JP3992325B2 - 2-cycle internal combustion engine - Google Patents

2-cycle internal combustion engine Download PDF

Info

Publication number
JP3992325B2
JP3992325B2 JP15038197A JP15038197A JP3992325B2 JP 3992325 B2 JP3992325 B2 JP 3992325B2 JP 15038197 A JP15038197 A JP 15038197A JP 15038197 A JP15038197 A JP 15038197A JP 3992325 B2 JP3992325 B2 JP 3992325B2
Authority
JP
Japan
Prior art keywords
pump
combustion chamber
chamber
piston
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15038197A
Other languages
Japanese (ja)
Other versions
JPH10325342A (en
Inventor
美博 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP15038197A priority Critical patent/JP3992325B2/en
Publication of JPH10325342A publication Critical patent/JPH10325342A/en
Application granted granted Critical
Publication of JP3992325B2 publication Critical patent/JP3992325B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、混合気直接噴射式の2サイクル内燃機関において特に吸気系のポンプに関する。
【0002】
【従来の技術】
混合気を燃焼室に直接噴射するのに、ポンプ機構を用いる方法は、従来からあり、例えば特開平7−63141号公報に記載されたものは、内燃機関のクランク軸の回転を動力源とし、動力伝達機構を介して燃焼室に通じる室内を摺動自在に嵌合する噴射ピストンを往復動させて混合気を燃焼室に噴射させている。
【0003】
その他シリンダ内の内圧の一部を蓄圧室に導いて蓄圧し、次のサイクルで噴射する方法などが提案されている。
【0004】
【発明が解決しようとする課題】
しかし前者の例では、クランク軸の回転を利用するため、シリンダヘッド側へ動力伝達するベルト伝達機構およびベルト伝達された回転を噴射ピストンの往復動に変換するクランク機構等を必要とし、部品点数が多く構造が複雑となるとともにレイアウトの自由度がない。
そして機械的なフリクションの増加により出力の低下が避けられない。
【0005】
また後者の例では、シリンダ内の内圧を取り込んで利用するため、馬力が低下するとともに、残留ガスも取り込まれるために蓄圧室にカーボンが堆積する等の問題がある。
【0006】
本発明は、かかる点に鑑みなされたもので、その目的とする処は、構造が簡単でフリクションの増加を最小限に抑えて出力低下を防止しカーボン等の堆積がない2サイクル内燃機関を供する点にある。
【0007】
【課題を解決するための手段および作用効果】
上記目的を達成するために、本発明は、混合気直接噴射式の2サイクル内燃機関において、シリンダヘッドの燃焼室側内面に開口して形成されたポンプ作動室に嵌合された先端側が大径部で基端側が小径部となっている作動ピストンと、前記ポンプ作動室の延長に小径孔を介して設けられたポンプ室に嵌合された先端側が大径部で基端側が小径部となっているポンプピストンは、前記互いの小径部で連結されて一体化し、前記作動ピストンは、小径部に周設されたスプリングにより付勢され、燃焼室の圧力上昇により前記スプリングに抗してポンプ作動室に嵌入して同作動ピストンの端面が燃焼室内面と同一面を構成し、燃焼室の圧力低下時に前記スプリングの付勢力により燃焼室へ突出するよう燃焼室内の圧力変化に応じて往復動し、前記作動ピストンの往復動により一体に駆動するポンプピストンが、燃焼室に混合気を噴射する混合気噴射弁の上流側に圧縮空気または混合気を供給する2サイクル内燃機関とした。
【0008】
ポンプを駆動する作動ピストンが、シリンダヘッドの燃焼室側に形成されたポンプ作動室に嵌合され、燃焼室内の圧力変化に応じて往復動するようにしたので、構造が簡素化されてレイアウトの自由度が大きいとともに、フリクションの増加を最小限に抑え出力の低下を防止することができる。
シリンダ内圧を取り込んで蓄圧するのではないので、カーボンの堆積等の問題はない。
ポンプ作動室の延長に設けられたポンプ室に作動ピストンと一体のポンプピストンが往復動自在に嵌合したので、部品点数が少なく構造が極めて簡単でポンプロス以外機械的フリクションは殆どない。
シリンダヘッドにポンプが局所的に設けられレイアトの自由度が大きい。
また主燃焼室側に端面を大きく露出した作動ピストンは加熱され、これと一体に結合されたポンプピストンも高温となるので、ポンプ室に吸入された空気がポンプピストンにより加熱されて吐出し燃料と混合されるため燃料の霧化が促進される。
シリンダ内を上昇したピストンが上死点に達したときは、作動ピストンはポンプ作動室に嵌入されて端面を燃焼室内面と同一面としているので、ポンプ作動室を設けない基本構造のベース機関とその燃焼室の全表面積Sと容積Vは等しく、よってその比であるS/V比も同じであるので、燃焼効率の低下を防止できる。
【0009】
請求項2記載の発明は、請求項1記載の2サイクル内燃機関において、前記ポンプ室に吸気側リードバルブと吐出側リードバルブを設けたことを特徴とする。
【0010】
ポンプ室に吸気側リードバルブと吐出側リードバルブを設けたので、部品点数が少なく構造が極めて簡単である。
【0013】
請求項3記載の発明は、請求項1または請求項2記載の2サイクル内燃機関において、前記シリンダヘッドは、第1の点火プラグの電極を臨ませた主燃焼室と、前記主燃焼室に連なる第2の点火プラグの電極を臨ませた副燃焼室を有し、前記混合気噴射弁は、前記副燃焼室に混合気を噴射することを特徴とする。
混合気は副燃焼室に噴射され安定した成層燃焼が可能であり、不完全燃焼を防止することができる。
【0014】
【発明の実施の形態】
以下本発明に係る一実施の形態について図1および図3に基づいて説明する。
図1および図2は、本実施の形態に係る2サイクル内燃機関1におけるシリンダ2およびシリンダヘッド3の内部構造を示す概略図である。
【0015】
シリンダ2の内部をピストン4が往復動し、シリンダ2の所定箇所に複数の掃気ポート5が設けられている。
シリンダヘッド3には、主燃焼室6に連なって副燃焼室7が形成されており、主燃焼室6に点火プラグ8の電極を臨ませ、副燃焼室7に点火プラグ9の電極が臨んでいる。
【0016】
そしてシリンダヘッド3には吸気系のポンプPが設けられている。
シリンダヘッド3の主燃焼室6側内面に大きく開口してポンプ作動室10が形成され、その延長に小径孔11を介してポンプ室12が形成されており、ポンプ作動室10には作動ピストン15が摺動自在に嵌合し、ポンプ室12にはポンプピストン16が摺動自在に嵌合し、作動ピストン15とポンプピストン16は小径孔11において互いに結合して一体化し一緒に往復動する。
【0017】
作動ピストン15は、先端側の大径部15aとポンプピストン16と結合する基端側の小径部15bとからなり、小径部15bが大径部15a内に食い込むようにして環状凹部15cが形成されて、小径部15bに周設されたリターンスプリング18が環状凹部15cに挿入され、他端を小径孔11の段部に当接し、作動ピストン15をポンプピストン16と一体に主燃焼室6側に付勢している。
【0018】
作動ピストン15は、その大径部15aの周面にピストンリング17が嵌着されてポンプ作動室10内を摺動し、ポンプ作動室10は作動ピストン15の大径部15a全体を略収容することができ、リターンスプリング18に抗して作動ピストン15がポンプ作動室10に押し込まれ最後まで嵌入されると、図2に示すように作動ピストン15の端面15dは主燃焼室6の内面と同一面となる。
【0019】
一方ポンプピストン16は、先端側の大径部16aと作動ピストン15側と連結する小径部16bとからなり、大径部16aの周面にピストンリング19が嵌着されてポンプ室12内を摺動する。
作動ピストン15が主燃焼室6に突出したときは、図1に示すようにポンプピストン16の大径部16aが小径孔15bの段部に当接して作動ピストン15が所定量突出する。
【0020】
ポンプ室12には、吸気ポート12aに吸気側リードバルブ21が設けられ、吐出ポート12bに吐出側リードバルブ22が設けられており、吸気側リードバルブ21と吐出側リードバルブ22は逆止弁であり、ポンプピストン16の往復動で交互に開閉してポンプ機能を果たす。
【0021】
吸気ポート12aは外気またはエアクリーナ38に連結され、吐出ポート12bは連通路25に連結され、連通路25は混合気供給装置30の混合気噴出弁31の上流側に連結される。
混合気供給装置30は、図3に示すように副燃焼室7の上流側で点火プラグ9の電極が臨む空間に混合気噴出弁31を臨ませて設けられている。
【0022】
混合気噴射弁31は電磁コイル32の励磁により駆動して開弁する。
この混合気噴射弁31の上流側には同軸に燃料噴射弁35が設けられており、燃料噴射弁35の下流側の混合室33に側方から空気供給孔34が連通しており、同空気供給孔34に前記連通路25が連結される。
【0023】
燃料噴射弁35も電磁コイル36の励磁により駆動して開弁するもので、その上流側に燃料が送られてくる燃料供給孔37が設けられている。
ポンプPから混合室33に圧縮空気が供給され、混合気噴射弁31の開弁と同時または若干遅れて燃料噴射弁35が開弁されると、混合室33に噴射された燃料が空気と混合されて副燃焼室7に噴射される。
【0024】
副燃焼室7に噴射された混合気は、副燃焼室7内を上流側から下流側にかけて燃料の濃度が順に薄く形成される成層をなし、上流側の燃料の濃い処で点火プラグ9が点火することで、安定した成層燃焼を起こすことができ、従来の燃焼不完全による未燃焼の潤滑油が排気系に流出したり、未燃焼の潤滑油が原因となる白煙の発生等が抑制される。
【0025】
圧縮空気を混合室33に供給するポンプPの動作を見ると、図1に示すようにピストン4が下降して燃焼室6,7の内圧が低下すると、作動ピストン17がリターンスプリング18により主燃焼室6側に突出し、作動ピストン17と一体のポンプピストン16がポンプ室12を拡大して吸気側リードバルブ21を開いて空気を取り込む。
【0026】
そしてピストン4が上昇して燃焼室6,7の内圧が高くなると、図2に示すように作動ピストン17が押されてリターンスプリング18に抗して押し込まれ、よってポンプピストン16がポンプ室12を縮小して吐出側リードバルブ22を開き、圧縮された空気を連通路25を介して前記混合室33に供給することができる。
【0027】
以上のように本実施の形態におけるポンプPは、そのポンプピストン16を駆動する作動ピストン15を一体に有してシリンダヘッド3に往復動自在に設け、主燃焼室6の内圧の変化を駆動源としているので、部品点数が少なく構造が簡単でコンパクトに構成されて小型である。
【0028】
シリンダヘッド3にポンプPがその作動部を含めて局所的に設けられるので、レイアウトの自由度が大きい。
ポンプピストン16およびこれと一体の作動ピストン15の摺動によるポンプロスを除くと、その他の機械的なフリクションはなく、ロスの少ない効率の極めて良いポンプ仕事を行うことができる。
【0029】
ポンプPがシリンダヘッド3に設けられて混合気噴射弁31に近い位置にあり、連通路25が短いので、応答速度が早くレスポンスの向上が図れる。
ポンプPは、ポンプ室12が外気またはエアクリーナから清浄な空気を吸込み吐出するので、従来のポンプがシリンダ内圧の一部を取り込み蓄圧するタイプのようにカーボンが堆積するような不具合はない。
【0030】
シリンダ2内を上昇したピストン4が上死点に達したときは、ポンプPを作動する作動ピストン15は、ポンプ作動室10に嵌入されて端面15dを主燃焼室6内面と同一面としているので、ポンプ作動室を設けない基本構造のベース機関とその燃焼室の全表面積Sと容積Vは等しく、よってその比であるS/V比も同じであるので、ポンプを設けたために燃焼効率が低下したり、HCやNOX の発生量が増加したりするようなことは回避できる。
【0031】
また主燃焼室6側に端面を大きく露出した作動ピストン15は加熱され、これと一体に結合されたポンプピストン16も高温となるので、ポンプ室12に吸入された空気がポンプピストン16により加熱されて吐出し混合室33に入るため燃料の霧化が促進される。
【0032】
以上の実施の形態ではポンプPが圧縮空気を混合気噴射弁31の上流側に供給して燃料噴射弁35から噴射された燃料と混合していたが、ポンプPが予め燃料の混合された混合気を混合気噴射弁の上流側に供給するようにしてもよい。
【図面の簡単な説明】
【図1】
本発明の一実施の形態に係る2サイクル内燃機関におけるシリンダおよびシリンダヘッドの内部構造を示す概略図である。
【図2】
別の状態を示す同概略図である。
【図3】
混合気供給装置の断面図である。
【符号の説明】
1…2サイクル内燃機関、2…シリンダ、3…シリンダヘッド、4…ピストン、5…掃気ポート、6…主燃焼室、7…副燃焼室、8,9…点火プラグ、 10…ポンプ作動室、11…小径孔、12…ポンプ室、15…作動ピストン、16…ポンプピストン、17…ピストンリング、18…リターンスプリング、19…ピストンリング、21…吸気側リードバルブ、22…吐出側リードバルブ、25…連通路、 30…混合気供給装置、31…混合気噴出弁、32…電磁コイル、35…燃料噴射弁、36…電磁コイル、37…燃料供給孔、38…エアクリーナ、
P…ポンプ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pump for an intake system particularly in a two-cycle internal combustion engine of an air-fuel mixture direct injection type.
[0002]
[Prior art]
A method using a pump mechanism for directly injecting an air-fuel mixture into a combustion chamber has been conventionally used. For example, what is described in JP-A-7-63141 uses a rotation of a crankshaft of an internal combustion engine as a power source, An air-fuel mixture is injected into the combustion chamber by reciprocating an injection piston that is slidably fitted in a chamber communicating with the combustion chamber via a power transmission mechanism.
[0003]
In addition, a method has been proposed in which a part of the internal pressure in the cylinder is guided to the pressure accumulating chamber and accumulated, and injected in the next cycle.
[0004]
[Problems to be solved by the invention]
However, in the former example, since the rotation of the crankshaft is used, a belt transmission mechanism that transmits power to the cylinder head side and a crank mechanism that converts the belt-transmitted rotation into the reciprocating motion of the injection piston are required. Many of the structures are complicated and there is no flexibility in layout.
A decrease in output is inevitable due to an increase in mechanical friction.
[0005]
Further, in the latter example, since the internal pressure in the cylinder is taken in and used, there is a problem that horsepower is reduced and carbon is deposited in the pressure accumulating chamber because residual gas is also taken in.
[0006]
The present invention has been made in view of the above points, and an object of the present invention is to provide a two-cycle internal combustion engine that has a simple structure, minimizes an increase in friction, prevents a decrease in output, and does not accumulate carbon or the like. In the point.
[0007]
[Means for solving the problems and effects]
To achieve the above object, according to the present invention, in a mixed gas direct injection type two-cycle internal combustion engine, the front end side fitted into a pump working chamber formed in the combustion chamber side inner surface of the cylinder head is formed with a large diameter. The distal end side fitted into a pump chamber provided through a small-diameter hole in the extension of the pump working chamber is the large-diameter portion and the proximal end side is the small-diameter portion. The pump pistons are connected and integrated with each other through the small-diameter portions, and the operating piston is urged by a spring provided around the small-diameter portion, and the pump operates against the springs due to an increase in pressure in the combustion chamber. The end face of the operating piston that fits into the chamber forms the same surface as the combustion chamber surface, and reciprocates in response to a change in pressure in the combustion chamber so as to protrude into the combustion chamber by the biasing force of the spring when the pressure in the combustion chamber decreases. , said Pump piston driven together by reciprocation of the dynamic piston, and a two-cycle internal combustion engine for supplying compressed air or air-fuel mixture upstream of the mixture injection valve for injecting a mixture into the combustion chamber.
[0008]
The working piston that drives the pump is fitted into the pump working chamber formed on the combustion chamber side of the cylinder head and reciprocates in response to the pressure change in the combustion chamber. The degree of freedom is large, and an increase in friction can be minimized to prevent a decrease in output.
Since the cylinder internal pressure is not taken in and stored, there is no problem such as carbon deposition.
Since the pump piston integral with the working piston is reciprocally fitted in the pump chamber provided in the extension of the pump working chamber, the number of parts is small, the structure is very simple, and there is almost no mechanical friction other than the pump loss.
A pump is locally provided in the cylinder head, and the degree of freedom in the layout is great.
In addition, since the operating piston with its end face exposed to the main combustion chamber side is heated, and the pump piston integrally coupled with it is also heated, the air sucked into the pump chamber is heated by the pump piston and discharged. As a result of mixing, atomization of fuel is promoted.
When the piston that has risen in the cylinder reaches top dead center, the working piston is fitted into the pump working chamber and the end surface is flush with the combustion chamber surface. Since the total surface area S and the volume V of the combustion chamber are equal, and thus the S / V ratio, which is the ratio, is also the same, it is possible to prevent a reduction in combustion efficiency.
[0009]
The invention according to claim 2 is the two-cycle internal combustion engine according to claim 1, wherein an intake side reed valve and a discharge side reed valve are provided in the pump chamber.
[0010]
Since the intake side reed valve and the discharge side reed valve are provided in the pump chamber, the number of parts is small and the structure is extremely simple .
[0013]
The invention according to claim 3 is the two-cycle internal combustion engine according to claim 1 or 2 , wherein the cylinder head is connected to the main combustion chamber facing the electrode of the first spark plug, and the main combustion chamber. A secondary combustion chamber facing the electrode of the second spark plug is provided, and the air-fuel mixture injection valve injects the air-fuel mixture into the auxiliary combustion chamber.
The air-fuel mixture is injected into the auxiliary combustion chamber and stable stratified combustion is possible, and incomplete combustion can be prevented.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment according to the present invention will be described below with reference to FIGS.
1 and 2 are schematic views showing the internal structure of a cylinder 2 and a cylinder head 3 in a two-cycle internal combustion engine 1 according to the present embodiment.
[0015]
The piston 4 reciprocates inside the cylinder 2, and a plurality of scavenging ports 5 are provided at predetermined positions of the cylinder 2.
In the cylinder head 3, a sub-combustion chamber 7 is formed continuously to the main combustion chamber 6. The electrode of the spark plug 8 faces the main combustion chamber 6, and the electrode of the spark plug 9 faces the sub-combustion chamber 7. Yes.
[0016]
The cylinder head 3 is provided with an intake system pump P.
A pump working chamber 10 is formed with a large opening on the inner surface of the cylinder head 3 on the main combustion chamber 6 side, and a pump chamber 12 is formed through a small diameter hole 11 as an extension of the pump working chamber 10. The pump piston 16 is slidably fitted in the pump chamber 12, and the working piston 15 and the pump piston 16 are coupled together in the small diameter hole 11 and reciprocate together.
[0017]
The operating piston 15 includes a large-diameter portion 15a on the distal end side and a small-diameter portion 15b on the proximal end side coupled to the pump piston 16, and an annular recess 15c is formed so that the small-diameter portion 15b bites into the large-diameter portion 15a. The return spring 18 provided around the small diameter portion 15b is inserted into the annular recess 15c, the other end abuts against the step portion of the small diameter hole 11, and the working piston 15 is integrated with the pump piston 16 toward the main combustion chamber 6 side. Energized.
[0018]
The working piston 15 has a piston ring 17 fitted on the peripheral surface of the large diameter portion 15a and slides in the pump working chamber 10, and the pump working chamber 10 substantially accommodates the entire large diameter portion 15a of the working piston 15. When the working piston 15 is pushed into the pump working chamber 10 against the return spring 18 and is inserted to the end, the end surface 15d of the working piston 15 is the same as the inner surface of the main combustion chamber 6 as shown in FIG. It becomes a surface.
[0019]
On the other hand, the pump piston 16 comprises a large-diameter portion 16a on the front end side and a small-diameter portion 16b connected to the working piston 15 side, and a piston ring 19 is fitted on the peripheral surface of the large-diameter portion 16a to slide inside the pump chamber 12. Move.
When the working piston 15 protrudes into the main combustion chamber 6, as shown in FIG. 1, the large diameter portion 16a of the pump piston 16 comes into contact with the step portion of the small diameter hole 15b, and the working piston 15 protrudes by a predetermined amount.
[0020]
The pump chamber 12 is provided with an intake side reed valve 21 at the intake port 12a and a discharge side reed valve 22 at the discharge port 12b. The intake side reed valve 21 and the discharge side reed valve 22 are check valves. Yes, the pump piston 16 is opened and closed alternately by the reciprocating motion of the pump piston 16 to perform the pump function.
[0021]
The intake port 12 a is connected to the outside air or air cleaner 38, the discharge port 12 b is connected to the communication passage 25, and the communication passage 25 is connected to the upstream side of the mixture injection valve 31 of the mixture supply device 30.
As shown in FIG. 3, the air-fuel mixture supply device 30 is provided with the air-fuel mixture injection valve 31 facing the space where the electrode of the spark plug 9 faces on the upstream side of the auxiliary combustion chamber 7.
[0022]
The air-fuel mixture injection valve 31 is driven by the excitation of the electromagnetic coil 32 to open.
A fuel injection valve 35 is coaxially provided on the upstream side of the air-fuel mixture injection valve 31, and an air supply hole 34 communicates with the mixing chamber 33 on the downstream side of the fuel injection valve 35 from the side. The communication path 25 is connected to the supply hole 34.
[0023]
The fuel injection valve 35 is also driven to open by excitation of the electromagnetic coil 36, and a fuel supply hole 37 through which fuel is sent is provided upstream thereof.
When compressed air is supplied from the pump P to the mixing chamber 33 and the fuel injection valve 35 is opened at the same time or slightly after the opening of the mixture injection valve 31, the fuel injected into the mixing chamber 33 is mixed with the air. And injected into the auxiliary combustion chamber 7.
[0024]
The air-fuel mixture injected into the sub-combustion chamber 7 is stratified so that the fuel concentration in the sub-combustion chamber 7 gradually decreases from the upstream side to the downstream side, and the spark plug 9 ignites at a location where the upstream fuel is rich. By doing so, stable stratified combustion can be caused, and unburned lubricating oil due to incomplete combustion in the past flows out into the exhaust system, and generation of white smoke caused by unburned lubricating oil is suppressed. The
[0025]
Looking at the operation of the pump P for supplying the compressed air to the mixing chamber 33, as shown in FIG. 1, when the piston 4 descends and the internal pressure of the combustion chambers 6 and 7 decreases, the working piston 17 is moved to the main combustion by the return spring 18. The pump piston 16 that protrudes toward the chamber 6 and is integrated with the working piston 17 expands the pump chamber 12 and opens the intake-side reed valve 21 to take in air.
[0026]
When the piston 4 rises and the internal pressure of the combustion chambers 6 and 7 increases, the operating piston 17 is pushed and pushed against the return spring 18 as shown in FIG. The discharge side reed valve 22 can be reduced and the compressed air can be supplied to the mixing chamber 33 via the communication path 25.
[0027]
As described above, the pump P according to the present embodiment has the operating piston 15 that drives the pump piston 16 and is provided in the cylinder head 3 so as to be reciprocally movable, and the change in the internal pressure of the main combustion chamber 6 is driven by the drive source. Therefore, the number of parts is small, the structure is simple, the structure is compact, and the size is small.
[0028]
Since the pump P is locally provided in the cylinder head 3 including the operation part, the freedom degree of a layout is large.
Except for the pump loss due to the sliding of the pump piston 16 and the operating piston 15 integrated therewith, there is no other mechanical friction, and an extremely good pumping work with little loss can be performed.
[0029]
Since the pump P is provided in the cylinder head 3 and is close to the mixture injection valve 31 and the communication path 25 is short, the response speed is fast and the response can be improved.
In the pump P, since the pump chamber 12 sucks and discharges clean air from the outside air or air cleaner, there is no problem that carbon is accumulated unlike the type in which a conventional pump takes in a part of cylinder internal pressure and accumulates pressure.
[0030]
When the piston 4 that has moved up in the cylinder 2 reaches top dead center, the working piston 15 that operates the pump P is fitted into the pump working chamber 10 so that the end surface 15d is flush with the inner surface of the main combustion chamber 6. Since the base engine having the basic structure without the pump working chamber and the combustion chamber have the same total surface area S and volume V, the S / V ratio, which is the ratio, is the same. or, things like the generation amount of HC and NO X is or increase can be avoided.
[0031]
Also, the working piston 15 with its end face exposed to the main combustion chamber 6 side is heated, and the pump piston 16 coupled integrally therewith also becomes hot, so the air sucked into the pump chamber 12 is heated by the pump piston 16. Since the fuel is discharged and enters the mixing chamber 33, fuel atomization is promoted.
[0032]
In the above embodiment, the pump P supplies the compressed air to the upstream side of the air-fuel mixture injection valve 31 and mixes it with the fuel injected from the fuel injection valve 35. The air may be supplied to the upstream side of the air-fuel mixture injection valve.
[Brief description of the drawings]
[Figure 1]
It is the schematic which shows the internal structure of the cylinder and cylinder head in the two-cycle internal combustion engine which concerns on one embodiment of this invention.
[Figure 2]
It is the same schematic diagram which shows another state.
[Fig. 3]
It is sectional drawing of an air-fuel | gaseous mixture supply apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... 2 cycle internal combustion engine, 2 ... Cylinder, 3 ... Cylinder head, 4 ... Piston, 5 ... Scavenging port, 6 ... Main combustion chamber, 7 ... Subcombustion chamber, 8, 9 ... Spark plug, 10 ... Pump working chamber, 11 ... small diameter hole, 12 ... pump chamber, 15 ... acting piston, 16 ... pump piston, 17 ... piston ring, 18 ... return spring, 19 ... piston ring, 21 ... intake side reed valve, 22 ... discharge side reed valve, 25 ... communication passageway, 30 ... mixture supply device, 31 ... mixture injection valve, 32 ... electromagnetic coil, 35 ... fuel injection valve, 36 ... electromagnetic coil, 37 ... fuel supply hole, 38 ... air cleaner,
P: Pump.

Claims (3)

混合気直接噴射式の2サイクル内燃機関において、
シリンダヘッドの燃焼室側内面に開口して形成されたポンプ作動室に嵌合された先端側が大径部で基端側が小径部となっている作動ピストンと、前記ポンプ作動室の延長に小径孔を介して設けられたポンプ室に嵌合された先端側が大径部で基端側が小径部となっているポンプピストンは、前記互いの小径部で連結されて一体化し、
前記作動ピストンは、小径部に周設されたスプリングにより付勢され、燃焼室の圧力上昇により前記スプリングに抗してポンプ作動室に嵌入して同作動ピストンの端面が燃焼室内面と同一面を構成し、燃焼室の圧力低下時に前記スプリングの付勢力により燃焼室へ突出するよう燃焼室内の圧力変化に応じて往復動し、
前記作動ピストンの往復動により一体に駆動するポンプピストンが、燃焼室に混合気を噴射する混合気噴射弁の上流側に圧縮空気または混合気を供給することを特徴とする2サイクル内燃機関。
In a two-cycle internal combustion engine of a mixture direct injection type,
A working piston having a large-diameter portion at the distal end side and a small-diameter portion at the proximal end side that is fitted in a pump working chamber that is formed in the inner surface of the combustion chamber side of the cylinder head, and a small-diameter hole in the extension of the pump working chamber The pump piston fitted with the pump chamber provided via the large diameter portion and the proximal end side is the small diameter portion are connected and integrated with each other small diameter portion ,
The working piston is urged by a spring provided around the small diameter portion, and is inserted into the pump working chamber against the spring due to an increase in pressure in the combustion chamber, so that the end surface of the working piston is flush with the combustion chamber surface. Configured to reciprocate according to the pressure change in the combustion chamber so as to protrude into the combustion chamber by the urging force of the spring when the pressure in the combustion chamber drops ,
2. A two-cycle internal combustion engine, characterized in that a pump piston that is integrally driven by reciprocating motion of the working piston supplies compressed air or air-fuel mixture upstream of an air-fuel mixture injection valve that injects air-fuel mixture into a combustion chamber.
前記ポンプ室に吸気側リードバルブと吐出側リードバルブを設けたことを特徴とする請求項1記載の2サイクル内燃機関。  The two-cycle internal combustion engine according to claim 1, wherein an intake side reed valve and a discharge side reed valve are provided in the pump chamber. 前記シリンダヘッドは、第1の点火プラグの電極を臨ませた主燃焼室と、前記主燃焼室に連なる第2の点火プラグの電極を臨ませた副燃焼室を有し、
前記混合気噴射弁は、前記副燃焼室に混合気を噴射することを特徴とする請求項1または請求項2記載の2サイクル内燃機関。
The cylinder head has a main combustion chamber facing the electrode of the first spark plug and a sub-combustion chamber facing the electrode of the second spark plug connected to the main combustion chamber,
The two-stroke internal combustion engine according to claim 1 or 2 , wherein the air-fuel mixture injection valve injects air-fuel mixture into the auxiliary combustion chamber.
JP15038197A 1997-05-24 1997-05-24 2-cycle internal combustion engine Expired - Fee Related JP3992325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15038197A JP3992325B2 (en) 1997-05-24 1997-05-24 2-cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15038197A JP3992325B2 (en) 1997-05-24 1997-05-24 2-cycle internal combustion engine

Publications (2)

Publication Number Publication Date
JPH10325342A JPH10325342A (en) 1998-12-08
JP3992325B2 true JP3992325B2 (en) 2007-10-17

Family

ID=15495762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15038197A Expired - Fee Related JP3992325B2 (en) 1997-05-24 1997-05-24 2-cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JP3992325B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329652C (en) * 2003-02-28 2007-08-01 本田技研工业株式会社 Fuel injection system of engin

Also Published As

Publication number Publication date
JPH10325342A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
US6374782B2 (en) Air-fuel mixture generating device
JPH02108815A (en) Two-cycle/uniflow spark ignition engine
EP1039113A2 (en) Two-cycle internal combustion engine and scavenging pump for use in the same
US6189495B1 (en) Direct cylinder fuel injection
US5857449A (en) Two-cycle internal combustion engine
JP3992325B2 (en) 2-cycle internal combustion engine
US6234120B1 (en) Two-stroke engine
US20040035377A1 (en) Two-stroke cycle, free piston, shaft power engine
US6591793B2 (en) Two-cycle engine
US7337759B1 (en) Engine
US20040187813A1 (en) Two-stroke engine
DE69208475D1 (en) FUEL INJECTION DEVICE
US20190170055A1 (en) Two-stroke engine with improved performance
US6581563B2 (en) Method for lubricating two-cycle internal combustion engine
EP0475947A1 (en) Internal combustion engine
RU2170833C1 (en) Two-stroke internal combustion engine
WO2024072312A1 (en) Crankcase scavenged two-stroke engine and handheld power tool
WO2009044412A2 (en) An air-fuel injection system for two stroke internal combustion engines
JP2882913B2 (en) 4 cycle engine
JPH08303330A (en) Crank chamber compression type 2 cycle diesel engine
CA2580587C (en) Engine
JP3254086B2 (en) Combustion device for two-cycle gasoline engine
CN115680863A (en) Two-stroke engine
JPS61126314A (en) Lubrication oil pump in internal combustion engine
CA2352074C (en) Method for lubricating two-cycle internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees