JP3992938B2 - Method for producing cationic resin-modified silica dispersion - Google Patents

Method for producing cationic resin-modified silica dispersion Download PDF

Info

Publication number
JP3992938B2
JP3992938B2 JP2001108547A JP2001108547A JP3992938B2 JP 3992938 B2 JP3992938 B2 JP 3992938B2 JP 2001108547 A JP2001108547 A JP 2001108547A JP 2001108547 A JP2001108547 A JP 2001108547A JP 3992938 B2 JP3992938 B2 JP 3992938B2
Authority
JP
Japan
Prior art keywords
dispersion
cationic resin
silica dispersion
silica
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108547A
Other languages
Japanese (ja)
Other versions
JP2002302552A (en
Inventor
顕治 福永
宜典 田頭
務 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2001108547A priority Critical patent/JP3992938B2/en
Publication of JP2002302552A publication Critical patent/JP2002302552A/en
Application granted granted Critical
Publication of JP3992938B2 publication Critical patent/JP3992938B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、乾式シリカを使用し、インクジェット用記録紙の塗工液(以下、単に塗工液ともいう。)、新聞紙の内填剤、研磨剤、金属表面処理剤等の調製に有用なカチオン性樹脂変性シリカ分散液の新規な製造方法に関する。詳しくは、分散性に優れ、これを使用して塗工液を調製するときの安定性にも優れたカチオン性樹脂変性シリカ分散液を製造するため方法を提供するものである。
【0002】
【従来の技術】
インクジェット用記録紙の塗工液には、インク吸収層を形成するために微粒子のシリカやアルミナ等の無機微粉体が使用されている。上記微粒子のうち、特にシリカ、とりわけ乾式シリカは、分散性に優れており、好適に使用されている。
【0003】
一方、インクジェット用のインクとしては、一般に、アニオン性の化合物が使われることが多く、上記インク吸収層はカチオン性を有している方が、インクジェット用記録紙の画像濃度及び耐水性向上のために有利である。
【0004】
ところが、インク吸収層を形成する無機粉体として乾式シリカを用いた場合、粒子がアニオン性を呈するため、画像濃度や耐水性に問題があった。そのため、改善策として乾式シリカに第4級アンモニウム塩基等のカチオン性基を含むカチオン性樹脂を配合したカチオン性樹脂変性シリカ分散液が提案されており、例えば、特開平11−321079号公報には、乾式シリカ分散液をカチオン性樹脂水溶液に対して添加して混合する工程を含む、混合方法を特定したカチオン性樹脂変性シリカ分散液の製造方法が開示されている。
【0005】
また、金属表面処理剤には、金属の耐食性や塗料の密着性を向上させるために、シリカ分散液にカチオン性樹脂を配合した処理剤が提案されており、例えば、特開昭56−24470号公報には、カチオン性樹脂水溶液に水分散性コロイダルシリカを攪拌下に加える方法が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、このような予めシリカ粉体を水に分散したシリカ分散液を調製してから、カチオン性樹脂水溶液と混合する方法においては、シリカ粉体を水に分散する際に発生する攪拌熱により液温の上昇したシリカ分散液を、カチオン性樹脂水溶液に添加すると、シリカ粒子が凝集してしまい、カチオン性樹脂変性シリカ分散液全体をゲル化させるという問題があった。
【0007】
また、室温のシリカ分散液をカチオン性樹脂水溶液に添加しながら、混合・分散しても、分散する際の温度が高いと得られるカチオン性樹脂変性シリカ分散液がゲル化し、一方、分散する際の温度が低いと得られるカチオン性樹脂変性シリカ分散液の粘度が高くなるなど、カチオン性樹脂変性シリカ分散液の粘度にばらつきを生じ、カチオン性樹脂変性シリカ分散液の取扱いが非常に難しくなるという問題もあった。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、乾式シリカ微粒子を予め水に分散(以下、一次分散という。)させた分散液(以下、乾式シリカ分散液という。)の液温を40℃以下に保持して、カチオン性樹脂水溶液に添加しながら、混合・分散(以下、二次分散という。)する時の液温(以下、二次分散温度という。)を20℃〜45℃の温度範囲内で制御して得られた分散液(以下、二次分散液という。)を更に高圧ホモジナイザーで処理することにより、極めて安定なカチオン性樹脂変性シリカ分散液が得られることを見い出し、本発明を完成するに至った。
【0009】
即ち、本発明は、カチオン性樹脂の量が、乾式シリカ100重量部あたり3〜10重量部であるカチオン性樹脂変性シリカ分散液の製造方法であって、該カチオン性樹脂がジアリルメチルアミン塩酸塩重合物またはジアリルジメチルアンモニウムクロライド重合物であるカチオン性樹脂水溶液に、液温を40℃以下に保持した乾式シリカ分散液を添加しながら、且つ液温を20℃〜45℃の温度範囲内で制御して分散せしめた後、高圧ホモジナイザーによる分散処理を行うことを特徴とするカチオン性樹脂変性シリカ分散液の製造方法である。
【0010】
【発明の実施の形態】
本発明において用いられる乾式シリカ粉末は、四塩化珪素などのシラン系ガスを酸水素炎中で燃焼させて得られる、「ヒュームドシリカ」とも称されているものが特に制限なく使用される。
【0011】
一般に、乾式シリカは、比表面積が30〜500m/gの範囲のものが入手可能であり、これらの乾式シリカは本発明に好適に使用できる。
【0012】
本発明において使用されるカチオン性樹脂は、水に溶解したときに解離してカチオン性を呈する樹脂であれば特に限定されず、公知のカチオン性樹脂が特に制限なく使用できる。
【0013】
その中でも、第1〜3級アミン基又は4級アンモニウム塩基を有する樹脂が好適に使用できる。具体的なものを例示すると、ポリエチレンイミン、ポリビニルピリジン、ポリアミンスルホン、ポリジアルキルアミノエチルメタクリレート、ポリジアルキルアミノエチルアクリレート、ポリジアルキルアミノエチルメタクリルアミド、ポリジアルキルアミノエチルアクリルアミド、ポリエポキシアミン、ポリアミドアミン、ジシアンジアミド−ホルマリン縮合物、ジシアンジアミドポリアルキル−ポリアルキレンポリアミン縮合物、ポリビニルアミン、ポリアリルアミン等の化合物及びこれらの塩酸塩、更にポリジアリルジメチルアンモニウムクロライド及びそのアクリルアミド等の共重合物、ジアリルメチルアミン塩酸塩重合物、ポリメタクリル酸エステルメチルクロライド4級塩等を挙げることができる。
【0014】
本発明においてカチオン性樹脂水溶液には、必要に応じて有機極性溶媒を混合しても良い。かかる有機極性溶媒としては、メタノール、エタノール、イソプロピルアルコール等のアルコール類、エーテル類、ケトン類などが挙げられる。
【0015】
尚、シリカ粒子の安定性や分散性を向上させるために、本発明の効果を損なわない範囲で、界面活性剤等を少量添加してもよい。
【0016】
本発明においては、カチオン性樹脂水溶液に40℃以下の乾式シリカ分散液を添加しながら、且つ20℃〜45℃の温度範囲内で二次分散する。
【0017】
乾式シリカはその製造工程上、乾燥した粉末の状態で得られるため、乾式シリカを水に分散して乾式シリカ分散液を得る必要がある。乾式シリカを水に分散する際には攪拌による攪拌熱が発生し、乾式シリカ分散液の温度が上昇する。この攪拌熱は分散機の機種や分散時間、分散液中のシリカ濃度により異なる。
【0018】
攪拌熱により上昇したシリカ分散液温度が40℃を超えた場合、二次分散温度を45℃に制御していても、二次分散液全体がゲル状となる現象がおこり、再分散するのが困難となる。この原因について本発明者等も明確には説明できないが、該乾式シリカ分散液を冷却せずに液温40℃の潜熱を有した状態で、カチオン性樹脂水溶液に添加しながら混合・分散しようとすると、たとえ二次分散温度を45℃に制御していても、冷却装置による熱交換が行われる前に、攪拌熱により二次分散液温度が一時的に上昇し、局部的に45℃を越えるため、シリカ粒子が凝集を始めたためではないかと推定される。
【0019】
乾式シリカ分散液の40℃以下への冷却は、乾式シリカ粉末を水に分散させた後、40℃以上まで温度上昇した乾式シリカ分散液を40℃以下まで冷却しても良いし、一次分散時の乾式シリカ分散液の温度を40℃以下に制御しながら分散しても良い。
【0020】
本発明においては、二次分散温度は20℃から45℃の温度範囲であり、さらには25℃から40℃の温度範囲に制御することが好ましい。
【0021】
二次分散温度は、高くなるほど二次分散液の粘度は低くなるが、45℃を超えると二次分散液内のシリカ粒子が凝集し易くなり、二次分散液の粘度が急上昇して二次分散液がゲル化する傾向にある。また、二次分散温度が20℃未満の場合は、二次分散液の粘度が上昇する傾向にある。この原因について本発明者等も明確に説明できないが、二次分散液温度が20℃未満では分散液中において乾式シリカとカチオン性樹脂の分散性が低下するためではないかと推定される。更に本発明においては、該二次分散液を高圧ホモジナイザーで処理してカチオン性樹脂変性シリカ分散液を得るが、二次分散液の粘度が高いほど、高圧ホモジナイザーで処理して得られたカチオン性樹脂変性シリカ分散液の粘度も高くなる傾向にある。カチオン性樹脂変性シリカ分散液粘度が高くなると、以降に続く製造工程においてハンドリング性が低下するので好ましくない。
【0022】
乾式シリカ分散液及び二次分散液の温度制御によるさまざまな現象は、乾式シリカ分散液中のシリカ濃度が15%以上になると顕著に見られることから、本発明は、シリカ濃度が15%以上のときにより効果を発現する。
【0023】
二次分散温度を20℃から45℃の温度範囲に制御する方式は特に制限されないが、20℃から45℃の温度範囲において任意の一定温度となるように制御することが好ましい。
【0024】
本発明において、一次分散及び二次分散に用いる分散機は特に制限されないが、プロペラ羽根、タービン羽根、パドル翼を有する一般攪拌機、ディスパーミキサー等の高速回転遠心放射形攪拌機、ホモジナイザー、ホモミキサー、ウルトラミキサー等の高速回転せん断型攪拌機、コロイドミル、プラネタリーミキサーなどの乳化機等が挙げられる。
【0025】
乾式シリカ分散液中のシリカ濃度が15%以上の高濃度の乾式シリカ分散液を効率よく得る場合、及びカチオン性樹脂水溶液に前記シリカ濃度15%以上の乾式シリカ分散液を添加しながら混合・分散する場合には、上記の分散機の中でも強力なせん断力を有する分散機が好適である。具体的には、高速回転せん断型攪拌機や、プロペラ羽根及びパドル翼に更に高速回転せん断型攪拌機を組み合せた複合型分散機、プラネタリーミキサーと高速回転遠心放射形攪拌機又は高速回転せん断型攪拌機を組み合わせた複合型分散機等が挙げられる。
【0026】
カチオン性樹脂変性シリカ分散液の粘度は、原料である乾式シリカの比表面積とカチオン性樹脂の構造、分子量、分散液中の乾式シリカとカチオン性樹脂の含有量及びそれぞれの配合比、分散に用いる分散機の種類等にも大きく依存する。
【0027】
本発明において、カチオン性樹脂変性シリカ分散液中の乾式シリカの量は、15〜40重量%の範囲が好ましい。また、カチオン性樹脂の量は、乾式シリカ100重量部あたり3〜10重量部である。
【0028】
前記カチオン性樹脂変性シリカ分散液中の乾式シリカの濃度を40重量%より多くした場合、二次分散する際に強力なせん断力をもつ分散機を使用しても、乾式シリカ分散液のカチオン性樹脂水溶液への混合が困難となる場合がある。また、15重量%より少なくした場合は、塗工液を調整後の塗工工程において一回の塗工で十分な厚みの塗工層が形成し難かったり、塗工後乾燥する際のエネルギー効率が悪くなるなどの問題がある。
【0029】
また、前記カチオン性樹脂変性シリカ分散液中のカチオン性樹脂の量が、乾式シリカ100重量部に対して重量部より少なくなるように調整した場合、乾式シリカ粒子の表面電荷のバランスが不均一となり、該シリカ粒子が強固な凝集を起こし易くなる傾向がある。また、カチオン性樹脂の量がシリカ100重量部に対して10重量部よりも多くなるように調整した場合、粘度が高くなり、分散処理が困難になる場合がある。
【0030】
本発明において、カチオン性樹脂変性シリカ分散液中における、粒子の表面電荷の指標となるゼータ電位は、高いほど得られるインクジェット用記録紙の耐水性を高めることができ、一般に、+10mV以上、好ましくは+20mV以上、さらに好ましくは+30mV以上であることが好ましい。
【0031】
上記ゼータ電位は、カチオン性樹脂の混合量を多く調整することにより高くすることができるが、混合するカチオン性樹脂の種類によりゼータ電位の上昇幅は異なるため、予め実験により、最適な添加量を前記添加量より選択することが好ましい。
【0032】
本発明において、上記方法で乾式シリカ分散液とカチオン性樹脂水溶液とを混合・分散した二次分散液は、次いで、高圧ホモジナイザーを使用して分散処理することにより、極めて分散性に優れ、これを使用して塗工液を調製するときの安定性にも優れたカチオン性樹脂変性シリカ分散液が得られる。
【0033】
上記高圧ホモジナイザーは、公知の構造を有するものが特に制限なく使用されるが、代表的なものを具体的に例示すると、ナノマイザー製の商品名;ナノマイザー、マイクロフルイディクス製の商品名;マイクロフルイダイザー、及びスギノマシン製のアルティマイザーなどを挙げることができる。
【0034】
上記の高圧ホモジナイザーを用いて、二次分散液を、処理圧力300kgf/cm以上で対向衝突させるか、或いはオリフィスの入口側と出口側の差圧が300kgf/cm以上の条件でオリフィスを通過させることによって好適な範囲の平均凝集粒子径を持ったカチオン性樹脂変性シリカ分散液を得ることができる。
【0035】
上記高圧ホモジナイザーによる分散の程度は、得られるカチオン性樹脂変性シリカ分散液中の平均凝集粒子径が、10〜1000nmの範囲、好ましくは50〜300nmの範囲となるように行うことが好ましい。
【0036】
即ち、平均凝集粒子径が10nmよりも小さい場合は、カチオン性樹脂変性シリカ分散液の粘度が高くなり、例えば、インクジェット記録紙用塗工液とした場合、扱い難いことがある。平均粒子径が1000nmよりも大きい場合は、カチオン性樹脂変性シリカ分散液中で乾式シリカが沈降して相分離し易くなる場合がある。
【0037】
【発明の効果】
本発明の方法によれば、乾式シリカ分散液とカチオン性樹脂水溶液とを混合・分散することにより得られる二次分散液がゲル化することなく、カチオン性樹脂変性シリカ分散液を得ることができる。また、得られるカチオン性樹脂変性シリカ分散液の粘度が低くて、且つばらつきが少ないという特徴がある。
【0038】
また、乾式シリカ濃度が高いカチオン樹脂変性シリカ分散液を容易に得ることができる。
【0039】
【実施例】
以下、本発明の実施例を挙げて具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。
【0040】
なお、以下の方法によって、カチオン性樹脂変性シリカ分散液の物性測定を行った。
【0041】
(平均粒子径の測定)
カチオン性樹脂変性シリカ分散液の濃度が10重量%となるように、該分散液をイオン交換水に希釈した後、光散乱回折式の粒度分布測定装置(コールター製、コールターLS−230)を用いて、体積基準算術平均径D50を測定し、この値を平均径として採用した。
【0042】
なお、測定に際しては、水(分散媒)の屈折率1.332及びシリカの屈折率1.458をパラメーターとして入力した。
【0043】
(粘度測定)
二次分散液又はカチオン性樹脂変性シリカ分散液300gを500cc容器に採取し、ホモジナイザー(イカ製、ウルトラタラックスT−25)を用いて、20,000rpmで5分間攪拌した。次に30℃の恒温槽に10分間つけた後、B型粘度計(トキメック製、BL)を用いて60rpmの条件で二次分散液とカチオン性樹脂変性シリカ分散液の粘度を測定した。
【0044】
(ゼータ電位の測定)
カチオン性樹脂変性シリカ分散液中のシリカ粒子のゼータ電位をレーザーゼータ電位計(大塚電子製、LEZA−600)を用いて測定した。まず、シリカ分散液中のシリカ濃度を300ppmになるように10ppmのNaCl水溶液で希釈し、超音波バスで5分間分散した。次に、測定セルに該希釈液を入れて印加電圧80V、測定角度20°、測定温度25℃の条件で測定した。
【0045】
実施例1
比表面積が140m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−10)400gを純水1600gに添加し、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は49℃であった。この乾式シリカ分散液を35℃まで冷却した後、該乾式シリカ分散液を常温のカチオン性樹脂濃度60%のジアリルメチルアミン塩酸塩重合物水溶液33gに添加しながら、液温度を40℃に維持して、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより二次分散液を得た。二次分散液の液温は39℃であった。この二次分散液を高圧ホモジナイザー(ナノマイザー製、ナノマイザー、LA−31)を用いて処理圧力800kgf/cmで、オリフィスを1回通過させて分散処理することによりカチオン性樹脂変性シリカ分散液を得た。得られたカチオン性樹脂変性シリカ分散液及び二次分散液の物性を表1に示した。
【0046】
実施例2
比表面積が300m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−30)400gを純水1600gに添加し、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は50℃であった。この乾式シリカ分散液を35℃まで冷却した後、該乾式シリカ分散液を常温のカチオン性樹脂濃度25%のジアリルジメチルアンモニウムクロライド重合物水溶液48gに添加しながら、液温度を40℃に維持して、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより二次分散液を得た。二次分散液の液温は40℃であった。この二次分散液を高圧ホモジナイザー(ナノマイザー製、ナノマイザー、LA−31)を用いて処理圧力800kgf/cmで、オリフィスを1回通過させて分散処理することによりカチオン性樹脂変性シリカ分散液を得た。得られたカチオン性樹脂変性シリカ分散液及び二次分散液の物性を表1に示した。
【0047】
実施例3
比表面積が300m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−30)400gを純水1600gに添加し、液温度を30℃に維持しながらホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は30℃であった。この乾式シリカ分散液を常温のカチオン性樹脂濃度25%のジアリルジメチルアンモニウムクロライド重合物水溶液48gに添加しながら、液温度を30℃に維持して、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより二次分散液を得た。二次分散液の液温は30℃であった。この二次分散液を高圧ホモジナイザー(ナノマイザー製、ナノマイザー、LA−31)を用いて処理圧力800kgf/cmで、オリフィスを1回通過させて分散処理することによりカチオン性樹脂変性シリカ分散液を得た。得られたカチオン性樹脂変性シリカ分散液及び二次分散液の物性を表1に示した。
【0048】
比較例1
比表面積が140m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−10)400gを純水1600gに添加し、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は51℃であった。この乾式シリカ分散液を冷却せず、さらに二次分散温度の制御も行わずに常温のカチオン性樹脂濃度60%のジアリルメチルアミン塩酸塩重合物水溶液33gに添加しながら、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散したところ、二次分散液全体が乾式シリカ分散液の添加中にゲル化し、分散不可能となった。ゲル化した時の温度は52℃であった。
【0049】
比較例2
比表面積が300m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−30)400gを純水1600gに添加し、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は50℃であった。この乾式シリカ分散液を冷却せず、さらに二次分散温度の制御も行わずに常温のカチオン性樹脂濃度25%のジアリルジメチルアンモニウムクロライド重合物水溶液48gに添加しながら、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散したところ、二次分散液全体が乾式シリカ分散液の添加中にゲル化し、分散不可能となった。ゲル化した時の温度は51℃であった。
【0050】
比較例3
比表面積が300m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−10)400gを純水1600gに添加し、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は50℃であった。この乾式シリカ分散液を35℃まで冷却した後、該乾式シリカ分散液を常温のカチオン性樹脂濃度25%のジアリルジメチルアンモニウムクロライド重合物水溶液48gに添加しながら、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散した。乾式シリカ分散液を全量添加後、液温度を55℃に維持して、分散を続けたところ、二次分散液全体がゲル化し、分散が不可能となった。
【0051】
比較例4
比表面積が140m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−10)400gを純水1600gに添加し、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は50℃であった。この乾式シリカ分散液を15℃まで冷却した後、該乾式シリカ分散液を常温のカチオン性樹脂濃度60%のジアリルメチルアミン塩酸塩重合物水溶液33gに添加しながら、液温度を15℃に維持して、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより二次分散液を得た。二次分散液の液温は16℃であった。この二次分散液を高圧ホモジナイザー(ナノマイザー製、ナノマイザー、LA−31)を用いて処理圧力800kgf/cmで、オリフィスを1回通過させて分散処理することによりカチオン性樹脂変性シリカ分散液を得た。得られたカチオン性樹脂変性シリカ分散液及び二次分散液の物性を表1に示した。
【0052】
比較例5
比表面積が300m/gのヒュームドシリカ(トクヤマ製、レオロシールQS−10)400gを純水1600gに添加し、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより乾式シリカ分散液を得た。乾式シリカ分散液の液温度は50℃であった。この乾式シリカ分散液を15℃まで冷却した後、該乾式シリカ分散液を常温のカチオン性樹脂濃度25%のジアリルジメチルアンモニウムクロライド重合物水溶液48gに添加しながら、液温度を15℃に維持して、ホモジナイザー(イカ製、ウルトラタラックスT−25)で分散することにより二次分散液を得た。二次分散液の液温は15℃であった。この二次分散液を高圧ホモジナイザー(ナノマイザー製、ナノマイザー、LA−31)を用いて処理圧力800kgf/cmで、オリフィスを1回通過させて分散処理することによりカチオン性樹脂変性シリカ分散液を得た。得られたカチオン性樹脂変性シリカ分散液及び二次分散液の物性を表1に示した。
【0053】
【表1】

Figure 0003992938
【0054】
表1に見られるように、40℃以下まで冷却した乾式シリカ分散液をカチオン性樹脂水溶液に添加しながら、液温20℃〜45℃の温度範囲内で混合・分散してもゲル化することなく、安定な二次分散液が得られた。
【0055】
また、二次分散液調製時に20℃から45℃の温度範囲で温度制御した実施例1,2及び3によって得られたカチオン性樹脂変性シリカ分散液は、15℃に温度制御した比較例4及び5によって得られたカチオン性樹脂変性シリカ分散液よりも分散液粘度が低くなった。また、二次分散温度を55℃とした比較例3においては二次分散液がゲル化した。[0001]
BACKGROUND OF THE INVENTION
The present invention uses a dry silica and is a cation useful for the preparation of an ink jet recording paper coating liquid (hereinafter also simply referred to as a coating liquid), a newspaper filler, an abrasive, a metal surface treatment agent, and the like. The present invention relates to a novel method for producing a functional resin-modified silica dispersion. Specifically, the present invention provides a method for producing a cationic resin-modified silica dispersion having excellent dispersibility and excellent stability when preparing a coating liquid using the same.
[0002]
[Prior art]
In order to form an ink absorbing layer, inorganic fine powders such as fine-particle silica and alumina are used in a coating liquid for inkjet recording paper. Of the fine particles, silica, especially dry silica, is excellent in dispersibility and is preferably used.
[0003]
On the other hand, in general, anionic compounds are often used as inkjet inks, and the ink absorbing layer has a cationic property in order to improve image density and water resistance of inkjet recording paper. Is advantageous.
[0004]
However, when dry silica is used as the inorganic powder for forming the ink absorbing layer, the particles exhibit an anionic property, which causes a problem in image density and water resistance. Therefore, as an improvement measure, a cationic resin-modified silica dispersion in which a dry resin is mixed with a cationic resin containing a cationic group such as a quaternary ammonium base has been proposed. For example, JP-A-11-321079 discloses A method for producing a cationic resin-modified silica dispersion with a specified mixing method is disclosed, which includes a step of adding and mixing a dry silica dispersion to an aqueous cationic resin solution.
[0005]
In addition, as a metal surface treatment agent, a treatment agent in which a cationic resin is blended with a silica dispersion has been proposed in order to improve the corrosion resistance of a metal and the adhesion of a paint. For example, JP-A-56-24470 has been proposed. The publication discloses a method of adding water-dispersible colloidal silica to an aqueous cationic resin solution with stirring.
[0006]
[Problems to be solved by the invention]
However, in the method of preparing a silica dispersion in which silica powder is previously dispersed in water and then mixing with a cationic resin aqueous solution, the liquid is generated by stirring heat generated when the silica powder is dispersed in water. When the silica dispersion whose temperature has been increased is added to the cationic resin aqueous solution, the silica particles are aggregated, and the entire cationic resin-modified silica dispersion is gelled.
[0007]
In addition, even if the silica dispersion at room temperature is added to the aqueous cationic resin solution and mixed and dispersed, the resulting cationic resin-modified silica dispersion will gel when the temperature during dispersion is high, The viscosity of the resulting cationic resin-modified silica dispersion increases when the temperature is low, resulting in variations in the viscosity of the cationic resin-modified silica dispersion, which makes it very difficult to handle the cationic resin-modified silica dispersion. There was also a problem.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have obtained a dispersion (hereinafter referred to as a dry silica dispersion) in which dry silica fine particles are previously dispersed in water (hereinafter referred to as primary dispersion). The liquid temperature (hereinafter referred to as secondary dispersion temperature) at the time of mixing and dispersing (hereinafter referred to as secondary dispersion) while being added to the cationic resin aqueous solution while maintaining the liquid temperature at 40 ° C. or lower is 20 ° C. An extremely stable cationic resin-modified silica dispersion can be obtained by further treating a dispersion (hereinafter referred to as secondary dispersion) obtained by controlling within a temperature range of ˜45 ° C. with a high-pressure homogenizer. As a result, the present invention has been completed.
[0009]
That is, the present invention is a method for producing a cationic resin-modified silica dispersion in which the amount of the cationic resin is 3 to 10 parts by weight per 100 parts by weight of dry silica, wherein the cationic resin is diallylmethylamine hydrochloride. While adding a dry silica dispersion whose liquid temperature is kept at 40 ° C. or lower to an aqueous cationic resin solution which is a polymer or diallyldimethylammonium chloride polymer , the liquid temperature is controlled within a temperature range of 20 ° C. to 45 ° C. Then, after the dispersion, a dispersion process using a high-pressure homogenizer is performed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As the dry silica powder used in the present invention, a so-called “fumed silica” obtained by burning a silane-based gas such as silicon tetrachloride in an oxyhydrogen flame is used without particular limitation.
[0011]
In general, dry silica having a specific surface area in the range of 30 to 500 m 2 / g is available, and these dry silicas can be suitably used in the present invention.
[0012]
The cationic resin used in the present invention is not particularly limited as long as it is a resin that dissociates and exhibits a cationic property when dissolved in water, and a known cationic resin can be used without particular limitation.
[0013]
Among them, a resin having a primary to tertiary amine group or a quaternary ammonium base can be preferably used. Specific examples include polyethyleneimine, polyvinyl pyridine, polyamine sulfone, polydialkylaminoethyl methacrylate, polydialkylaminoethyl acrylate, polydialkylaminoethyl methacrylamide, polydialkylaminoethyl acrylamide, polyepoxyamine, polyamidoamine, dicyandiamide. -Formalin condensate, dicyandiamide polyalkyl-polyalkylene polyamine condensate, polyvinylamine, polyallylamine, etc. and their hydrochlorides, polydiallyldimethylammonium chloride and copolymers thereof such as acrylamide, diallylmethylamine hydrochloride polymerization And polymethacrylic acid ester methyl chloride quaternary salt.
[0014]
In the present invention, the aqueous cationic resin solution may be mixed with an organic polar solvent as necessary. Examples of the organic polar solvent include alcohols such as methanol, ethanol and isopropyl alcohol, ethers and ketones.
[0015]
In order to improve the stability and dispersibility of the silica particles, a small amount of a surfactant or the like may be added as long as the effects of the present invention are not impaired.
[0016]
In the present invention, the dispersion is secondary-dispersed in a temperature range of 20 ° C. to 45 ° C. while adding a dry silica dispersion of 40 ° C. or less to the cationic resin aqueous solution.
[0017]
Since dry silica is obtained in a dry powder state in the production process, it is necessary to disperse dry silica in water to obtain a dry silica dispersion. When the dry silica is dispersed in water, stirring heat is generated by stirring, and the temperature of the dry silica dispersion rises. The stirring heat varies depending on the type of dispersion machine, the dispersion time, and the silica concentration in the dispersion.
[0018]
When the silica dispersion temperature raised by the heat of stirring exceeds 40 ° C., even if the secondary dispersion temperature is controlled to 45 ° C., the phenomenon that the entire secondary dispersion becomes a gel is caused and re-dispersed. It becomes difficult. Although the present inventors cannot clearly explain the cause of this, an attempt is made to mix and disperse while adding to a cationic resin aqueous solution in a state of having a latent heat of 40 ° C. without cooling the dry silica dispersion. Then, even if the secondary dispersion temperature is controlled at 45 ° C, the secondary dispersion temperature temporarily rises due to the heat of stirring before the heat exchange by the cooling device, and locally exceeds 45 ° C. Therefore, it is presumed that the silica particles started to aggregate.
[0019]
Cooling of the dry silica dispersion to 40 ° C. or lower may be performed by dispersing the dry silica powder in water and then cooling the dry silica dispersion whose temperature has been raised to 40 ° C. or higher to 40 ° C. or lower. You may disperse | distribute, controlling the temperature of this dry-type silica dispersion liquid to 40 degrees C or less.
[0020]
In the present invention, the secondary dispersion temperature is in the temperature range of 20 ° C. to 45 ° C., and more preferably in the temperature range of 25 ° C. to 40 ° C.
[0021]
The higher the secondary dispersion temperature, the lower the viscosity of the secondary dispersion. However, when the temperature exceeds 45 ° C., the silica particles in the secondary dispersion tend to aggregate, and the viscosity of the secondary dispersion rises rapidly. The dispersion tends to gel. On the other hand, when the secondary dispersion temperature is less than 20 ° C., the viscosity of the secondary dispersion tends to increase. Although the present inventors cannot clearly explain the cause of this, it is presumed that if the secondary dispersion temperature is lower than 20 ° C., the dispersibility of the dry silica and the cationic resin in the dispersion is lowered. Furthermore, in the present invention, the secondary dispersion is treated with a high-pressure homogenizer to obtain a cationic resin-modified silica dispersion. The higher the viscosity of the secondary dispersion, the higher the cationic property obtained by treating with the high-pressure homogenizer. The viscosity of the resin-modified silica dispersion tends to increase. An increase in the viscosity of the cationic resin-modified silica dispersion is not preferable because the handling property is lowered in the subsequent production process.
[0022]
Various phenomena due to the temperature control of the dry silica dispersion and the secondary dispersion are remarkably observed when the silica concentration in the dry silica dispersion is 15% or more. Therefore, the present invention has a silica concentration of 15% or more. Sometimes it is effective.
[0023]
The method for controlling the secondary dispersion temperature in the temperature range of 20 ° C. to 45 ° C. is not particularly limited, but it is preferable to control the secondary dispersion temperature so as to be an arbitrary constant temperature in the temperature range of 20 ° C. to 45 ° C.
[0024]
In the present invention, the disperser used for primary dispersion and secondary dispersion is not particularly limited, but a general agitator having a propeller blade, a turbine blade, a paddle blade, a high-speed centrifugal radial stirrer such as a disper mixer, a homogenizer, a homomixer, an ultra Examples include high-speed rotary shear type stirrers such as mixers, and emulsifiers such as colloid mills and planetary mixers.
[0025]
When obtaining a high-concentration dry silica dispersion having a silica concentration of 15% or more in the dry silica dispersion efficiently, and mixing and dispersing the cationic resin aqueous solution while adding the dry silica dispersion having a silica concentration of 15% or more. In this case, among the above-described dispersers, a disperser having a strong shearing force is preferable. Specifically, a high-speed rotary shearing stirrer, a combined disperser that combines a propeller blade and a paddle blade with a high-speed rotating shearing stirrer, a planetary mixer and a high-speed rotating radial radial stirrer or a high-speed rotating shearing stirrer And a composite disperser.
[0026]
The viscosity of the cationic resin-modified silica dispersion is used for the specific surface area of the dry silica that is the raw material, the structure and molecular weight of the cationic resin, the content of the dry silica and the cationic resin in the dispersion, the blending ratio of each, and the dispersion. It depends greatly on the type of disperser.
[0027]
In the present invention, the amount of dry silica in the cationic resin-modified silica dispersion is preferably in the range of 15 to 40% by weight. The amount of the cationic resin is 3 to 10 parts by weight per 100 parts by weight of dry silica.
[0028]
When the concentration of the dry silica in the cationic resin-modified silica dispersion is more than 40 % by weight, the cationic property of the dry silica dispersion can be increased even if a disperser having a strong shearing force is used for secondary dispersion. Mixing with an aqueous resin solution may be difficult. In addition, when the amount is less than 15 % by weight, it is difficult to form a coating layer with a sufficient thickness in one coating process after the coating liquid is adjusted, or energy efficiency when drying after coating is performed. There are problems such as getting worse.
[0029]
Further, when the amount of the cationic resin in the cationic resin-modified silica dispersion is adjusted to be less than 3 parts by weight with respect to 100 parts by weight of the dry silica, the balance of the surface charge of the dry silica particles is not uniform. Thus, the silica particles tend to cause strong aggregation. Moreover, when it adjusts so that the quantity of cationic resin may become more than 10 weight part with respect to 100 weight part of silica, a viscosity may become high and a dispersion process may become difficult.
[0030]
In the present invention, in the cationic resin-modified silica dispersion, the higher the zeta potential as an index of the surface charge of the particles, the higher the water resistance of the resulting ink jet recording paper, and generally +10 mV or more, preferably It is preferably +20 mV or more, more preferably +30 mV or more.
[0031]
The zeta potential can be increased by adjusting the mixing amount of the cationic resin to a large extent, but since the range of increase in the zeta potential varies depending on the type of the cationic resin to be mixed, the optimal addition amount is determined in advance by experiments. It is preferable to select from the addition amount.
[0032]
In the present invention, the secondary dispersion obtained by mixing and dispersing the dry silica dispersion and the cationic resin aqueous solution by the above method is then excellent in dispersibility by carrying out a dispersion treatment using a high-pressure homogenizer. A cationic resin-modified silica dispersion excellent in stability when used to prepare a coating solution is obtained.
[0033]
As the high-pressure homogenizer, those having a known structure are used without particular limitation, but specific examples of typical high-pressure homogenizers include trade names made by Nanomizer; trade names made by Nanomizer and Microfluidics; microfluidizers And an optimizer made by Sugino Machine.
[0034]
Using the above-mentioned high-pressure homogenizer, the secondary dispersion is allowed to collide at a treatment pressure of 300 kgf / cm 2 or more, or passes through the orifice under the condition that the differential pressure between the inlet side and the outlet side of the orifice is 300 kgf / cm 2 or more. By doing so, a cationic resin-modified silica dispersion having an average aggregated particle diameter in a suitable range can be obtained.
[0035]
The degree of dispersion by the high-pressure homogenizer is preferably such that the average aggregate particle diameter in the obtained cationic resin-modified silica dispersion is in the range of 10 to 1000 nm, preferably in the range of 50 to 300 nm.
[0036]
That is, when the average aggregate particle diameter is smaller than 10 nm, the viscosity of the cationic resin-modified silica dispersion becomes high. For example, when it is used as a coating liquid for inkjet recording paper, it may be difficult to handle. When the average particle diameter is larger than 1000 nm, dry silica may precipitate in the cationic resin-modified silica dispersion to facilitate phase separation.
[0037]
【The invention's effect】
According to the method of the present invention, a cationic resin-modified silica dispersion can be obtained without gelation of a secondary dispersion obtained by mixing and dispersing a dry silica dispersion and an aqueous cationic resin solution. . Further, the resulting cationic resin-modified silica dispersion has a low viscosity and little variation.
[0038]
In addition, a cationic resin-modified silica dispersion having a high dry silica concentration can be easily obtained.
[0039]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0040]
The physical properties of the cationic resin-modified silica dispersion were measured by the following method.
[0041]
(Measurement of average particle size)
After the dispersion was diluted in ion-exchanged water so that the concentration of the cationic resin-modified silica dispersion was 10% by weight, a light scattering diffraction type particle size distribution analyzer (Coulter, Coulter LS-230) was used. Te, measuring the volume reference arithmetic mean diameter D 50, employing this value as an average diameter.
[0042]
In the measurement, the refractive index of water (dispersion medium) 1.332 and the refractive index of silica 1.458 were input as parameters.
[0043]
(Viscosity measurement)
300 g of the secondary dispersion or the cationic resin-modified silica dispersion was collected in a 500 cc container, and stirred at 20,000 rpm for 5 minutes using a homogenizer (manufactured by Squid, Ultra Turrax T-25). Next, after putting in a 30 degreeC thermostat for 10 minutes, the viscosity of the secondary dispersion liquid and the cationic resin modified silica dispersion liquid was measured on condition of 60 rpm using B type viscometer (product made from Tokimec, BL).
[0044]
(Measurement of zeta potential)
The zeta potential of the silica particles in the cationic resin-modified silica dispersion was measured using a laser zeta potentiometer (manufactured by Otsuka Electronics, LEZA-600). First, it diluted with 10 ppm NaCl aqueous solution so that the silica density | concentration in a silica dispersion liquid might be 300 ppm, and disperse | distributed for 5 minutes with the ultrasonic bath. Next, the diluted solution was put in a measurement cell and measured under the conditions of an applied voltage of 80 V, a measurement angle of 20 °, and a measurement temperature of 25 ° C.
[0045]
Example 1
A dry silica dispersion by adding 400 g of fumed silica having a specific surface area of 140 m 2 / g (manufactured by Tokuyama, Leoroseal QS-10) to 1600 g of pure water and dispersing with a homogenizer (manufactured by Squid, Ultra Tarrax T-25). Got. The liquid temperature of the dry silica dispersion was 49 ° C. After this dry silica dispersion was cooled to 35 ° C., the liquid temperature was maintained at 40 ° C. while adding the dry silica dispersion to 33 g of an aqueous diallylmethylamine hydrochloride polymer solution having a cationic resin concentration of 60% at room temperature. Then, a secondary dispersion was obtained by dispersing with a homogenizer (manufactured by Squid, Ultra Tarrax T-25). The liquid temperature of the secondary dispersion was 39 ° C. A cationic resin-modified silica dispersion is obtained by subjecting this secondary dispersion to a dispersion treatment by passing it once through an orifice at a treatment pressure of 800 kgf / cm 2 using a high-pressure homogenizer (Nanomizer, Nanomizer, LA-31). It was. Table 1 shows the physical properties of the resulting cationic resin-modified silica dispersion and secondary dispersion.
[0046]
Example 2
A dry silica dispersion by adding 400 g of fumed silica having a specific surface area of 300 m 2 / g (manufactured by Tokuyama, Leolosil QS-30) to 1600 g of pure water and dispersing with a homogenizer (manufactured by Squid, Ultra Tarrax T-25). Got. The liquid temperature of the dry silica dispersion was 50 ° C. After this dry silica dispersion was cooled to 35 ° C., the liquid temperature was maintained at 40 ° C. while adding the dry silica dispersion to 48 g of an aqueous diallyldimethylammonium chloride polymer solution having a cationic resin concentration of 25% at room temperature. A secondary dispersion was obtained by dispersing with a homogenizer (manufactured by Squid, Ultra Turrax T-25). The liquid temperature of the secondary dispersion was 40 ° C. A cationic resin-modified silica dispersion is obtained by subjecting this secondary dispersion to a dispersion treatment by passing it once through an orifice at a treatment pressure of 800 kgf / cm 2 using a high-pressure homogenizer (Nanomizer, Nanomizer, LA-31). It was. Table 1 shows the physical properties of the resulting cationic resin-modified silica dispersion and secondary dispersion.
[0047]
Example 3
400 g of fumed silica having a specific surface area of 300 m 2 / g (manufactured by Tokuyama, Leolosil QS-30) is added to 1600 g of pure water, and the homogenizer (manufactured by Squid, Ultra Turrax T-25) is maintained at 30 ° C. To obtain a dry silica dispersion. The liquid temperature of the dry silica dispersion was 30 ° C. While this dry silica dispersion was added to 48 g of diallyldimethylammonium chloride polymer aqueous solution having a cationic resin concentration of 25% at room temperature, the liquid temperature was maintained at 30 ° C., and a homogenizer (Ultra Turrax T-25 manufactured by Squid) To obtain a secondary dispersion. The liquid temperature of the secondary dispersion was 30 ° C. A cationic resin-modified silica dispersion is obtained by subjecting this secondary dispersion to a dispersion treatment by passing it once through an orifice at a treatment pressure of 800 kgf / cm 2 using a high-pressure homogenizer (Nanomizer, Nanomizer, LA-31). It was. Table 1 shows the physical properties of the resulting cationic resin-modified silica dispersion and secondary dispersion.
[0048]
Comparative Example 1
A dry silica dispersion by adding 400 g of fumed silica having a specific surface area of 140 m 2 / g (manufactured by Tokuyama, Leoroseal QS-10) to 1600 g of pure water and dispersing with a homogenizer (manufactured by Squid, Ultra Tarrax T-25). Got. The liquid temperature of the dry silica dispersion was 51 ° C. While this dry silica dispersion was not cooled and the secondary dispersion temperature was not controlled, it was added to 33 g of an aqueous diallylmethylamine hydrochloride polymer solution having a cationic resin concentration of 60% at room temperature. When dispersed with Tarax T-25), the entire secondary dispersion gelled during the addition of the dry silica dispersion, making it impossible to disperse. The temperature at the time of gelation was 52 ° C.
[0049]
Comparative Example 2
A dry silica dispersion by adding 400 g of fumed silica having a specific surface area of 300 m 2 / g (manufactured by Tokuyama, Leolosil QS-30) to 1600 g of pure water and dispersing with a homogenizer (manufactured by Squid, Ultra Tarrax T-25). Got. The liquid temperature of the dry silica dispersion was 50 ° C. While this dry silica dispersion was not cooled and the secondary dispersion temperature was not controlled, it was added to 48 g of an aqueous diallyldimethylammonium chloride polymer solution having a cationic resin concentration of 25% at room temperature. When dispersed with Lux T-25), the entire secondary dispersion gelled during the addition of the dry silica dispersion, making it impossible to disperse. The temperature at the time of gelation was 51 ° C.
[0050]
Comparative Example 3
A dry silica dispersion by adding 400 g of fumed silica having a specific surface area of 300 m 2 / g (manufactured by Tokuyama, Leolosil QS-10) to 1600 g of pure water and dispersing with a homogenizer (ultra tarax T-25, made by squid). Got. The liquid temperature of the dry silica dispersion was 50 ° C. After cooling this dry silica dispersion to 35 ° C., the homogenizer (Ultra Turrax T, manufactured by Squid, Inc.) was added to 48 g of diallyldimethylammonium chloride polymer aqueous solution having a cationic resin concentration of 25% at room temperature. -25). After the total amount of the dry silica dispersion was added, the dispersion temperature was maintained at 55 ° C. and the dispersion was continued. As a result, the entire secondary dispersion was gelled, making dispersion impossible.
[0051]
Comparative Example 4
A dry silica dispersion by adding 400 g of fumed silica having a specific surface area of 140 m 2 / g (manufactured by Tokuyama, Leoroseal QS-10) to 1600 g of pure water and dispersing with a homogenizer (manufactured by Squid, Ultra Tarrax T-25). Got. The liquid temperature of the dry silica dispersion was 50 ° C. After this dry silica dispersion was cooled to 15 ° C., the liquid temperature was maintained at 15 ° C. while adding the dry silica dispersion to 33 g of an aqueous diallylmethylamine hydrochloride polymer solution having a cationic resin concentration of 60% at room temperature. Then, a secondary dispersion was obtained by dispersing with a homogenizer (manufactured by Squid, Ultra Tarrax T-25). The liquid temperature of the secondary dispersion was 16 ° C. A cationic resin-modified silica dispersion is obtained by subjecting this secondary dispersion to a dispersion treatment by passing it once through an orifice at a treatment pressure of 800 kgf / cm 2 using a high-pressure homogenizer (Nanomizer, Nanomizer, LA-31). It was. Table 1 shows the physical properties of the resulting cationic resin-modified silica dispersion and secondary dispersion.
[0052]
Comparative Example 5
A dry silica dispersion by adding 400 g of fumed silica having a specific surface area of 300 m 2 / g (manufactured by Tokuyama, Leolosil QS-10) to 1600 g of pure water and dispersing with a homogenizer (ultra tarax T-25, made by squid). Got. The liquid temperature of the dry silica dispersion was 50 ° C. After this dry silica dispersion was cooled to 15 ° C., the liquid temperature was maintained at 15 ° C. while adding the dry silica dispersion to 48 g of an aqueous diallyldimethylammonium chloride polymer solution having a cationic resin concentration of 25% at room temperature. A secondary dispersion was obtained by dispersing with a homogenizer (manufactured by Squid, Ultra Turrax T-25). The liquid temperature of the secondary dispersion was 15 ° C. A cationic resin-modified silica dispersion is obtained by subjecting this secondary dispersion to dispersion treatment by passing it once through an orifice at a treatment pressure of 800 kgf / cm 2 using a high-pressure homogenizer (Nanomizer, Nanomizer, LA-31). It was. Table 1 shows the physical properties of the resulting cationic resin-modified silica dispersion and secondary dispersion.
[0053]
[Table 1]
Figure 0003992938
[0054]
As can be seen in Table 1, gelation occurs even when mixed and dispersed within a temperature range of 20 ° C. to 45 ° C. while adding a dry silica dispersion cooled to 40 ° C. or less to the aqueous cationic resin solution. And a stable secondary dispersion was obtained.
[0055]
Further, the cationic resin-modified silica dispersions obtained in Examples 1, 2 and 3 whose temperature was controlled in the temperature range of 20 ° C. to 45 ° C. during the preparation of the secondary dispersion were compared with Comparative Example 4 in which the temperature was controlled at 15 ° C. The dispersion viscosity was lower than that of the cationic resin-modified silica dispersion obtained by No. 5. Moreover, in the comparative example 3 which made the secondary dispersion temperature 55 degreeC, the secondary dispersion liquid gelatinized.

Claims (2)

カチオン性樹脂の量が、乾式シリカ100重量部あたり3〜10重量部であるカチオン性樹脂変性シリカ分散液の製造方法であって、該カチオン性樹脂がジアリルメチルアミン塩酸塩重合物またはジアリルジメチルアンモニウムクロライド重合物であるカチオン性樹脂水溶液に、液温を40℃以下に保持した乾式シリカ分散液を添加しながら、且つ液温を20℃〜45℃の温度範囲内で制御して分散せしめた後、高圧ホモジナイザーによる分散処理を行うことを特徴とするカチオン性樹脂変性シリカ分散液の製造方法。A method for producing a cationic resin-modified silica dispersion in which the amount of the cationic resin is 3 to 10 parts by weight per 100 parts by weight of dry silica, wherein the cationic resin is diallylmethylamine hydrochloride polymer or diallyldimethylammonium After adding a dry silica dispersion liquid whose liquid temperature is kept at 40 ° C. or lower to a cationic resin aqueous solution which is a chloride polymer , and controlling the liquid temperature within a temperature range of 20 ° C. to 45 ° C. for dispersion. A method for producing a cationic resin-modified silica dispersion characterized by carrying out a dispersion treatment with a high-pressure homogenizer. カチオン性樹脂変性シリカ分散液中の乾式シリカの量が、15〜40重量%とすることを特徴とする請求項1に記載のカチオン性樹脂変性シリカ分散液の製造方法。The method for producing a cationic resin-modified silica dispersion according to claim 1, wherein the amount of dry silica in the cationic resin-modified silica dispersion is 15 to 40% by weight.
JP2001108547A 2001-04-06 2001-04-06 Method for producing cationic resin-modified silica dispersion Expired - Fee Related JP3992938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108547A JP3992938B2 (en) 2001-04-06 2001-04-06 Method for producing cationic resin-modified silica dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108547A JP3992938B2 (en) 2001-04-06 2001-04-06 Method for producing cationic resin-modified silica dispersion

Publications (2)

Publication Number Publication Date
JP2002302552A JP2002302552A (en) 2002-10-18
JP3992938B2 true JP3992938B2 (en) 2007-10-17

Family

ID=18960663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108547A Expired - Fee Related JP3992938B2 (en) 2001-04-06 2001-04-06 Method for producing cationic resin-modified silica dispersion

Country Status (1)

Country Link
JP (1) JP3992938B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146550A1 (en) * 2007-06-01 2008-12-04 Sharp Kabushiki Kaisha Electronic mail transmission/reception system, control program thereof, and electronic mail transmission/reception method
JP2013513023A (en) * 2009-12-03 2013-04-18 ビーエーエスエフ ソシエタス・ヨーロピア Anticorrosive pigment with positive zeta potential
JP6943554B2 (en) * 2016-09-29 2021-10-06 株式会社フジミインコーポレーテッド Storage method of abrasive grain dispersion liquid and manufacturing method of abrasive grain dispersion liquid in a container

Also Published As

Publication number Publication date
JP2002302552A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
JP4756040B2 (en) Particulate silica
JP2012500766A (en) Hydrophobic silica dispersion
TWI299033B (en) Cake of readily dispersible precipitated silica and a process for the production thereof
JP3877970B2 (en) Modified dry silica dispersion
JP3992938B2 (en) Method for producing cationic resin-modified silica dispersion
JP2000239536A (en) Cationic resin-modified silica dispersion and its production
JP2005154222A (en) Particulate silica
JP3989136B2 (en) Method for producing silica dispersion
JP4959201B2 (en) Cationic resin-modified silica dispersion
JP4832940B2 (en) Method for producing cationic resin-modified dry silica dispersion
JP3967538B2 (en) Method for producing cationic resin-modified silica dispersion
JP3922902B2 (en) Cationic resin-modified silica dispersion and production method thereof
JP4846193B2 (en) Easily dispersible precipitated silica cake and method for producing the same
JP4279056B2 (en) Method for producing cationic resin-modified silica dispersion
JP4093822B2 (en) Modified silica dispersion and method for producing the same
JP3967570B2 (en) Cationic resin-modified silica dispersion and production method thereof
JP2004331479A (en) Wet-type silica dispersion and its manufacturing method
JP2005041701A (en) Method for producing modified dry-process silica dispersion
JP4540432B2 (en) Cationic resin-modified silica dispersion
JP3871260B2 (en) Method for producing cationic resin-modified silica dispersion
JP2003253080A (en) Silica dispersion modified with cationic resin and manufacturing method therefor
JP4083501B2 (en) Cationic resin-modified silica dispersion and production method thereof
JP2003306608A (en) Cationic resin-modified silica dispersion and method for producing the same
JP3935563B2 (en) Matting agent for paint and method for producing matting agent for paint
JP2005014349A (en) Coating liquid for inkjet recording sheet, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160803

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees