JP3993084B2 - Infrared gas detector and infrared gas detector - Google Patents

Infrared gas detector and infrared gas detector Download PDF

Info

Publication number
JP3993084B2
JP3993084B2 JP2002368362A JP2002368362A JP3993084B2 JP 3993084 B2 JP3993084 B2 JP 3993084B2 JP 2002368362 A JP2002368362 A JP 2002368362A JP 2002368362 A JP2002368362 A JP 2002368362A JP 3993084 B2 JP3993084 B2 JP 3993084B2
Authority
JP
Japan
Prior art keywords
infrared
gas
light source
time
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368362A
Other languages
Japanese (ja)
Other versions
JP2004198301A (en
Inventor
浩昭 杉山
晋祐 小▲暮▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Keiki KK
Original Assignee
Riken Keiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Keiki KK filed Critical Riken Keiki KK
Priority to JP2002368362A priority Critical patent/JP3993084B2/en
Publication of JP2004198301A publication Critical patent/JP2004198301A/en
Application granted granted Critical
Publication of JP3993084B2 publication Critical patent/JP3993084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Emergency Alarm Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線式ガス検出器および赤外線式ガス検知装置に関する。
【0002】
【従来の技術】
例えば、二酸化炭素ガス、一酸化炭素ガス、メタンガス、ブタンガス、イソブタンガス、プロパンガス、フロンガスなどのガスを検出するガス検出器の一種として、検査対象ガスが導入されるガスセルと、当該ガスセルの一端側に設けられた赤外線を発生する赤外線光源と、当該ガスセルの他端側に設けられた赤外線センサとを備えてなり、赤外線が検査対象ガス中に存在する検出対象ガス(以下、「被検出ガス」ともいう。)によって吸収され、その吸収量が被検出ガスの濃度と比例関係にあることを利用することによって被検出ガスの濃度を測定する赤外線式ガス検出器が知られている。
【0003】
赤外線センサとしては、赤外線を受光することにより、その表面における表面電荷状態が変化し、この表面電荷状態に基づく電気信号を出力する焦電型赤外線センサが好適に用いられている。
【0004】
このような焦電型赤外線センサを備えてなる赤外線式ガス検出器としては、焦電型赤外線センサが微分型の検出特性を有するものであって連続して出力を得るためには、当該焦電型赤外線センサに対して赤外線を断続的に供給する必要があることから、例えばチョッパ、シャッタなどの機械的なセクタによって焦電型赤外線センサに向かって赤外線光源から放射される赤外線を周期的にチョッピングする構成のものが用いられている。
このような機械的なセクタを備えてなる構成の赤外線式ガス検出器においては、ガス検出動作中において、常時、赤外線光源を点灯状態とし、また、セクタを駆動状態とする必要があることから、消費電力が大きくなる。
【0005】
然るに、赤外線式ガス検出器においては、特に、例えば携帯型のものなどに対して低消費電力化の要請があることから、このような場合には、通常、点灯状態と消灯状態とが繰り返される点滅方式で動作される赤外線光源を備えたものが用いられている。
このような点滅方式の赤外線光源を備えてなる構成の赤外線式ガス検出器は、ガス検出動作中において赤外線光源が常時点灯状態とされず、また、赤外線光源の点滅周期に伴って焦電型赤外線センサに対して断続的に赤外線が供給されることから、機械的なセクタを設ける必要もなくなるため、機械的なセクタを備えてなる赤外線式ガス検出器に比して、その消費電力が小さくなる。
【0006】
しかしながら、点滅方式の赤外線光源を備えてなる構成の赤外線式ガス検出器においては、図3に示すように、焦電型赤外線センサによって赤外線が供給される周期(図3において(イ)で表される周期)を周期成分とする電気信号(図3において(ロ))が出力され、この電気信号における赤外線光源が点灯状態にある場合における点灯出力ピーク値p1 と、消灯状態にある場合におけるの消灯出力ピーク値p2 との差異に基づいて被検出ガスの濃度測定が行われることから、シャープな点灯出力ピークおよび消灯出力ピークを有する安定した出力を得、高い精度でガス検出を行うために、点灯時間t1 および消灯時間t2 の各々を、焦電型赤外線センサの表面電荷状態が平衡化するために要する要電荷平衡化時間よりも小さくすると共に、通常、点灯時間t1 と消灯時間t2 とを同一の大きさとしていることから、赤外線光源に係る消費電力が大きく、この赤外線光源に係る消費電力の赤外線式ガス検出器の総消費電力に対する割合が70%程度と高いことから、要請を十分に満足する低消費電力化が図られていない。
【0007】
また、このような赤外線式ガス検出器においては、単に赤外線光源の印加電圧を小さくすることによっては、赤外線光源に係る消費電力を十分に小さくすることができないことから、要請を満足するような低消費電力化を図ることができず、あるいは、単にガス検出動作中における赤外線光源の駆動時間に対する点灯時間の割合を小さくすることによっては、焦電型赤外線センサから安定した出力が得られなくなる、という問題がある。
【0008】
【特許文献1】
特許第3305634号公報
【0009】
【発明が解決しようとする課題】
本発明は以上のような事情に基づいてなされたものであって、その目的は、優れたガス検出性能を有すると共に、低消費電力化を図ることができる赤外線式ガス検出器を提供することにある。
また、発明の他の目的は、信頼性の高いガス検知を行うと共に、低消費電力化を図ることができる赤外線式ガス検知装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明の赤外線式ガス検出器は、点灯状態と消灯状態とが繰り返される点滅方式で動作される赤外線光源と、当該赤外線光源から放射された赤外線を、検査対象ガスが導入されるガスセルを介して受光し、表面電荷状態に基づく電気信号を出力する焦電型赤外線センサとを備え、
赤外線光源は、点灯時間が焦電型赤外線センサの表面電荷状態が平衡化するために要する要電荷平衡化時間よりも小さく、かつ消灯時間が要電荷平衡化時間よりも十分に大きくなる状態で点滅され、
赤外線光源の点灯状態終了時点における焦電型赤外線センサの出力値と、当該赤外線光源の消灯状態における要電荷平衡化時間経過時点から消灯状態終了時点までの間の平衡期間内における選ばれた時点の焦電型赤外線センサの出力値との差異に基づいて検査対象ガス中の検出対象ガスの濃度測定を行うことを特徴とする。
【0011】
本発明の赤外線式ガス検出器においては、赤外線光源の消灯時間が、点灯時間の2倍以上であることが好ましい。
【0012】
本発明の赤外線式ガス検出器においては、少なくとも赤外線光源を駆動するための光源駆動回路およびその制御回路に対する投入電力を、消灯時間内において低減させることができる。
【0013】
本発明の赤外線式ガス検知装置は、上記の赤外線式ガス検出器を備えていることを特徴とする。
【0014】
【作用】
本発明の赤外線式ガス検出器によれば、赤外線光源が、点灯時間が要電荷平衡化時間よりも小さく、かつ消灯時間が要電荷平衡化時間よりも十分に大きくなる状態で点滅されることにより、ガス検出動作中において、赤外線光源が消灯状態にある時間の割合が点灯状態にある時間の割合よりも大きくなることから、当該赤外線光源を点灯状態とするために駆動する構成部材を休止状態とする時間を大きくすることによって赤外線光源に係る消費電力を小さくし、かつ検出対象ガスの濃度測定処理を行う構成部材を一定時間休止状態とすることができると共に、点灯状態および消灯状態の各々における特定の時点の焦電型赤外線センサの出力値に基づいて検出対象ガスの濃度測定が行われることから、ガス検出性能に実用上の弊害を伴うことなく低消費電力化を図ることができる。
従って、本発明の赤外線式ガス検出器によれば、優れたガス検出性能が得られると共に、低消費電力化を図ることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
図1は、本発明の赤外線式ガス検出器を示す説明用図である。
この赤外線式ガス検出器10は、例えば二酸化炭素ガスなどの赤外線吸収性能を有するガスを被検出ガス(検出対象ガス)とする赤外線式ガス検出器であって、検査対象ガスを導入するためのガス導入口11Aおよびガス排出口11Bを有するガスセル11と、当該ガスセル11の一端側(図1において左端側)に設けられ、点灯状態と消灯状態とが繰り返される点滅方式で動作されることによって赤外線を発生する赤外線光源12と、ガスセル11の他端側(図1において右端側)に設けられ、赤外線光源12から放射される赤外線をガスセル11を介して受光する焦電型赤外線センサ13とを備えている。
この図の例において、16は、被検出ガスが吸収する赤外線に対してのみ高い透過率を有するバンドパスフィルターである。また、21は光源駆動回路、22はCPU、23は増幅回路であり、24はセンサ用バイアス電圧印加回路である。
【0016】
焦電型赤外線センサ13は、当該焦電型赤外線センサ13を構成する焦電体による焦電効果を利用する微分型の検出特性を有し、赤外線を断続的に受光することによって連続して出力を得ることができるものであり、赤外線光源12の点滅周期に伴って周期的に供給される赤外線を受光することにより、その表面における表面電荷状態が変化し、この表面電荷状態に基づいて、赤外線が供給される周期を周期成分とする電気信号(以下、「センサ出力信号」ともいう。)を出力する。
この焦電型赤外線センサ13には、センサ用バイアス電圧印加回路24の他に、増幅回路(図示せず)が接続されており、この増幅回路には、センサ出力信号に基づいて濃度信号を発信する機能を有する、例えば平滑回路などを含むガス濃度変換回路が接続されている。
【0017】
焦電型赤外線センサ13における焦電体は、自発分極を示す強誘電体素子であって、赤外線光源12から放射される光を受光し、その受光した赤外線量に応じて温度変化を生じ、この温度変化による表面電荷状態の変化を焦電効果にてとらえるものである。
【0018】
ここに、赤外線光源12の点滅状態に変化が生じることによって非平衡状態となった焦電型赤外線センサ13の表面電荷状態は、その点滅状態環境下において、要電荷平衡化時間を要して平衡化されることとなる。
【0019】
具体的に、焦電型赤外線センサ13の表面電荷状態が平衡化するために要する要電荷平衡化時間とは、赤外線光源12が消灯状態から点灯状態に移行すること、または赤外線式ガス検出器10が駆動されて赤外線光源12が点灯状態となることによって焦電型赤外線センサ13に対する光の照射が開始されることに伴って当該焦電型赤外線センサ13の表面電荷状態に変化が生じて非平衡状態となった場合、および赤外線光源12が点灯状態から消灯状態に移行することによって焦電型赤外線センサ13に対する光の照射が停止されることに伴って焦電型赤外線センサ13の表面電荷状態に変化が生じて非平衡状態となった場合において、平衡化に要する時間をいう。
【0020】
赤外線光源12としては、例えばタングステンランプなどの小型の白熱ランプを好適に用いることができる。
この赤外線光源12は、パルス状に電源を供給する光源駆動回路21に接続されており、この光源駆動回路21からのパルス電源信号の周期に従って点滅し、この点滅周期にて焦電型赤外線センサ13に向かって光を放射する。
【0021】
赤外線光源12は、点灯時間が要電荷平衡化時間よりも小さく、かつ消灯時間が要電荷平衡化時間よりも十分に大きくなる状態で点滅されている。
【0022】
点灯時間が要電荷平衡化時間以上である場合には、焦電型赤外線センサ13からのセンサ出力信号に、交流電流増幅のため、シャープな点灯出力ピークが得られず、実用上必要とされるガス検出能力が得られない。
また、消灯時間が要電荷平衡化時間以下である場合には、ガス検出動作中における点灯状態にある時間の割合が大きくなり、十分な低消費電力化を図ることができない。
【0023】
具体的に、点灯時間は、要電荷平衡化時間の0.5倍以下、特に0.1〜0.5倍であることが好ましく、一方、消灯時間は、要電荷平衡化時間の1.5倍以上、特に2〜5倍であることが好ましい。
【0024】
また、赤外線光源12の消灯時間は、点灯時間の2倍以上、特に5〜10倍以上であることが好ましい。
消灯時間が点灯時間の2倍以上であることにより、赤外線式ガス検出器10の低消費電力化を確実に図ることができる。
【0025】
赤外線光源12の点滅条件としては、具体的に、焦電型赤外線センサ13の要電荷平衡化時間が2秒間である場合には、点灯時間が1秒間であり、消灯時間が9秒間であることが好ましい。
【0026】
ここに、赤外線光源12は、被検出ガスの種類にもよるが、赤外線式ガス検出器10において10秒〜24時間に1回の割合でガス検出が行われる態様に対応するよう点滅するものであってもよい。
【0027】
このような構成を有する赤外線式ガス検出器10によれば、ガス検出動作中において、赤外線光源12から、例えば図2において(イ)で表される点滅周期によって赤外線が放射され、この放射された赤外線は、ガスセル11内を通過し、バンドパスフィルター16を介して焦電型赤外線センサ13に照射される。このようにして焦電型赤外線センサ13には、赤外線光源12の点滅周期に伴って赤外線が周期的に供給される。
図2において、t1 は点灯時間を示し、t2 は消灯時間を示す。
【0028】
そして、焦電型赤外線センサ13からは、当該焦電型赤外線センサ13に赤外線が供給される周期を周期成分とする、図2(ロ)に示すようなセンサ出力信号が出力され、赤外線光源12の点灯終了時点T1 における焦電型赤外線センサ13の出力値と、当該赤外線光源12の消灯状態における要電荷平衡化時間(図2(ロ)においてT1 からT2 までの間の時間)を経過した時点(要電荷平衡化時間経過時点)T2 から消灯終了時点T3 までの平衡期間内における選ばれた時点の焦電型赤外線センサ13の出力値との差異(以下、「出力値差異」ともいう。)に基づいて被検出ガスの濃度測定が行われる。
ここに、赤外線光源12の消灯時間t2 (図2(ロ)においてT1 からT3 までの間の時間)における、要電荷平衡化時間経過時点T2 から消灯終了時点T3 までの間の時間においては、焦電型赤外線センサ13は平衡状態となっている。
【0029】
具体的に、焦電型赤外線センサ13からのセンサ出力信号は、増幅回路によって増幅された後、ガス濃度変換回路に入力し、このガス濃度変換回路においては、通常、被検出ガスが存在しない状態におけるセンサ出力信号の出力値差異を基準とし、ガス検出動作中に得られるセンサ出力信号の出力値差異の増減の変化割合に基づき濃度信号を発信する。
【0030】
この濃度信号は、検査対象ガス中に存在する被検出ガスによって吸収される赤外線量が当該被検出ガスの濃度と比例関係にあることを利用し、ガスセル11内に導入された被検出ガスが赤外線を吸収することによって減少する焦電型赤外線センサ13へ入射する赤外線の減少割合に基づいて算出される被検出ガスの濃度を示す信号である。
【0031】
以上の赤外線式ガス検出器10によれば、赤外線光源12の点灯時間t1 が要電荷平衡化時間よりも小さく、消灯時間t2 が要電荷平衡化時間よりも十分に大きくなるよう制御されることにより、ガス検出動作中において、赤外線光源12が消灯状態にある時間の割合が点灯状態にある時間の割合よりも大きくなることから、当該赤外線光源12を点灯状態とするために駆動する光源駆動回路21および当該光源駆動回路21を制御するための制御回路であるCPU22と増幅回路23を休止状態とする時間を大きくすることができると共に、赤外線光源12が消灯状態である期間(図2(ロ)におけるT1 の直後からT3 の直前までの間の期間)において、当該焦電型赤外線センサ13からのセンサ出力信号を処理する増幅回路およびガス濃度変換回路を一定時間休止状態とすることができるため、低消費電力化を図ることができる。
【0032】
また、点灯終了時点T1 に係る焦電型赤外線センサ13の出力値および平衡期間内における選ばれた時点に係る焦電型赤外線センサ13の出力値に基づいて被検出ガスの濃度測定が行われることから、従来の赤外線式ガス検出器に係る点灯出力ピーク値と消灯出力値との差異に基づいて被検出ガスの濃度を測定する手法とは異なり、消灯時間が要電荷平衡化時間よりも大きいことに起因して赤外線光源12が消灯状態にある場合の焦電型赤外線センサ13の出力の変化が緩慢となってシャープな消灯出力ピークを得ることができなくとも、高い精度でガス検出を行うことができるため、ガス検出性能に実用上の弊害を伴うことなく低消費電力化を図ることができる。
従って、赤外線式ガス検出器10によれば、弊害を伴うことなく、消灯時間内において、赤外線光源12を駆動するための光源駆動回路21およびその制御回路に対する投入電力を低減することにより、赤外線式ガス検出器10の総消費電力に対する割合の高い赤外線光源12に係る消費電力を小さくすることができるため、優れたガス検出性能が得られると共に、低消費電力化を図ることができる。
【0033】
以上のような赤外線式ガス検出器10は、その消費電力を小さくすることができることから、例えば携帯型のもの、駆動源として太陽電池を利用する構成のものなどに好適に用いることができる。
【0034】
以上、本発明の赤外線式ガス検出器について具体的に説明したが、本発明は以上の例に限定されるものではなく、点滅方式で動作される赤外線光源が特定の点滅状態で点滅され、点灯状態および消灯状態の各々における特定時点の焦電型赤外線センサの出力値に基づいて被検出ガスの濃度測定が行われる構成のものであれば、その構成部材としては種々のものを用いることができる。
例えば赤外線式ガス検出器は、低消費電力化の観点から、赤外線光源の印加電圧の基準値を0Vとすることが好ましいが、例えば0.5−2.5Vのように0V以外の電圧を基準値とするものであってもよい。
【0035】
このような本発明の赤外線式ガス検出器は、例えば、二酸化炭素ガス、一酸化炭素ガス、メタンガス、ブタンガス、イソブタンガス、プロパンガス、フロンガスなどのガスを検知対象ガス(以下、「被検知ガス」ともいう。)とし、その検知した被検知ガスの濃度が予め定められた一定の濃度以上である場合に警報を発するよう構成された赤外線式ガス検知装置における検知部として好適に用いられる。
【0036】
上記の赤外線式ガス検出器を備えていることを特徴とする本発明の赤外線式ガス検知装置は、具体的な構成の一例として、赤外線式ガス検出器を検知部として有し、当該赤外線式ガス検出器におけるガス濃度変換回路に接続された、ガス濃度変換回路から発信される濃度信号などの種々の信号に基づいて、各構成部に適宜の指令信号を発信する機能を有するマイクロコンピュータと、当該マイクロコンピューターに接続された、検知部において検知された被検知ガス濃度を示すための濃度表示手段および被検知ガス濃度が一定のレベル以上の濃度を示したときにガス検知信号を発するガス警報機構とが設けられてなるものである。
【0037】
このような構成の赤外線式ガス検知装置においては、赤外線式ガス検出器によって得られる濃度信号が一定のレベルである危険濃度レベルを超えた場合には、例えばマイクロコンピュータからの指令信号に基づいてガス警報機構からガス検知信号が発せられる。
【0038】
本発明の赤外線式ガス検知装置によれば、優れたガス検出性能を有すると共に、低消費電力化を図ることができるガス検出器を備えてなるものであるため、信頼性の高いガス検知を行うと共に、低消費電力化を図ることができる。
【0039】
以下、本発明の作用効果を確認するために行った実験について説明する。
【0040】
〔実験例1〕
図1の構成に従い、イソブタンガスを被検出ガスとし、ガスセルと、点滅方式で動作されるタングステンランプよりなる赤外線光源と、要電荷平衡化時間が2秒間である焦電型赤外線センサと、被検出ガスであるイソブタンガスが吸収する赤外線に対してのみ高い透過率を有するバンドパスフィルターとを備えてなる赤外線式ガス検出器(以下、「赤外線式ガス検出器(1)」ともいう。)を作製した。
【0041】
作製した赤外線式ガス検出器(1)において、赤外線光源は、点灯時間が1秒間、消灯時間が9秒間となるよう制御されて点滅され、また、被検出ガスの濃度測定は、赤外線光源の点灯終了時点における焦電型赤外線センサの出力値と、消灯終了時点における焦電型赤外線センサの出力値との差異に基づいて行われる。
【0042】
また、赤外線光源が、点灯時間および消灯時間がともに0.5秒間となるよう制御されて点滅され、また、被検出ガスの濃度測定が、赤外線光源が点灯状態にある場合における焦電型赤外線センサの点灯出力ピーク値と、消灯状態にある場合における焦電型赤外線センサの消灯出力ピーク値との差異に基づいて行われること以外は赤外線式ガス検出器(1)と同様の構成を有する赤外線式ガス検出器(以下、「赤外線式ガス検出器(2)」ともいう。)を作製した。
【0043】
作製した赤外線式ガス検出器(1)および赤外線式ガス検出器(2)の各々において、赤外線光源を印加電圧2Vの条件で点灯させることによってガス検出動作を連続して30日間にわたって行うガス検出テストを行ったところ、これらの赤外線式ガス検出器によって実用上問題のない精度の検出結果が得られた。
また、赤外線式ガス検出器(1)と赤外線式ガス検出器(2)との消費電力を確認したところ、赤外線式ガス検出器(1)の赤外線光源に係る消費電力は、赤外線式ガス検出器(2)の消費電力の1/5倍であり、更に、赤外線式ガス検出器全体の総消費電力は120mW、一方、赤外線式ガス検出器(2)の総消費電力1400mWであり、赤外線式ガス検出器(1)の総消費電力は、赤外線式ガス検出器(2)の総消費電力の約1/10倍となっていた。
【0044】
以上の結果から、本発明に係る赤外線式ガス検出器(1)によれば、優れたガス検出性能が得られると共に、低消費電力化を図ることができることが確認された。
【0045】
【発明の効果】
本発明の赤外線式ガス検出器によれば、赤外線光源が、点灯時間が要電荷平衡化時間よりも小さく、かつ消灯時間が要電荷平衡化時間よりも十分に大きくなる状態で点滅されることにより、ガス検出動作中において、赤外線光源が消灯状態にある時間の割合が点灯状態にある時間の割合よりも大きくなることから、当該赤外線光源を点灯状態とするために駆動する構成部材を休止状態とする時間を大きくすることによって赤外線光源に係る消費電力を小さくし、かつ検出対象ガスの濃度測定処理を行う構成部材を一定時間休止状態とすることができると共に、点灯状態および消灯状態の各々における特定の時点の焦電型赤外線センサの出力値に基づいて検出対象ガスの濃度測定が行われることから、ガス検出性能に実用上の弊害を伴うことなく低消費電力化を図ることができる。
従って、本発明の赤外線式ガス検出器によれば、優れたガス検出性能が得られると共に、低消費電力化を図ることができる。
【0046】
また、本発明の赤外線式ガス検知装置によれば、上記の赤外線式ガス検出器を備えているため、信頼性の高いガス検知を行うと共に、低消費電力化を図ることができる。
【図面の簡単な説明】
【図1】本発明の赤外線式ガス検出器を示す説明用図である。
【図2】図1の赤外線式ガス検出器におけるガス検出動作中の具体的な焦電型赤外線センサに対する赤外線供給周期の例と、焦電型赤外線センサから発信される電気信号の例を示す説明図である。
【図3】従来の赤外線式ガス検出器におけるガス検出動作中の具体的な焦電型赤外線センサに対する赤外線供給周期の例と、焦電型赤外線センサから発信される電気信号の例を示す説明図である。
【符号の説明】
10 赤外線式ガス検出器
11 ガスセル
11A ガス導入口
11B ガス排出口
12 赤外線光源
13 焦電型赤外線センサ
16 バンドパスフィルター
21 光源駆動回路
22 CPU
23 増幅回路
24 センサ用バイアス電圧印加回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared gas detector and an infrared gas detector.
[0002]
[Prior art]
For example, as a kind of gas detector for detecting gases such as carbon dioxide gas, carbon monoxide gas, methane gas, butane gas, isobutane gas, propane gas, and chlorofluorocarbon gas, a gas cell into which an inspection target gas is introduced, and one end side of the gas cell A detection target gas (hereinafter referred to as “detected gas”) in which an infrared light source for generating infrared rays and an infrared sensor provided on the other end of the gas cell are provided. Infrared gas detectors that measure the concentration of the gas to be detected by utilizing the fact that the amount of absorption is proportional to the concentration of the gas to be detected are also known.
[0003]
As the infrared sensor, a pyroelectric infrared sensor that changes the surface charge state on the surface thereof by receiving infrared light and outputs an electric signal based on the surface charge state is preferably used.
[0004]
As an infrared gas detector including such a pyroelectric infrared sensor, the pyroelectric infrared sensor has differential detection characteristics, and in order to obtain continuous output, Since it is necessary to intermittently supply infrared rays to the infrared sensor, the infrared rays emitted from the infrared light source are periodically chopped toward the pyroelectric infrared sensor by a mechanical sector such as a chopper or a shutter. The thing of the structure to be used is used.
In the infrared type gas detector configured to include such a mechanical sector, it is necessary to always turn on the infrared light source and drive the sector during the gas detection operation. Power consumption increases.
[0005]
However, in the infrared gas detector, for example, since there is a demand for lower power consumption particularly for a portable type, for example, in such a case, the lighting state and the extinguishing state are usually repeated. What is provided with the infrared light source operated by the blinking method is used.
Infrared gas detectors having such a flashing infrared light source are not always in the on state during the gas detection operation, and the pyroelectric infrared is accompanied by the flashing cycle of the infrared light source. Since infrared light is intermittently supplied to the sensor, there is no need to provide a mechanical sector, so that power consumption is smaller than that of an infrared gas detector having a mechanical sector. .
[0006]
However, in an infrared gas detector configured to include a flashing infrared light source, as shown in FIG. 3, a period (indicated by (A) in FIG. 3) in which infrared rays are supplied by a pyroelectric infrared sensor. (Period (b) in FIG. 3) is output, and the lighting output peak value p 1 when the infrared light source in the electrical signal is in the lit state and the light output in the unlit state are output. based on the difference between the off output peak value p 2 from the concentration measurement of a gas to be detected is carried out, to obtain a stable output having a sharp lighting output peak and off peak power, in order to perform gas detection with high accuracy , each of the lighting time t 1 and extinguishing time t 2, together with the surface charge state of the pyroelectric infrared sensor is smaller than the main charge equilibration time required to equilibrate, Normally, since it is the lighting time t 1 off time t 2 and the same size, large power consumption of the infrared source, percentage of the total power consumption of the infrared type gas detector in power consumption according to the infrared light source Is as high as about 70%, it has not been possible to achieve low power consumption that fully satisfies the requirements.
[0007]
Further, in such an infrared gas detector, the power consumption of the infrared light source cannot be reduced sufficiently by simply reducing the applied voltage of the infrared light source. Power consumption cannot be achieved, or by simply reducing the ratio of the lighting time to the driving time of the infrared light source during the gas detection operation, a stable output cannot be obtained from the pyroelectric infrared sensor. There's a problem.
[0008]
[Patent Document 1]
Japanese Patent No. 3305634
[Problems to be solved by the invention]
The present invention has been made based on the circumstances as described above, and an object thereof is to provide an infrared gas detector that has excellent gas detection performance and can achieve low power consumption. is there.
Another object of the present invention is to provide an infrared gas detection device capable of detecting gas with high reliability and reducing power consumption.
[0010]
[Means for Solving the Problems]
An infrared gas detector according to the present invention includes an infrared light source that operates in a blinking manner in which a lighting state and a light-off state are repeated, and an infrared ray emitted from the infrared light source through a gas cell into which an inspection target gas is introduced. A pyroelectric infrared sensor that receives light and outputs an electrical signal based on the surface charge state;
The infrared light source blinks in a state where the lighting time is shorter than the charge balancing time required for the surface charge state of the pyroelectric infrared sensor to be balanced and the turn-off time is sufficiently longer than the charge balancing time required And
The output value of the pyroelectric infrared sensor at the end of the illuminating state of the infrared light source and the selected time point within the equilibrium period from the time when the charge required balancing time has elapsed in the unlit state of the infrared light source to the end of the unlit state. The concentration of the detection target gas in the inspection target gas is measured based on the difference from the output value of the pyroelectric infrared sensor.
[0011]
In the infrared gas detector of the present invention, it is preferable that the turn-off time of the infrared light source is at least twice as long as the turn-on time.
[0012]
In the infrared type gas detector of the present invention, at least the input power to the light source drive circuit for driving the infrared light source and its control circuit can be reduced within the turn-off time.
[0013]
The infrared type gas detection device of the present invention includes the above infrared type gas detector.
[0014]
[Action]
According to the infrared gas detector of the present invention, the infrared light source blinks in a state where the lighting time is shorter than the charge balancing time and the turn-off time is sufficiently longer than the charge balancing time. During the gas detection operation, the ratio of the time during which the infrared light source is in the off state is greater than the ratio of the time during which the infrared light source is in the on state. The power consumption of the infrared light source can be reduced by increasing the time to perform the measurement, and the constituent member that performs the concentration measurement process of the detection target gas can be put into a dormant state for a certain period of time. Since the concentration of the gas to be detected is measured based on the output value of the pyroelectric infrared sensor at the point of time, there is no practical adverse effect on the gas detection performance. It can reduce power consumption.
Therefore, according to the infrared gas detector of the present invention, excellent gas detection performance can be obtained, and power consumption can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is an explanatory view showing an infrared type gas detector of the present invention.
The infrared gas detector 10 is an infrared gas detector that uses a gas having infrared absorption performance such as carbon dioxide gas as a gas to be detected (detection target gas), and is a gas for introducing the inspection target gas. Infrared light is generated by operating the gas cell 11 having the introduction port 11A and the gas discharge port 11B, and a flashing method which is provided on one end side (left end side in FIG. 1) of the gas cell 11 and which is repeatedly turned on and off. An infrared light source 12 that is generated, and a pyroelectric infrared sensor 13 that is provided on the other end side (right end side in FIG. 1) of the gas cell 11 and receives infrared rays emitted from the infrared light source 12 via the gas cell 11 are provided. Yes.
In the example of this figure, 16 is a band-pass filter having a high transmittance only with respect to infrared rays absorbed by the gas to be detected. Reference numeral 21 denotes a light source driving circuit, 22 denotes a CPU, 23 denotes an amplifier circuit, and 24 denotes a sensor bias voltage application circuit.
[0016]
The pyroelectric infrared sensor 13 has differential detection characteristics that use the pyroelectric effect of the pyroelectric body constituting the pyroelectric infrared sensor 13 and outputs continuously by intermittently receiving infrared light. The surface charge state on the surface of the infrared light source 12 is changed by receiving the infrared light periodically supplied along with the blinking cycle of the infrared light source 12, and the infrared charge is changed based on the surface charge state. An electrical signal (hereinafter, also referred to as “sensor output signal”) having a period component as a periodic component is output.
In addition to the sensor bias voltage application circuit 24, an amplifying circuit (not shown) is connected to the pyroelectric infrared sensor 13, and a concentration signal is transmitted to the amplifying circuit based on the sensor output signal. For example, a gas concentration conversion circuit including a smoothing circuit is connected.
[0017]
The pyroelectric material in the pyroelectric infrared sensor 13 is a ferroelectric element that exhibits spontaneous polarization, receives light emitted from the infrared light source 12, and changes in temperature according to the amount of received infrared light. The change in surface charge state due to temperature change is captured by the pyroelectric effect.
[0018]
Here, the surface charge state of the pyroelectric infrared sensor 13 that has become non-equilibrium due to a change in the blinking state of the infrared light source 12 is balanced over the time required for charge balancing in the blinking state environment. Will be converted.
[0019]
Specifically, the charge balancing time required for the surface charge state of the pyroelectric infrared sensor 13 to be balanced is that the infrared light source 12 shifts from the off state to the on state, or the infrared gas detector 10. Is activated and the irradiation of light to the pyroelectric infrared sensor 13 is started, so that the surface charge state of the pyroelectric infrared sensor 13 is changed to be non-equilibrium. The surface charge state of the pyroelectric infrared sensor 13 when the irradiation of light to the pyroelectric infrared sensor 13 is stopped when the infrared light source 12 shifts from the on state to the off state. This is the time required for equilibration when a change occurs and a non-equilibrium state occurs.
[0020]
As the infrared light source 12, for example, a small incandescent lamp such as a tungsten lamp can be suitably used.
The infrared light source 12 is connected to a light source driving circuit 21 that supplies power in a pulsed manner, and blinks in accordance with the cycle of the pulse power source signal from the light source driving circuit 21, and the pyroelectric infrared sensor 13 in this blinking cycle. Emits light toward
[0021]
The infrared light source 12 is blinked in a state where the lighting time is shorter than the charge balancing time and the turn-off time is sufficiently longer than the charge balancing time.
[0022]
When the lighting time is equal to or longer than the charge balancing time, a sharp lighting output peak cannot be obtained in the sensor output signal from the pyroelectric infrared sensor 13 due to the alternating current amplification, which is necessary in practice. The gas detection capability cannot be obtained.
In addition, when the turn-off time is equal to or shorter than the charge balancing time, the proportion of the time in the lighting state during the gas detection operation increases, and sufficient power consumption cannot be reduced.
[0023]
Specifically, the lighting time is preferably 0.5 times or less, particularly 0.1 to 0.5 times the charge balancing time, while the turn-off time is 1.5 times the charge balancing time. It is preferably at least twice, particularly 2 to 5 times.
[0024]
Further, the turn-off time of the infrared light source 12 is preferably at least twice as long as the turn-on time, and more preferably at least 5 to 10 times.
Since the turn-off time is twice or more the turn-on time, the power consumption of the infrared gas detector 10 can be reliably reduced.
[0025]
Specifically, as the blinking condition of the infrared light source 12, when the charge balancing time of the pyroelectric infrared sensor 13 is 2 seconds, the lighting time is 1 second and the turn-off time is 9 seconds. Is preferred.
[0026]
Here, the infrared light source 12 blinks so as to correspond to a mode in which gas detection is performed at a rate of once every 10 seconds to 24 hours in the infrared gas detector 10, depending on the type of gas to be detected. There may be.
[0027]
According to the infrared gas detector 10 having such a configuration, during the gas detection operation, infrared light is emitted from the infrared light source 12 by, for example, a blinking cycle represented by (A) in FIG. Infrared light passes through the gas cell 11 and is irradiated to the pyroelectric infrared sensor 13 via the band pass filter 16. Thus, infrared rays are periodically supplied to the pyroelectric infrared sensor 13 as the infrared light source 12 blinks.
In FIG. 2, t 1 indicates a lighting time, and t 2 indicates a light-off time.
[0028]
Then, the pyroelectric infrared sensor 13 outputs a sensor output signal as shown in FIG. 2B, in which the period during which infrared rays are supplied to the pyroelectric infrared sensor 13 is a periodic component. The output value of the pyroelectric infrared sensor 13 at the lighting end time T 1 and the charge balancing time (time between T 1 and T 2 in FIG. 2B) when the infrared light source 12 is turned off. elapsed time difference between the output value of the pyroelectric infrared sensor 13 at the time selected in the equilibration period from (on charge equilibration time elapse) T 2 to turn off at the end T 3 (hereinafter, "output value differences ”), The concentration of the gas to be detected is measured.
Here, during the extinction time t 2 of the infrared light source 12 (the time between T 1 and T 3 in FIG. 2B), the interval between the charge balancing time elapse time T 2 and the extinction end time T 3 . In time, the pyroelectric infrared sensor 13 is in an equilibrium state.
[0029]
Specifically, the sensor output signal from the pyroelectric infrared sensor 13 is amplified by an amplifier circuit and then input to a gas concentration conversion circuit. In this gas concentration conversion circuit, normally, there is no gas to be detected. The concentration signal is transmitted based on the change rate of the increase / decrease in the output value difference of the sensor output signal obtained during the gas detection operation with reference to the output value difference of the sensor output signal.
[0030]
This concentration signal uses the fact that the amount of infrared rays absorbed by the gas to be detected present in the gas to be inspected is proportional to the concentration of the gas to be detected, so that the gas to be detected introduced into the gas cell 11 is infrared. It is a signal which shows the density | concentration of the to-be-detected gas calculated based on the reduction | decrease rate of the infrared rays which inject into the pyroelectric type infrared sensor 13 which decreases by absorbing.
[0031]
According to the infrared gas detector 10 described above, the lighting time t 1 of the infrared light source 12 is controlled to be shorter than the charge balancing time and the turn-off time t 2 is sufficiently longer than the charge balancing time. As a result, during the gas detection operation, the ratio of the time during which the infrared light source 12 is off is greater than the percentage of the time during which the infrared light source 12 is in the lit state. The time during which the CPU 22 and the amplifier circuit 23 which are the control circuits for controlling the circuit 21 and the light source driving circuit 21 are in the dormant state can be increased, and the period during which the infrared light source 12 is in the extinguishing state (FIG. ) in the period) between immediately after the T 1 immediately before of T 3 in conc amplifier circuit and gas for processing the sensor output signal from the pyroelectric infrared sensor 13 It is possible to the converter and a predetermined time dormant, it is possible to reduce power consumption.
[0032]
Further, the concentration of the gas to be detected is measured based on the output value of the pyroelectric infrared sensor 13 at the lighting end time T 1 and the output value of the pyroelectric infrared sensor 13 at the selected time point in the equilibrium period. Therefore, unlike the method of measuring the concentration of the gas to be detected based on the difference between the lighting output peak value and the lighting output value according to the conventional infrared gas detector, the lighting time is longer than the charge balancing time required. As a result, even when the change in the output of the pyroelectric infrared sensor 13 is slow when the infrared light source 12 is in an extinguished state and a sharp extinction output peak cannot be obtained, gas detection is performed with high accuracy. Therefore, it is possible to reduce the power consumption without causing a practical problem in the gas detection performance.
Therefore, according to the infrared gas detector 10, by reducing the input power to the light source drive circuit 21 for driving the infrared light source 12 and its control circuit within the turn-off time without causing any harmful effects, the infrared gas detector 10 can be used. Since the power consumption of the infrared light source 12 having a high ratio with respect to the total power consumption of the gas detector 10 can be reduced, excellent gas detection performance can be obtained and low power consumption can be achieved.
[0033]
Since the infrared gas detector 10 as described above can reduce the power consumption, it can be suitably used for, for example, a portable type or a configuration using a solar cell as a drive source.
[0034]
The infrared gas detector of the present invention has been specifically described above, but the present invention is not limited to the above example, and an infrared light source operated in a flashing mode is flashed in a specific flashing state and turned on. Various components can be used as long as the concentration of the detected gas is measured based on the output value of the pyroelectric infrared sensor at a specific point in each of the state and the off state. .
For example, in the infrared gas detector, the reference value of the applied voltage of the infrared light source is preferably 0 V from the viewpoint of low power consumption, but a voltage other than 0 V such as 0.5 to 2.5 V is used as a reference. It may be a value.
[0035]
Such an infrared type gas detector of the present invention is, for example, carbon dioxide gas, carbon monoxide gas, methane gas, butane gas, isobutane gas, propane gas, chlorofluorocarbon gas, etc. It is also suitably used as a detector in an infrared gas detector configured to issue an alarm when the detected concentration of the detected gas is equal to or higher than a predetermined concentration.
[0036]
The infrared gas detector according to the present invention including the infrared gas detector described above has, as an example of a specific configuration, an infrared gas detector as a detection unit, and the infrared gas detector. A microcomputer connected to the gas concentration conversion circuit in the detector and having a function of transmitting an appropriate command signal to each component based on various signals such as a concentration signal transmitted from the gas concentration conversion circuit; A concentration display means connected to the microcomputer for indicating the detected gas concentration detected by the detection unit, and a gas alarm mechanism for issuing a gas detection signal when the detected gas concentration is a certain level or higher; Is provided.
[0037]
In the infrared type gas detection device having such a configuration, when the concentration signal obtained by the infrared type gas detector exceeds a certain dangerous concentration level, the gas is detected based on a command signal from a microcomputer, for example. A gas detection signal is issued from the alarm mechanism.
[0038]
According to the infrared type gas detection device of the present invention, the gas detector having excellent gas detection performance and low power consumption can be provided, so that highly reliable gas detection is performed. In addition, low power consumption can be achieved.
[0039]
Hereinafter, experiments conducted for confirming the effects of the present invention will be described.
[0040]
[Experimental Example 1]
In accordance with the configuration of FIG. 1, an isobutane gas as a gas to be detected, a gas cell, an infrared light source composed of a tungsten lamp operated in a flashing manner, a pyroelectric infrared sensor having a charge balancing time of 2 seconds, and a gas to be detected An infrared type gas detector (hereinafter also referred to as “infrared type gas detector (1)”) including a bandpass filter having a high transmittance only with respect to the infrared ray absorbed by the isobutane gas which is a gas is manufactured. did.
[0041]
In the manufactured infrared gas detector (1), the infrared light source is controlled to blink for 1 second and the light extinction time is 9 seconds, and the concentration of the detected gas is measured by turning on the infrared light source. This is performed based on the difference between the output value of the pyroelectric infrared sensor at the end point and the output value of the pyroelectric infrared sensor at the end point of turning off.
[0042]
In addition, the infrared light source is controlled and blinked so that both the turn-on time and the turn-off time are 0.5 seconds, and the concentration measurement of the gas to be detected is a pyroelectric infrared sensor in the case where the infrared light source is turned on. Infrared type having the same configuration as the infrared gas detector (1) except that it is performed based on the difference between the lighting output peak value of No. and the extinguishing output peak value of the pyroelectric infrared sensor in the off state. A gas detector (hereinafter also referred to as “infrared gas detector (2)”) was produced.
[0043]
In each of the produced infrared gas detector (1) and infrared gas detector (2), a gas detection test is carried out continuously for 30 days by turning on the infrared light source under the condition of an applied voltage of 2V. As a result, the infrared gas detectors produced detection results with no practical problems.
In addition, when the power consumption of the infrared gas detector (1) and the infrared gas detector (2) was confirmed, the power consumption of the infrared light source of the infrared gas detector (1) was the infrared gas detector. The total power consumption of the infrared gas detector is 120 mW, while the total power consumption of the infrared gas detector (2) is 1400 mW. The total power consumption of the detector (1) was about 1/10 times the total power consumption of the infrared gas detector (2).
[0044]
From the above results, it was confirmed that according to the infrared gas detector (1) of the present invention, excellent gas detection performance can be obtained and low power consumption can be achieved.
[0045]
【The invention's effect】
According to the infrared gas detector of the present invention, the infrared light source blinks in a state where the lighting time is shorter than the charge balancing time and the turn-off time is sufficiently longer than the charge balancing time. During the gas detection operation, the ratio of the time during which the infrared light source is in the off state is greater than the ratio of the time during which the infrared light source is in the on state. The power consumption of the infrared light source can be reduced by increasing the time to perform the measurement, and the constituent member that performs the concentration measurement process of the detection target gas can be put into a dormant state for a certain period of time. Since the concentration of the gas to be detected is measured based on the output value of the pyroelectric infrared sensor at the point of time, there is no practical adverse effect on the gas detection performance. It can reduce power consumption.
Therefore, according to the infrared gas detector of the present invention, excellent gas detection performance can be obtained, and power consumption can be reduced.
[0046]
Moreover, according to the infrared type gas detection device of the present invention, since the infrared type gas detector is provided, it is possible to perform highly reliable gas detection and reduce power consumption.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an infrared gas detector according to the present invention.
2 is a diagram illustrating an example of an infrared supply cycle for a specific pyroelectric infrared sensor during gas detection operation in the infrared gas detector of FIG. 1 and an example of an electrical signal transmitted from the pyroelectric infrared sensor. FIG.
FIG. 3 is an explanatory diagram showing an example of an infrared supply cycle for a specific pyroelectric infrared sensor during gas detection operation in a conventional infrared gas detector and an example of an electric signal transmitted from the pyroelectric infrared sensor. It is.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Infrared type gas detector 11 Gas cell 11A Gas inlet 11B Gas outlet 12 Infrared light source 13 Pyroelectric infrared sensor 16 Band pass filter 21 Light source drive circuit 22 CPU
23 Amplification circuit 24 Sensor bias voltage application circuit

Claims (4)

点灯状態と消灯状態とが繰り返される点滅方式で動作される赤外線光源と、当該赤外線光源から放射された赤外線を、検査対象ガスが導入されるガスセルを介して受光し、表面電荷状態に基づく電気信号を出力する焦電型赤外線センサとを備え、
赤外線光源は、点灯時間が焦電型赤外線センサの表面電荷状態が平衡化するために要する要電荷平衡化時間よりも小さく、かつ消灯時間が要電荷平衡化時間よりも十分に大きくなる状態で点滅され、
赤外線光源の点灯状態終了時点における焦電型赤外線センサの出力値と、当該赤外線光源の消灯状態における要電荷平衡化時間経過時点から消灯状態終了時点までの間の平衡期間内における選ばれた時点の焦電型赤外線センサの出力値との差異に基づいて検査対象ガス中の検出対象ガスの濃度測定を行うことを特徴とする赤外線式ガス検出器。
An infrared light source that operates in a blinking manner in which a lighting state and a light-off state are repeated, and an infrared ray emitted from the infrared light source is received through a gas cell into which an inspection target gas is introduced, and an electric signal based on a surface charge state A pyroelectric infrared sensor that outputs
The infrared light source blinks in a state where the lighting time is shorter than the charge balancing time required for the surface charge state of the pyroelectric infrared sensor to be balanced and the turn-off time is sufficiently longer than the charge balancing time required And
The output value of the pyroelectric infrared sensor at the end of the illuminating state of the infrared light source and the selected time point within the equilibrium period from the time when the charge required balancing time has elapsed in the unlit state of the infrared light source to the end of the unlit state. An infrared gas detector characterized in that the concentration of a detection target gas in the inspection target gas is measured based on a difference from an output value of the pyroelectric infrared sensor.
赤外線光源の消灯時間が、点灯時間の2倍以上であることを特徴とする請求項1に記載の赤外線式ガス検出器。The infrared gas detector according to claim 1, wherein the infrared light source has a turn-off time that is at least twice as long as the turn-on time. 少なくとも赤外線光源を駆動するための光源駆動回路およびその制御回路に対する投入電力を、消灯時間内において低減させることを特徴とする請求項1または請求項2に記載の赤外線式ガス検出器。3. The infrared gas detector according to claim 1, wherein the input power to at least the light source driving circuit for driving the infrared light source and its control circuit is reduced within the turn-off time. 4. 請求項1〜請求項3のいずれかに記載の赤外線式ガス検出器を備えていることを特徴とする赤外線式ガス検知装置。An infrared type gas detector comprising the infrared type gas detector according to any one of claims 1 to 3.
JP2002368362A 2002-12-19 2002-12-19 Infrared gas detector and infrared gas detector Expired - Fee Related JP3993084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368362A JP3993084B2 (en) 2002-12-19 2002-12-19 Infrared gas detector and infrared gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368362A JP3993084B2 (en) 2002-12-19 2002-12-19 Infrared gas detector and infrared gas detector

Publications (2)

Publication Number Publication Date
JP2004198301A JP2004198301A (en) 2004-07-15
JP3993084B2 true JP3993084B2 (en) 2007-10-17

Family

ID=32764953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368362A Expired - Fee Related JP3993084B2 (en) 2002-12-19 2002-12-19 Infrared gas detector and infrared gas detector

Country Status (1)

Country Link
JP (1) JP3993084B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669740B2 (en) * 2005-05-31 2011-04-13 理研計器株式会社 Pyroelectric infrared gas detector
JP5562538B2 (en) * 2008-08-21 2014-07-30 矢崎総業株式会社 Concentration measuring device
CN102129757A (en) * 2011-04-01 2011-07-20 黄勇 Household infrared photosensitive gas alarming device
CN104637257A (en) * 2014-12-25 2015-05-20 陈英杰 Coal gas leakage alarm
CN105513290A (en) * 2016-01-31 2016-04-20 江苏韩通船舶重工有限公司 Multifunctional compressed natural gas ship gas detection system and method of working thereof
FR3089009B1 (en) * 2018-11-27 2020-12-04 Elichens Gas sensor incorporating a pulsed light source

Also Published As

Publication number Publication date
JP2004198301A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US10508988B2 (en) Method and system for gas detection
JP3993084B2 (en) Infrared gas detector and infrared gas detector
US4185491A (en) Gas monitors
CN105510266A (en) Harmful gas monitoring system based on infrared absorption spectrum
JP4663883B2 (en) Gas sensor and method of operating gas sensor
CN113516824A (en) Composite fire detector and detection method thereof
JP2008232918A (en) Gas detector
JP2008176656A (en) Inspection method for gas alarm and gas alarm
JP4027219B2 (en) Infrared gas detector
JPH11509341A (en) Improvement of photoelectric smoke detector
JPH1114546A (en) Gas detector, gas warning device, combustion device and safety device for automobile
JP2003083889A (en) Infrared analyzer
JP4669630B2 (en) Infrared gas detector and control method thereof
JPH08128956A (en) Gas concentration measuring equipment
JP2008151793A (en) Analog sensor signal processing method, measured value processor, and gas sensor assembly
RU2380691C2 (en) Combustion gas sensor
JP2000182162A (en) Flame detecting device and flame detecting method
JPS6080758A (en) Detector for oxygen concentration
SU211870A1 (en) GAS ALARM ANALYSIS OF DISCRETE MEASUREMENT OF THERMAL CONDUCTIVITY OF A GAS MIXTURE
JP2008292320A (en) Gas concentration measuring instrument, and light source driving circuit
JPH0646181B2 (en) Infrared carbon dioxide analyzer
RU31855U1 (en) Gas leak monitor
JPH0532760Y2 (en)
JP3004457U (en) Infrared gas analyzer
JP2009186272A (en) Infrared carbon dioxide detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees