc furnace
JP6623325B2 (en) Immersion type burner heater and molten metal holding furnace
EP0071073A2 (en) Radiant tube
KR20120028761A (en) Cold crucible induction melter using united inductor and crucible
JP3993357B2 (en) Melting furnace and method for protecting the furnace wall surface
MXPA01001888A (en) Heat exchange pipe with extruded fins.
US6137823A (en) Bi-metal panel for electric arc furnace
CA2763578A1 (en) A method for supplying combustion air to a flue gas air preheater, a preheating apparatus, and an air guide sleeve
KR20040095194A (en) Fusion furnace, gasification fusion furnace, and method of processing waste
JP5265168B2 (en) Melting furnace
JP3584982B2 (en) Water cooled wall
JPS6047513B2 (en) Water cooling structure of furnace wall
CN110319706A (en) Metallurgical furnace flue
JP2004093086A (en) Single end type combustion burner of heating furnace
CA1040694A (en) Roof for arc furnace
JP3729647B2 (en) Fireproof structure of the hearth of the melting furnace
JP2001215085A5 (en)
US20230272942A1 (en) Heat exchanger and water heater equipped with the same
JP2005069575A (en) Heat exchanger
JPH10183233A (en) Heat insulating skid pipe
JPH02293513A (en) Method for controlling molten slag in circling type melting furnace
JP2004163062A (en) Heat transfer tube for boiler
CN108444302A (en) metallurgical furnace flue
US5566648A (en) Heat exchanger
JP2007163117A (en) Spherical furnace for generating swirl hot air constantly at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees