JP3992393B2 - Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device - Google Patents

Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device Download PDF

Info

Publication number
JP3992393B2
JP3992393B2 JP04754399A JP4754399A JP3992393B2 JP 3992393 B2 JP3992393 B2 JP 3992393B2 JP 04754399 A JP04754399 A JP 04754399A JP 4754399 A JP4754399 A JP 4754399A JP 3992393 B2 JP3992393 B2 JP 3992393B2
Authority
JP
Japan
Prior art keywords
film
liquid crystal
crystal display
mask
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04754399A
Other languages
Japanese (ja)
Other versions
JP2000250025A (en
Inventor
宗人 熊谷
和式 井上
佳祐 中口
Original Assignee
株式会社アドバンスト・ディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンスト・ディスプレイ filed Critical 株式会社アドバンスト・ディスプレイ
Priority to JP04754399A priority Critical patent/JP3992393B2/en
Priority to KR1020000008734A priority patent/KR100723599B1/en
Priority to TW089103197A priority patent/TW477904B/en
Priority to US09/512,107 priority patent/US6985195B1/en
Publication of JP2000250025A publication Critical patent/JP2000250025A/en
Application granted granted Critical
Publication of JP3992393B2 publication Critical patent/JP3992393B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、外部より入射した光を反射させ表示を行う反射型液晶表示装置の製造方法及び反射型液晶表示装置の製造用マスクに関する。
【0002】
【従来の技術】
液晶表示装置は、CRTに代わるフラットパネルディスプレイの一つとして活発に研究開発が行われており、特に消費電力が小さいことや薄型であるという特徴を生かして、電池駆動の小型TV、ノートブック型コンピュータ、カーナビゲーション及び携帯端末機器等として実用化されている。
液晶表示装置の駆動方法として、高品質表示であることから薄膜トランジスタ(以下TFTと記す)をスイッチング素子に用いたアクティブマトリクス型TFTアレイが主として用いられている。ディスプレイの構成としては、透過型と反射型のものがあり、反射型のものは透過型のようなバックライト光源が不要であることから低消費電力が実現でき、携帯端末等の用途として極めて適していると言える。この反射型液晶表示装置は、格子状に設けられた走査線及び信号線、TFT、反射画素電極等を備えた第一の絶縁性基板と、カラーフィルタ、ブラックマトリクス及び対向電極等を備えた第二の絶縁性基板を対向させ、これらの基板間に液晶を配置するよう構成されている。
【0003】
反射型液晶表示装置の表示特性向上には、液晶表示パネルの画素部の有効表示面積を大きくし、光の利用効率を高めること、すなわち画素の高開口率化が有効である。高開口率画素のTFTアレイを得る方法としては、走査線、信号線及びTFTに起因する段差を解消する十分な厚さのある絶縁性樹脂からなる層間絶縁膜を形成し、この層間絶縁膜上に、前述の走査線及び信号線等と重畳させて広い面積で画素電極を形成し、層間絶縁膜に設けられたコンタクトホールにより画素電極とTFTのドレイン電極とを接続する方法が有効である。この方法によれば、基板の凹凸に起因するラビング時の不良も防止することができる。
一方、光の利用効率を高める方法としては、入射光側に散乱フィルム(前方散乱板方式)を施さないで、前述の第一の絶縁性基板に良好な指向性を有する散乱光が得られる反射膜兼画素電極を設ける方法が提案されている。これは、反射膜兼画素電極の表面に適度な凹凸を設けることで良好な散乱光を得るものである。この構造を用い、フォトリソグラフィ法にて、感光性を有する絶縁性樹脂表面に凹凸を形成した反射型液晶表示装置が特開平9−90426号公報に開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記特開平9−90426号公報では、凹凸用パターンとコンタクトホール用パターンの両方が形成されたマスクを用い、それらの寸法差で現像時の溶解速度を変えることにより凹凸パターンとコンタクトホールパターンを同時に形成する方法が記載されているが、コンタクトホールを形成するとともに樹脂表面に良好な散乱光が得られる反射膜用の凹凸を安定的に得ることは非常に難しい。さらに、鏡面反射が無い良好な散乱光を得るためには、凹凸パターンにある程度の大きさが必要であり、その溶解速度はコンタクトホールパターン溶解速度とほとんど差が無いため、凹凸パターンとコンタクトホールパターンを区別して形成することは非常に困難である。
【0005】
また、特開平7−198919号公報では、光の透過量が制御された露光マスクを用い、光量を感光性膜の深さ方向で多段に変化させて露光し、表面に凹凸を有する反射板の形成方法が開示されている。しかしながら、良好な散乱特性を得るためには平らな部分を無くする必要があり、例えば12.1SVGAアレイの場合、1画素内に200〜300程度の凹凸が必要である。総画素数144万画素に対し、反射斑を無くすため凹凸の画素間形状を均一にする必要があり、上記の条件を満たす露光を行うことが可能なマスクは非常に高価であり、且つそのようなマスクを製造することは非常に困難である。さらに、露光現像された樹脂は熱処理されるが、この熱処理によって樹脂は流動化し、樹脂の物性値から決まる固有の形状になるため、多段に露光量を変えて凹凸を形成しても、隣接する微小な凹凸は淘汰されてしまうという問題がある。
【0006】
本発明は、上記のような問題点を解消するためになされたもので、低電力駆動が可能で表示品位に優れた高開口率TFTアレイ基板を、簡易なプロセスで安定的に得ることが可能な反射型液晶表示装置の製造方法及び反射型液晶表示装置の製造用マスクを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明に係わる反射型液晶表示装置の製造方法は、絶縁性基板上に複数本の走査線と、この走査線と交差する複数本の信号線と、走査線及び信号線によって区画された個々の画素領域にスイッチング素子を形成する第1の工程と、基板上に、感光性を有する絶縁性樹脂を走査線、信号線及びスイッチング素子等に起因する段差を解消するように平坦に塗布し、露光、現像することにより、画素領域内に非分離パターンである散乱用凹凸を有するとともに、スイッチング素子のドレイン電極上に分離パターンであるコンタクトホールを有する層間絶縁膜を形成する第2の工程と、層間絶縁膜上に光反射性金属膜を成膜後、パターニングし、個々の画素領域に整合した位置に層間絶縁膜による散乱用凹凸を有し、コンタクトホールを介してスイッチング素子と電気的に接続された反射画素電極を形成する第3の工程を含む反射型液晶表示装置の製造方法であって、第2の工程において、絶縁性樹脂の露光に、紫外線を透過する基材に紫外線を20〜80%内の所定の値でカットする紫外線フィルター層と、紫外線を完全に遮光する遮光膜を含む2層以上の遮光材を有しコンタクトホールに整合した位置のマスクパターン開口部には遮光材を配置せず、画素領域に整合した位置のマスクパターン開口部には紫外線フィルター層を配置し、さらに散乱用凹凸の凸部に整合した位置に遮光膜を配置したマスクを用いるものである
【0008】
た、本発明に係わる反射型液晶表示装置の製造用マスクは、格子状に設けられた走査線及び信号線、スイッチング素子、層間絶縁膜及び反射画素電極を備えた第一の絶縁性基板と、カラーフィルター及び対向電極を備えた第二の絶縁性基板を対向させ、これらの基板間に液晶を配置してなる反射型液晶表示装置の製造において、画素領域内に非分離パターンである散乱用凹凸を有するとともにスイッチング素子のドレイン電極上に分離パターンであるコンタクトホールを有する層間絶縁膜を形成するための絶縁性樹脂の露光に用いられる製造用マスクであって、紫外線を透過する基材に紫外線を20〜80%内の所定の値でカットする紫外線フィルター層と、紫外線を完全に遮光する遮光膜を含む2層以上の遮光材を有しコンタクトホールに整合した位置のマスクパターン開口部には遮光材を配置せず、画素領域に整合した位置のマスクパターン開口部には紫外線フィルター層を配置し、さらに散乱用凹凸の凸部に整合した位置に遮光膜を配置したものである。
さらに、紫外線フィルター層としてa−Si膜、遮光膜としてCr/CrO膜を用いたものである。
【0009】
【発明の実施の形態】
参考例1.
