JP3993315B2 - Electrolytic cell - Google Patents

Electrolytic cell Download PDF

Info

Publication number
JP3993315B2
JP3993315B2 JP22183298A JP22183298A JP3993315B2 JP 3993315 B2 JP3993315 B2 JP 3993315B2 JP 22183298 A JP22183298 A JP 22183298A JP 22183298 A JP22183298 A JP 22183298A JP 3993315 B2 JP3993315 B2 JP 3993315B2
Authority
JP
Japan
Prior art keywords
pair
diaphragm
electrolytic cell
water
electrode plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22183298A
Other languages
Japanese (ja)
Other versions
JP2000051856A (en
Inventor
弘城 山口
喜則 紙谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP22183298A priority Critical patent/JP3993315B2/en
Publication of JP2000051856A publication Critical patent/JP2000051856A/en
Application granted granted Critical
Publication of JP3993315B2 publication Critical patent/JP3993315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水を電気分解して酸性水とアルカリ性水を生成するようにした電解槽に関する。
【0002】
【従来の技術】
この種の電解槽の一つとして、隔膜を挟持する一対のスペーサの背面に電極板をそれぞれ配設し、これらを一対のシェル内に収容して一対の電解室を形成し、これら各電解室に供給した水を電気分解して酸性水とアルカリ性水を生成するようにしたものがあり、例えば特開平9−75947号公報に示されている。
【0003】
【発明が解決しようとする課題】
上記した特開平9−75947号公報に示されている電解槽においては、一方のシェルに一方の電極板とスペーサを予め組み付けるとともに、他方のシェルに他方の電極板とスペーサを予め組み付けて、これらを隔膜を挟んで接合連結することにより組立られているため、両シェルを隔膜を挟んで接合連結する際に各シェルから各電極板と各スペーサが外れないようにする必要があって、組付性に改善の余地がある。
【0004】
また、各電極板の全周端面が各電解室に露呈して電解室内の水と接触する構成であり、電気分解の際には各電極板の全周端面でも電気分解が行われるため、各電極板の全周端面にもバリ取り加工や表面処理を施す必要がある。このため、各電極板は一枚づつ製作する必要があり、コスト面でも改善の余地がある。
【0005】
本発明は、上記の問題を解消するため、隔膜の周縁部を挟持する一対のスペーサの背面にそれぞれ形成した凹所に一対の電極板を組付けた状態にて前記隔膜及び両スペーサの周縁部と前記各電極板の両側部を閉ループ状に形成したパッキンの凹所に収容して一体化した組立体を一対のシェル内に収容し、前記パッキンの周縁部を介して前記両シェルを接合して構成され、前記両シェルの内部に供給された水が前記隔膜によって区画形成された一対の電解室にて電気分解されるようにしたことを特徴とする電解槽を提供するものである。
【0006】
【発明の作用効果】
本発明による電解槽においては、隔膜の周縁部を一対のスペーサにて挟持し、各スペーサの背面にそれぞれ形成した凹所に各電極板を組付けた状態にて、両スペーサ及び隔膜の周縁部と電極板の両側部をパッキンの凹所に収容することにより、パッキンにて隔膜、両スペーサ及び両電極板等を容易に一体化することができ、またこれらを一対のシェル内に収容して両シェルを接合連結する際には、これらを一部品として容易に取り扱うことができて、組立作業を容易に行うことができる。
【0007】
また、本発明の実施にあたって、両電極板として、二枚一組で成形加工した後に表面処理を施しその中央部にて切断して製作した二枚の電極板を採用した場合には、パッキンの凹所に収容される電極板の切断部分が電解水と接触しないため、切断部にバリ取り加工や表面処理を施す必要がなく、各電極板を一枚づつ製作する場合に比して大幅にコスト低減することができる。
【0008】
【発明の実施の形態】
以下に本発明の一実施形態を図面に基づいて説明する。図1及び図2は本発明による電解槽の一実施形態を示していて、この電解槽は、フロントシェル11及びリヤシェル12と、これら両シェル11,12内に組付けられて収容される隔膜13、前後一対のスペーサ14,15、前後一対の電極板16,17及びパッキン18を備えている。
【0009】
フロントシェル11は、図1〜図4に示したように、シェル本体11aとこれに接着固定したフローカバー11bと一対のフローガイド11c,11dによって構成されている。シェル本体11aは、給水弁(図示省略)を介して水道管(図示省略)に接続される水道水流入口11eと、濃塩水供給ポンプモータ(図示省略)を介して濃塩水タンク(図示省略)に接続される濃塩水流入口11fと、アルカリ性水又は酸性水の流出口11gと、酸性水又はアルカリ性水の流出口11hを備えるとともに、フローカバー11bとによって混合室A及び一対の分岐路B1,B2を形成する通路溝11iと、各分岐路B1,B2に連通する凹所11j,11kと、フローガイド11cとによって流出口11gに連通する連通路P1を形成する通路溝11mと、フローガイド11dとによって流出口11hに連通する連通路P2を形成する通路溝11nと、シール溝11oを備えている。なお、図4に示したシェル本体11aの斜線部位はフローカバー11bと一対のフローガイド11c,11dの接着面を示している。
【0010】
リヤシェル12は、図1及び図5に示したように、フロントシェル11の各凹所11j,11kに対向する凹所12a,12bを下部に備えるとともに、フロントシェル11のシール溝11oに対向するシール溝12cを周縁部に備えており、また上部に横長の凹所12dを備えている。このリヤシェル12は、フロントシェル11との間に隔膜13、前後一対のスペーサ14,15、前後一対の電極板16,17及びパッキン18を挟んだ状態にて図1に示した多数のビス19によってフロントシェル11に接合連結固定されるようになっている。
【0011】
隔膜13は、図2に示したように、前後一対のスペーサ14,15によって周縁部を挟持された状態にて両シェル11,12間に保持されて、両シェル11,12内に前後一対の電解室R1,R2を区画形成している。また、隔膜13は、図6に示したように、両シェル11,12の各凹所11j,11kと12a,12bに対応して設けた左右一対の角孔13a,13bを下部に備えるとともに、左右一対の丸孔13c,13dを上部に備えており、周縁部及び上部に多数の小孔13eを備えている。
【0012】
前後一対のスペーサ14,15は、隔膜13の周縁部を挟持する機能と、この隔膜13と各電極板16,17間の隙間を所定値とする機能と、各電極板16,17を保持する機能を有していて、図7及び図8にて示したように、上下一対の薄肉ブリッジC1,C2にて連結された状態にて成形されるようになっており、両薄肉ブリッジC1,C2を切断除去した状態で使用されるようになっている。
【0013】
前方に配設されるスペーサ14は、図7の右方及び図8の左方に示されていて、隔膜13の各角孔13a,13bに一致する各角孔14a,14bと横長の角孔14cを下部に備えるとともに、後方の電解室R2の上部をフロントシェル11に形成した連通路P1に連通させる連通筒14dを上部一側に備えており、図7の右方に示した背面の周縁には、隔膜13の小孔13eを貫通してスペーサ15に設けた多数の係合孔15eに嵌合する多数の係合突起14eが形成されている。また、スペーサ14の背面には、隔膜13の丸孔13dを貫通してスペーサ15に形成した貫通孔15fに嵌入する円柱突起14fが形成されている。一方、スペーサ14の前面には、図8の左方に示したように、電極板16を組付けるための凹所14gが形成されるとともに、図8の左方の角孔14aから横長の角孔14cに水を導くための複数個の切欠14hと、横長の角孔14cから上方に水を導くための複数個の切欠14i(図8において左方の切欠の幅が右方の切欠の幅より広く形成されている)が形成されている。
【0014】
後方に配設されるスペーサ15は、図7の左方及び図8の右方に示されていて、隔膜13の各角孔13a,13bに一致する各角孔15a,15bと横長の角孔15cを下部に備えるとともに、上部にスペーサ14の連通筒14dと円柱突起14fがそれぞれ嵌合する貫通孔15dと15fを備えており、その周縁にはスペーサ14の係合突起14eが嵌合する係合孔15eが貫通して形成されている。また、スペーサ15の背面には、図8の右方に示したように、電極板17を組付けるための凹所15gが形成されるとともに、図8の左方の角孔15bから横長の角孔15cに水を導くための複数個の切欠15hと、横長の角孔15cから上方に水を導くための複数個の切欠15i(図8において左方の切欠の幅が右方の切欠の幅より広く形成されている)が形成されている。
【0015】
前後一対の電極板16,17は、図9にて示したように二枚一組で成形加工した後に表面処理(焼成メッキ)を施し、その後に図10に示したように切断部が側部となるように二枚に切断加工して製作したもので、隔膜13を挟持する両スペーサ14,15の各凹所14g,15gに、各2個の円筒打ち出し部16a,16aと17a,17aが内側となるようにして組付けられるようになっている。各円筒打ち出し部16a,16aと17a,17aは、通電用の各端子ねじ21と22がねじ込まれて固定される部位であり、各端子ねじ21,22は各シェル11,12を液密的に貫通してねじ込まれるようになっている。
【0016】
パッキン18は、図11〜図14にて示したように、隔膜13、前後一対のスペーサ14,15及び前後一対の電極板16,17を一体化する機能と、隔膜13の左方の角孔13aと両スペーサ14,15の各角孔14a,15aを通して連通する各シェル11,12の凹所11j,12aによって形成されるチャンバーD1と隔膜13の右方の角孔13bと両スペーサ14,15の各角孔14b,15bを通して連通する各シェル11,12の凹所11k,12bによって形成されるチャンバーD2とを区画する機能を有していて、両スペーサ14,15の周縁部と隔膜13の周縁部を収容するとともに両電極板16,17の両側部を収容する凹所18a1を有して閉ループ形状に形成された矩形の周縁部18aと、左方下部後方のシール部18bと、右方下部前方のシール部18cを備えており、周縁部18aの前後両面には各シェル11,12のシール溝11o,12cに嵌合するリブ18d,18eがそれぞれ形成されている。
【0017】
上記のように構成した本実施形態の電解槽においては、水道水流入口11eに水道水が供給されるとともに濃塩水流入口11fに濃塩水が供給されると、水道水流入口11eから流入する水道水と濃塩水流入口11fから流入する濃塩水がフロントシェル11に形成した混合室Aにて混合されて希塩水となり、この希塩水が各分岐路B1,B2を通して各チャンバーD1,D2にそれぞれ流入し、各チャンバーD1,D2から各電解室R1,R2へと流れる。また、各電解室R1,R2に流入した希塩水は、例えば前方の電極板16に正極が印加されるとともに後方の電極板17に負極が印加されることによって、それぞれ電気分解されて酸性水とアルカリ性水となり、前方の電解室R1にて生成された酸性水はフロントシェル11の右方に形成した連通路P2を通して右方の流出口11hへと流れ、また後方の電解室R2にて生成されたアルカリ性水はスペーサ14の連通筒14dとフロントシェル11の左方に形成した連通路P1を通して左方の流出口11gへと流れて、各流出口11h,11gから各導出管(図示省略)を通してそれぞれ使用箇所へと導かれる。
【0018】
ところで、本実施形態の電解槽においては、隔膜13の周縁部を一対のスペーサ14,15にて挟持し、各スペーサ14,15の背面に設けた凹所14g,15gに各電極板16,17を組付けた状態にて、両スペーサ14,15及び隔膜13の周縁部と両電極板16,17の両側部をパッキン18の凹所18a1に収容することにより、図15に示したように、パッキン18にて隔膜13、両スペーサ14,15及び両電極板16,17等を容易に一体化することができ、またこれらを一対のシェル11,12内に収容して両シェル11,12を接合連結する際には、これらを一部品として容易に取り扱うことができて、組立作業を容易に行うことができる。
【0019】
また、本実施形態の電解槽においては、両電極板16,17として、二枚一組で成形加工した後に表面処理を施し、その後に切断部が側部となるように二枚に切断加工して製作した電極板が採用されていて、パッキン18の凹所18a1に収容される各電極板16,17の側部が切断部となって電解水と接触しないため、切断部にバリ取り加工や表面処理を施す必要がなく、各電極板16,17を一枚づつ製作する場合に比して大幅にコスト低減することができる。
【0020】
また、本実施形態の電解槽においては、図4にて示したように、各分岐路B1,B2(分流基点Sから各電解室R1,R2に至る各分岐通路の一部)が絞り通路とされている。このため、流入口11e,11fを通して電解槽内に供給される水道水及び濃塩水の流量が少ない場合にも、両絞り通路B1,B2より流入側の水圧を高い状態に維持することができる。したがって、各絞り通路B1,B2より流出側の各通路における圧力変動等に起因して各通路内水圧に差圧が生じても、この差圧は各絞り通路B1,B2を介して抑制されて流入側に伝わるため、各電解室R1,R2に供給される流量の差は抑制され、電気分解によって生成される酸性水の流量とアルカリ性水の流量の差が抑制されて、酸性水及びアルカリ性水の各生成流量の変動が抑制される。また、各絞り通路B1,B2によって各電解室R1,R2での水圧を低減することができて、隔膜13に加わる負荷を低減することができ、隔膜13の耐久性を高めることができる。
【0021】
上記実施形態においては、希塩水を電気分解して酸性水とアルカリ性水を生成する電解槽に本発明を実施したが、水道水を電気分解して酸性水とアルカリ性水を生成する電解槽にも本発明は同様に実施し得るものである。
【図面の簡単な説明】
【図1】 本発明による電解槽の分解正面図である。
【図2】 図1に示した電解槽を組み立てた状態での縦断側面図である。
【図3】 図1及び図2に示したフロントシェル背面図である。
【図4】 図3に示したシェル本体の背面図である。
【図5】 図1及び図2に示したリヤシェルの正面図である。
【図6】 図1及び図2に示した隔膜の正面図である。
【図7】 図2に示した前方のスペーサの背面と後方のスペーサの前面を示した図である。
【図8】 図2に示した前方のスペーサの前面と後方のスペーサの背面を示した図である。
【図9】 図2に示した前後一対の電極板の製作過程を示す図である。
【図10】 図9に示した各電極板単体の正面図である。
【図11】 図2に示したパッキンの正面図である。
【図12】 図2に示したパッキンの背面図である。
【図13】 図11の13−13線に沿った断面図である。
【図14】 図11の14−14線に沿った断面図である。
【図15】 隔膜、一対のスペーサ及び一対の電極板をパッキンにて一体化した組立体の正面図である。
【符号の説明】
11…フロントシェル、11e,11f…流入口、11h,11g…流出口、12…リアシェル、13…隔膜、14,15…スペーサ、16,17…電極板、18…パッキン、18a1…凹所、B1,B2…分岐路(絞り通路)、R1,R2…電解室。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic cell in which water is electrolyzed to generate acidic water and alkaline water.
[0002]
[Prior art]
As one of this type of electrolytic cell, electrode plates are disposed on the back surfaces of a pair of spacers sandwiching a diaphragm, and these are accommodated in a pair of shells to form a pair of electrolytic chambers. The water supplied to is electrolyzed to produce acidic water and alkaline water, and is disclosed in, for example, JP-A-9-75947.
[0003]
[Problems to be solved by the invention]
In the electrolytic cell disclosed in the above-mentioned JP-A-9-75947, one electrode plate and a spacer are pre-assembled in one shell and the other electrode plate and spacer are pre-assembled in the other shell. As a result, it is necessary to prevent each electrode plate and each spacer from being detached from each shell when the two shells are joined and connected across the diaphragm. There is room for improvement in sex.
[0004]
In addition, the entire peripheral end surface of each electrode plate is exposed to each electrolysis chamber and comes into contact with the water in the electrolysis chamber, and electrolysis is also performed on the entire peripheral end surface of each electrode plate. It is necessary to perform deburring and surface treatment on the entire peripheral end surface of the electrode plate. For this reason, it is necessary to manufacture each electrode plate one by one, and there is room for improvement in terms of cost.
[0005]
The present invention, in order to solve the above problem, the recess forming respectively the peripheral edge of the diaphragm on the back of a pair of spacers for clamping in a state assembled with the pair of electrode plates of the diaphragm and both the spacer a peripheral portion and a front Symbol assembly with both side portions integrally accommodated in a recess of the packing formed in a closed loop of each power electrode plate accommodated in a pair of shells, said via a peripheral portion of the packing both An electrolytic cell comprising a shell joined and water supplied to the inside of both shells is electrolyzed in a pair of electrolytic chambers defined by the diaphragm. It is.
[0006]
[Effects of the invention]
In the electrolytic cell according to the present invention, the periphery of the diaphragm is sandwiched between the pair of spacers, and the electrode plates are assembled in the recesses formed on the back surfaces of the spacers. And by accommodating both sides of each electrode plate in the recess of the packing, the diaphragm, both spacers, both electrode plates, etc. can be easily integrated with the packing, and these are accommodated in a pair of shells. Thus, when the two shells are joined and connected, they can be easily handled as one part, and the assembling work can be easily performed.
[0007]
Also, when hitting the practice of the present invention, as electrode plates, employing a two electrode plates fabricated by cutting the surface treatment after molding with two pair at the center portion of the facilities shiso is Because the cut part of the electrode plate housed in the recess of the packing does not come into contact with the electrolyzed water, it is not necessary to perform deburring or surface treatment on the cut part, compared with the case where each electrode plate is manufactured one by one. Cost can be greatly reduced.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 and 2 show an embodiment of an electrolytic cell according to the present invention. This electrolytic cell includes a front shell 11 and a rear shell 12, and a diaphragm 13 assembled and accommodated in both shells 11 and 12. FIG. A pair of front and rear spacers 14 and 15, a pair of front and rear electrode plates 16 and 17, and a packing 18 are provided.
[0009]
As shown in FIGS. 1 to 4, the front shell 11 includes a shell main body 11a, a flow cover 11b bonded and fixed thereto, and a pair of flow guides 11c and 11d. The shell body 11a is connected to a tap water inlet 11e connected to a water pipe (not shown) via a water supply valve (not shown) and a concentrated salt water tank (not shown) via a concentrated salt water supply pump motor (not shown). A concentrated salt water inlet 11f, an alkaline water or acidic water outlet 11g, an acidic water or alkaline water outlet 11h are provided, and a mixing chamber A and a pair of branch paths B1 and B2 are provided by a flow cover 11b. A passage groove 11i that forms a communication passage P1 that communicates with the outflow port 11g by a flow guide 11c, a passage groove 11i that forms a communication passage P1 that communicates with the branch passages B1 and B2, and a flow guide 11d. Are provided with a passage groove 11n forming a communication passage P2 communicating with the outlet 11h, and a seal groove 11o. The hatched portion of the shell main body 11a shown in FIG. 4 indicates the bonding surface between the flow cover 11b and the pair of flow guides 11c and 11d.
[0010]
As shown in FIGS. 1 and 5, the rear shell 12 includes recesses 12 a and 12 b facing the recesses 11 j and 11 k of the front shell 11 in the lower part, and a seal facing the seal groove 11 o of the front shell 11. A groove 12c is provided at the periphery, and a horizontally elongated recess 12d is provided at the top. The rear shell 12 is formed by a number of screws 19 shown in FIG. 1 with a diaphragm 13, a pair of front and rear spacers 14 and 15, a pair of front and rear electrode plates 16 and 17, and a packing 18 sandwiched between the rear shell 12 and the front shell 11. The front shell 11 is joined and fixed.
[0011]
As shown in FIG. 2, the diaphragm 13 is held between the shells 11 and 12 with the peripheral edge being sandwiched between the pair of front and rear spacers 14 and 15, and the pair of front and rear is placed in the shells 11 and 12. The electrolytic chambers R1 and R2 are partitioned. Further, as shown in FIG. 6, the diaphragm 13 includes a pair of left and right square holes 13 a and 13 b provided in the lower portion corresponding to the recesses 11 j and 11 k and 12 a and 12 b of the shells 11 and 12, respectively. A pair of left and right round holes 13c, 13d are provided at the top, and a large number of small holes 13e are provided at the periphery and the top.
[0012]
The pair of front and rear spacers 14 and 15 hold the function of sandwiching the peripheral edge of the diaphragm 13, the function of setting the gap between the diaphragm 13 and the electrode plates 16 and 17 to a predetermined value, and the electrode plates 16 and 17. 7 and 8, it is formed in a state of being connected by a pair of upper and lower thin bridges C1 and C2, and both thin bridges C1 and C2 are formed. It is designed to be used in a state in which is cut and removed.
[0013]
The spacer 14 disposed on the front side is shown on the right side of FIG. 7 and on the left side of FIG. 8, and each of the square holes 14a and 14b corresponding to the square holes 13a and 13b of the diaphragm 13 and the horizontally long square hole are shown. 14c is provided in the lower part, and a communication cylinder 14d is provided on one side of the upper part of the rear electrolysis chamber R2 so as to communicate with a communication path P1 formed in the front shell 11. The peripheral edge of the rear surface shown on the right side of FIG. A plurality of engaging projections 14e are formed through the small holes 13e of the diaphragm 13 and fitted into a plurality of engaging holes 15e provided in the spacer 15. Further, on the back surface of the spacer 14, a cylindrical protrusion 14 f that passes through the circular hole 13 d of the diaphragm 13 and fits into the through hole 15 f formed in the spacer 15 is formed. On the other hand, as shown on the left side of FIG. 8, a recess 14g for assembling the electrode plate 16 is formed on the front surface of the spacer 14, and a horizontally long corner is formed from the left square hole 14a of FIG. A plurality of notches 14h for guiding water to the holes 14c and a plurality of notches 14i for guiding water upward from the horizontally long square holes 14c (the width of the left notch in FIG. 8 is the width of the right notch). Is more widely formed).
[0014]
The spacer 15 disposed on the rear side is shown on the left side of FIG. 7 and on the right side of FIG. 8, and each of the square holes 15a and 15b corresponding to the square holes 13a and 13b of the diaphragm 13 and a horizontally long square hole are shown. 15c is provided in the lower part, and the upper part is provided with through holes 15d and 15f into which the communicating cylinder 14d and the columnar protrusion 14f of the spacer 14 are fitted, respectively, and the engagement protrusion 14e of the spacer 14 is fitted in the periphery thereof. A joint hole 15e is formed through. Further, as shown on the right side of FIG. 8, a recess 15g for assembling the electrode plate 17 is formed on the back surface of the spacer 15, and a horizontally long corner is formed from the left square hole 15b of FIG. A plurality of notches 15h for guiding water to the holes 15c and a plurality of notches 15i for guiding water upward from the horizontally long rectangular holes 15c (the width of the left notch in FIG. 8 is the width of the right notch). Is more widely formed).
[0015]
As shown in FIG. 9, the pair of front and rear electrode plates 16 and 17 are subjected to surface treatment (firing plating) after being formed into a set of two pieces, and then the cut portions are side portions as shown in FIG. The two cylindrical projecting portions 16a, 16a and 17a, 17a are formed in the recesses 14g, 15g of the spacers 14, 15 sandwiching the diaphragm 13, respectively. It can be assembled inside. Each cylindrical projecting portion 16a, 16a and 17a, 17a is a portion to which each terminal screw 21 and 22 for energization is screwed and fixed, and each terminal screw 21, 22 makes each shell 11, 12 liquid-tight. It is designed to be screwed through.
[0016]
As shown in FIGS. 11 to 14, the packing 18 has a function of integrating the diaphragm 13, the pair of front and rear spacers 14 and 15, and the pair of front and rear electrode plates 16 and 17, and a left-side square hole of the diaphragm 13. 13 a and the right corner hole 13 b of the diaphragm 13 and the spacer 13 formed by the recesses 11 j and 12 a of the shells 11 and 12 communicating with the corner holes 14 a and 15 a of the spacers 14 and 15. And has a function of partitioning the chamber D2 formed by the recesses 11k and 12b of the shells 11 and 12 communicating with each other through the square holes 14b and 15b. A rectangular peripheral edge 18a formed in a closed loop shape having a recess 18a1 for receiving the peripheral edge and receiving both sides of both electrode plates 16 and 17, and a seal on the left lower rear And 18b, has a right lower front of the sealing portion 18c, the front and rear surfaces of the peripheral portion 18a seal groove 11o of the shells 11 and 12, ribs 18d that fits 12c, 18e are formed respectively.
[0017]
In the electrolytic cell of the present embodiment configured as described above, when tap water is supplied to the tap water inlet 11e and concentrated salt water is supplied to the concentrated salt water inlet 11f, tap water flows from the tap water inlet 11e. The concentrated salt water flowing in from the concentrated salt water inlet 11f is mixed in the mixing chamber A formed in the front shell 11 to become diluted salt water, and this diluted salt water flows into the chambers D1 and D2 through the branch paths B1 and B2, respectively. , Flows from each chamber D1, D2 to each electrolysis chamber R1, R2. Further, the dilute salt water flowing into the electrolysis chambers R1 and R2 is electrolyzed, for example, by applying a positive electrode to the front electrode plate 16 and a negative electrode to the rear electrode plate 17, respectively. The acidic water that has become alkaline water and is generated in the front electrolysis chamber R1 flows to the right outlet 11h through the communication passage P2 formed on the right side of the front shell 11, and is generated in the rear electrolysis chamber R2. Alkaline water flows to the left outlet 11g through the communication tube 14d of the spacer 14 and the communication passage P1 formed on the left side of the front shell 11, and from each outlet 11h, 11g to each outlet pipe (not shown). Each leads to the point of use.
[0018]
By the way, in the electrolytic cell of this embodiment, the peripheral part of the diaphragm 13 is pinched | interposed with a pair of spacers 14 and 15, and each electrode plate 16 and 17 is put into the recesses 14g and 15g provided in the back surface of each spacer 14 and 15. 15, the peripheral portions of the spacers 14 and 15 and the diaphragm 13 and the both side portions of the electrode plates 16 and 17 are accommodated in the recesses 18 a 1 of the packing 18, as shown in FIG. The packing 13, the spacers 14, 15 and the electrode plates 16, 17 and the like can be easily integrated with each other, and these are accommodated in the pair of shells 11 and 12 so that the shells 11 and 12 are accommodated. When joining and connecting, these can be easily handled as one part, and assembly work can be easily performed.
[0019]
Moreover, in the electrolytic cell of this embodiment, both electrode plates 16 and 17 are subjected to surface treatment after being formed and processed in pairs, and then cut into two pieces so that the cut portions become side portions. The electrode plate manufactured in this way is used, and the side portions of the electrode plates 16 and 17 accommodated in the recess 18a1 of the packing 18 become cut portions and do not come into contact with the electrolytic water. It is not necessary to perform surface treatment, and the cost can be greatly reduced as compared with the case where each of the electrode plates 16 and 17 is manufactured one by one.
[0020]
Moreover, in the electrolytic cell of this embodiment, as shown in FIG. 4, each branch path B1, B2 (a part of each branch path from the diversion base point S to each electrolytic chamber R1, R2) is a throttle path. Has been. For this reason, even when the flow rates of tap water and concentrated salt water supplied into the electrolytic cell through the inlets 11e and 11f are small, the water pressure on the inflow side from both throttle passages B1 and B2 can be maintained at a higher level. Therefore, even if a differential pressure occurs in the water pressure in each passage due to pressure fluctuations in each passage on the outflow side from each throttle passage B1, B2, this differential pressure is suppressed via each throttle passage B1, B2. Since it is transmitted to the inflow side, the difference between the flow rates supplied to the electrolysis chambers R1 and R2 is suppressed, and the difference between the flow rate of acidic water generated by electrolysis and the flow rate of alkaline water is suppressed. The fluctuation of each generated flow rate is suppressed. Moreover, the water pressure in each electrolysis chamber R1, R2 can be reduced by each throttle passage B1, B2, the load applied to the diaphragm 13 can be reduced, and the durability of the diaphragm 13 can be enhanced.
[0021]
In the above embodiment, the present invention was implemented in an electrolytic cell that electrolyzes dilute salt water to generate acidic water and alkaline water, but also in an electrolytic cell that electrolyzes tap water to generate acidic water and alkaline water. The present invention can be similarly implemented.
[Brief description of the drawings]
FIG. 1 is an exploded front view of an electrolytic cell according to the present invention.
FIG. 2 is a vertical side view of the electrolytic cell shown in FIG. 1 in an assembled state.
3 is a rear view of the front shell shown in FIGS. 1 and 2. FIG.
4 is a rear view of the shell main body shown in FIG. 3. FIG.
FIG. 5 is a front view of the rear shell shown in FIGS. 1 and 2;
6 is a front view of the diaphragm shown in FIGS. 1 and 2. FIG.
7 is a view showing a rear surface of a front spacer and a front surface of a rear spacer shown in FIG. 2; FIG.
8 is a view showing a front surface of a front spacer and a back surface of a rear spacer shown in FIG. 2. FIG.
9 is a diagram showing a manufacturing process of a pair of front and rear electrode plates shown in FIG. 2. FIG.
10 is a front view of each electrode plate shown in FIG. 9; FIG.
FIG. 11 is a front view of the packing shown in FIG. 2;
12 is a rear view of the packing shown in FIG. 2. FIG.
13 is a cross-sectional view taken along line 13-13 in FIG.
14 is a cross-sectional view taken along line 14-14 of FIG.
FIG. 15 is a front view of an assembly in which a diaphragm, a pair of spacers, and a pair of electrode plates are integrated by packing.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Front shell, 11e, 11f ... Inlet, 11h, 11g ... Outlet, 12 ... Rear shell, 13 ... Diaphragm, 14, 15 ... Spacer, 16, 17 ... Electrode plate, 18 ... Packing, 18a1 ... Recess, B1 , B2: Branch path (throttle path), R1, R2: Electrolytic chamber.

Claims (2)

隔膜の周縁部を挟持する一対のスペーサの背面にそれぞれ形成した凹所に一対の電極板を組付けた状態にて前記隔膜及び両スペーサの周縁部と前記各電極板の両側部を閉ループ状に形成したパッキンの凹所に収容して一体化した組立体を一対のシェル内に収容し、前記パッキンの周縁部を介して前記両シェルを接合して構成され、前記両シェルの内部に供給された水が前記隔膜によって区画形成された一対の電解室にて電気分解されるようにしたことを特徴とする電解槽。 Both side portions of the peripheral edge and front Symbol respective conductive plates of the diaphragm and both the spacer peripheral portion of the diaphragm in a state assembled with the pair of electrode plates in recesses formed respectively on the back of a pair of spacers for clamping Are assembled in a pair of shells, and the shells are joined to each other through the peripheral edge of the packing. An electrolytic cell characterized in that water supplied to the inside is electrolyzed in a pair of electrolytic chambers partitioned by the diaphragm . 前記一対の電極板として、二枚一組で成形加工した後に表面処理を施しその中央部にて切断して製作した二枚の電極を採用し、これら二枚の電極板の切断部分を前記パッキンの凹所に収容したことを特徴とする請求項1に記載の電解槽。As the pair of electrode plates, adopted two electrode fabricated by cutting the surface treatment after molding with two pair at the center portion of the facilities basil, wherein the cutting portion of these two electrode plates The electrolytic cell according to claim 1, wherein the electrolytic cell is housed in a recess of the packing.
JP22183298A 1998-08-05 1998-08-05 Electrolytic cell Expired - Fee Related JP3993315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22183298A JP3993315B2 (en) 1998-08-05 1998-08-05 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22183298A JP3993315B2 (en) 1998-08-05 1998-08-05 Electrolytic cell

Publications (2)

Publication Number Publication Date
JP2000051856A JP2000051856A (en) 2000-02-22
JP3993315B2 true JP3993315B2 (en) 2007-10-17

Family

ID=16772901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22183298A Expired - Fee Related JP3993315B2 (en) 1998-08-05 1998-08-05 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP3993315B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321769A (en) * 2000-05-17 2001-11-20 Hoshizaki Electric Co Ltd Diaphragm electrolytic cell

Also Published As

Publication number Publication date
JP2000051856A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
BR112017026680B1 (en) HIGH VOLUME WATER ELECTROLYSIS SYSTEM AND METHOD OF USE
CA2992838C (en) Fuel cell stack
JP3213213B2 (en) Electrolytic cell
JP3993315B2 (en) Electrolytic cell
JP3885027B2 (en) Electrolytic cell
CN212559579U (en) Electrodialysis filter core and water purifier
JP3579591B2 (en) Electrolytic cell
JP3592095B2 (en) Electrolyzed water generator
JP2000061469A (en) Electrolytic water generator
CN107902707B (en) Integrated waterway plate and water purifier
JP2005347106A (en) Redox flow battery cell
CN104241671A (en) Flowing frame assembly and flow cell with same
KR102251411B1 (en) RED stack assembling apparatus and RED stack using the same
CN218954103U (en) Multi-way valve and water softener
JP2001321769A (en) Diaphragm electrolytic cell
CN219655333U (en) Tap valve core and tap
JP2011168872A (en) Electrolytic cell structure of diaphragm electrolytic cell
CN110975533B (en) Purifier
CN218991854U (en) One-way valve assembly of plunger diaphragm pump
CN220834507U (en) Filter element assembly and water purifying device
CN220834506U (en) Composite filter element and water purifying equipment
JP4584501B2 (en) Electrolytic cell
JPH10309581A (en) Electrolytic cell of ionized water generator
CN217923933U (en) Distributing valve for intelligent closestool
CN217977539U (en) Multifunctional shared water path assembly of shower faucet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees