JP2005228617A - Double-sided terminal board for redox flow battery cell stack - Google Patents

Double-sided terminal board for redox flow battery cell stack Download PDF

Info

Publication number
JP2005228617A
JP2005228617A JP2004036552A JP2004036552A JP2005228617A JP 2005228617 A JP2005228617 A JP 2005228617A JP 2004036552 A JP2004036552 A JP 2004036552A JP 2004036552 A JP2004036552 A JP 2004036552A JP 2005228617 A JP2005228617 A JP 2005228617A
Authority
JP
Japan
Prior art keywords
redox flow
frame
flow battery
liquid supply
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004036552A
Other languages
Japanese (ja)
Inventor
Takeshi Kanno
毅 寒野
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2004036552A priority Critical patent/JP2005228617A/en
Publication of JP2005228617A publication Critical patent/JP2005228617A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a redox flow battery stack in which a bipolar board constituting a cell as a terminal board can be used as it is, and at the same time the number of the terminal boards can be made less. <P>SOLUTION: This is two sets of the redox flow battery cell stacks in which, on the both sides of single double-sided terminal board, an arbitrary numbers of cells 1 are laminated, and in the respective outsides of the laminated cells 1, terminal boards 3a, 3b are arranged, and this is the two sets of the redox flow battery cell stacks in which the external shape and a material of the bipolar board member constituting the cell 1 and the external shape and the material of the double-sided terminal board 2 are the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、レドックスフロー電池(又はレドックスフロー型二次電池)セルスタック用の端子板、2組のセルスタックの配置に特徴を有するレドックスフロー電池セルスタック、及びレドックスフロー電池に関するものである。   The present invention relates to a terminal plate for a redox flow battery (or redox flow type secondary battery) cell stack, a redox flow battery cell stack characterized by the arrangement of two cell stacks, and a redox flow battery.

レドックスフロー電池(又はレドックスフロー型二次電池)は、活物質として電解液中の、イオンの価数の変化(酸化還元反応)を利用した電池であり、活物質の劣化が少なく、電池寿命が長く、高速応答性及び高出力対応が可能であるとともに排ガスが発生せず環境汚染の虞が少ないという特徴を有している。この電池は、イオン交換膜などの隔膜の両側に、電極(正極及び負極)と、双極板を備えたフレームとがそれぞれ配設されたセルから構成されている。そして、隔膜と双極板との間に位置し、かつ正極が配設される正極室に正極液を循環させる。同時に、隔膜と双極板との間に位置し、かつ負極が配設される負極室に負極液を循環させる。(以下、正極液と負極液を合わせて電解液ということがある。)   A redox flow battery (or a redox flow type secondary battery) is a battery that uses a change in the valence of an ion (oxidation-reduction reaction) in an electrolytic solution as an active material, has little deterioration of the active material, and has a battery life. It has a feature of being long, capable of high-speed response and high output, and having no possibility of environmental pollution without generating exhaust gas. This battery is composed of cells in which electrodes (a positive electrode and a negative electrode) and a frame having a bipolar plate are disposed on both sides of a diaphragm such as an ion exchange membrane. A positive electrode solution is circulated in a positive electrode chamber located between the diaphragm and the bipolar plate and provided with a positive electrode. At the same time, the negative electrode solution is circulated in the negative electrode chamber located between the diaphragm and the bipolar plate and provided with the negative electrode. (Hereinafter, the positive electrode solution and the negative electrode solution may be collectively referred to as an electrolytic solution.)

上記のセルを複数積層することにより、所望の電圧に適合するレドックスフロー電池が形成される。しかし、積層セルの数を多数にすると、シャントカレント(漏洩電流)が増大し、システム損失が増大する。このため、一定数(例えば25)のセルを積層したセルスタックの両端に、一対の端子電極を配置し、レドックスフロー電池の構成単位としている。(例えば、特許文献1参照。)
特開平2−183968号公報(第11図)
By stacking a plurality of the above cells, a redox flow battery suitable for a desired voltage is formed. However, when the number of stacked cells is increased, the shunt current (leakage current) increases and the system loss increases. For this reason, a pair of terminal electrodes are arranged at both ends of a cell stack in which a certain number (for example, 25) of cells are stacked, and is used as a constituent unit of a redox flow battery. (For example, refer to Patent Document 1.)
Japanese Patent Laid-Open No. 2-183968 (FIG. 11)

従来の、レドックスフロー電池の構成単位であるセルスタックは、端子電極板を収納する一対の端子板と、正極液、負極液の配管取付け用部材である給排板を必要とした。よって単一のセルスタックに2枚の端子板と給排板が必要であった。   A conventional cell stack, which is a structural unit of a redox flow battery, requires a pair of terminal plates that house terminal electrode plates and a supply / discharge plate that is a member for attaching a positive electrode solution and a negative electrode solution. Therefore, two terminal plates and a supply / discharge plate are required for a single cell stack.

本発明は、端子板と給排板数を少なく出来る、レドックスフロー電池セルスタックを得ることを課題とする。また、本発明は端子板として、セルを構成する双極板をそのまま使用出来るレドックスフロー電池スタックを得ることを課題とする。さらに、本発明の課題は、このようなセルスタックを使用したレドックスフロー電池を得ることにある。   An object of the present invention is to obtain a redox flow battery cell stack that can reduce the number of terminal plates and supply / discharge plates. Moreover, this invention makes it a subject to obtain the redox flow battery stack which can use the bipolar plate which comprises a cell as a terminal board as it is. Furthermore, the subject of this invention is obtaining the redox flow battery which uses such a cell stack.

本発明にかかるレドックスフロー電池セルスタック用両面端子板は、双極板と、前記双極板の外周部に固定して設けられ、前記双極板の一方の面を底面とする第1凹部と、前記双極板の他方の面を底面とする第2凹部を形成するフレームと、前記フレームに設けられ、フレーム外部と第1凹部を連絡する第1給液通路、第1排液通路と、前記フレームに設けられ、フレーム外部と第2凹部を連絡する第2給液通路、第2排液通路からなり、第1給液通路が前記フレーム表面に形成する入口を通過する液体は、全て第1凹部に流入し、第2給液通路が前記フレーム表面に形成する入口を通過する液体は、全て第2凹部に流入することを特徴とする。   A double-sided terminal plate for a redox flow battery cell stack according to the present invention is provided with a bipolar plate, fixed to an outer peripheral portion of the bipolar plate, a first recess having one surface of the bipolar plate as a bottom surface, and the bipolar plate A frame that forms a second recess having the other surface of the plate as a bottom surface, a first liquid supply passage that is provided in the frame and communicates with the outside of the frame and the first recess, and a first drainage passage, and is provided in the frame The second liquid supply passage and the second drainage passage that communicate with the outside of the frame and the second recess, all of the liquid that passes through the inlet formed on the surface of the frame by the first liquid supply passage flows into the first recess. And all the liquid which passes the inlet_port | entrance which a 2nd liquid supply path forms in the said frame surface flows into a 2nd recessed part, It is characterized by the above-mentioned.

本発明にかかる2組のレドックスフロー電池セルスタックは、請求項1記載のレドックスフロー電池セルスタック用両面端子板の両側に、任意の数のセルを積層し、前記積層したセルの外側それぞれに、端子板を配置したことを特徴とする。
本発明の実施形態において、2組のレドックスフロー電池セルスタックは、前記セルを構成する双極板部材の外形、材質と、前記両面端子板を構成する双極板部材の外形、材質が等しいものでも良い。
本発明にかかるレドックスフロー電池は、本発明にかかる2組のレドックスフロー電池セルスタックを用いることを特徴とする。
以上説明した本発明の実施形態は可能な限り組み合わせることができる。
Two sets of redox flow battery cell stacks according to the present invention are formed by laminating an arbitrary number of cells on both sides of the double-sided terminal plate for redox flow battery cell stacks according to claim 1, and on each outer side of the laminated cells. A terminal board is arranged.
In the embodiment of the present invention, the two sets of redox flow battery cell stacks may have the same outer shape and material of the bipolar plate member constituting the cell and the outer shape and material of the bipolar plate member constituting the double-sided terminal plate. .
The redox flow battery according to the present invention uses two sets of redox flow battery cell stacks according to the present invention.
The embodiments of the present invention described above can be combined as much as possible.

本発明の両面端子板は、セルを構成する双極板を、新たに加工することなくそのまま使用出来る。ひいては、レドックスフロー電池の製造コストを引き下げることができる。
本発明の2組のレドックスフロー電池セルスタックは、必要な端子板および給排板を少なくすることが出来る。ひいては、製造時の組み立て工数を削減することが出来る。
本発明のレドックスフロー電池は、上記の効果を有するレドックスフロー電池である。
The double-sided terminal board of the present invention can be used as it is without newly processing the bipolar plate constituting the cell. As a result, the manufacturing cost of the redox flow battery can be reduced.
The two sets of redox flow battery cell stacks of the present invention can reduce the necessary terminal plates and supply / discharge plates. As a result, the assembly man-hour at the time of manufacture can be reduced.
The redox flow battery of the present invention is a redox flow battery having the above effects.

以下に実施例により、本発明にかかるレドックスフロー電池セルスタック用両面端子板(以下、両面端子板という場合がある)、レドックスフロー電池セルスタック(以下、セルスタックという場合がある)、レドックスフロー電池を説明する。この発明の実施例に記載されている部材や部分の寸法、材質、形状、その相対位置などは、とくに特定的な記載のない限りは、この発明の範囲をそれらのみに限定する趣旨のものではなく、単なる説明例にすぎない。   The double-sided terminal board for redox flow battery cell stack according to the present invention (hereinafter sometimes referred to as a double-sided terminal board), a redox flow battery cell stack (hereinafter sometimes referred to as a cell stack), and a redox flow battery according to the following examples. Will be explained. The dimensions, materials, shapes, relative positions, etc. of the members and parts described in the embodiments of the present invention are not intended to limit the scope of the present invention to those unless otherwise specified. It is merely an illustrative example.

図1は2組のセルスタックの分解説明図、図2は2組のセルスタックの断面説明図、図3は両面端子板の説明図である。
図1において、2組のセルスタック6は、1組のセルスタック5aと1組のセルスタック5bからなる。セルスタック5aは、複数の、双極板を備えたフレーム7の積層体の一方に、端子板3aと給配板4aを重ね合わせ、他方に両面端子板2の一方の凹部を重ね合わせて構成される。セルスタック5bは、複数の双極板を備えたフレーム7の積層体の一方に、端子板3bと給配板4bを重ね合わせ、他方に両面端子板2の他方の凹部を重ね合わせて構成される。両面端子板2は2組のセルスタックの間に位置し、2組のセルスタック5a、5bに共通する構成部材である。
1 is an exploded explanatory view of two sets of cell stacks, FIG. 2 is a cross-sectional explanatory view of the two sets of cell stacks, and FIG. 3 is an explanatory view of a double-sided terminal board.
In FIG. 1, the two cell stacks 6 are composed of one cell stack 5a and one cell stack 5b. The cell stack 5a is configured by superimposing the terminal plate 3a and the supply / distribution plate 4a on one of a plurality of laminated bodies of frames 7 having bipolar plates, and superposing one concave portion of the double-sided terminal plate 2 on the other. The The cell stack 5b is configured by superimposing the terminal plate 3b and the supply / distribution plate 4b on one of the laminates of the frame 7 having a plurality of bipolar plates and the other concave portion of the double-sided terminal plate 2 on the other. . The double-sided terminal board 2 is located between the two sets of cell stacks and is a constituent member common to the two sets of cell stacks 5a and 5b.

図2を参照して、1組のセルスタック5a、5bはレドックスフロー電池セル(以下、セルという場合がある)1を複数含む。セル1は、イオン交換膜である矩形状隔膜11の両側に正極14と負極15(以下、正極と負極を電極という場合がある)を配置し、その両側にそれぞれ矩形状双極板(バイポーラプレート)12が配置されている。双極板12の外周部は、フレーム13の内周壁に形成された溝内に収容され、かつ、挟着され、フレームと一体化している。また、フレーム13に配設された双極板12の領域は、正極14、負極15を収納する凹部(電極室)が形成されている。   Referring to FIG. 2, one set of cell stacks 5 a and 5 b includes a plurality of redox flow battery cells (hereinafter also referred to as cells) 1. In the cell 1, a positive electrode 14 and a negative electrode 15 (hereinafter, the positive electrode and the negative electrode may be referred to as electrodes) are arranged on both sides of a rectangular diaphragm 11 which is an ion exchange membrane, and a rectangular bipolar plate (bipolar plate) is provided on each of the two sides. 12 is arranged. The outer peripheral portion of the bipolar plate 12 is accommodated in a groove formed in the inner peripheral wall of the frame 13 and is sandwiched and integrated with the frame. In addition, in the region of the bipolar plate 12 disposed in the frame 13, a concave portion (electrode chamber) for accommodating the positive electrode 14 and the negative electrode 15 is formed.

フレーム13はポリ塩化ビニル系樹脂などの耐酸性材料で形成されており、正極14、負極15は炭素繊維フェルトで構成されている。
給配板4aは、側面に正極液入口72a、負極液入口、正極液出口、負極液出口75aを持ち、これらから延設される穴状部分は、給配板の重ね合わせ面に開口している。給配板4bは、給配板4aと同様の構造である。
The frame 13 is made of an acid resistant material such as polyvinyl chloride resin, and the positive electrode 14 and the negative electrode 15 are made of carbon fiber felt.
The distribution plate 4a has a positive electrode liquid inlet 72a, a negative electrode liquid inlet, a positive electrode liquid outlet, and a negative electrode liquid outlet 75a on the side surface, and a hole-like portion extending from these holes opens on the overlapping surface of the distribution plate. Yes. The distribution board 4b has the same structure as the distribution board 4a.

端子板3aは、矩形板状で、その一方面は負極45aを収納する凹部(端子板室)が形成されている。端子板3aの重ね合わせ面の4隅には、貫通穴が各1個設けられ、給配板4aとフレーム13の間で、正極液と負極液が流通可能となっている。   The terminal plate 3a has a rectangular plate shape, and a concave portion (terminal plate chamber) for accommodating the negative electrode 45a is formed on one surface thereof. One through hole is provided at each of the four corners of the overlapping surface of the terminal board 3a, and the positive and negative electrode liquids can flow between the supply / distribution board 4a and the frame 13.

端子板3bは、矩形板状で、その一方面は正極44bを収納する凹部(端子板室)が形成されている。端子板3bの重ね合わせ面の4隅には、貫通穴が各1個設けられ、給配板4bとフレーム13の間で、正極液と負極液が流通可能となっている。
給配板4と端子板3は、ポリ塩化ビニル系樹脂などの耐酸性材料で形成されており、正極端子44と負極端子45は銅板からなる。また、電極と同じ炭素繊維フェルトで構成しても良い。
The terminal plate 3b has a rectangular plate shape, and a concave portion (terminal plate chamber) for accommodating the positive electrode 44b is formed on one surface thereof. One through hole is provided at each of the four corners of the overlapping surface of the terminal plate 3b, and the positive electrode solution and the negative electrode solution can flow between the supply / distribution plate 4b and the frame 13.
The distribution board 4 and the terminal board 3 are made of an acid resistant material such as polyvinyl chloride resin, and the positive terminal 44 and the negative terminal 45 are made of a copper plate. Moreover, you may comprise with the same carbon fiber felt as an electrode.

両面端子板2は、矩形状双極板(バイポーラプレート)42の外周部をフレーム43で取り囲み形成されている。双極板42の外周部は、フレーム43の内周壁に形成された溝内に収容され、かつ、挟着され、フレームと一体化している。また、フレーム43に配設された双極板42の領域は、正極44a、負極45bを収納するため、第1凹部48、第2凹部49が形成されている。第1凹部48と第2凹部49は電極室である。第1凹部48は、双極板42の一方表面を底面とし、四周をフレーム43に囲まれている。第2凹部49は、双極板42の他方表面を底面とし、四周をフレーム43に囲まれている。   The double-sided terminal board 2 is formed by surrounding a peripheral part of a rectangular bipolar plate (bipolar plate) 42 with a frame 43. The outer peripheral portion of the bipolar plate 42 is accommodated in a groove formed in the inner peripheral wall of the frame 43 and is sandwiched and integrated with the frame. The region of the bipolar plate 42 disposed on the frame 43 is formed with a first recess 48 and a second recess 49 to accommodate the positive electrode 44a and the negative electrode 45b. The first recess 48 and the second recess 49 are electrode chambers. The first recess 48 has one surface of the bipolar plate 42 as a bottom surface and is surrounded by a frame 43 at four sides. The second concave portion 49 has the other surface of the bipolar plate 42 as a bottom surface and is surrounded by the frame 43 at four sides.

図3を参照して、両面端子板43の第1凹部48には、負極45bが収納されている。第1凹部48の内縁部の上端端面と、負極45bの上端面の間には、溝状の隙間があり、この溝を保護板65aで覆って排液整流路57が形成されている。
同様に、第1凹部48の内縁部の下端端面と、負極45bの下端面の間には、溝状の隙間があり、この溝を保護板65bで覆って給液整流路56が形成されている。保護板65a、65bはポリ塩化ビニル系樹脂などの耐酸性材料で形成された幅狭の長尺状プレートである。
Referring to FIG. 3, negative electrode 45 b is accommodated in first recess 48 of double-sided terminal plate 43. There is a groove-like gap between the upper end surface of the inner edge of the first recess 48 and the upper end surface of the negative electrode 45b, and the drainage rectification path 57 is formed by covering this groove with a protective plate 65a.
Similarly, there is a groove-like gap between the lower end face of the inner edge of the first recess 48 and the lower end face of the negative electrode 45b, and the liquid supply rectification path 56 is formed by covering this groove with the protective plate 65b. Yes. The protection plates 65a and 65b are narrow and long plates made of an acid resistant material such as polyvinyl chloride resin.

第1凹部48の内縁部の上下端面は切欠段部が形成されている。切欠段部の切欠深さは、保護板65a、65bの厚さと等しく、第1凹部の深さ(厚み)よりも浅い。よって切欠段部が形成されたフレーム部分は2段の階段状の凹部となっている。この切欠段部は、保護板65a、65bを位置決めする係止部であり、凹部の内側縁を越えて、フレームの重ね合わせ面67に及んでいる。フレーム43に保護板65a、65bを装着すると、保護板の表面とフレーム面は面一になる。
第1凹部48の図3紙面から見た裏側には、フレーム43に形成された第2凹部49があり、第1凹部48と同様に構成されている。
Cutout step portions are formed on the upper and lower end surfaces of the inner edge portion of the first recess 48. The notch depth of the notch step is equal to the thickness of the protective plates 65a and 65b and is shallower than the depth (thickness) of the first recess. Therefore, the frame portion in which the notch step portion is formed is a two-step concave portion. This notch step is a locking portion for positioning the protection plates 65a and 65b, and extends over the overlapping surface 67 of the frame beyond the inner edge of the recess. When the protective plates 65a and 65b are attached to the frame 43, the surface of the protective plate is flush with the frame surface.
On the back side of the first recess 48 as viewed from the paper of FIG. 3, there is a second recess 49 formed in the frame 43, which is configured in the same manner as the first recess 48.

フレーム43の四隅には、重ね合わせ面67と重ね合わせ面68を貫通する穴である、給液通路51、排液通路52、給液通路53、排液通路54が設けられている。給液整流路56は給液側導通路58を介して給液通路51と導通している。また、排液整流路57は排液側導通路59を介して排液通路52と導通している。給液側導通路58、排液側導通路59はそれぞれフレーム43の重ね合わせ面67に溝を形成し、当該溝の開口部を保護板65b、65aで覆って形成されている。なお、保護板65b、65aの一方の端部には、給液通路51、排液通路52と同軸に配置される穴が開けられている。   At the four corners of the frame 43, there are provided a liquid supply passage 51, a liquid discharge passage 52, a liquid supply passage 53, and a liquid discharge passage 54, which are holes that penetrate the overlap surface 67 and the overlap surface 68. The liquid supply rectification path 56 is electrically connected to the liquid supply path 51 via the liquid supply side conduction path 58. Further, the drainage rectification path 57 is electrically connected to the drainage passage 52 through the drainage side conduction path 59. The liquid supply side conduction path 58 and the drain side conduction path 59 are each formed by forming a groove in the overlapping surface 67 of the frame 43 and covering the opening of the groove with protective plates 65b and 65a. In addition, the hole arrange | positioned coaxially with the liquid supply channel | path 51 and the drainage channel | path 52 is opened in one edge part of the protection plates 65b and 65a.

給液通路51と排液通路52の重ね合わせ面68側には、それぞれ栓71a、71bが付されている。給液通路51の入口たる開口面61を通過する電解液はその全量が、給液通路側導通路58を通過して、第1凹部48への出口たる給液整流路56に至る。   On the overlapping surface 68 side of the liquid supply passage 51 and the drainage passage 52, stoppers 71a and 71b are respectively attached. The total amount of the electrolyte passing through the opening surface 61 serving as the inlet of the liquid supply passage 51 passes through the liquid supply passage-side conduction path 58 and reaches the liquid supply rectification path 56 serving as the outlet to the first recess 48.

給液通路53と排液通路54の重ね合わせ面67側には、それぞれ栓71c、71dが付されている。給液通路53の入口たる開口面を通過する電解液はその全量が、給液通路側導通路を通過して、第2凹部49への出口たる給液整流路に至る。
第1凹部48に流入する電解液の液漏れを防止するために、隔膜11の外周部をシール部材として用いている。隔膜11は1点鎖線で図示している。重ね合わせ面67に、隣接するセルのフレーム13の重ね合わせ面が重ねられ、締付けられると、隔膜1の外周部が一部変形して、シール作用を発揮する。本実施例では、保護板が隔膜の外周端からはみ出す部分(給液側導通路58及びまたは排液側導通路59部分)は、フレームの重ね合わせ面、保護板、シール部材たる隔膜外周部、他方のフレームの重ね合わせ面が挟まれ締付けられる。
Plugs 71c and 71d are attached to the overlapping surface 67 side of the liquid supply passage 53 and the drainage passage 54, respectively. The entire amount of the electrolyte passing through the opening surface serving as the inlet of the liquid supply passage 53 passes through the liquid supply passage-side conduction path and reaches the liquid supply rectification path serving as the outlet to the second recess 49.
In order to prevent leakage of the electrolyte flowing into the first recess 48, the outer peripheral portion of the diaphragm 11 is used as a seal member. The diaphragm 11 is illustrated by a one-dot chain line. When the overlapping surface of the frame 13 of the adjacent cell is overlapped with the overlapping surface 67 and tightened, the outer peripheral portion of the diaphragm 1 is partially deformed and exhibits a sealing action. In this example, the part where the protective plate protrudes from the outer peripheral end of the diaphragm (the liquid supply side conduction path 58 and / or the drain side conduction path 59 part) is the overlapping surface of the frame, the protective plate, the outer peripheral part of the diaphragm as a seal member, The overlapping surface of the other frame is sandwiched and tightened.

図4は、セル1を構成する双極板を備えたフレーム7の説明図である。双極板を備えたフレーム7の凹部18には、正極14が収納されている。凹部18の内縁部の上端端面と、正極14の上端面の間には、溝状の隙間があり、この溝を保護板35aで覆って排液整流路27が形成されている。
同様に、凹部18の内縁部の下端端面と、正極板14の下端面の間には、溝状の隙間があり、この溝を保護板35bで覆って給液整流路26が形成されている。保護板35a、35bはポリ塩化ビニル系樹脂などの耐酸性材料で形成された幅狭の長尺状プレートである。
FIG. 4 is an explanatory diagram of the frame 7 including the bipolar plate constituting the cell 1. A positive electrode 14 is accommodated in a recess 18 of the frame 7 having a bipolar plate. There is a groove-like gap between the upper end surface of the inner edge of the recess 18 and the upper end surface of the positive electrode 14, and the drainage rectification path 27 is formed by covering the groove with a protective plate 35a.
Similarly, there is a groove-like gap between the lower end surface of the inner edge of the recess 18 and the lower end surface of the positive electrode plate 14, and the liquid supply rectification path 26 is formed by covering the groove with the protective plate 35 b. . The protection plates 35a and 35b are narrow and long plates made of an acid resistant material such as polyvinyl chloride resin.

凹部18の内縁部の上下端面は切欠段部が形成されている。切欠段部の切欠深さは、保護板35a、35bの厚さと等しく、凹部の深さ(厚み)よりも浅い。よって切欠段部が形成されたフレーム部分は2段の階段状の凹部となっている。この切欠段部は、保護板35a、35bを位置決めする係止部であり、凹部の内側縁を越えて、フレームの重ね合わせ面に及んでいる。フレーム13に保護板35a、35bを装着すると、保護板の表面とフレーム面は面一になる。   Cutout steps are formed on the upper and lower end surfaces of the inner edge of the recess 18. The notch depth of the notch step is equal to the thickness of the protective plates 35a and 35b and is shallower than the depth (thickness) of the recess. Therefore, the frame portion in which the notch step portion is formed is a two-step concave portion. This notch step portion is a locking portion for positioning the protection plates 35a and 35b, and extends over the overlapping surface of the frame beyond the inner edge of the recess. When the protective plates 35a and 35b are attached to the frame 13, the surface of the protective plate and the frame surface are flush with each other.

凹部18の図4紙面から見た裏側には、フレーム13に形成された、負極板15を収納する凹部があり、凹部18と同様に構成されている。
フレーム13の四隅には、重ね合わせ面37と重ね合わせ面38を貫通する穴である、給液通路21、排液通路22、給液通路23、排液通路24が設けられている。給液整流路26は給液側導通路28を介して給液通路21と導通している。また、排液整流路27は排液側導通路29を介して排液通路22と導通している。給液側導通路28、排液側導通路29はそれぞれフレーム13の重ね合わせ面37に溝を形成し、当該溝の開口部を保護板35b、35aで覆って形成されている。なお、保護板35b、35aの一方の端部には、給液通路21、排液通路22と同軸に配置される穴が開けられている。
On the back side of the recess 18 as viewed from the paper surface of FIG. 4, there is a recess formed in the frame 13 for accommodating the negative electrode plate 15 and is configured in the same manner as the recess 18.
At the four corners of the frame 13, there are provided a liquid supply passage 21, a liquid discharge passage 22, a liquid supply passage 23, and a liquid discharge passage 24, which are holes penetrating the overlap surface 37 and the overlap surface 38. The liquid supply rectification path 26 is electrically connected to the liquid supply path 21 via the liquid supply side conduction path 28. Further, the drainage rectification path 27 is electrically connected to the drainage passage 22 through the drainage side conduction path 29. The liquid supply side conductive path 28 and the drain side conductive path 29 are each formed by forming a groove in the overlapping surface 37 of the frame 13 and covering the opening of the groove with protective plates 35b and 35a. In addition, the hole arrange | positioned coaxially with the liquid supply channel | path 21 and the drainage channel | path 22 is opened in one edge part of the protection plates 35b and 35a.

凹部18に流入する電解液の液漏れを防止するために、隔膜11の外周部をシール部材として用いている。隔膜11は1点鎖線で図示している。重ね合わせ面37に、隣接するセルのフレームの重ね合わせ面が重ねられ、締付けられると、隔膜1の外周部が一部変形して、シール作用を発揮する。本実施例では、保護板が隔膜の外周端からはみ出す部分(給液側導通路28及びまたは排液側導通路29部分)は、フレームの重ね合わせ面、保護板、シール部材たる隔膜外周部、他方のフレームの重ね合わせ面が挟まれ、締付けられる。   In order to prevent leakage of the electrolyte flowing into the recess 18, the outer peripheral portion of the diaphragm 11 is used as a seal member. The diaphragm 11 is illustrated by a one-dot chain line. When the overlapping surface of the frame of the adjacent cell is overlapped on the overlapping surface 37 and tightened, the outer peripheral portion of the diaphragm 1 is partially deformed and exhibits a sealing action. In the present embodiment, the portion where the protective plate protrudes from the outer peripheral end of the diaphragm (the liquid supply side conductive path 28 and / or the drain side conductive path 29 portion) is the overlapping surface of the frame, the protective plate, the outer peripheral portion of the diaphragm as a seal member, The overlapping surface of the other frame is sandwiched and tightened.

また、フレーム13とフレーム43の重ね合わせ面外周部分に、環状溝(図示していない)を設け、環状溝の中にOリング(図示していない)を配設し、液漏れを防止している。また、給液・排液通路21〜24、51〜54(栓が配設されている入口を除く)の外周部分に環状溝(図示していない)を設け、環状溝の中にOリング(図示していない)を配設し、液漏れを防止している。ただし、給液・排液通路51〜54の開口面であって、栓が配設されている開口面の外周に環状溝が配設されていても、セルスタックの機能に差し支えない。   An annular groove (not shown) is provided in the outer peripheral portion of the overlapping surface of the frame 13 and the frame 43, and an O-ring (not shown) is provided in the annular groove to prevent liquid leakage. Yes. In addition, an annular groove (not shown) is provided in the outer peripheral portion of the liquid supply / drainage passages 21-24, 51-54 (excluding the inlet where the stopper is disposed), and an O-ring ( (Not shown) is provided to prevent liquid leakage. However, even if an annular groove is provided on the outer periphery of the opening surface of the liquid supply / drainage passages 51 to 54 where the plugs are provided, the function of the cell stack is allowed.

以上説明したように、両面端子板2と双極板を備えたフレーム7は、給液・排液通路に設ける栓の有無を除き、全く等しい。両面端子板2を構成する双極板42と、双極板を備えたフレーム7を構成する双極板12も同一である。フレーム43とフレーム13の外形、材質も等しい。さらに、給液・排液通路51〜54と給液・排液通路21〜24も同じ位置に同じ断面積で貫通している。すなわち、双極板を備えたフレーム7の給液・排液通路に栓を付けると、両面端子板2が出来上がる。給液・排液通路配置する栓は、ゴム板、シリコン樹脂製栓・板、塩化ビニル板、合成樹脂製板など、液体の導通を遮断する任意の部材を使用できる。   As described above, the frame 7 including the double-sided terminal plate 2 and the bipolar plate is exactly the same except for the presence or absence of a stopper provided in the liquid supply / drainage passage. The bipolar plate 42 constituting the double-sided terminal board 2 and the bipolar plate 12 constituting the frame 7 provided with the bipolar plate are also the same. The frame 43 and the frame 13 have the same outer shape and material. Further, the liquid supply / drainage passages 51 to 54 and the liquid supply / drainage passages 21 to 24 also penetrate the same position with the same cross-sectional area. That is, when a stopper is attached to the liquid supply / drainage passage of the frame 7 having a bipolar plate, the double-sided terminal plate 2 is completed. As the plug for arranging the liquid supply / drainage passage, any member that cuts off the conduction of the liquid, such as a rubber plate, a silicone resin plug / plate, a vinyl chloride plate, a synthetic resin plate, or the like can be used.

さらに、両面端子板2の給液・排液通路51〜54は、貫通穴でなく、非貫通穴とすることができる。非貫通穴を設ければ、ゴム栓などの遮断部材は不要である。本発明において、セルを構成する双極板部材と、両面端子板を構成する双極板部材の「外形が等しい」には、両者に設ける給液・排液通路が貫通穴、非貫通穴という差があっても、外形が等しいに含まれる。
フレーム13が重ね合わせられると、給液通路21、23は互いに連絡して給液導管が形成される。同時に、排液通路22、24は互いに連絡して排液導管が形成される。給液導管、給液整流路18などが正極液の給液マニホールドを構成している。すなわち、給液導管に流入した正極液は、一部が分流され、給液側導通路28を通過して、給液整流路26を通り、正極板14が収納された正極室に至り、排液整流路を通過して、排液導通路、排液導管に導かれる。隣接するセルの給液導管に達した残余の正極液は、同様に一部が分流され、給液整流路に至る。その後の正極液の流れは上述した正極液の流れと同様である。
Furthermore, the liquid supply / drainage passages 51 to 54 of the double-sided terminal board 2 can be non-through holes instead of through holes. If a non-through hole is provided, a blocking member such as a rubber plug is unnecessary. In the present invention, the bipolar plate member that constitutes the cell and the bipolar plate member that constitutes the double-sided terminal plate have the same difference in that the liquid supply / drainage passages provided in both are through holes and non-through holes. Even if it exists, it is included in the same outer shape.
When the frame 13 is overlapped, the liquid supply passages 21 and 23 communicate with each other to form a liquid supply conduit. At the same time, the drain passages 22, 24 communicate with each other to form a drain conduit. The liquid supply conduit, the liquid supply rectification path 18 and the like constitute a liquid supply manifold for the positive electrode liquid. That is, a part of the positive electrode liquid flowing into the liquid supply conduit is diverted, passes through the liquid supply side conduction path 28, passes through the liquid supply rectification path 26, reaches the positive electrode chamber in which the positive electrode plate 14 is accommodated, and is discharged. It passes through the liquid rectification path and is guided to the drainage conduction path and drainage conduit. Similarly, a part of the remaining positive electrode solution that has reached the liquid supply conduit of the adjacent cell is diverted to reach the liquid supply rectification path. The subsequent flow of the positive electrode solution is the same as the flow of the positive electrode solution described above.

図1を参照して、セルスタック5bを流通する電解液の流れを説明する。給配板の正極液入口72bに入る正極液の流れは矢印821で示す。正極液は、給液導管中を矢印822の方向に流れる。また、正極液の一部は給液マニホールドを通過して、正極室に流入する。正極室での正極液の流れを矢印825で示す。また、両面端子板の電極室での正極液の流れを矢印826で示す。これら、正極室と端子板室を通過した正極液は排液導管中を矢印823の方向に流れ、給配板4bの正極液出口から排出される。正極液の排出方向の流れを矢印824で示している。   With reference to FIG. 1, the flow of the electrolyte flowing through the cell stack 5b will be described. The flow of the positive solution entering the positive electrode inlet 72b of the distribution board is indicated by an arrow 821. The positive electrode solution flows in the direction of the arrow 822 through the liquid supply conduit. Further, a part of the positive electrode solution passes through the liquid supply manifold and flows into the positive electrode chamber. The flow of the positive electrode solution in the positive electrode chamber is indicated by an arrow 825. The flow of the positive electrode solution in the electrode chamber of the double-sided terminal board is indicated by an arrow 826. The positive solution passing through the positive electrode chamber and the terminal plate chamber flows in the direction of the arrow 823 through the drainage conduit, and is discharged from the positive electrode outlet of the supply / distribution plate 4b. A flow in the discharge direction of the positive electrode solution is indicated by an arrow 824.

給配板4bの負極液入口に入る負極液の流れを矢印921で示す。負極液は、給液導管中を矢印922の方向に流れる。また、負極液の一部は給液マニホールドを通過して、負極室に流入する、負極室での負極液の流れを矢印925で示す。また、端子板3bの電極室にも負極液が流入する。負極室と端子板室を通過した負極液は排液導管中を矢印923の方向に流れ、給配板4bの負極液出口から排出される。負極液の排出方向の流れを矢印924で示している。
同様に、セルスタック5a中の電解液の流れを矢印で示している。
さらに、図2中には、正極液マニホールドを通過する正極液の流れ方向を矢印で示している。
An arrow 921 indicates the flow of the negative electrode liquid entering the negative electrode inlet of the supply / distribution plate 4b. The negative electrode solution flows in the direction of the arrow 922 through the liquid supply conduit. Further, a part of the negative electrode liquid passes through the liquid supply manifold and flows into the negative electrode chamber, and the flow of the negative electrode liquid in the negative electrode chamber is indicated by an arrow 925. The negative electrode solution also flows into the electrode chamber of the terminal plate 3b. The negative electrode solution that has passed through the negative electrode chamber and the terminal plate chamber flows in the direction of the arrow 923 through the drainage conduit, and is discharged from the negative electrode outlet of the distribution plate 4b. The flow in the discharge direction of the negative electrode solution is indicated by an arrow 924.
Similarly, the flow of the electrolyte in the cell stack 5a is indicated by arrows.
Furthermore, in FIG. 2, the flow direction of the positive electrode solution passing through the positive electrode solution manifold is indicated by an arrow.

前記の構造を有する2組のレドックスフロー電池セルスタックは、さらに積層され一対の端子板間に位置させて、ボルトナットなどの締結具で締め付け、電解液の給液管と排液管を備えた給配部材を装着することにより、レドックスフロー電池主要部が構成される。   Two sets of redox flow battery cell stacks having the above-described structure were further stacked and positioned between a pair of terminal plates, and tightened with fasteners such as bolts and nuts, and were provided with an electrolyte supply pipe and a drain pipe. The main part of the redox flow battery is configured by mounting the distribution member.

図5はレドックスフロー電池主要部の外観図である。
図5において、101はレドックスフロー電池の主要部である。主要部に、正極液タンク、同循環用ポンプ、同配管、負極液タンク、同循環用ポンプ、同配管などが付加されて、レドックスフロー電池が構成される。
レドックスフロー電池セルは、少なくとも一対の電極室(正極室と負極室)を備えていれば良い。
FIG. 5 is an external view of the main part of the redox flow battery.
In FIG. 5, 101 is a main part of the redox flow battery. A redox flow battery is configured by adding a positive electrode solution tank, the same circulation pump, the same piping, a negative electrode solution tank, the same circulation pump, the same piping and the like to the main part.
The redox flow battery cell may have at least a pair of electrode chambers (a positive electrode chamber and a negative electrode chamber).

本発明にかかるレドックスフロー電池に使用する電解液としては、イオンの酸化還元反応が可能な種々の電解液が使用できる。例えば、バナジウムイオンを含む電解液(バナジウム硫酸水溶液)や鉄−クロム系電池を構成する電解液(鉄イオンを含む電解液とクロムイオンを含むイオンの組合せ)が使用できる。   As the electrolytic solution used in the redox flow battery according to the present invention, various electrolytic solutions capable of ion redox reaction can be used. For example, an electrolytic solution containing vanadium ions (vanadium sulfate aqueous solution) or an electrolytic solution constituting an iron-chromium battery (combination of an electrolytic solution containing iron ions and ions containing chromium ions) can be used.

本発明にかかるレドックスフロー電池は、電力貯蔵二次電池として有用であり、負担平準化、瞬時の電圧降下や停電に対する補助電力、風力発電や太陽光発電の平準化など種々の分野に利用でき、電力の需要制御や電力品質の確保にも利用できる。   The redox flow battery according to the present invention is useful as a power storage secondary battery, and can be used in various fields such as load leveling, auxiliary power against instantaneous voltage drop or power failure, wind power generation or solar power leveling, It can also be used to control power demand and ensure power quality.

2組のレドックスフロー電池セルスタックの分解説明図である。It is decomposition | disassembly explanatory drawing of two sets of redox flow battery cell stacks. 2組のレドックスフロー電池セルスタックの断面説明図である。It is sectional explanatory drawing of two sets of redox flow battery cell stacks. 両面端子板の説明図である。It is explanatory drawing of a double-sided terminal board. 双極板12の説明図である。It is explanatory drawing of the bipolar plate. レドックスフロー電池主要部の外観図である。It is an external view of the principal part of a redox flow battery.

符号の説明Explanation of symbols

1 レドックスフロー電池セル
2 両面端子板
3a、3b 端子板
4a、4b 給配板
5a、5b 1組のレドックスフロー電池セルスタック
6 2組のレドックスフロー電池セルスタック
7 双極板を備えたフレーム
11 隔膜
42 双極板
43 フレーム
48 電極室たる第1凹部
49 電極室たる第2凹部
51、53 給液通路
71a、71b、71c、71d 栓

DESCRIPTION OF SYMBOLS 1 Redox flow battery cell 2 Double-sided terminal board 3a, 3b Terminal board 4a, 4b Distribution board 5a, 5b 1 set of redox flow battery cell stack 6 2 sets of redox flow battery cell stack 7 Frame with bipolar plate 11 Diaphragm 42 Bipolar plate 43 Frame 48 First recess as electrode chamber 49 Second recess as electrode chamber 51, 53 Liquid supply passage 71a, 71b, 71c, 71d Plug

Claims (4)

双極板と、
前記双極板の外周部に固定して設けられ、前記双極板の一方の面を底面とする第1凹部と、前記双極板の他方の面を底面とする第2凹部を形成するフレームと、
前記フレームに設けられ、フレーム外部と第1凹部を連絡する第1給液通路、第1排液通路と、
前記フレームに設けられ、フレーム外部と第2凹部を連絡する第2給液通路、第2排液通路からなり、
第1給液通路が前記フレーム表面に形成する入口を通過する液体は、全て第1凹部に流入し、
第2給液通路が前記フレーム表面に形成する入口を通過する液体は、全て第2凹部に流入する、レドックスフロー電池セルスタック用両面端子板。
Bipolar plates,
A frame that is fixed to the outer periphery of the bipolar plate and has a first recess having a bottom surface on one surface of the bipolar plate; and a second recess having a bottom surface on the other surface of the bipolar plate;
A first liquid supply passage provided in the frame and communicating between the outside of the frame and the first recess, a first drainage passage;
A second liquid supply passage, a second drainage passage, which is provided in the frame and communicates with the outside of the frame and the second recess;
All of the liquid passing through the inlet formed in the frame surface by the first liquid supply passage flows into the first recess,
A double-sided terminal plate for a redox flow battery cell stack, in which all the liquid passing through the inlet formed in the frame surface by the second liquid supply passage flows into the second recess.
請求項1記載のレドックスフロー電池セルスタック用両面端子板の両側に、任意の数のセルを積層し、前記積層したセルの外側それぞれに、端子板を配置した2組のレドックスフロー電池セルスタック。   2. Two sets of redox flow battery cell stacks, in which an arbitrary number of cells are laminated on both sides of the double-sided terminal plate for redox flow battery cell stack according to claim 1, and a terminal plate is arranged on each outer side of the laminated cells. 前記セルを構成する双極板部材の外形、材質と、前記両面端子板を構成する双極板部材の外形、材質が等しいことを特徴とする請求項2に記載の2組のレドックスフロー電池セルスタック。   The two sets of redox flow battery cell stacks according to claim 2, wherein the outer shape and material of the bipolar plate member constituting the cell are the same as the outer shape and material of the bipolar plate member constituting the double-sided terminal plate. 請求項2または3記載の2組のレドックスフロー電池セルスタックを用いるレドックスフロー電池。

A redox flow battery using two sets of redox flow battery cell stacks according to claim 2.

JP2004036552A 2004-02-13 2004-02-13 Double-sided terminal board for redox flow battery cell stack Pending JP2005228617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036552A JP2005228617A (en) 2004-02-13 2004-02-13 Double-sided terminal board for redox flow battery cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036552A JP2005228617A (en) 2004-02-13 2004-02-13 Double-sided terminal board for redox flow battery cell stack

Publications (1)

Publication Number Publication Date
JP2005228617A true JP2005228617A (en) 2005-08-25

Family

ID=35003146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036552A Pending JP2005228617A (en) 2004-02-13 2004-02-13 Double-sided terminal board for redox flow battery cell stack

Country Status (1)

Country Link
JP (1) JP2005228617A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164495A (en) * 2011-02-04 2012-08-30 Sumitomo Electric Ind Ltd Electrolyte circulation type battery system
WO2013149512A1 (en) * 2012-04-06 2013-10-10 中国东方电气集团有限公司 Current collector, double-electrode current collector comprising same, single battery, and flow battery
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
CN104241671A (en) * 2014-10-20 2014-12-24 中国东方电气集团有限公司 Flowing frame assembly and flow cell with same
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
WO2015037482A1 (en) * 2013-09-12 2015-03-19 住友電気工業株式会社 Battery cell stack and redox flow battery
KR101688975B1 (en) * 2015-09-23 2016-12-22 롯데케미칼 주식회사 Zinc-bromine flow battery stack
CN109216743A (en) * 2018-09-21 2019-01-15 马东亮 Integrated oxidization restores flow cell pile
CN113348572A (en) * 2019-02-14 2021-09-03 住友电气工业株式会社 Bipolar plate, battery frame, battery pack and redox flow battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
JP2012164495A (en) * 2011-02-04 2012-08-30 Sumitomo Electric Ind Ltd Electrolyte circulation type battery system
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
WO2013149512A1 (en) * 2012-04-06 2013-10-10 中国东方电气集团有限公司 Current collector, double-electrode current collector comprising same, single battery, and flow battery
WO2015037482A1 (en) * 2013-09-12 2015-03-19 住友電気工業株式会社 Battery cell stack and redox flow battery
JP2015079738A (en) * 2013-09-12 2015-04-23 住友電気工業株式会社 Cell stack for battery and redox flow battery
CN105531862A (en) * 2013-09-12 2016-04-27 住友电气工业株式会社 Battery cell stack and redox flow battery
US9673474B2 (en) 2013-09-12 2017-06-06 Sumitomo Electric Industries, Ltd. Battery cell stack and redox flow battery
CN105531862B (en) * 2013-09-12 2017-09-12 住友电气工业株式会社 Battery cell stack and redox flow batteries
CN104241671A (en) * 2014-10-20 2014-12-24 中国东方电气集团有限公司 Flowing frame assembly and flow cell with same
KR101688975B1 (en) * 2015-09-23 2016-12-22 롯데케미칼 주식회사 Zinc-bromine flow battery stack
CN109216743A (en) * 2018-09-21 2019-01-15 马东亮 Integrated oxidization restores flow cell pile
CN113348572A (en) * 2019-02-14 2021-09-03 住友电气工业株式会社 Bipolar plate, battery frame, battery pack and redox flow battery

Similar Documents

Publication Publication Date Title
JP2005228633A (en) Redox flow battery cell and redox flow battery
JP2005228622A (en) Redox flow battery cell
US7951481B2 (en) Separator and cell using the same for use in solid polymer electrolyte fuel cell
CA2602153C (en) Fuel cell and fuel cell separator having a cooling medium regulating portion
JP5349184B2 (en) Fuel cell stack
JP2005228617A (en) Double-sided terminal board for redox flow battery cell stack
JP4959980B2 (en) Fuel cell
CN111799493B (en) Fuel cell system
JP2013201091A (en) Fuel cell
JP2013145653A (en) Electrolyte membrane/electrode structure with resin frame for fuel cell
JP2006324129A (en) Redox flow battery and its cell
JP6053649B2 (en) Fuel cell
JP5144226B2 (en) Fuel cell
JP2005347106A (en) Redox flow battery cell
KR20180108479A (en) Fuel cell stack
JP2005228645A (en) Retaining structure of redox flow battery cell, battery, and electrode
JP2005347107A (en) Redox flow battery cell and redox flow battery
JP2006147258A (en) Separator and fuel battery stack
KR101859894B1 (en) Fuel cell stack
JP2007324122A (en) Fuel cell
JP6559980B2 (en) Fuel cell
JP6204328B2 (en) Fuel cell stack
JP2006269159A (en) Fuel cell stack
JP2013089517A (en) Fuel cell
JP2021191886A (en) Laminated structure