以下に、本発明の参考例を図面に基づいて説明する。図1は、本参考例における反射型液晶表示装置を構成するTFTアレイ基板を示す部分平面図、図2は、本参考例におけるTFTアレイ基板の製造工程の一部を示す部分断面図である。図において、1は例えばガラス基板等の絶縁性基板、2は絶縁性基板1上に行方向に形成された走査線であるゲート電極配線、2aはゲート電極、3は共通電極配線、4はゲート絶縁膜、5はゲート電極配線2及び後述のソース電極配線によって区画された個々の画素領域に形成されたスイッチング素子であるTFTの半導体層となるアモルファスシリコン膜(以下、a−Si膜と記す)、6は上記TFTのオーミックコンタクト層となる不純物をドープした低抵抗アモルファスシリコン膜(以下、n−a−Si膜と記す)、7は絶縁性基板1上に列方向に形成された信号線であるソース電極配線、7aはソース電極、8はドレイン電極、9はTFTのチャネル部、10はTFTを保護するパッシベーション膜、11はゲート電極配線2、ソース電極配線7及びTFTに起因する段差を解消すると共に、表面に意図的に散乱用凹凸が形成された層間絶縁膜、12は層間絶縁膜11に設けられたコンタクトホール、13は層間絶縁膜11上に形成され、コンタクトホール12を介してTFTのドレイン電極8と接続される反射画素電極である。
【0010】
次に、本参考例におけるTFTアレイ基板の製造方法を図2を用いて説明する。まず、絶縁性基板1上にスパッタ法等を用いてCrを成膜し、フォトリソグラフィ法にて複数本のゲート電極配線2及び共通電極配線3を形成する。次に、プラズマCVD法等を用いて窒化シリコンからなるゲート絶縁膜4、a−Si膜5、n−a−Si膜6を順次成膜し、フォトリソグラフィ法を用いてa−Si膜5、n−a−Si膜6をパターニングしてTFTの半導体層を形成する。さらに、スパッタリング法、フォトリソグラフィ法により、ゲート電極配線2と交差する複数本のソース電極配線7、ドレイン電極8並びにTFTのチャネル部9を形成し、ゲート電極配線2及びソース電極配線7によって区画された個々の画素領域にTFTを形成する(第1の工程)。なお、ドレイン電極8の一端は、無機絶縁膜であるゲート絶縁膜4を挟み、後に形成される反射画素電極13のエリア内で、下層に低抵抗金属で形成された共通電極配線3と対向し、容量(コンデンサ)を形成する構造である。さらに、TFTを保護するパッシベーション膜10をCVD法等で成膜する(図2(a))。
【0011】
次に、上記基板上に、感光性を有する絶縁性樹脂をゲート電極配線2、ソース電極配線7及びTFT等に起因する段差を解消するように平坦に塗布し、露光量を変えて露光、現像することにより、画素領域内に非分離パターンである適度な散乱用凹凸を有するとともに、TFTのドレイン電極8上に分離パターンであるコンタクトホール12を有する層間絶縁膜11を形成する(第2の工程)。ここでは、感光性を有する絶縁性樹脂として、低誘電率(<4)でポジ型のアクリル系樹脂(JSR製PC-335、i線、h線感光品)を約4μm塗布した。また、散乱用凹凸は、ゲート電極配線2上、ソース電極配線7上及び上記容量形成位置の一部を除く画素領域内に形成した。なお、本参考例では、絶縁性樹脂の露光は、非分離パターンと分離パターンを異なるマスクに配置した分割露光により行い、非分離パターンを分離パターンの露光量に対して20〜80%内の所定の露光量で露光した。露光装置としては、h線のステッパー露光機を用い、コンタクトホール12部を400mj/cm(UV光1)で、画素内の凹凸を160mj/cm(UV光2)で露光した(図2(b))。
【0012】
ポジ型感光樹脂の溶解速度は、感光剤の分解率に大きく依存する(これをS字カーブ特性と称する)ことを利用し、画素領域内の凹凸部とコンタクトホール12部の感光剤の分解率を変え、溶解速度に差を持たせ、コンタクトホール12が十分に解像できる時間で現像を行い、深さAのコンタクトホール12と深さBの凹凸をそれぞれ得た(図2(c))。現像液は、弱アルカリ現像液(TMAH0.4wt%)を用いた。現像後、200〜230℃で約1時間焼成し、画素領域内に適度な散乱用凹凸と、TFTのドレイン電極8上にコンタクトホール12を有する層間絶縁膜11を形成した。以上の工程によって得られた層間絶縁膜11表面のプロファイルを触針式膜厚計で測定し、表面形状を確認した結果を図3に示す。図において、(a)はコンタクトホール部、(b)は凹凸部の形状をそれぞれ示し、図中Aは層間絶縁膜11の底部である基板面を示している。このように、本参考例における製造方法によれば、良好な散乱用凹凸と底部まで分離されたコンタクトホール12が形成されていることが確認できた。
【0013】
次に、コンタクトホール12部のパッシベーション膜10をエッチングし、ドレイン電極8をコンタクトホール12内に露出させる。同時に、トランスファー電極を含む端子コンタクト部(図示せず)のパッシベーション膜10も除去する。さらに、層間絶縁膜11上に光反射性金属膜であるAl等の高反射膜を成膜後、パターニングし、個々の画素領域に整合した位置に層間絶縁膜11による散乱用凹凸を有し、コンタクトホール12を介してTFTのドレイン電極8と電気的に接続された反射画素電極13を形成した(第3の工程、図2(d))。以上の工程により得られたTFTアレイ基板と、対向電極等が形成された他の絶縁性基板の表面にそれぞれ配向膜を形成後、これらを対向させ基板間に液晶材料を注入することにより、本参考例における反射型液晶表示装置が完成する。
【0014】
なお、本参考例では反射画素電極13としてAlを用いたが、銀等の高反射膜を用いてもよい。また、層間絶縁膜11を黒色等の有色樹脂で形成するこにより、不要部からの反射を抑えることができる。さらに、層間絶縁膜11の凹凸パターン寸法は、大小のものをランダムに配置しても良い。また、本参考例では、層間絶縁膜11の下にパッシベーション膜10を設けたが、パッシベーション膜10は設けなくても良い。また、本参考例では、ステッパー方式を用いて、露光パターン割り当てを変えた分割露光を行うため、従来に比べて処理能力を低下させることはない。一括露光方式も適用可能であるが、処理能力を大きく低下させるため適さない。
【0015】
以上のように、本参考例において製造されたTFTアレイ基板によれば、層間絶縁膜11が十分に厚く形成されているため、反射画素電極13をゲート電極配線2及びソース電極配線7と重畳させて最上層に広い面積で形成することが可能であり、低電力で十分に液晶駆動が可能であると共に、コントラストの高い表示品位に優れた高開口率の反射型液晶表示装置を、簡易なプロセスで安定的に得ることが可能である。また、表示不良の削減による歩留まり向上のため、製造コストの低減も可能となる。
【0016】
実施の形態
図4は、本発明の実施の形態であるTFTアレイ基板の製造方法の一部を示す部分断面図である。図において、14は本実施の形態にて使用される反射型液晶表示装置の製造用マスクであり、15は紫外線を透過する基材であるガラス材、16は紫外線フィルター層である遮光材A、17は紫外線を完全にカットする遮光膜である遮光材Bを示している。また、図中、aは画素パターンエリア、bはコンタクトホールパターンエリアを示している。なお、図中、同一、相当部分には同一符号を付し説明を省略する。
本実施の形態では、格子状に設けられたゲート電極配線2及びソース電極配線7、TFT、層間絶縁膜11及び反射画素電極13等を備えた第一の絶縁性基板と、カラーフィルター及び対向電極等を備えた第二の絶縁性基板を対向させ、これらの基板間に液晶を配置してなる反射型液晶表示装置の製造において、画素領域内の画素パターンエリアaに非分離パターンである散乱用凹凸を有するとともに、TFTのドレイン電極8上のコンタクトホールパターンエリアbに分離パターンであるコンタクトホールを有する層間絶縁膜11を形成するための絶縁性樹脂の露光に、紫外線を透過する基材であるガラス材15に紫外線を20〜80%内の所定の値でカットする紫外線フィルター層である遮光材A16と、紫外線を完全に遮光する遮光膜である遮光材B17を含む2層以上の遮光材を有し、コンタクトホールに整合した位置のマスクパターン開口部(図4中bで示す)には遮光材を配置せず、画素領域に整合した位置のマスクパターン開口部(図4中aで示す)には紫外線フィルター層である遮光材A16を配置し、さらに散乱用凹凸の凸部に整合した位置に遮光材B17を配置したマスク14を用いたものである。
【0017】
本実施の形態におけるTFTアレイ基板の製造方法を説明する。なお、絶縁性基板1上にTFTを保護するパッシベーション膜10を成膜する工程までは、上記参考例1と同様であるため、説明を省略する。
パッシベーション膜10形成後、感光性を有する低誘電率(<4)でポジ型のアクリル系樹脂(JSR製PC-335、i線、h線感光品)を、ゲート電極配線2、ソース電極配線7及びTFTに起因する段差を解消するように表面を平坦に塗布し、フォトリソグラフィ法にてマスク14を用いて露光、現像し、ゲート電極配線2上、ソース電極配線7上及び上記容量形成位置の一部を除く画素領域内に適度の散乱用凹凸を形成し、且つドレイン電極8上にコンタクトホールを形成する(第2の工程)。
【0018】
上記参考例1では、画素領域内の散乱用凹凸とドレイン電極8上のコンタクトホールを別マスクに配置し、露光量を変えた分割露光を行った。h線の露光機を用い、コンタクトホール部を400mj/cm、画素領域内の散乱用凹凸を160mj/cmで露光することにより、良好な凹凸とコンタクトホールが形成されることは確認されている。一方、本実施の形態では、画素領域内の散乱用凹凸パターンとコンタクトホールパターンを同一マスク14内に配置したものである。
a−Si膜厚に対するh線の透過率(計算値)を図5に示す。画素パターンエリアaの開口部に厚さ4nmの遮光膜A16を残すと、h線は59.8%吸収される。このとき、コンタクトホール部を十分に開口するために400mj/cmで露光すると、画素内の凹凸パターンエリア部の露光量は160mj/cmとなり、それぞれに適した露光量が得られる。なお、マスク14は、a−Si膜を一部の開口部に残すか否かの「1」「0」制御であるため、高い精度が要求されることなく、安価で歩留まり良く製造できる。また、マスク14の構成は、紫外線フィルター機能を有する遮光材A16、紫外線を完全に遮光する遮光材B17を配置する順序は問わない。また、紫外線フィルター機能を有する遮光材Aとして、a−Si膜の他の金属薄膜を用いても良い。さらに、紫外線を完全に遮光する遮光膜Bとしては、Cr/CrO膜の他に、Mo、MoSi等の膜を用いることもできる。
【0019】
以上のように、マスク14を用いて露光した後、弱アルカリ現像液(TMAH0.4wt%)を用いて現像し、200〜230℃で約1時間焼成し、画素領域内に適度な散乱用凹凸と、ドレイン電極8上にコンタクトホールを有する層間絶縁膜11を形成した。これ以降の工程については、上記参考例1と同様であるので説明を省略する。
本実施の形態においても、上記参考例1と同様の効果が得られ、さらに、本実施の形態では、一括露光方式に適用した場合でも処理能力を低下させないため、プロセス装置の制約が緩和される。
【0020】
【発明の効果】
以上のように、本発明によれば、感光性を有する絶縁性樹脂を走査線、信号線及びスイッチング素子等に起因する段差を解消するように平坦に塗布し、露光、現像することにより、画素領域内に非分離パターンである散乱用凹凸を有するとともに、スイッチング素子のドレイン電極上に分離パターンであるコンタクトホールを有する層間絶縁膜を形成する工程において、絶縁性樹脂の露光に、紫外線を透過する基材に紫外線を20〜80%内の所定の値でカットする紫外線フィルター層と、紫外線を完全に遮光する遮光膜を含む2層以上の遮光材を有し、コンタクトホールに整合した位置のマスクパターン開口部には遮光材を配置せず、画素領域に整合した位置のマスクパターン開口部には紫外線フィルター層を配置し、さらに散乱用凹凸の凸部に整合した位置に遮光膜を配置したマスクを用いるようにしたので、低電力駆動が可能で表示品位に優れた高開口率の反射型液晶表示装置を簡易なプロセスで安定的に得ることが可能となった。
【図面の簡単な説明】
【図1】 本発明の参考例1である反射型液晶表示装置を構成するTFTアレイ基板を示す部分平面図である。
【図2】 本発明の参考例1におけるTFTアレイ基板の製造方法の一部を示す部分断面図である。
【図3】 本発明の参考例1において作成された層間絶縁膜の表面形状を触針式膜厚計で測定した結果を示す図である。
【図4】 本発明の実施の形態におけるTFTアレイ基板の製造方法の一部を示す部分断面図である。
【図5】 a−Si膜厚に対するh線の透過率(計算値)を示す図である。
【符号の説明】
1 絶縁性基板、2 ゲート電極配線、2a ゲート電極、
3 共通電極配線、4 ゲート絶縁膜、5 a−Si膜、
6 n−a−Si膜、7 ソース電極配線、7a ソース電極、
8 ドレイン電極、9 チャネル部、10 パッシベーション膜、
11 層間絶縁膜、12 コンタクトホール、13 反射画素電極、
14 マスク、15 ガラス材、16 遮光材A、17 遮光材B。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing mask of the reflection type liquid crystal display equipment preparation and reflection type liquid crystal display device which performs display by reflecting light incident from the outside.
[0002]
[Prior art]
Liquid crystal display devices have been actively researched and developed as one of flat panel displays to replace CRTs. In particular, they take advantage of their low power consumption and thinness to make small battery-driven TVs and notebooks. It has been put into practical use as a computer, a car navigation system, a portable terminal device, and the like.
As a driving method of a liquid crystal display device, an active matrix TFT array using a thin film transistor (hereinafter referred to as TFT) as a switching element is mainly used because of high quality display. There are two types of display configurations: transmissive type and reflective type. The reflective type does not require a backlight source like the transmissive type, so it can achieve low power consumption and is extremely suitable for applications such as portable terminals. It can be said that. This reflective liquid crystal display device includes a first insulating substrate having scanning lines and signal lines, TFTs, reflective pixel electrodes, and the like provided in a grid pattern, and a first filter having a color filter, a black matrix, a counter electrode, and the like. Two insulating substrates are opposed to each other, and a liquid crystal is arranged between these substrates.
[0003]
In order to improve the display characteristics of the reflective liquid crystal display device, it is effective to increase the effective display area of the pixel portion of the liquid crystal display panel and increase the light utilization efficiency, that is, to increase the pixel aperture ratio. As a method of obtaining a TFT array of a high aperture ratio pixel, an interlayer insulating film made of an insulating resin having a sufficient thickness to eliminate a step caused by a scanning line, a signal line, and a TFT is formed, and the interlayer insulating film is formed on the interlayer insulating film. In addition, it is effective to form a pixel electrode with a large area so as to overlap with the above-described scanning lines and signal lines, and to connect the pixel electrode and the drain electrode of the TFT through a contact hole provided in the interlayer insulating film. According to this method, it is possible to prevent defects during rubbing caused by unevenness of the substrate.
On the other hand, as a method for improving the light utilization efficiency, the first insulating substrate described above can obtain scattered light having good directivity without applying a scattering film (forward scattering plate method) on the incident light side. A method of providing a film / pixel electrode has been proposed. This is to obtain good scattered light by providing appropriate irregularities on the surface of the reflective film / pixel electrode. Japanese Patent Application Laid-Open No. 9-90426 discloses a reflection type liquid crystal display device using this structure and having irregularities formed on the surface of a photosensitive insulating resin by photolithography.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned Japanese Patent Application Laid-Open No. 9-90426, a mask on which both an uneven pattern and a contact hole pattern are formed is used, and the unevenness pattern and the contact hole pattern are changed by changing the dissolution rate at the time of development depending on the dimensional difference between them. However, it is very difficult to stably obtain irregularities for a reflective film that can form contact holes and obtain good scattered light on the resin surface. Furthermore, in order to obtain good scattered light with no specular reflection, the uneven pattern needs to have a certain size, and its dissolution rate is almost the same as the contact hole pattern dissolution rate. It is very difficult to distinguish and form.
[0005]
In JP-A-7-198919, an exposure mask with a controlled light transmission amount is used for exposure by changing the amount of light in multiple steps in the depth direction of the photosensitive film, and the surface of the reflector having irregularities. A forming method is disclosed. However, in order to obtain good scattering characteristics, it is necessary to eliminate a flat portion. For example, in the case of a 12.1 SVGA array, unevenness of about 200 to 300 is required in one pixel. It is necessary to make the uneven inter-pixel shape uniform in order to eliminate reflection spots with respect to the total number of pixels of 1.44 million pixels, and a mask capable of performing exposure satisfying the above conditions is very expensive, and It is very difficult to manufacture a simple mask. Further, the exposed and developed resin is heat-treated, but the resin is fluidized by this heat treatment and becomes a specific shape determined by the physical property value of the resin. Therefore, even if unevenness is formed by changing the exposure amount in multiple stages, the resin is adjacent. There is a problem that minute irregularities are deceived.
[0006]
The present invention has been made to solve the above-mentioned problems, and it is possible to stably obtain a high aperture ratio TFT array substrate that can be driven with low power and has excellent display quality by a simple process. An object of the present invention is to provide a method for manufacturing a reflective liquid crystal display device and a mask for manufacturing a reflective liquid crystal display device .
[0007]
[Means for Solving the Problems]
The manufacturing method of the reflective liquid crystal display device according to the present invention includes a plurality of scanning lines on an insulating substrate, a plurality of signal lines intersecting with the scanning lines, and individual sections defined by the scanning lines and the signal lines. a first step of forming a switching element in a pixel region, on the substrate, scanning lines insulating resin having photosensitivity, flatly applied to eliminate the level difference caused by the signal line and a switching element or the like, dew A second step of forming an interlayer insulating film having a scattering hole as a non-separation pattern in the pixel region and having a contact hole as a separation pattern on the drain electrode of the switching element by light and development; after forming the light-reflective metal film on the interlayer insulating film, and patterning, having a scattering irregularities caused by the interlayer insulating film in alignment with the position in each pixel region, via the contact hole switch A method of manufacturing a reflection type liquid crystal display including a third step of forming a ring element electrically connected to the reflective pixel electrode, in a second step, the exposure of the insulating resin, transmits ultraviolet rays A mask in a position aligned with a contact hole, having a UV filter layer that cuts UV light at a predetermined value within 20 to 80% and a light blocking material including a light blocking film that completely blocks UV light on the substrate A mask in which a light shielding material is not disposed in the pattern opening, a UV filter layer is disposed in the mask pattern opening at a position aligned with the pixel region, and a light shielding film is disposed in a position aligned with the convex portion of the scattering unevenness. Is used .
[0008]
Also, manufacturing mask of the reflection type liquid crystal display device according to the present invention, a first insulating substrate having scan lines provided in a grid pattern and the signal lines, switching elements, the interlayer insulation film and the reflection pixel electrodes When, it is opposed to the second insulating substrate having a color filter and a counter electrode, a non-separation pattern in manufacturing Oite, in a pixel region of these formed by arranging the liquid crystal between the substrates a reflection type liquid crystal display device A manufacturing mask used for exposure of an insulating resin for forming an interlayer insulating film having unevenness for scattering and a contact hole as a separation pattern on the drain electrode of the switching element, which transmits ultraviolet rays has a UV filter layer for cutting at a predetermined value of ultraviolet within 20-80% to the substrate, two or more layers of light-blocking member including a light shielding film to completely shield the ultraviolet, contact holes No masking material is placed in the mask pattern opening at the position aligned with the UV filter layer in the mask pattern opening at the position aligned with the pixel area, and further at the position aligned with the convex part of the scattering unevenness. A light shielding film is arranged.
Further, an a-Si film is used as the ultraviolet filter layer, and a Cr / CrO X film is used as the light shielding film .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Reference Example 1
Reference examples of the present invention will be described below with reference to the drawings. FIG. 1 is a partial plan view showing a TFT array substrate constituting the reflective liquid crystal display device in this reference example , and FIG. 2 is a partial cross-sectional view showing a part of the manufacturing process of the TFT array substrate in this reference example . In the figure, 1 is an insulating substrate such as a glass substrate, 2 is a gate electrode wiring which is a scanning line formed in the row direction on the insulating substrate 1, 2a is a gate electrode, 3 is a common electrode wiring, 4 is a gate An insulating film 5 is an amorphous silicon film (hereinafter referred to as an a-Si film) which is a semiconductor layer of a TFT which is a switching element formed in each pixel region defined by the gate electrode wiring 2 and a source electrode wiring described later. , 6 is a low-resistance amorphous silicon film doped with an impurity serving as an ohmic contact layer of the TFT (hereinafter referred to as an n + -a-Si film), and 7 is a signal line formed on the insulating substrate 1 in the column direction. 7a is a source electrode, 8 is a drain electrode, 9 is a TFT channel section, 10 is a passivation film for protecting the TFT, and 11 is a gate electrode wiring 2 Together to eliminate the level difference resulting from the source electrode wiring 7 and TFT, the interlayer insulating film intentionally scattering irregularities are formed on the surface, 12 denotes a contact hole formed in the interlayer insulating film 11, 13 is an interlayer insulating film 11 This is a reflective pixel electrode formed above and connected to the drain electrode 8 of the TFT via the contact hole 12.
[0010]
Next, a manufacturing method of the TFT array substrate in this reference example will be described with reference to FIG. First, Cr is deposited on the insulating substrate 1 by sputtering or the like, and a plurality of gate electrode wirings 2 and common electrode wirings 3 are formed by photolithography. Next, a gate insulating film 4, an a-Si film 5, and an n + -a-Si film 6 made of silicon nitride are sequentially formed by using a plasma CVD method or the like, and the a-Si film 5 is formed by using a photolithography method. The n + -a-Si film 6 is patterned to form a TFT semiconductor layer. Further, a plurality of source electrode wirings 7, drain electrodes 8, and TFT channel portions 9 intersecting with the gate electrode wiring 2 are formed by sputtering or photolithography, and are partitioned by the gate electrode wiring 2 and the source electrode wiring 7. TFTs are formed in the individual pixel regions ( first step ). One end of the drain electrode 8 is opposed to the common electrode wiring 3 formed of a low resistance metal in the lower layer in the area of the reflective pixel electrode 13 to be formed later with the gate insulating film 4 as an inorganic insulating film interposed therebetween. This is a structure for forming a capacitor (capacitor). Further, a passivation film 10 for protecting the TFT is formed by a CVD method or the like (FIG. 2A).
[0011]
Next, a photosensitive insulating resin is applied flatly on the substrate so as to eliminate steps caused by the gate electrode wiring 2, the source electrode wiring 7, the TFT, etc., and exposure and development are performed by changing the exposure amount. As a result, an interlayer insulating film 11 having moderate scattering irregularities that are non-separation patterns in the pixel region and having contact holes 12 that are separation patterns on the drain electrode 8 of the TFT is formed ( second step). ). Here, a positive acrylic resin (JSR PC-335, i-line, h-line photosensitive product) having a low dielectric constant (<4) was applied as an insulating resin having photosensitivity to about 4 μm. The scattering irregularities were formed on the gate electrode wiring 2, the source electrode wiring 7, and the pixel region excluding a part of the capacitance forming position. In this reference example , the insulating resin is exposed by divided exposure in which the non-separation pattern and the separation pattern are arranged in different masks, and the non-separation pattern is a predetermined value within 20 to 80% of the exposure amount of the separation pattern. The exposure amount was as follows. As an exposure apparatus, an h-line stepper exposure machine was used to expose 12 parts of the contact hole with 400 mj / cm 2 (UV light 1) and the unevenness in the pixel with 160 mj / cm 2 (UV light 2) (FIG. 2). (B)).
[0012]
The dissolution rate of the positive photosensitive resin depends greatly on the decomposition rate of the photosensitive agent (this is referred to as “S-curve characteristic”), and the decomposition rate of the photosensitive agent at the uneven portion in the pixel region and the contact hole 12 portion. The difference was made in the dissolution rate, and development was performed in a time sufficient for the contact hole 12 to be resolved, thereby obtaining the depth A contact hole 12 and the depth B unevenness (FIG. 2C). . A weak alkaline developer (TMAH 0.4 wt%) was used as the developer. After the development, the film was baked at 200 to 230 ° C. for about 1 hour to form an appropriate scattering unevenness in the pixel region and an interlayer insulating film 11 having a contact hole 12 on the drain electrode 8 of the TFT. FIG. 3 shows the result of measuring the profile of the surface of the interlayer insulating film 11 obtained by the above steps with a stylus-type film thickness meter and confirming the surface shape. In the figure, (a) shows the contact hole part, (b) shows the shape of the concavo-convex part, and A in the figure shows the substrate surface which is the bottom of the interlayer insulating film 11. Thus, according to the manufacturing method in the present reference example, it was confirmed that the contact holes 12 separated to the bottom and the good scattering irregularities were formed.
[0013]
Next, the passivation film 10 in the contact hole 12 is etched to expose the drain electrode 8 in the contact hole 12. At the same time, the passivation film 10 in the terminal contact portion (not shown) including the transfer electrode is also removed. Furthermore, after forming a highly reflective film such as Al which is a light reflective metal film on the interlayer insulating film 11, patterning is performed, and unevenness for scattering by the interlayer insulating film 11 is provided at a position aligned with each pixel region, A reflective pixel electrode 13 electrically connected to the drain electrode 8 of the TFT through the contact hole 12 was formed ( third step, FIG. 2D). After forming an alignment film on the surface of the TFT array substrate obtained by the above process and another insulating substrate on which the counter electrode and the like are formed, the liquid crystal material is injected between the substrates by facing each other. The reflective liquid crystal display device in the reference example is completed.
[0014]
In this reference example , Al is used as the reflective pixel electrode 13, but a highly reflective film such as silver may be used. Further, an interlayer insulating film 11 by a child formed by colored resin such as black, it is possible to suppress reflection from the unnecessary portion. Further, the concave and convex pattern dimensions of the interlayer insulating film 11 may be randomly arranged. In the present reference example , the passivation film 10 is provided under the interlayer insulating film 11, but the passivation film 10 may not be provided. Also, in this reference example , the stepper method is used to perform divided exposure with different exposure pattern assignments, so that the processing capacity is not reduced compared to the conventional case. A batch exposure method is also applicable, but it is not suitable because the processing capability is greatly reduced.
[0015]
As described above, according to the TFT array substrate manufactured in this reference example , since the interlayer insulating film 11 is formed to be sufficiently thick, the reflective pixel electrode 13 is overlapped with the gate electrode wiring 2 and the source electrode wiring 7. It is possible to form a large area on the uppermost layer, drive a liquid crystal sufficiently with low power, and achieve a high-aperture reflective liquid crystal display device with a high contrast display quality and a simple process. Can be obtained stably. In addition, since the yield is improved by reducing display defects, the manufacturing cost can be reduced.
[0016]
Embodiment 1 FIG.
FIG. 4 is a partial cross-sectional view showing a part of the manufacturing method of the TFT array substrate according to the first embodiment of the present invention. In the figure, 14 is a mask for manufacturing a reflective liquid crystal display device used in the present embodiment, 15 is a glass material that is a base material that transmits ultraviolet light , 16 is a light shielding material A that is an ultraviolet filter layer, Reference numeral 17 denotes a light shielding material B which is a light shielding film that completely cuts off ultraviolet rays. In the figure, a represents a pixel pattern area, and b represents a contact hole pattern area. In the drawings, the same and corresponding parts are denoted by the same reference numerals and description thereof is omitted.
In the present embodiment, a first insulating substrate including a gate electrode wiring 2 and a source electrode wiring 7, a TFT, an interlayer insulating film 11, a reflective pixel electrode 13, and the like provided in a lattice shape, a color filter, and a counter electrode In the manufacture of a reflective liquid crystal display device in which a second insulative substrate having the above and the like is opposed to each other and a liquid crystal is disposed between these substrates , the pixel pattern area a in the pixel region is a non-separation pattern. It is a base material that transmits ultraviolet rays for exposure of an insulating resin for forming an interlayer insulating film 11 having irregularities and having a contact hole as a separation pattern in a contact hole pattern area b on the drain electrode 8 of the TFT. a light blocking member A16 is a UV filter layer for UV rays at a predetermined value within 20-80% in the glass material 15, the light shielding film to completely shield the ultraviolet Has two or more layers of light-blocking member including a certain light-blocking member B17, without placing a light shielding member on the mask pattern opening position aligned with the contact holes (shown in FIG. 4 b), aligned with a pixel area position In the mask pattern opening (shown by a in FIG. 4), a light shielding material A16 which is an ultraviolet filter layer is disposed, and a mask 14 in which a light shielding material B17 is disposed at a position aligned with the convex portions of the scattering unevenness is used. Is.
[0017]
A manufacturing method of the TFT array substrate in the present embodiment will be described. Note that the process up to the step of forming the passivation film 10 that protects the TFT on the insulating substrate 1 is the same as that in Reference Example 1, and thus the description thereof is omitted.
After the passivation film 10 is formed, a photosensitive low dielectric constant (<4) positive type acrylic resin (PC-335 made by JSR, i-line, h-line photosensitive product), gate electrode wiring 2 and source electrode wiring 7 Then, the surface is flatly applied so as to eliminate the level difference caused by the TFT, and is exposed and developed using a mask 14 by a photolithography method, on the gate electrode wiring 2, the source electrode wiring 7, and the capacitance forming position. Appropriate scattering irregularities are formed in the pixel region excluding a part, and a contact hole is formed on the drain electrode 8 ( second step ).
[0018]
In the reference example 1, the unevenness for scattering in the pixel region and the contact hole on the drain electrode 8 are arranged in different masks, and divided exposure is performed with different exposure amounts. with h-ray exposure apparatus, 400 mj / cm 2 the contact hole portion, by exposing the scattering irregularities in the pixel region at 160 mJ / cm 2, it was confirmed that good uneven and contact holes are formed Yes. On the other hand, in this embodiment, the uneven pattern for scattering and the contact hole pattern in the pixel region are arranged in the same mask 14.
FIG. 5 shows the transmittance (calculated value) of h-line with respect to the a-Si film thickness. If the light shielding film A16 having a thickness of 4 nm is left in the opening of the pixel pattern area a, 59.8% of the h line is absorbed. At this time, if exposure is performed at 400 mj / cm 2 in order to sufficiently open the contact hole portion, the exposure amount of the concavo-convex pattern area portion in the pixel becomes 160 mj / cm 2 , and an appropriate exposure amount can be obtained. Note that the mask 14 is “1” “0” control as to whether or not to leave the a-Si film in a part of the openings, and therefore can be manufactured at low cost and with high yield without requiring high accuracy. Moreover, the order of arrangement | positioning of the light shielding material A16 which has an ultraviolet filter function, and the light shielding material B17 which completely shields an ultraviolet-ray does not ask | require the structure of the mask 14. Further, as the light shielding material A having an ultraviolet filter function, another metal thin film of an a-Si film may be used. Further, as the light-shielding film B that completely shields ultraviolet rays, a film of Mo, MoSi, or the like can be used in addition to the Cr / CrO X film.
[0019]
As described above, after exposure using the mask 14, development is performed using a weak alkaline developer (TMAH 0.4 wt%), baking is performed at 200 to 230 ° C. for about 1 hour, and moderate scattering irregularities are formed in the pixel region. Then, an interlayer insulating film 11 having a contact hole was formed on the drain electrode 8. Since the subsequent steps are the same as those in Reference Example 1, description thereof is omitted.
Also in this embodiment, the same effect as the above-described Reference Example 1 can be obtained, and furthermore, in this embodiment, the processing capability is not reduced even when applied to the batch exposure method, so that the restrictions on the process apparatus are relaxed. .
[0020]
【The invention's effect】
As described above, according to the present invention, the scanning line insulating resin having photosensitivity, flatly applied to eliminate the level difference caused by the signal line and the switching element or the like, exposure light and developed, and has a scattering irregularities are inseparable pattern in the pixel region, in the step of forming an interlayer insulating film having a contact hole is the separation pattern on the drain electrode of the switching element, the exposure of the insulating resin, transmits ultraviolet The substrate to be used has an ultraviolet filter layer that cuts ultraviolet rays by a predetermined value within 20 to 80% and a light shielding material that includes two or more layers of light shielding films that completely shield ultraviolet rays. No light shielding material is placed in the mask pattern opening, an ultraviolet filter layer is placed in the mask pattern opening at the position aligned with the pixel area, and the scattering unevenness Since to use a mask arranged a light-shielding film to a consistent position in part, to obtain a reflection type liquid crystal display having a high aperture ratio which is excellent in display quality can be low power driving stably by a simple process It has become possible.
[Brief description of the drawings]
FIG. 1 is a partial plan view showing a TFT array substrate constituting a reflective liquid crystal display device which is a reference example 1 of the present invention.
FIG. 2 is a partial cross-sectional view showing a part of a manufacturing method of a TFT array substrate in Reference Example 1 of the present invention.
FIG. 3 is a diagram showing the results of measuring the surface shape of an interlayer insulating film prepared in Reference Example 1 of the present invention with a stylus type film thickness meter.
FIG. 4 is a partial cross-sectional view showing a part of the manufacturing method of the TFT array substrate in the first embodiment of the present invention.
FIG. 5 is a graph showing h-line transmittance (calculated value) with respect to the a-Si film thickness;
[Explanation of symbols]
1 insulating substrate, 2 gate electrode wiring, 2a gate electrode,
3 common electrode wiring, 4 gate insulating film, 5 a-Si film,
6 n + -a-Si film, 7 source electrode wiring, 7a source electrode,
8 drain electrode, 9 channel part, 10 passivation film,
11 interlayer insulation film, 12 contact hole, 13 reflective pixel electrode,
14 mask, 15 glass material, 16 light shielding material A, 17 light shielding material B.

Claims (3)

絶縁性基板上に複数本の走査線と、この走査線と交差する複数本の信号線と、上記走査線及び上記信号線によって区画された個々の画素領域にスイッチング素子を形成する第1の工程、
上記基板上に、感光性を有する絶縁性樹脂を上記走査線、上記信号線及び上記スイッチング素子等に起因する段差を解消するように平坦に塗布し、露光、現像することにより、画素領域内に非分離パターンである散乱用凹凸を有するとともに、上記スイッチング素子のドレイン電極上に分離パターンであるコンタクトホールを有する層間絶縁膜を形成する第2の工程、
上記層間絶縁膜上に光反射性金属膜を成膜後、パターニングし、個々の画素領域に整合した位置に上記層間絶縁膜による散乱用凹凸を有し、上記コンタクトホールを介して上記スイッチング素子と電気的に接続された反射画素電極を形成する第3の工程を含む反射型液晶表示装置の製造方法であって、
上記第2の工程において、上記絶縁性樹脂の露光に、紫外線を透過する基材に紫外線を20〜80%内の所定の値でカットする紫外線フィルター層と、紫外線を完全に遮光する遮光膜を含む2層以上の遮光材を有し、上記コンタクトホールに整合した位置のマスクパターン開口部には上記遮光材を配置せず、上記画素領域に整合した位置のマスクパターン開口部には上記紫外線フィルター層を配置し、さらに上記散乱用凹凸の凸部に整合した位置に上記遮光膜を配置したマスクを用いることを特徴とする反射型液晶表示装置の製造方法。
A first step of forming a plurality of scanning lines on the insulating substrate, a plurality of signal lines intersecting with the scanning lines, and switching elements in individual pixel regions defined by the scanning lines and the signal lines. ,
On the substrate, the scanning line insulating resin having photosensitivity, flat coated so as to eliminate the level difference caused by the signal line and the switching element or the like, exposure light and developed, a pixel region inseparable and has a scattering irregularities is a pattern, a second step of forming an interlayer insulating film having a contact hole is the separation pattern on the drain electrode of the switching element,
A light-reflective metal film is formed on the interlayer insulating film, patterned, and has scattering irregularities due to the interlayer insulating film at positions aligned with individual pixel regions. A method of manufacturing a reflective liquid crystal display device, comprising a third step of forming electrically connected reflective pixel electrodes ,
In the second step, for the exposure of the insulating resin, an ultraviolet filter layer that cuts ultraviolet rays at a predetermined value within 20 to 80% on a substrate that transmits ultraviolet rays, and a light shielding film that completely blocks ultraviolet rays. The mask pattern opening at a position aligned with the contact hole is not disposed, and the ultraviolet filter is disposed at the mask pattern opening at a position aligned with the pixel region. A method of manufacturing a reflective liquid crystal display device, comprising: using a mask in which a layer is disposed and the light shielding film is disposed at a position aligned with the convex portions of the scattering irregularities .
格子状に設けられた走査線及び信号線、スイッチング素子、層間絶縁膜及び反射画素電極を備えた第一の絶縁性基板と、カラーフィルター及び対向電極を備えた第二の絶縁性基板を対向させ、これらの基板間に液晶を配置してなる反射型液晶表示装置の製造において、画素領域内に非分離パターンである散乱用凹凸を有するとともに上記スイッチング素子のドレイン電極上に分離パターンであるコンタクトホールを有する上記層間絶縁膜を形成するための絶縁性樹脂の露光に用いられる製造用マスクであって、
紫外線を透過する基材に紫外線を20〜80%内の所定の値でカットする紫外線フィルター層と、紫外線を完全に遮光する遮光膜を含む2層以上の遮光材を有し上記コンタクトホールに整合した位置のマスクパターン開口部には上記遮光材を配置せず、上記画素領域に整合した位置のマスクパターン開口部には上記紫外線フィルター層を配置し、さらに上記散乱用凹凸の凸部に整合した位置に上記遮光膜を配置したことを特徴とする反射型液晶表示装置の製造用マスク。
Opposing the scanning line and the signal line provided in a grid pattern, a switching element, a first insulating substrate having an interlayer insulating film and the reflection pixel electrodes, a second insulating substrate having a color filter and a counter electrode is, the separation pattern on the drain electrode of the switching element and having fraud and mitigating risk scattering recesses and projections having a non-separation pattern in the pixel region in the manufacturing of these formed by arranging the liquid crystal between the substrates a reflection type liquid crystal display device A manufacturing mask used for exposure of an insulating resin for forming the interlayer insulating film having a contact hole,
Has a UV filter layer for UV rays to a substrate which transmits ultraviolet rays at a predetermined value within 20-80%, two or more layers of light-blocking member including a light shielding film to completely shield the ultraviolet, to the contact hole The light shielding material is not disposed in the mask pattern opening at the aligned position, the ultraviolet filter layer is disposed in the mask pattern opening at the position aligned with the pixel region, and further aligned with the convex portion of the scattering unevenness. A mask for manufacturing a reflective liquid crystal display device, characterized in that the light shielding film is disposed at the position .
上記紫外線フィルター層としてa−Si膜、上記遮光膜としてCr/CrO膜を用いたことを特徴とする請求項記載の反射型液晶表示装置の製造用マスク。 The mask for manufacturing a reflective liquid crystal display device according to claim 2 , wherein an a-Si film is used as the ultraviolet filter layer and a Cr / CrO X film is used as the light shielding film .
JP04754399A 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device Expired - Fee Related JP3992393B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP04754399A JP3992393B2 (en) 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device
KR1020000008734A KR100723599B1 (en) 1999-02-25 2000-02-23 Reflection type liquid crystal display and manufacturing method thereof, and manufacturing mask for reflection type liquid crystal display
TW089103197A TW477904B (en) 1999-02-25 2000-02-24 Reflection type liquid display device, its manufacturing process, and mask for making such reflection type liquid display device
US09/512,107 US6985195B1 (en) 1999-02-25 2000-02-24 Reflection type liquid crystal display and method for manufacturing the same and mask for manufacturing reflection type liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04754399A JP3992393B2 (en) 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2000250025A JP2000250025A (en) 2000-09-14
JP3992393B2 true JP3992393B2 (en) 2007-10-17

Family

ID=12778072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04754399A Expired - Fee Related JP3992393B2 (en) 1999-02-25 1999-02-25 Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3992393B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006774A (en) * 2000-06-23 2002-01-11 Semiconductor Energy Lab Co Ltd Method for manufacturing electrooptical device
KR20020057228A (en) * 2000-12-30 2002-07-11 주식회사 현대 디스플레이 테크놀로지 Method for producing reflect lcd using of half tone patterning
US7480019B2 (en) 2001-01-25 2009-01-20 Sharp Kabushiki Kaisha Method of manufacturing a substrate for an lcd device
TW548689B (en) 2001-01-25 2003-08-21 Fujitsu Display Tech Reflection type liquid crystal display device and manufacturing method thereof
JP5082172B2 (en) * 2001-02-05 2012-11-28 ソニー株式会社 Manufacturing method of display device
KR100796746B1 (en) * 2001-03-13 2008-01-22 삼성전자주식회사 Manufacturing method of thin film transistor array panel for liquid crystal display
KR100483979B1 (en) 2001-06-22 2005-04-18 엔이씨 엘씨디 테크놀로지스, 엘티디. Reflection plate, manufacturing method thereof, liquid crystal display device and manufacturing method thereof
JP3895952B2 (en) 2001-08-06 2007-03-22 日本電気株式会社 Transflective liquid crystal display device and manufacturing method thereof
KR100813027B1 (en) * 2001-08-18 2008-03-14 삼성전자주식회사 Methods for forming photosensitive insulating film pattern and reflection electrode each having irregular upper surface and method for manufacturing LCD having reflection electrode using the same
JP5181317B2 (en) 2001-08-31 2013-04-10 Nltテクノロジー株式会社 Reflective liquid crystal display device and manufacturing method thereof
WO2003079107A1 (en) * 2002-03-19 2003-09-25 Koninklijke Philips Electronics N.V. Semiconductor device manufacturing method, semiconductor device, and liquid crystal display
JP4117169B2 (en) 2002-09-09 2008-07-16 Nec液晶テクノロジー株式会社 Liquid crystal display device and manufacturing method thereof
JP2012058757A (en) * 2011-12-05 2012-03-22 Sony Corp Display device and method for manufacturing the same
JP2013015866A (en) * 2012-10-09 2013-01-24 Sony Corp Display device

Also Published As

Publication number Publication date
JP2000250025A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
JP4445077B2 (en) Active matrix type liquid crystal display device
US9123598B2 (en) Method of fabricating array substrate of liquid crystal display device
KR100391157B1 (en) array panel of liquid crystal display and manufacturing method thereof
US7646442B2 (en) Liquid crystal display device including polycrystalline silicon thin film transistor and method of fabricating the same
JP3992393B2 (en) Method for manufacturing reflective liquid crystal display device and mask for manufacturing reflective liquid crystal display device
KR101479998B1 (en) Thin Film Transistor Display Panel and Method of Manufacturing of the Same
US20020054247A1 (en) Method for fabricating an array substrate of a liquid crystal display device
KR100723599B1 (en) Reflection type liquid crystal display and manufacturing method thereof, and manufacturing mask for reflection type liquid crystal display
US8329486B2 (en) Thin film transistor array panel and method for manufacturing the same
KR20080032290A (en) Exposure mask for using in fabricating the array substrate for liquid crystal display device
KR20090009618A (en) 3tone mask for exposure
JP4034470B2 (en) Liquid crystal display device and manufacturing method thereof
KR101409704B1 (en) Liquid crystal display device and method of manufacturing the same
JP4558752B2 (en) Manufacturing method of liquid crystal display device
US8435722B2 (en) Method for fabricating liquid crystal display device
JP2000338524A5 (en)
KR20000001679A (en) Reflection type liquid crystal display device and production method thereof
JP2006220907A (en) Method for manufacturing electrooptical device
KR20070068594A (en) Thin film transistor and metho of manufacturing the same and mask for manufacturing thin film transistor
KR101227408B1 (en) Array substrate for liquid crystal display device and method of fabricating the same
KR20040061195A (en) Liquid Crystal Display Panel and Method of Fabricating the same
KR20070072299A (en) Liquid crystal display device and the fabrication method
JP2001042304A (en) Liquid crystal display device and its production
KR101006475B1 (en) array substrate for liquid crystal display device and manufacturing method of the same
JP4467682B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees