JP3993256B2 - Overvoltage / overcurrent protection device - Google Patents

Overvoltage / overcurrent protection device Download PDF

Info

Publication number
JP3993256B2
JP3993256B2 JP11376196A JP11376196A JP3993256B2 JP 3993256 B2 JP3993256 B2 JP 3993256B2 JP 11376196 A JP11376196 A JP 11376196A JP 11376196 A JP11376196 A JP 11376196A JP 3993256 B2 JP3993256 B2 JP 3993256B2
Authority
JP
Japan
Prior art keywords
electrode
lead wire
soldered
thermistor element
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11376196A
Other languages
Japanese (ja)
Other versions
JPH09306319A (en
Inventor
清 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP11376196A priority Critical patent/JP3993256B2/en
Publication of JPH09306319A publication Critical patent/JPH09306319A/en
Application granted granted Critical
Publication of JP3993256B2 publication Critical patent/JP3993256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3421Leaded components

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Resistors (AREA)
  • Thermistors And Varistors (AREA)
  • Fuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器例えば電話器の電子交換機等の過電流・過電圧保護装置に関するものである。
【0002】
【従来の技術】
電話器の電子交換機は、結線のショートを保護するために正特性サーミスタが用いられている。
一方、これら交換機は雷サージによる機器の保護を行うため、例えばUL1459に定められた過電圧・過電流による保護も必要とされている。
【0003】
例えば電子交換機用としては240V 24Aでは正特性サーミスタが保護動作して電流を抑制し、過電流を抑制後正常に復帰することが要求され、600V40A、600V 7A、600V 2.2Aの過電圧・過電流の場合、回路をオープンすることが要求されている。
一般に、正特性サーミスタ素子にリード線を半田付けした構造のものに瞬時に大きな電力を加えた場合、正特性サーミスタは急速に発熱するが、その熱が半田を介してリード線から熱放散し、素子内部と素子両表面で温度差が生じ、そのため、素子厚み方向に剪断力が発生し、図4の如く素子の厚みのほぼ中間部で層状剥離10が発生することが知られている。
UL1459に規定した600V 40A、7A、2.2Aの如き高い電圧を印加した場合、上記の特性を利用し、正特性サーミスタ素子を層状に破壊させたものが一部実用化されている。
然るに素子の層状破壊したものはその素子の剥離した距離がせいぜい0.05〜0.1mm程度であり、繰返し600Vの電圧が印加されたとき層状剥離した間でアーク放電が生じ、正特性サーミスタがついには焼損してしまうという致命的な欠点があった。
【0004】
【発明が解決しようとする課題】
本発明はこれらの過電圧・過電流が繰返し加わった場合でも正特性サーミスタを小型化出来、且つ過電圧・過電流が加わっても焼損せず、機器を保護することを目的とするものである。
【0005】
【課題を解決するための手段】
即ち、両面に電極が設けられた正特性サーミスタ素子の一方の電極にバネ性を有するリード線を半田付けし、正特性サーミスタ素子の他方の電極にもリード線を半田付けし、他方の電極と基板とをエポキシ樹脂等の接着剤で接着させ、上記他方の電極全面が上記接着剤でコーティングされており、且つ正特性サーミスタ素子の一方の電極とリード線とが離間するようにリード線のバネ性を付勢した状態で当該リード線の他端を基板に半田付けし、他方の電極のリード線の他端も基板に半田付けし、正特性サーミスタに過電圧・過電流が加わった場合、正特性サーミスタが自己発熱して正特性サーミスタ素子の電極バネ性を有するリード線を接続した半田を融解させ、リード線のバネ正特性サーミスタ素子の電極とリード線とが離間することにより回路を遮断するとともに、上記バネ力で離間する迄の間、上記接着剤により正特性サーミスタの電極間でのアーク放電による正特性サーミスタ素子の焼損を防止することを特徴とする過電圧・過電流保護装置を提供するものである。
【0006】
あるいは、両面に電極が設けられた正特性サーミスタ素子の一方の電極に半田付けされたリード線にバネ材を半田付けし、正特性サーミスタ素子の他方の電極にもリード線を半田付けし、他方の電極と基板とをエポキシ樹脂等の接着剤で接着させ、上記他方の電極全面が上記接着剤でコーティングされており、且つリード線と正特性サーミスタの一方の電極とが離間するようにバネ性を付勢した状態でバネ材の他端を基板に半田付けし、他方の電極のリード線の他端も基板に半田付けし、正特性サーミスタに過電圧・過電流が加わった場合、正特性サーミスタが自己発熱して正特性サーミスタ素子の一方の電極バネ材を半田付けしたリード線を接続した半田を融解させ、バネ材のバネ力で正特性サーミスタ素子の電極とリード線とが離間することにより回路を遮断するとともに、上記バネ力で離間する迄の間、上記接着剤により正特性サーミスタの電極間でのアーク放電による正特性サーミスタ素子の焼損を防止することを特徴とする過電圧・過電流保護装置を提供するものである。
【0007】
【作用】
上記の構造とすることにより、正特性サーミスタ素子は従来は20φ×4.0tmmの大きさであったものでも、600V 40A 1.5秒の過電圧は1回しか耐えることが出来なかったが、7φ×2.5tmmの大きさでも、600Vの過電圧を繰り返し印加しても回路を保護することが可能となり、装置も小型化出来、コストも低減することが可能となった。
【0008】
【実施例】
本発明の実施例を図1に基づき詳述する。
正特性サーミスタ素子1(7φ×2.5tmm、キュリー温度120℃、抵抗値12Ω)の両面にニッケルメッキ及び錫メッキにより、電極12、13を形成し、その電極にバネ性を有する0.5φの黄銅線からなるリード線2、3を半田4(錫−鉛共晶半田、融点183℃)で半田付けした。
【0009】
リード線2、3の他端を基板5に半田付けするに際し、正特性サーミスタ素子1の一方の電極13と基板5とを接着剤9(エポキシ樹脂)で接着し、リード線2は、そのバネ力で正特性サーミスタ素子1から離間するように付勢した状態で基板5に半田付けした。
このリード線3,2間にULで規定されている600V 40A 1.5秒、600V 7A 5秒、600V 2.2A 30分の電流を流したところ、正特性サーミスタに電流が流れて自己発熱して半田4の融点である183℃を超え、それぞれ0.02秒、1.0秒、2.3秒で図3の通り、リード線2が正特性サーミスタ素子1から離間し、電流を遮断した。
【0010】
また本発明の他の実施例を図2に示す。
正特性サーミスタ素子1(7φ×2.5tmm、キュリー温度90℃、抵抗値12Ω)の両面にニッケルメッキ及び錫メッキにより、電極12、13を形成し、その電極に0.5φのCp線からなるリード線6、7を半田4(錫−鉛共晶半田 融点183℃)で半田付けした。
【0011】
正特性サーミスタ素子1の一方の電極13と基板5とを接着剤9(エポキシ樹脂)で接着した後、リード線6の他端を基板5に半田付けし、リード線7の他端をバネ材8(リン青銅板、幅2.0mm 厚み1.0tmm)で半田付けし、バネ材8をリード線7と正特性サーミスタとが離間するよう予め付勢した状態でバネ材8の他端を基板5に半田付けした。
リード線6、バネ材8の間に600V 40A 1.5秒、600V 7A 5秒、600V 2.2A 30分の条件設定し、電流を流したところ、0.05秒、1.6秒、3.8秒で電流を遮断した。
【0012】
【発明の効果】
上述したように、正特性サーミスタを小型化し、低コストで高電圧、大電流を素早く遮断する過電圧、過電流保護装置を提供することが可能となり、600Vの過電圧が繰り返し印加されても回路が完全にオープンするため、焼損することもなく、負荷側に過電圧が加わる事はない。
尚、実施例ではバネ材として黄銅やリン青銅を用いたが、これらのバネ材に限定されるものではないことはいうまでもない。また、正特性サーミスタ素子の一方の電極をエポキシ樹脂等で基板と接着することにより、バネ力で正特性サーミスタ素子が基板から浮き上がらないためにバネ力が経時的に変化することがない。
更に、一方の電極13が接着剤9でコーティングされるため、600Vの電圧が加わった際、バネ材8で離間する迄の間正特性サーミスタの電極間でのアーク放電による正特性サーミスタ素子の焼損を防止することが出来る。従って、接着剤9は正特性サーミスタ素子1の一方の電極を完全に覆うことが望ましい。
尚、接着剤はエポキシ樹脂に限るものではなく、フェノールやウレタン等の樹脂でも同様の効果を得ることが出来る。また、用途として、PBX(電子交換機)を例として説明したが、この用途に制限されるものではなく、過電圧、過電流保護用として広く応用出来るものである。
【図面の簡単な説明】
【図1】本発明の一実施例の断面図である。
【図2】他の実施例の断面図である。
【図3】図1の実施例で、リード線が正特性サーミスタ素子から離間した状態を示す断面図である。
【図4】図4は従来の正特性サーミスタで過電圧が加わった場合に正特性サーミスタ素子が層状剥離した状態を示す。
【符号の説明】
1 正特性サーミスタ素子
2 リード線(黄銅線)
3 リード線(黄銅線)
4 半田
5 基板
6 リード線(Cp線)
7 リード線(Cp線)
8 バネ材(リン青銅板)
9 接着剤
10 層状剥離
11 外装材料
12 電極
13 電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an overcurrent / overvoltage protection device for an electronic device such as an electronic switch for a telephone.
[0002]
[Prior art]
In the electronic exchange of a telephone, a positive temperature coefficient thermistor is used to protect a short circuit.
On the other hand, since these exchanges protect equipment by lightning surge, for example, protection by overvoltage / overcurrent defined in UL 1459 is also required.
[0003]
For example, for 240V 24A for an electronic exchange, the positive temperature coefficient thermistor is protected to suppress the current and is required to return to normal after suppressing the overcurrent. 600V40A, 600V 7A, 600V 2.2A overvoltage / overcurrent In this case, it is required to open the circuit.
Generally, when a large amount of power is instantaneously applied to a structure in which a lead wire is soldered to a positive temperature coefficient thermistor element, the positive temperature coefficient thermistor rapidly generates heat, but the heat is dissipated from the lead wire through the solder, It is known that there is a temperature difference between the inside of the element and both surfaces of the element, so that a shearing force is generated in the element thickness direction, and the delamination 10 occurs at almost the middle of the element thickness as shown in FIG.
When a high voltage such as 600V 40A, 7A, and 2.2A defined in UL 1459 is applied, a part of the positive temperature coefficient thermistor element that has been broken into layers using the above characteristics has been put into practical use.
However, in the case where the element is broken in layers, the separation distance of the element is about 0.05 to 0.1 mm at most. When a voltage of 600 V is repeatedly applied, arc discharge occurs between the layers, and the positive temperature coefficient thermistor There was a fatal defect that eventually burned out.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to protect a device without downsizing a positive temperature coefficient thermistor even when these overvoltages and overcurrents are repeatedly applied, and without burning out even when overvoltages and overcurrents are applied.
[0005]
[Means for Solving the Problems]
That is, a lead wire having a spring property is soldered to one electrode of a positive temperature coefficient thermistor element having electrodes on both sides, and a lead wire is soldered to the other electrode of the positive temperature coefficient thermistor element. A lead wire spring so that the substrate is bonded with an adhesive such as an epoxy resin, the entire surface of the other electrode is coated with the adhesive, and one electrode of the positive temperature coefficient thermistor element is separated from the lead wire. If the other end of the lead wire is soldered to the board with the power applied, the other end of the lead wire of the other electrode is also soldered to the board, and if overvoltage / overcurrent is applied to the positive temperature coefficient thermistor, characteristic thermistor to melt the solder to connect the lead having an electrode and the spring of the positive characteristic thermistor element is self-heating, and the electrode and the lead line of the positive characteristics thermistor element by the spring force of the lead is separated Thereby breaking the circuit by the, until separated by the spring force, excessive voltage, characterized in that to prevent the burnout of the PTC thermistor element according to an arc discharge between the electrodes of the PTC thermistor by the adhesive A current protection device is provided.
[0006]
Alternatively, a spring material is soldered to a lead wire soldered to one electrode of a positive temperature coefficient thermistor element having electrodes on both sides, and a lead wire is also soldered to the other electrode of the positive temperature coefficient thermistor element. The electrode and the substrate are bonded with an adhesive such as an epoxy resin, the entire surface of the other electrode is coated with the adhesive, and the lead wire and the one electrode of the positive temperature coefficient thermistor are separated from each other with a spring property If the other end of the spring material is soldered to the board while the other electrode lead wire is soldered to the board while overvoltage / overcurrent is applied to the positive temperature coefficient thermistor, the positive temperature coefficient thermistor spaced but to melt the solder to connect the lead wire to one of the electrodes and the spring member of the positive characteristic thermistor device with self-heating and soldering, and the positive characteristic thermistor element electrode and the lead wire by the spring force of the spring member Thereby breaking the circuit by Rukoto, overvoltage or characterized by preventing until the spaced above the spring force, the burning of the PTC thermistor element according to an arc discharge between the electrodes of the PTC thermistor by the adhesive An overcurrent protection device is provided.
[0007]
[Action]
With the above structure, although the positive temperature coefficient thermistor element was conventionally 20φ × 4.0tmm in size, the overvoltage of 600V 40A 1.5 seconds could withstand only once, but 7φ Even with a size of × 2.5 tmm, the circuit can be protected even when an overvoltage of 600 V is repeatedly applied, the device can be downsized, and the cost can be reduced.
[0008]
【Example】
An embodiment of the present invention will be described in detail with reference to FIG.
Electrodes 12 and 13 are formed by nickel plating and tin plating on both surfaces of a positive temperature coefficient thermistor element 1 (7φ × 2.5 tmm, Curie temperature 120 ° C., resistance value 12Ω), and the electrodes have spring properties of 0.5φ. Lead wires 2 and 3 made of brass wire were soldered with solder 4 (tin-lead eutectic solder, melting point 183 ° C.).
[0009]
When the other ends of the lead wires 2 and 3 are soldered to the substrate 5, one electrode 13 of the positive temperature coefficient thermistor element 1 and the substrate 5 are bonded with an adhesive 9 (epoxy resin). The substrate was soldered to the substrate 5 in a state of being biased away from the positive temperature coefficient thermistor element 1 by force.
When a current of 600V 40A 1.5 seconds, 600V 7A 5 seconds, 600V 2.2A 30 minutes specified by UL is passed between the lead wires 3 and 2, current flows through the positive temperature coefficient thermistor and self-heats. As shown in FIG. 3, the lead wire 2 was separated from the positive temperature coefficient thermistor element 1 in 0.02 seconds, 1.0 seconds, and 2.3 seconds, respectively, and the current was cut off. .
[0010]
Another embodiment of the present invention is shown in FIG.
Electrodes 12 and 13 are formed on both surfaces of a positive temperature coefficient thermistor element 1 (7φ × 2.5 tmm, Curie temperature 90 ° C., resistance value 12Ω) by nickel plating and tin plating, and the electrodes are made of Cp line of 0.5φ. Lead wires 6 and 7 were soldered with solder 4 (tin-lead eutectic solder melting point 183 ° C.).
[0011]
After bonding one electrode 13 of the positive temperature coefficient thermistor element 1 and the substrate 5 with an adhesive 9 (epoxy resin), the other end of the lead wire 6 is soldered to the substrate 5 and the other end of the lead wire 7 is connected to a spring material. 8 (phosphor bronze plate, width 2.0 mm, thickness 1.0 tmm), and the other end of the spring material 8 is the substrate while the spring material 8 is biased in advance so that the lead wire 7 and the positive temperature coefficient thermistor are separated from each other. 5 was soldered.
600V 40A 1.5 seconds, 600V 7A 5 seconds, 600V 2.2A 30 minutes between the lead wire 6 and the spring material 8, and when current was passed, 0.05 seconds, 1.6 seconds, 3 The current was cut off in 8 seconds.
[0012]
【The invention's effect】
As described above, the positive temperature coefficient thermistor can be miniaturized to provide an overvoltage and overcurrent protection device that can quickly cut off a high voltage and large current at low cost, and the circuit can be completed even when an overvoltage of 600 V is repeatedly applied. Therefore, there is no burning and no overvoltage is applied to the load side.
In the embodiment, brass or phosphor bronze is used as the spring material, but it goes without saying that the present invention is not limited to these spring materials. In addition, by bonding one electrode of the positive temperature coefficient thermistor element to the substrate with an epoxy resin or the like, the positive temperature coefficient thermistor element does not float from the substrate due to the spring force, so that the spring force does not change with time.
Furthermore, since one electrode 13 is coated with the adhesive 9, when a voltage of 600 V is applied, the positive temperature coefficient thermistor element burns out due to arc discharge between the positive temperature coefficient thermistor electrodes until it is separated by the spring material 8. Can be prevented. Therefore, it is desirable that the adhesive 9 completely covers one electrode of the positive temperature coefficient thermistor element 1.
The adhesive is not limited to an epoxy resin, and the same effect can be obtained with a resin such as phenol or urethane. Moreover, although PBX (electronic switching device) was demonstrated as an example as a use, it is not restrict | limited to this use and can apply widely as an object for overvoltage and overcurrent protection.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of the present invention.
FIG. 2 is a cross-sectional view of another embodiment.
3 is a cross-sectional view showing a state in which the lead wire is separated from the positive temperature coefficient thermistor element in the embodiment of FIG.
FIG. 4 shows a state in which a positive temperature coefficient thermistor element is delaminated when an overvoltage is applied to a conventional positive temperature coefficient thermistor.
[Explanation of symbols]
1 Positive temperature coefficient thermistor element 2 Lead wire (brass wire)
3 Lead wire (brass wire)
4 Solder 5 Substrate 6 Lead wire (Cp wire)
7 Lead wire (Cp wire)
8 Spring material (phosphor bronze plate)
9 Adhesive 10 Layered peeling 11 Exterior material 12 Electrode 13 Electrode

Claims (2)

両面に電極が設けられた正特性サーミスタ素子の一方の電極にバネ性を有するリード線を半田付けし、正特性サーミスタ素子方の電極にもリード線を半田付けし、他方の電極と基板とをエポキシ樹脂等の接着剤で接着させ、上記他方の電極全面が上記接着剤でコーティングされており、且つ正特性サーミスタ素子の一方の電極とリード線とが離間するようにリード線のバネ性を付勢した状態で当該リード線の他端を基板に半田付けし、他方の電極のリード線の他端も基板に半田付けし、正特性サーミスタに過電圧・過電流が加わった場合、正特性サーミスタが自己発熱して正特性サーミスタ素子の電極バネ性を有するリード線を接続した半田を融解させ、リード線のバネ力で正特性サーミスタ素子の電極とリード線とが離間することにより回路を遮断するとともに、上記バネ力で離間する迄の間、上記接着剤により正特性サーミスタの電極間でのアーク放電による正特性サーミスタ素子の焼損を防止することを特徴とする過電圧・過電流保護装置。A lead wire having a spring property is soldered to one electrode of the PTC thermistor element electrodes on both sides is provided, to other side of the electrodes of the positive characteristic thermistor element is soldered leads, the other electrode and the substrate Are bonded with an adhesive such as an epoxy resin, the entire surface of the other electrode is coated with the adhesive, and the spring property of the lead wire is such that one electrode of the positive temperature coefficient thermistor element and the lead wire are separated from each other . When the other end of the lead wire is soldered to the board while the other electrode is energized, the other end of the lead wire of the other electrode is also soldered to the board. thermistor to melt the solder to connect the lead having an electrode and the spring of the positive characteristic thermistor element is self-heating, to the electrode and the lead wire of the thermistor element by the spring force of the lead is separated Ri with interrupting the circuit, until separated by the spring force, overvoltage or overcurrent, characterized in that to prevent the burnout of the PTC thermistor element according to an arc discharge between the electrodes of the PTC thermistor by the adhesive Protective device. 両面に電極が設けられた正特性サーミスタ素子の一方の電極に半田付されたリード線にバネ材を半田付けし、正特性サーミスタ素子方の電極にもリード線を半田付けし、他方の電極と基板とをエポキシ樹脂等の接着剤で接着させ、上記他方の電極全面が上記接着剤でコーティングされており、且つリード線と正特性サーミスタ素子の一方の電極とが離間するようにバネ性を付勢した状態でバネ材の他端を基板に半田付けし、他方の電極のリード線の他端も基板に半田付けし、正特性サーミスタに過電圧・過電流が加わった場合、正特性サーミスタが自己発熱して正特性サーミスタ素子の一方の電極バネ材を半田付けしたリード線とを接続した半田を融解させ、バネ材のバネ力で正特性サーミスタ素子の電極とリード線とが離間することにより回路を遮断するとともに、上記バネ力で離間する迄の間、上記接着剤により正特性サーミスタの電極間でのアーク放電による正特性サーミスタ素子の焼損を防止することを特徴とする過電圧・過電流保護装置。The spring member is soldered to the positive characteristic thermistor one soldering only by lead wires to the electrodes of the element electrodes are provided on both surfaces, leads to other side of the electrodes of the positive characteristic thermistor element is soldered, on the other hand The electrode and the substrate are bonded with an adhesive such as an epoxy resin, the entire surface of the other electrode is coated with the adhesive, and the lead wire and one electrode of the positive temperature coefficient thermistor element are separated from each other. When the other end of the spring material is soldered to the board with the biased, and the other end of the lead wire of the other electrode is also soldered to the board, if the overvoltage / overcurrent is applied to the positive temperature coefficient thermistor, the positive characteristics The thermistor self-heats and melts the solder that connects one electrode of the positive temperature coefficient thermistor element to the lead wire soldered with the spring material, and the spring force of the spring material separates the positive temperature coefficient thermistor element electrode from the lead wire. To do Thereby breaking the circuit by, until separated by the spring force, overvoltage or overcurrent, characterized in that to prevent the burnout of the PTC thermistor element according to an arc discharge between the electrodes of the PTC thermistor by the adhesive Protective device.
JP11376196A 1996-05-08 1996-05-08 Overvoltage / overcurrent protection device Expired - Fee Related JP3993256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11376196A JP3993256B2 (en) 1996-05-08 1996-05-08 Overvoltage / overcurrent protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11376196A JP3993256B2 (en) 1996-05-08 1996-05-08 Overvoltage / overcurrent protection device

Publications (2)

Publication Number Publication Date
JPH09306319A JPH09306319A (en) 1997-11-28
JP3993256B2 true JP3993256B2 (en) 2007-10-17

Family

ID=14620483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11376196A Expired - Fee Related JP3993256B2 (en) 1996-05-08 1996-05-08 Overvoltage / overcurrent protection device

Country Status (1)

Country Link
JP (1) JP3993256B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712908A1 (en) * 2019-03-20 2020-09-23 Citel Device for surge protection
WO2020188052A2 (en) 2019-03-20 2020-09-24 Citel Device for protection from overvoltages

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5020560B2 (en) * 2006-07-20 2012-09-05 音羽電機工業株式会社 SPD with separation mechanism and manufacturing method
JP5117917B2 (en) 2008-04-21 2013-01-16 デクセリアルズ株式会社 Protective element and manufacturing method thereof
US8581686B2 (en) * 2009-03-24 2013-11-12 Tyco Electronics Corporation Electrically activated surface mount thermal fuse
DE102009046446A1 (en) 2009-11-06 2011-05-12 Robert Bosch Gmbh Electronic component
US8854784B2 (en) 2010-10-29 2014-10-07 Tyco Electronics Corporation Integrated FET and reflowable thermal fuse switch device
US9082737B2 (en) 2012-11-15 2015-07-14 Infineon Technologies Ag System and method for an electronic package with a fail-open mechanism
FR3022682B1 (en) * 2014-06-20 2018-04-06 Abb France INDICATOR FOR DISCONNECTING AN ACTIVE COMPONENT FROM A DEVICE FOR PROTECTING AN ELECTRICAL INSTALLATION

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712908A1 (en) * 2019-03-20 2020-09-23 Citel Device for surge protection
WO2020188052A2 (en) 2019-03-20 2020-09-24 Citel Device for protection from overvoltages
FR3094148A1 (en) * 2019-03-20 2020-09-25 Citel Surge protection device
FR3094147A1 (en) * 2019-03-20 2020-09-25 Citel Surge protection device
WO2020188052A3 (en) * 2019-03-20 2020-11-12 Citel Device for protection from overvoltages
US11217369B2 (en) 2019-03-20 2022-01-04 Citel Overvoltage protection device

Also Published As

Publication number Publication date
JPH09306319A (en) 1997-11-28

Similar Documents

Publication Publication Date Title
KR102213303B1 (en) Fuse element and fuse device
US6344633B1 (en) Stacked protective device lacking an insulating layer between the heating element and the low-melting element
EP1150307B1 (en) A thermally protected metal oxide varistor
JP2004265617A (en) Protective element
JP3993256B2 (en) Overvoltage / overcurrent protection device
KR100366177B1 (en) An electric fuse and protective circuit
US7728709B2 (en) Electroceramic component
JP3618635B2 (en) Battery protector
KR100697923B1 (en) PTC device having varistor therin
JP3853419B2 (en) Overvoltage / overcurrent protection device
JP3853418B2 (en) Overvoltage / overcurrent protection device
JP2616174B2 (en) Overcurrent protection components
KR20160009517A (en) Thermal Fuse and Printed Circuit Board with Thermal Fuse
WO2017163766A1 (en) Protection element
KR100572423B1 (en) PCC overcurrent protection element with varistor function
US5425099A (en) Positive temperature coefficient thermistor device
JPH08250304A (en) Overvoltage and overcurrent protective device
JPH0973848A (en) Overvoltage overcurrent protection device
US5315652A (en) Terminal for telegraph and telephone systems
JPH0810644B2 (en) Overcurrent protection components
JPH0568337A (en) Circuit breaker and overvoltage and overcurrent preventing device
JP2528404B2 (en) Open circuit element
JP3088588U (en) Fuse composite varistor
RU2192087C1 (en) Overcurrent protective device
JP3149089U (en) Surge absorber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees