JP3992317B2 - Electronic component manufacturing method and thin film manufacturing apparatus - Google Patents

Electronic component manufacturing method and thin film manufacturing apparatus Download PDF

Info

Publication number
JP3992317B2
JP3992317B2 JP04559197A JP4559197A JP3992317B2 JP 3992317 B2 JP3992317 B2 JP 3992317B2 JP 04559197 A JP04559197 A JP 04559197A JP 4559197 A JP4559197 A JP 4559197A JP 3992317 B2 JP3992317 B2 JP 3992317B2
Authority
JP
Japan
Prior art keywords
thin film
metal thin
patterning
patterning material
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04559197A
Other languages
Japanese (ja)
Other versions
JPH10237623A (en
Inventor
和義 本田
紀康 越後
優 小田桐
伸樹 砂流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04559197A priority Critical patent/JP3992317B2/en
Publication of JPH10237623A publication Critical patent/JPH10237623A/en
Application granted granted Critical
Publication of JP3992317B2 publication Critical patent/JP3992317B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子部品の製造方法及び薄膜の製造装置に関する。
【0002】
【従来の技術】
現代社会に於て薄膜の果たす役割は非常に広範囲であり、包装紙、磁気テープ、コンデンサ、半導体等日常生活の様々な部分において薄膜が利用されている。これらの薄膜無しには、近年に於ける高性能化や小型化といった技術の基本トレンドを語ることは出来ない。
【0003】
同時に、工業的需要を満足する形で薄膜を形成する方法についても種々の開発がなされており、例えば包装紙、磁気テープ、コンデンサ等の用途においては、高速大量生産に有利な連続巻取り真空蒸着が行われている。その際、蒸発材料と基板材料を形成する薄膜の目的に合わせて選ぶと同時に、必要に応じて真空槽内に反応ガスを導入することや、基板に電位を設けた状態で薄膜を形成することによって所望の特性を持った薄膜を形成することが出来る。
【0004】
例えば、磁気記録媒体の製造においてはCo、Ni、Fe等の磁性元素を含む蒸発材料を用い、真空槽中に酸素ガスを導入しながら反応蒸着を行うことによって長尺の磁気記録媒体を得ることが出来る。また、半導体においては主にスパッタ法によって薄膜が形成されている。スパッタ法はセラミック系の材料を用いた薄膜形成にも特に有効であり、セラミック薄膜は膜厚数μm以上では塗布焼成法で形成され、1μm以下ではスパッタ法で形成される場合が多い。
【0005】
一方、樹脂材料を用いた薄膜の形成は塗装による方法が用いられ、リバースコートや、ダイコートが工業的に用いられており、溶剤で希釈した材料を塗工後乾燥硬化させることが一般的である。また、これらの工法で形成される樹脂薄膜の膜厚の下限は使用する材料によるが、1μm前後であることが多く、それ以下の膜厚は得られにくい場合が多い。一般的な塗工手段では塗工直後の塗布厚が数μm以上となるために、極薄樹脂膜の形成には溶剤希釈が必要であり、しかも1μm以下の樹脂薄膜が得られない場合も多い。更に、溶剤希釈を行うと乾燥後の塗膜に欠陥が生じ易い他、環境保護の観点からも好ましくない。
【0006】
そこで溶剤希釈を行わなくとも樹脂薄膜が形成できる方法及び、極薄の樹脂薄膜が安定に得られる方法が望まれている。これを解決する方法として、真空中で樹脂薄膜を形成する方法が提案されている。これは、真空中で樹脂材料を気化した後に支持体に付着させる方法であり、この方法によれば空隙欠陥のない樹脂薄膜を形成する事が出来ると共に、溶剤希釈の必要もない。
【0007】
セラミック薄膜や樹脂薄膜の上に更に異種の薄膜を積層することによって従来得られなかった様々な複合薄膜が得られる様になり、その工業的利用分野は非常に多岐にわたる。その中でもチップ形状の電子部品は非常に有望であり、コンデンサ、コイル、抵抗、容量性電池あるいはこれらの複合部品等が、薄膜積層によって極めて小型かつ高性能に形成できつつあり、既に商品化・市場拡大が始まっている。
【0008】
電子部品を得るには電極が不可欠であることは言うまでもないが、金属薄膜を用いた電子部品においては、金属薄膜にパターニングを行うことで電位の異なる金属薄膜を電子部品の中に形成することが出来る。即ち、パターニング部分を絶縁領域として金属薄膜を複数に分割したものを用い、これを絶縁性薄膜と積層することで電子部品を形成することが出来る。
【0009】
パターニングされた金属薄膜を得る手段として、オイルマージンと呼ばれる手法がある。これは、予めパターニング材料を薄く形成した後に、金属薄膜を蒸着などによって形成すると、パターニング材料上には金属薄膜が形成されない事を利用したものである。このようにして形成された金属薄膜はパターニング部分が抜けた状態で形成されており、所望のパターンを持つ金属薄膜を形成することが出来る。例えば図2の様な装置で金属薄膜と樹脂薄膜の交互積層を繰り返す際に図3の様なパターニングと切断位置を設定することで図4の様な断面構造を有するコンデンサを得ることが出来る。
【0010】
パターニング材料としては炭化水素系のオイルや鉱物オイル、フッ素系オイルを初めとする各種オイルや、形成する金属薄膜に適したその他の材料を用いることが出来る。また、パターニング材料を付与する方法としては塗布あるいはこれに準ずる方法の他、パターンに対応する微小開口部を有する密閉ノズル内にパターニング材料を閉じこめて加熱し、材料蒸気を開口部から噴出させて金属薄膜形成面で凝集させる方法などを用いることが出来る。
【0011】
【発明が解決しようとする課題】
ところが、オイルマージンによるパターニングを行う際には残存材料の問題がある。即ち、パターニング材料の大部分は金属薄膜の形成時に再蒸発するものの、一部は金属薄膜形成後にも残り、残存したパターン材料は設計外の構成要素となり、製品の歩留まりあるいは性能ばらつきという形で作製した電子部品に影響を与える。ここで残存材料を少なくするにはパターニング材料を予め必要最小限にする事が有効であるが、不足すれば絶縁不良となるので制御が難しい。そこで、残存材料の影響を小さくしたオイルマージンの安定化が望まれていた。
【0012】
本発明は上記課題を解決し、残存材料の影響が小さく、表面性,パターニング特性に優れた積層薄膜を得ることを目的とする。
【0013】
【課題を解決するための手段】
本発明は、これらの課題を解決するために、少なくとも金属薄膜と絶縁性薄膜を積層してなる電子部品の製造方法において、前記金属薄膜の形成に先立ってオイルからなるパターニング材料を付与する工程と、前記金属薄膜を形成する工程と、残留した前記パターニング材料を、加熱量可変の加熱手段による加熱で除去する工程と、前記絶縁性薄膜を形成する工程とを有し、前記パターニング材料を付与する工程と、前記金属薄膜を形成する工程と、前記パターニング材料を、加熱量可変の加熱手段による加熱で除去する工程と、前記絶縁性薄膜を形成する工程とを真空中で、順次連続的に繰り返し行うことを特徴とするもの及び少なくとも真空槽、及び前記真空槽中に設置された支持体と、前記支持体の移動方向に沿って設置された、オイルからなるパターニング材料を付与するパターニング材料付与装置、金属薄膜形成装置、加熱量可変の加熱手段によりパターニング材料を除去するパターニング材料除去装置、絶縁性薄膜形成装置を有することを特徴とする薄膜の製造装置である。
【0014】
【発明の実施の形態】
本発明の請求項1に記載の発明は、少なくとも金属薄膜と絶縁性薄膜を積層してなる電子部品の製造方法において、前記金属薄膜の形成に先立ってオイルからなるパターニング材料を付与する工程と、前記金属薄膜を形成する工程と、残留した前記パターニング材料を、加熱量可変の加熱手段による加熱で除去する工程と、前記絶縁性薄膜を形成する工程とを有し、前記パターニング材料を付与する工程と、前記金属薄膜を形成する工程と、前記パターニング材料を、加熱量可変の加熱手段による加熱で除去する工程と、前記絶縁性薄膜を形成する工程とを真空中で、順次連続的に繰り返し行うことを特徴とする電子部品の製造方法、としたものであり、これにより、表面性,パターニング特性に優れた積層薄膜が得られる。
【0015】
【実施例】
以下、本発明の実施例について図面を用いて説明する。金属薄膜と絶縁性薄膜の多層積層による電子部品を図1に概略を示すような装置で形成した。図1で積層膜支持キャン7の周囲には金属薄膜形成源8と絶縁性薄膜形成源9及び硬化装置10、パターニング材料付与装置11、パターニング材料除去装置12が配置されており、キャン7の回転数に応じた積層数の薄膜積層体が形成できる。
【0016】
金属薄膜形成源には抵抗加熱蒸発源、誘導加熱蒸発源、電子ビーム蒸発源、スパッタ蒸発源、クラスター蒸発源その他薄膜形成に用いる装置やそれらの組み合わせを、形成する金属薄膜に応じて用いることが出来る。また、絶縁性薄膜形成源には樹脂系材料のヒーター加熱、超音波あるいはスプレーによる気化、霧化や、セラミック系材料のスパッタ、あるいは酸化物のスパッタ、蒸着等、形成する絶縁性薄膜に応じた装置を用いることが出来る。絶縁性薄膜として樹脂誘電体薄膜を形成する場合に用いる硬化装置には紫外線硬化、電子線硬化、熱硬化あるいはそれらの組み合わせを用いることが出来る。一方、金属薄膜のパターニングは、金属薄膜の形成前にオイルなどを薄くパターン塗布しておく、オイルマージン方式とした。
【0017】
このようにパターニングした金属薄膜と絶縁性薄膜を交互積層した薄膜積層体を切断後、必要に応じて溶射等によって電極を形成すれば電子部品が作製できる。尚、図1は金属薄膜と絶縁性薄膜の多層積層体を形成する際の一方法を示したものであり、図1の方法の他に、フィルム上に金属薄膜や絶縁性薄膜を形成したものを多数枚重ねることによっても多層積層体は形成できるものであって、図1の方法によって本発明の範囲が規制されるものではない。
【0018】
(実施例1)
金属薄膜としてアルミニウムの蒸着薄膜を、誘電体薄膜としてヒーター加熱気化によるアクリレート樹脂薄膜を形成する際に、紫外線硬化とオイルパターニングを組み合わせて、図4に断面構造の模式概略図を示すコンデンサとした。アルミニウム薄膜の厚さは50nm、樹脂薄膜の厚さを1μmとした。樹脂材料として1.9ノナンジオールジアクリレートに光重合開始剤を5wt%混ぜたものを用いた。繰り返し積層数をアルミニウム、樹脂ともに約1000層とし、パターニングで形成される絶縁部分の幅を約0.5mmとした。パターニング材料には含フッ素オイルを用いた。隣接するパターニング絶縁部分の膜面方向の中心間隔は2.5mmである。また、パターニング材料除去には遠赤外線ヒーターを用い、その出力を変えた。パターニング材料除去の効果は、非パターニング部分の積層膜厚に対する、パターニング部分近傍部分に発生する段差の割合で評価した。図5に測定結果を示す。図5から分かるようにパターニング除去のヒーター出力の増加に伴ってパターニング部分と非パターニング部分の厚みの差が小さくなり、積層薄膜の表面性が向上していることが分かる。また、積層数の増加に伴うパターニングの乱れがヒーター出力の増加に伴って小さくなった。ヒーター加熱無しの場合にはパターニング絶縁部分の幅が積層に伴って不安定となった。
【0019】
(実施例2)
金属薄膜として銅の蒸着薄膜を、誘電体薄膜としてヒーター加熱気化によるアクリレート樹脂薄膜を形成する際に、電子線硬化とオイルパターニングを組み合わせて、図4に断面構造の概略を示すコンデンサとした。銅薄膜の厚さは40nm、樹脂薄膜の厚さを0.1μmとした。樹脂材料としてジメチノールトリシクロデカンジアクリレートを用いた。繰り返し積層数を銅、樹脂ともに約4000層とし、パターニングで形成される絶縁部分の幅を約0.1mmとした。パターニング材料には鉱物系オイルを用いた。隣接するパターニング絶縁部分の膜面方向の中心間隔は1.4mmである。また、パターニング材料除去には電子線を用い、その出力を変えた。パターニング材料除去の効果は、非パターニング部分の積層膜厚に対するパターニング部分近傍部分に発生する段差の割合で評価した。図6に測定結果を示す。図6から分かるようにパターニング除去の電子線出力の増加に伴ってパターニング部分と非パターニング部分の厚みの差が小さくなり、積層薄膜の表面性が向上していることが分かる。また、パターニング材料除去を行わない場合には積層数の増加に伴ってパターンの乱れが見られた。
【0020】
ここで、実施例1,2でパターニング材料除去によって積層薄膜の表面性が向上する理由は次のように考えられる。即ち、金属薄膜形成後にパターニング材料が残るとその上に絶縁性薄膜が形成されるので積層薄膜がパターニング材料を内部に含んだ形で成長する。従って、積層後の表面の凹凸が激しい。それに対して余剰のパターニング材料を除去しながら積層を行った場合には、積層薄膜が金属薄膜と絶縁性薄膜のみで形成されるため、パターニング部分に金属薄膜の膜厚分の凹みがわずかに見られるだけで、大きな凹凸無しに積層薄膜を形成できるのである。
【0021】
尚、実施例では、絶縁性薄膜材料としてアクリレート系の樹脂材料を用いた場合について述べたが、エポキシ系等の他の樹脂材料や樹脂材料以外の、セラミック系、金属酸化物系の材料も用いることが出来ることは既に述べたとおりである。例えば、金属酸化物として、酸素雰囲気の電子ビーム蒸着で厚さ50nm〜300nmのチタン酸化物を誘電体とした場合にも本発明の効果が確認できた。
【0022】
また、実施例では金属薄膜層をアルミニウムあるいは銅とした場合についてのみ述べたが、銀、ニッケル、亜鉛等の他の金属やそれらを含む合金を用いたり、金属薄膜層を一種とせず、例えばAl層とCu層の混在とすることによって特性の補完がなされ、使用条件によっては高性能化が図れる場合もあり得る。
【0023】
尚、パターニング材料除去の手段として実施例では遠赤外線ヒーターと電子線を用いた場合についてのみ述べたが、紫外線ランプ照射やプラズマ照射を用いた場合など他の除去手段を用いても同様の効果が得られた。
【0024】
既に述べたように、パターニング材料としては炭化水素系のオイルや鉱物オイル、フッ素系オイルを初めとする各種オイルや、形成する金属薄膜に適したその他の材料を用いることが出来る。また、パターニング材料を付与する方法としては塗布あるいはこれに準ずる方法の他、パターンに対応する微小開口部を有する密閉ノズル内にパターニング材料を閉じこめて加熱し、材料蒸気を開口部から噴出させて金属薄膜形成面で凝集させる方法などを用いることが出来る。
【0025】
また、実施例1、2において支持体としてキャンを用いた場合についてのみ述べたが、本発明はこれらの支持体によって制限されるものではなく、円筒形状以外の、平板状や曲面形状の支持体も用いることが出来る他、金属、絶縁体、ガラス、半導体上に本発明によって電子部品を形成することもできる。
【0026】
また、実施例では電子部品としてコンデンサを例にとって説明したが、チップコイル、ノイズフィルター等の他の電子部品においても本発明に述べたパターニング材料除去を用いることで積層薄膜の表面性やパターニング特性を向上することが出来るものと容易に類推出来、本発明は広く電子部品の製造方法および薄膜の製造装置に適用できるものである。
【0027】
【発明の効果】
以上の様に本発明の電子部品の製造方法及び薄膜の製造装置によれば、表面性やパターニング特性に優れた積層薄膜が得られ、高性能コンデンサを初めとする高性能電子部品等が実現できる。
【図面の簡単な説明】
【図1】本発明の薄膜の製造装置の一例を示す図
【図2】積層成膜装置の従来例の一例を示す図
【図3】金属薄膜のパターニングの一例を示す図
【図4】電子部品の断面図の一例を示す図
【図5】除去ヒーターのパワーと積層膜の表面性の関係の一例を示す図
【図6】除去電子線のパワーと積層膜の表面性の関係の一例を示す図
【符号の説明】
1 金属薄膜
2 絶縁性薄膜
3 電極
4 パターン位置
5 真空槽
6 排気系
7 キャン
8 導電体薄膜形成源
9 誘電体薄膜形成源
10 硬化装置
11 パターニング材料付与装置
12 パターニング材料除去装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component manufacturing method and a thin film manufacturing apparatus.
[0002]
[Prior art]
The role played by thin films in modern society is very widespread, and thin films are used in various parts of daily life such as wrapping paper, magnetic tape, capacitors, and semiconductors. Without these thin films, it is impossible to talk about the basic trends of technology such as high performance and miniaturization in recent years.
[0003]
At the same time, various methods have been developed for forming thin films that satisfy industrial demands. For example, wrapping paper, magnetic tape, capacitors, etc., continuous winding vacuum deposition is advantageous for high-speed mass production. Has been done. At that time, it is selected according to the purpose of the thin film that forms the evaporation material and the substrate material, and at the same time, the reactive gas is introduced into the vacuum chamber as necessary, or the thin film is formed with the potential applied to the substrate. Thus, a thin film having desired characteristics can be formed.
[0004]
For example, in manufacturing a magnetic recording medium, an evaporating material containing a magnetic element such as Co, Ni, or Fe is used, and a long magnetic recording medium is obtained by performing reactive vapor deposition while introducing oxygen gas into a vacuum chamber. I can do it. In semiconductors, a thin film is formed mainly by sputtering. The sputtering method is particularly effective for forming a thin film using a ceramic material, and the ceramic thin film is often formed by a coating and baking method when the film thickness is several μm or more, and is often formed by the sputtering method when the film thickness is 1 μm or less.
[0005]
On the other hand, thin film formation using a resin material is performed by a coating method, and reverse coating and die coating are used industrially. Generally, a material diluted with a solvent is dried and cured after coating. . Moreover, although the minimum of the film thickness of the resin thin film formed by these construction methods is based on the material to be used, it is often about 1 μm, and a film thickness of less than that is often difficult to obtain. In general coating means, since the coating thickness immediately after coating is several μm or more, solvent dilution is necessary for forming an ultrathin resin film, and a resin thin film of 1 μm or less cannot often be obtained. . Further, when solvent dilution is performed, defects are likely to occur in the dried coating film, and it is not preferable from the viewpoint of environmental protection.
[0006]
Therefore, a method capable of forming a resin thin film without performing solvent dilution and a method capable of stably obtaining an extremely thin resin thin film are desired. As a method for solving this, a method of forming a resin thin film in a vacuum has been proposed. This is a method in which the resin material is vaporized in vacuum and then adhered to the support. According to this method, a resin thin film free from void defects can be formed, and there is no need for solvent dilution.
[0007]
By laminating different types of thin films on the ceramic thin film or resin thin film, various composite thin films that have not been obtained in the past can be obtained, and their industrial application fields are very diverse. Among them, chip-shaped electronic parts are very promising, and capacitors, coils, resistors, capacitive batteries, or composite parts of these, etc., are being formed with extremely small size and high performance by thin film lamination. Expansion has begun.
[0008]
Needless to say, an electrode is indispensable for obtaining an electronic component. However, in an electronic component using a metal thin film, a metal thin film having a different potential can be formed in the electronic component by patterning the metal thin film. I can do it. That is, an electronic component can be formed by using a metal thin film divided into a plurality of parts with a patterning portion as an insulating region and laminating this with an insulating thin film.
[0009]
As a means for obtaining a patterned metal thin film, there is a technique called an oil margin. This is because the metal thin film is not formed on the patterning material when the metal thin film is formed by vapor deposition or the like after the patterning material is formed thin in advance. The metal thin film thus formed is formed in a state where the patterning portion is removed, and a metal thin film having a desired pattern can be formed. For example, a capacitor having a cross-sectional structure as shown in FIG. 4 can be obtained by setting patterning and cutting positions as shown in FIG.
[0010]
As the patterning material, various oils including hydrocarbon oil, mineral oil, fluorine oil, and other materials suitable for the metal thin film to be formed can be used. As a method for applying the patterning material, in addition to coating or a similar method, the patterning material is enclosed in a sealed nozzle having a minute opening corresponding to the pattern and heated, and material vapor is ejected from the opening to form a metal. A method of aggregating on the thin film forming surface can be used.
[0011]
[Problems to be solved by the invention]
However, there is a problem of residual material when patterning with an oil margin. That is, most of the patterning material re-evaporates during the formation of the metal thin film, but some remains after the metal thin film is formed, and the remaining pattern material becomes a component outside the design, and is produced in the form of product yield or performance variation Affects affected electronic components. Here, in order to reduce the remaining material, it is effective to minimize the patterning material in advance. However, if it is insufficient, the insulation is poor, and thus control is difficult. Therefore, it has been desired to stabilize the oil margin by reducing the influence of the remaining material.
[0012]
An object of the present invention is to solve the above-mentioned problems, and to obtain a laminated thin film that is less affected by the remaining material and has excellent surface properties and patterning characteristics.
[0013]
[Means for Solving the Problems]
In order to solve these problems, the present invention provides a method for producing an electronic component comprising at least a metal thin film and an insulating thin film, and a step of applying a patterning material made of oil prior to the formation of the metal thin film; and forming the metal thin film, the remaining said patterned material, a step of removing by heating with a heating amount varying the heating means, and forming the insulating thin film, to impart the patterning material A process, a process of forming the metal thin film, a process of removing the patterning material by heating with a heating means having a variable heating amount, and a process of forming the insulating thin film are sequentially and repeatedly performed in a vacuum. which comprises carrying out, and at least a vacuum vessel, and a support disposed in the vacuum chamber, which is installed along the moving direction of the support, Oh Patterning material application device for applying a patterning material comprising a Le, a metal thin film forming apparatus, the patterning material removal device for removing patterning material by heating amount varying the heating means, the manufacture of thin film characterized by having an insulating thin film forming apparatus Device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a method of manufacturing an electronic component in which at least a metal thin film and an insulating thin film are laminated, and a step of applying a patterning material made of oil prior to the formation of the metal thin film ; Forming the metal thin film, removing the remaining patterning material by heating with a heating means with variable heating amount , and forming the insulating thin film, and applying the patterning material And the step of forming the metal thin film, the step of removing the patterning material by heating with a heating means having a variable heating amount, and the step of forming the insulating thin film are sequentially and repeatedly performed in vacuum. In this way, a laminated thin film having excellent surface properties and patterning characteristics can be obtained.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. An electronic component formed by multilayer lamination of a metal thin film and an insulating thin film was formed by an apparatus as schematically shown in FIG. In FIG. 1, a metal thin film forming source 8, an insulating thin film forming source 9, a curing device 10, a patterning material applying device 11, and a patterning material removing device 12 are arranged around the laminated film supporting can 7. The thin film laminated body of the lamination number according to the number can be formed.
[0016]
As the metal thin film forming source, a resistance heating evaporation source, an induction heating evaporation source, an electron beam evaporation source, a sputter evaporation source, a cluster evaporation source, other devices used for forming a thin film, or a combination thereof may be used according to the metal thin film to be formed. I can do it. Also, the insulating thin film forming source depends on the insulating thin film to be formed, such as heater heating of resin-based materials, vaporization or atomization by ultrasonic waves or spraying, sputtering of ceramic-based materials, sputtering of oxides, vapor deposition, etc. A device can be used. As a curing device used when forming a resin dielectric thin film as the insulating thin film, ultraviolet curing, electron beam curing, thermal curing, or a combination thereof can be used. On the other hand, the patterning of the metal thin film is an oil margin method in which a thin pattern of oil or the like is applied before forming the metal thin film.
[0017]
An electronic component can be produced by cutting the thin film laminate obtained by alternately laminating the metal thin film and the insulating thin film thus patterned, and then forming electrodes by thermal spraying or the like as necessary. FIG. 1 shows a method for forming a multilayer laminate of a metal thin film and an insulating thin film. In addition to the method of FIG. 1, a metal thin film or an insulating thin film is formed on a film. A multilayer laminate can be formed by stacking a large number of sheets, and the scope of the present invention is not restricted by the method of FIG.
[0018]
Example 1
When forming a vapor-deposited thin film of aluminum as a metal thin film and an acrylate resin thin film by heater heating vaporization as a dielectric thin film, ultraviolet curing and oil patterning were combined to provide a capacitor whose schematic structure is shown in FIG. The thickness of the aluminum thin film was 50 nm, and the thickness of the resin thin film was 1 μm. As the resin material, 1.9 nonanediol diacrylate mixed with 5 wt% of a photopolymerization initiator was used. The number of repeated layers was about 1000 for both aluminum and resin, and the width of the insulating portion formed by patterning was about 0.5 mm. Fluorine-containing oil was used as the patterning material. The center distance in the film surface direction between adjacent patterning insulating portions is 2.5 mm. Further, a far infrared heater was used to remove the patterning material, and the output was changed. The effect of removing the patterning material was evaluated by the ratio of the step generated in the vicinity of the patterning portion to the laminated film thickness of the non-patterning portion. FIG. 5 shows the measurement results. As can be seen from FIG. 5, as the heater output for patterning removal increases, the difference in thickness between the patterned portion and the non-patterned portion becomes smaller, and the surface property of the laminated thin film is improved. In addition, the patterning disturbance accompanying the increase in the number of stacked layers became smaller as the heater output increased. When the heater was not heated, the width of the patterning insulating portion became unstable with the lamination.
[0019]
(Example 2)
When forming a copper vapor-deposited thin film as a metal thin film and an acrylate resin thin film by heater heating vaporization as a dielectric thin film, electron beam curing and oil patterning were combined to obtain a capacitor whose outline structure is shown in FIG. The thickness of the copper thin film was 40 nm, and the thickness of the resin thin film was 0.1 μm. Dimethinol tricyclodecane diacrylate was used as the resin material. The number of repeated layers was about 4000 for both copper and resin, and the width of the insulating portion formed by patterning was about 0.1 mm. Mineral oil was used as the patterning material. The center distance in the film surface direction between adjacent patterning insulating portions is 1.4 mm. Further, the output of the patterning material was changed using an electron beam. The effect of removing the patterning material was evaluated by the ratio of the step generated in the vicinity of the patterning portion with respect to the laminated film thickness of the non-patterning portion. FIG. 6 shows the measurement results. As can be seen from FIG. 6, as the electron beam output for patterning removal increases, the difference in thickness between the patterned portion and the non-patterned portion decreases, and the surface property of the laminated thin film is improved. Further, when the patterning material was not removed, pattern disturbance was observed as the number of layers increased.
[0020]
Here, the reason why the surface property of the laminated thin film is improved by removing the patterning material in Examples 1 and 2 is considered as follows. That is, when the patterning material remains after the metal thin film is formed, an insulating thin film is formed thereon, so that the laminated thin film grows with the patterning material contained therein. Therefore, the unevenness of the surface after lamination is severe. On the other hand, when stacking is performed while removing excess patterning material, the stacked thin film is formed only of a metal thin film and an insulating thin film, so that a dent corresponding to the thickness of the metal thin film is slightly seen in the patterning portion. It is possible to form a laminated thin film without large irregularities.
[0021]
In the examples, the case where an acrylate resin material is used as the insulating thin film material has been described. However, other resin materials and resin materials such as epoxy resins and other ceramic materials and metal oxide materials are also used. What we can do is as already mentioned. For example, the effect of the present invention could be confirmed even when titanium oxide having a thickness of 50 nm to 300 nm was used as the dielectric by electron beam evaporation in an oxygen atmosphere as the metal oxide.
[0022]
In the examples, only the case where the metal thin film layer is made of aluminum or copper has been described. However, other metals such as silver, nickel, and zinc, and alloys containing them are not used. By mixing the Cu layer and the Cu layer, the characteristics are complemented, and depending on the use conditions, there is a possibility that high performance can be achieved.
[0023]
Although only the case where a far infrared heater and an electron beam are used as the means for removing the patterning material has been described in the embodiment, the same effect can be obtained by using other removing means such as an ultraviolet lamp irradiation or a plasma irradiation. Obtained.
[0024]
As described above, as the patterning material, various oils including hydrocarbon oil, mineral oil, fluorine oil, and other materials suitable for the metal thin film to be formed can be used. As a method for applying the patterning material, in addition to coating or a similar method, the patterning material is enclosed in a sealed nozzle having a minute opening corresponding to the pattern and heated, and material vapor is ejected from the opening to form a metal. A method of aggregating on the thin film forming surface can be used.
[0025]
Moreover, although the case where a can was used as a support in Examples 1 and 2 was described, the present invention is not limited by these supports, and a flat or curved support other than a cylindrical shape In addition, an electronic component can be formed on a metal, an insulator, glass, or a semiconductor according to the present invention.
[0026]
Also, in the embodiments, the description has been given taking the capacitor as an example of the electronic component, but the surface property and patterning characteristics of the laminated thin film can also be obtained by using the patterning material removal described in the present invention in other electronic components such as a chip coil and a noise filter. It can be easily inferred that it can be improved, and the present invention can be widely applied to a method of manufacturing an electronic component and a manufacturing apparatus of a thin film.
[0027]
【The invention's effect】
As described above, according to the electronic component manufacturing method and thin film manufacturing apparatus of the present invention, a laminated thin film having excellent surface properties and patterning characteristics can be obtained, and high performance electronic components such as high performance capacitors can be realized. .
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a thin film manufacturing apparatus according to the present invention. FIG. 2 is a diagram showing an example of a conventional film deposition apparatus. FIG. 3 is a diagram showing an example of patterning of a metal thin film. FIG. 5 is a diagram showing an example of a sectional view of a component. FIG. 5 is a diagram showing an example of the relationship between the power of the removal heater and the surface property of the laminated film. FIG. 6 is an example of the relationship between the power of the removal electron beam and the surface property of the laminated film. Figure [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal thin film 2 Insulating thin film 3 Electrode 4 Pattern position 5 Vacuum tank 6 Exhaust system 7 Can 8 Conductor thin film formation source 9 Dielectric thin film formation source 10 Curing apparatus 11 Patterning material provision apparatus 12 Patterning material removal apparatus

Claims (5)

少なくとも金属薄膜と絶縁性薄膜を積層してなる電子部品の製造方法において、前記金属薄膜の形成に先立ってオイルからなるパターニング材料を付与する工程と、前記金属薄膜を形成する工程と、残留した前記パターニング材料を、加熱量可変の加熱手段による加熱で除去する工程と、前記絶縁性薄膜を形成する工程とを有し、前記パターニング材料を付与する工程と、前記金属薄膜を形成する工程と、前記パターニング材料を、加熱量が可変可能な加熱手段による加熱で除去する工程と、前記絶縁性薄膜を形成する工程とを真空中で、順次連続的に繰り返し行うことを特徴とする電子部品の製造方法。In a method of manufacturing an electronic component formed by laminating at least a metal thin film and an insulating thin film, a step of applying a patterning material made of oil prior to formation of the metal thin film, a step of forming the metal thin film, and the remaining Removing the patterning material by heating with a heating means having variable heating amount, forming the insulating thin film, applying the patterning material, forming the metal thin film, A method of manufacturing an electronic component, wherein the step of removing the patterning material by heating with a heating means having a variable amount of heating and the step of forming the insulating thin film are successively and repeatedly performed in a vacuum. . 前記金属薄膜を真空蒸着法、イオンプレーティング法、スパッタ法のいずれかによって形成することを特徴とする請求項1記載の電子部品の製造方法。2. The method of manufacturing an electronic component according to claim 1, wherein the metal thin film is formed by any one of a vacuum deposition method, an ion plating method, and a sputtering method. 前記金属薄膜が少なくとも2層以上であることを特徴とする請求項1又は2記載の電子部品の製造方法。The method of manufacturing an electronic component according to claim 1 or 2, wherein said metal thin film is at least two or more layers. 前記金属薄膜及び前記絶縁性薄膜が真空中で形成されることを特徴とする請求項1又は3記載の電子部品の製造方法。The method of manufacturing an electronic component according to claim 1 or 3, wherein said metal thin film and the insulating thin film is formed in vacuum. 少なくとも真空槽、及び前記真空槽中に設置された支持体と、前記支持体の移動方向に沿って設置された、オイルからなるパターニング材料を付与するパターニング材料付与装置、金属薄膜形成装置、加熱量可変の加熱手段によりパターニング材料を除去するパターニング材料除去装置、絶縁性薄膜形成装置を有することを特徴とする薄膜の製造装置。At least a vacuum chamber, a support installed in the vacuum chamber, a patterning material applying device for applying a patterning material made of oil, a metal thin film forming device, and a heating amount installed along the moving direction of the support A thin film manufacturing apparatus comprising a patterning material removing apparatus and an insulating thin film forming apparatus for removing a patterning material by a variable heating means.
JP04559197A 1997-02-28 1997-02-28 Electronic component manufacturing method and thin film manufacturing apparatus Expired - Lifetime JP3992317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04559197A JP3992317B2 (en) 1997-02-28 1997-02-28 Electronic component manufacturing method and thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04559197A JP3992317B2 (en) 1997-02-28 1997-02-28 Electronic component manufacturing method and thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPH10237623A JPH10237623A (en) 1998-09-08
JP3992317B2 true JP3992317B2 (en) 2007-10-17

Family

ID=12723603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04559197A Expired - Lifetime JP3992317B2 (en) 1997-02-28 1997-02-28 Electronic component manufacturing method and thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3992317B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3701138B2 (en) 1999-04-23 2005-09-28 松下電器産業株式会社 Manufacturing method of electronic parts
EP1195784A4 (en) * 2000-04-14 2006-12-27 Matsushita Electric Ind Co Ltd Laminated body, capacitor, electronic part, and method and device for manufacturing the laminated body, capacitor, and electronic part
WO2006054601A1 (en) * 2004-11-19 2006-05-26 Matsushita Electric Industrial Co., Ltd. Multilayer substrate with built-in capacitor, method for manufacturing same, and cold cathode tube lighting device

Also Published As

Publication number Publication date
JPH10237623A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US6195249B1 (en) Electronic component having gaps between conductive thin films
KR100483944B1 (en) Laminated body, capacitor, electronic part, and method and device for manufacturing the laminated body, capacitor, and electronic part
EP1035553B1 (en) Methods for producing a layered product
JPH01248607A (en) Film capacitor and method and apparatus for manufacturing the same
JP3614644B2 (en) Manufacturing method of laminate
JP3992317B2 (en) Electronic component manufacturing method and thin film manufacturing apparatus
JPH11186097A (en) Method and equipment for manufacturing electronic component
JP2001313228A (en) Method and device for manufacturing laminate
JPH04350908A (en) Thin inductor/transformer
JP3397210B2 (en) Thin film manufacturing method and manufacturing apparatus
JP2002057065A (en) Thin-film capacitor and its manufacturing method
JP3502261B2 (en) Method for manufacturing resin thin film
JP3398563B2 (en) Method and apparatus for manufacturing composite thin film
JP3485297B2 (en) Thin film manufacturing method and manufacturing apparatus
JP3705567B2 (en) Thin film manufacturing method and apparatus, thin film, thin film laminate, and thin film component
JP4533504B2 (en) Manufacturing method of electronic parts
JPS637017B2 (en)
JP2004031940A (en) Manufacturing method of laminate and manufacturing apparatus for laminate
JPS6386413A (en) Manufacture of thin film dielectric material for capacitor
JP2000294449A (en) Manufacture of laminate and apparatus therefor
JPS6398115A (en) Manufacture of thin film dielectric material for capacitor
JP2004247634A (en) Manufacturing method of laminated body for film laminated capacitor and its manufacturing device
JPS6248886B2 (en)
JP2003231207A (en) Composite thin film
JPS6224507A (en) Yttrium oxide thin film dielectric material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040206

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20040303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

EXPY Cancellation because of completion of term