JP3992211B2 - CMOSFET manufacturing method - Google Patents

CMOSFET manufacturing method Download PDF

Info

Publication number
JP3992211B2
JP3992211B2 JP36805898A JP36805898A JP3992211B2 JP 3992211 B2 JP3992211 B2 JP 3992211B2 JP 36805898 A JP36805898 A JP 36805898A JP 36805898 A JP36805898 A JP 36805898A JP 3992211 B2 JP3992211 B2 JP 3992211B2
Authority
JP
Japan
Prior art keywords
nitrogen
oxide layer
oxide
silicon substrate
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36805898A
Other languages
Japanese (ja)
Other versions
JPH11317461A (en
Inventor
オーノ ヨシ
マー ヤンジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPH11317461A publication Critical patent/JPH11317461A/en
Application granted granted Critical
Publication of JP3992211B2 publication Critical patent/JP3992211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トランジスタ制御用の非常に信頼性のあるゲート酸化物プロセスを必要とするMOSFET素子の製造方法に関し、特に、CMOSフローのpMOS部分用にボロンドープされたゲートポリシリコンを必要とする深さがサブミクロンの素子に関する。
【0002】
【従来の技術】
0.25μmのCMOSプロセスに組み込まれたゲート酸化物は厚さが3.5nmから4.0nmのオーダーと非常に薄い。このような酸化物は、非常に信頼性のある絶縁体でなくてはならない。これらの薄い酸化物層を成長させる技術は、O2(酸素)、H2O(水蒸気)、N2O(亜酸化窒素)およびNO(一酸化窒素)のうちの1つ以上の気体の使用を含む。
【0003】
公知の先行技術では、nMOS素子およびpMOS素子の両方にN-ゲートを形成するように、ゲートポリシリコンにリンがドープされる。より短いチャネル長、すなわち、0.25μm以下の場合には、短チャネルによる影響を最小化するために、ボロンを用いてp-をドープしたポリシリコンゲートをpMOS素子用に形成する必要がある。
【0004】
【発明が解決しようとする課題】
ゲート酸化物を通ってチャネル領域に入るボロンの拡散は、製造後の閾値電圧の変化および特に素子が古くなるに従って予測不可能な最終的な回路の性能に帰する。よって、ゲートポリシリコンにボロンが存在する素子において、ゲート酸化物がボロン原子の拡散のバリアとして作用する必要性が生じる。
【0005】
ボロンの拡散を防ぐ公知の方法の1つは、酸化物とシリコン基板との界面に窒素を配置することである。また、ポリシリコン膜自体内に配置された窒素も、ボロンの拡散を防ぐことができる。しかし、この従来技術では、注入エネルギーの精密な制御が必要とされ、例えば、注入エネルギーが高ければ素子の信頼性の低下、注入エネルギーが低ければポリシリコン層の特性の低下を引き起こすという問題があった。
【0006】
よって、本発明の目的は、ゲートポリシリコンの堆積前に、酸化物層の上表面に窒素を配置することである。
【0007】
本発明の他の目的は、酸化物層へのボロンの拡散を効果的に遮断するように、酸化物層中への窒素注入を提供することである。
【0008】
本発明の更なる目的は、本発明によって形成された素子の信頼性を保ち、かつ、ポリシリコン層の所望の特性を維持することである。
【0009】
【課題を解決するための手段】
本発明は、CMOSFETの製造方法であって、シリコン基板を準備する工程と、1.0nmと10nmとの間の厚さを有する酸化物層を、準備された前記シリコン基板上に形成する工程と、プラズマイオン注入装置(plasmaimmersion ion implantation apparatus)における真空チャンバ内のチャック上に前記シリコン基板を設置して、該チャックを負電圧パルスによってバイアスした状態で、窒素含有酸化剤を用いて前記真空チャンバ内に形成されるプラズマ放電により、前記酸化物層へ、N イオンを、0.1keVと2.0keVとの間のエネルギーおよび1×1013cm-2と1×1016cm-2との間のドーズ量で、少なくとも2分間にわたって注入することによって、前記酸化物層の上表面に窒素を配置する工程と、次いで、前記酸化物層上にゲートポリシリコンを堆積する工程と、
堆積された前記ゲートポリシリコンにボロンをドーピングして、アニーリングおよびパターニングを実施する工程とを含む。これにより、上記目的が達成される。
【0010】
好ましくは、前記窒素を配置する工程の後であって前記ゲートポリシリコンを堆積する工程の前に、前記酸化物層の上表面に窒素が配置された前記シリコン基板を600℃と1050℃との間の温度で10秒間から1時間にわたってアニーリングする工程を含む。
【0016】
以下に作用を説明する。本発明によれば、ゲートポリシリコンの堆積前に、酸化物層中へプラズマイオン注入装置を用いて窒素注入することにより、酸化物層の上表面に窒素を配置できる。これにより、素子の信頼性およびポリシリコン層の特性を維持しながら、酸化物層へのボロンの拡散を効果的に遮断できる。
【0017】
【発明の実施の形態】
ボロンのバリア特性を有する酸化物を成長させる1つの技術は、N2OまたはNOといった窒素含有酸化剤を酸化中に用いることである。得られた酸化物は、従来の酸素ガスによる酸化物または発熱性H2O酸化物(熱水による酸化物)よりも良質である。なぜなら、酸化物とシリコン基板との界面に窒素を配置するからである。この配置は、ボロンがトランジスタチャネル領域に移動するのを遮断することが公知である。
【0018】
図1を参照すると、p-Si基板12を形成するためにシリコンウェハ10に対して、標準的な集積回路処理工程が実施されている。n-ウェル14がp-Si基板12中に従来の手段によって形成される。図2に示すように、1.0nmから10nmの厚さを有する薄いゲート酸化物層16がウェハ10上に成長する。このゲート誘電体層の形成には、任意の標準的な材料および技術が使用され得る。
【0019】
図3に示される工程において、ウェハ10がプラズマイオン注入(plasma immersion ion implantation)(PIII)処理チャンバ22内に設置される。チャンバ22では、純N2プラズマ18が打たれ、軽いパルスがウェハに印加される。それによって、窒素が、酸化物層16の上表面近傍で且つSiO2/Si界面17から離れたゲート誘電体に注入される。好適な実施形態では、N-およびN2 -イオンが酸化物層16中に0.1keVと2.0keVとの間のエネルギー、且つ1×1013cm-2と1×1016cm-2との間のドーズ量で注入される。注入時間は10秒と3分との間で変化する。
【0020】
より高い温度でのアニールが、図4に示すように行われ、ゲート絶縁体内のより強い結合の形成を補助し、そして注入中に生じたダメージの一部を回復させる。それによって、所望の濃度の窒素を有する酸化物層(16+18)を形成する。アニーリング工程は、600℃と1050℃との間の温度で10秒間から1時間の期間行われる。ゲートポリシリコンが堆積され、それに続き、集積回路の製造を完成するのに必要な標準的なドーピング、アニーリング、およびパターニング工程が行われる。
【0021】
図5は、サンプル内の深さに対する窒素および酸素の原子濃度を測定する、二次イオン質量分析(SIMS)による分析結果の概要を示す。線Oは、酸化物層16の深さに対する酸素原子百分率を示す。線Nは、酸化物層16の深さに対する窒素原子百分率を示す。図5(a)に結果が示されている従来技術は、窒素が酸化物層の底部に存在することを可能にし、それによりボロンが酸化物自体に浸透し、そのため、絶縁体の信頼性を低下させる。酸化物と基板との界面にある窒素も、トランジスタ駆動電流および素子速度に悪影響を与える。NMOSトランジスタの場合は、図6に示すように、SiO2/Si界面17に存在する窒素が多くなると、キャリアの有効移動度μは小さくなる。
【0022】
界面17における酸素および窒素の濃度プロファイルが図5(b)に示される。図5(b)は、高速熱酸化または炉を用いて従来の方法で処理された素子において、二次イオン質量分析(SIMS)による窒素濃度プロファイルNを深さの関数として示し、所望のOプロファイルとの比較を示している。キャリア移動度に影響を与えることなく酸化物中へのボロンの拡散を阻止するために、酸化物とポリシリコンゲートとの界面に窒素を配置する方法が必要である。
【0023】
従来の注入技術を用いた窒素のゲートポリシリコンへの注入が、ボロンの拡散特性を改善することを示されている。ポリシリコン膜自体内に配置された窒素もまた、ボロン拡散を阻止する。しかし、この技術の問題点は、注入エネルギーの制御が重要であることにある。高すぎるエネルギーで注入すれば、酸化物にダメージを与え得、よって、信頼性を低減させる。低すぎるエネルギーで注入すれば、窒素をポリシリコン中に残し、それによって抵抗性の増加、および欠陥効果(poly depietion effects)が起こり得る。
【0024】
前述したように、本発明の目的は、ゲートポリシリコンの堆積前に窒素を酸化物の上表面に配置することである。このことは、ボロンが絶縁体層へ拡散するのを効果的に遮断し、信頼性を保ち、かつ、ポリシリコン層の所望の特性を維持する。
【0025】
本発明の方法は、プラズマイオン注入(PIII)によって、窒素を酸化物層16の上表面に配置するという結果をもたらす。図7において、PIII装置を概して参照符号20により示す。PIII装置20は、真空チャンバ22を含む。この場合には および イオンである、注入を所望される材料を含むプラズマ放電24が、真空チャンバ22内に形成される。ウェハ26がチャック28上に設置される。チャック28は、挿入グラフGに示すように、非常に期間が短く3kV未満の振幅を有するが高い反復率の負電圧パルスによりバイアスされている。チャック28上の負電圧パルスは、正に帯電した種(positivecharged species)をウェハ26の基板へ引き寄せる。プラズマ放電の電力および電圧の振幅、パルス幅、ならびに反復率を調整することによって、イオン化された種は、下部界面、酸化物の大部分、または上表面のいずれかに向かってゲート酸化物層16に埋め込まれる。本発明の方法の実施において、窒素イオンが酸化物層16の上表面近くに埋め込まれるように、変数が調整される。
【0026】
様々な技術および変化するパラメータを使用した実験を行うことにより、本発明の方法の実行可能性を調べ、その結果、図8の窒素プロファイルを得た。図8は、120Åのゲート酸化物中にN2プラズマ注入を行った結果得られた酸素および窒素のSIMSプロファイルを示す。従来技術による酸素濃度をトレース30によって示す。注入パルスを与えずにN2プラズマに露出したのみでは、トレース32に示すように、検出限界をはるかに超える少量の窒素を膜および界面中へ組み込む。トレース34に示すように、注入パルスを2分間印加すると、10nmの厚さの酸化物層中の酸化物の大部分で、更に1桁多い窒素が得られた。この時、界面にも窒素が存在するが、その量はおよそ0.1原子%であり、図5より、その結果起こるキャリア移動度の劣化は5%にすぎないことがわかる。トレース36に示すように、注入パルスを更に長期(5分間)にわたって印加した結果、1.0nmから10nmの厚さの酸化物層の大部分および界面において更に多くの窒素が検出された。このことは、注入時間によるドーズ量の制御が可能であることを示している。注入条件の最適化は、本明細書中に示すパラメーターを用いて、ゲート酸化物の厚さ毎に行われる必要がある。
【0027】
よって、トランジスタ制御用の信頼性のあるゲート酸化物プロセスを必要とするMOSFET素子の製造方法であって、特に、CMOSフローのpMOS部分用にボロンドープされたゲートポリシリコンを閾値電圧の制御および素子サイズに対する非感受性のために必要とする、深さがサブミクロンの素子の製造方法を開示した。本発明の好適な実施形態を開示したが、添付の請求の範囲に定義した本発明の範囲を逸脱することなく更なる改変および変更がなされ得ることが理解される。
【0028】
【発明の効果】
本発明によると、MOSFETなどの半導体素子において、ゲートポリシリコンの堆積前に、酸化物層の表面上に窒素が配置されるため、酸化物層へのボロン拡散を効果的に遮断することができる。その結果、素子の信頼性を保ち、かつ、ポリシリコン層の所望の特性を維持することができる。
【図面の簡単な説明】
【図1】本発明によるCMOSゲート酸化物の形成の一段階を示す図である。
【図2】本発明によるCMOSゲート酸化物の形成の一段階を示す図である。
【図3】本発明によるCMOSゲート酸化物の形成の一段階を示す図である。
【図4】本発明によるCMOSゲート酸化物の形成の一段階を示す図である。
【図5】(a)は、従来の方法で処理された素子において、二次イオン質量分析(SIMS)の窒素濃度プロファイルを深さの関数として示す図であり、(b)は、高速熱酸化または炉によって処理された素子における窒素濃度プロファイルと所望の酸素濃度プロファイルとの比較を示す図である。
【図6】SiO2/Si界面における窒素濃度がnMOSトランジスタのキャリア移動度に及ぼす影響を示す図である。
【図7】プラズマイオン注入装置の模式図である。
【図8】120Åのゲート酸化物に対してN2プラズマ注入をした結果生じた酸素および窒素のSIMSプロファイルを示す図である。
【符号の説明】
10 シリコンウェハ
12 p-Si基板
14 n-ウェル
16 薄ゲート酸化物層
17 SiO2/Si界面
18 純N2プラズマ
20 PIII装置
22 真空チャンバ
24 プラズマ放電
26 ウェハ
28 チャック
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a MOSFET device that requires a highly reliable gate oxide process for transistor control, and more particularly to a depth requiring boron doped gate polysilicon for the pMOS portion of a CMOS flow. Relates to sub-micron devices.
[0002]
[Prior art]
The gate oxide incorporated in a 0.25 μm CMOS process is very thin, on the order of 3.5 nm to 4.0 nm. Such oxides must be very reliable insulators. The technique for growing these thin oxide layers uses the gas of one or more of O 2 (oxygen), H 2 O (water vapor), N 2 O (nitrous oxide) and NO (nitrogen monoxide). including.
[0003]
In the known prior art, the gate polysilicon is doped with phosphorus so as to form N - gates in both nMOS and pMOS devices. For shorter channel lengths, ie 0.25 μm or less, it is necessary to form a p doped polysilicon gate for the pMOS device using boron to minimize the effects of the short channel.
[0004]
[Problems to be solved by the invention]
Boron diffusion into the channel region through the gate oxide results in post-fabrication threshold voltage changes and, in particular, unpredictable final circuit performance as the device ages. Therefore, in a device in which boron is present in the gate polysilicon, the gate oxide needs to act as a barrier for boron atom diffusion.
[0005]
One known method of preventing boron diffusion is to place nitrogen at the interface between the oxide and the silicon substrate. Further, nitrogen arranged in the polysilicon film itself can also prevent boron diffusion. However, this conventional technique requires precise control of the implantation energy. For example, if the implantation energy is high, the reliability of the device is lowered, and if the implantation energy is low, the characteristics of the polysilicon layer are degraded. It was.
[0006]
Thus, it is an object of the present invention to place nitrogen on the upper surface of the oxide layer before the gate polysilicon is deposited.
[0007]
Another object of the present invention is to provide nitrogen implantation into the oxide layer so as to effectively block boron diffusion into the oxide layer.
[0008]
A further object of the present invention is to maintain the reliability of the devices formed by the present invention and to maintain the desired properties of the polysilicon layer.
[0009]
[Means for Solving the Problems]
The present invention is a method for manufacturing a CMOSFET, comprising: preparing a silicon substrate; forming an oxide layer having a thickness between 1.0 nm and 10 nm on the prepared silicon substrate; The silicon substrate is installed on a chuck in a vacuum chamber in a plasma ion implantation apparatus , and the chuck is biased by a negative voltage pulse, and a nitrogen-containing oxidant is used in the vacuum chamber. The plasma discharge formed on the oxide layer causes N + ions to enter the energy between 0.1 keV and 2.0 keV and between 1 × 10 13 cm −2 and 1 × 10 16 cm −2. Implanting nitrogen on the top surface of the oxide layer by implanting at a dose of at least 2 minutes, and then gating on the oxide layer. Depositing a polysilicon,
Doping the deposited gate polysilicon with boron to perform annealing and patterning. As a result, the above object is achieved.
[0010]
Preferably, after the step of disposing nitrogen and before the step of depositing the gate polysilicon, the silicon substrate having nitrogen disposed on the upper surface of the oxide layer is heated to 600 ° C. and 1050 ° C. Annealing for 10 seconds to 1 hour at a temperature between.
[0016]
The operation will be described below. According to the present invention, nitrogen can be disposed on the upper surface of the oxide layer by implanting nitrogen into the oxide layer using a plasma ion implantation apparatus before the gate polysilicon is deposited. Thereby, the diffusion of boron to the oxide layer can be effectively blocked while maintaining the reliability of the element and the characteristics of the polysilicon layer.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
One technique for growing oxides with boron barrier properties is to use a nitrogen-containing oxidant such as N 2 O or NO during oxidation. The obtained oxide is better in quality than the conventional oxide by oxygen gas or exothermic H 2 O oxide (oxide by hot water). This is because nitrogen is arranged at the interface between the oxide and the silicon substrate. This arrangement is known to block boron from moving to the transistor channel region.
[0018]
Referring to FIG. 1, standard integrated circuit processing steps are performed on a silicon wafer 10 to form a p - Si substrate 12. An n well 14 is formed in the p Si substrate 12 by conventional means. As shown in FIG. 2, a thin gate oxide layer 16 having a thickness of 1.0 nm to 10 nm is grown on the wafer 10. Any standard material and technique may be used to form this gate dielectric layer.
[0019]
In the process shown in FIG. 3, a wafer 10 is placed in a plasma immersion ion implantation (PIII) processing chamber 22. In chamber 22, pure N 2 plasma 18 is struck and a light pulse is applied to the wafer. Thereby, nitrogen is implanted into the gate dielectric near the top surface of the oxide layer 16 and away from the SiO 2 / Si interface 17. In a preferred embodiment, N and N 2 ions are present in the oxide layer 16 with an energy between 0.1 keV and 2.0 keV, and between 1 × 10 13 cm −2 and 1 × 10 16 cm −2 . Injected at a dose of between. The infusion time varies between 10 seconds and 3 minutes.
[0020]
A higher temperature anneal is performed as shown in FIG. 4 to assist in the formation of stronger bonds within the gate insulator and to recover some of the damage caused during implantation. Thereby, an oxide layer (16 + 18) having a desired concentration of nitrogen is formed. The annealing process is performed at a temperature between 600 ° C. and 1050 ° C. for a period of 10 seconds to 1 hour. Gate polysilicon is deposited, followed by standard doping, annealing, and patterning steps necessary to complete integrated circuit fabrication.
[0021]
FIG. 5 shows a summary of the results of analysis by secondary ion mass spectrometry (SIMS), which measures the atomic concentration of nitrogen and oxygen with respect to the depth in the sample. Line O represents the oxygen atom percentage with respect to the depth of the oxide layer 16. Line N represents the percentage of nitrogen atoms with respect to the depth of the oxide layer 16. The prior art, the results of which are shown in FIG. 5 (a), allows nitrogen to be present at the bottom of the oxide layer, so that boron penetrates the oxide itself, thus increasing the reliability of the insulator. Reduce. Nitrogen at the interface between the oxide and the substrate also adversely affects transistor drive current and device speed. In the case of an NMOS transistor, as shown in FIG. 6, the effective mobility μ of carriers decreases as the amount of nitrogen present at the SiO 2 / Si interface 17 increases.
[0022]
A concentration profile of oxygen and nitrogen at the interface 17 is shown in FIG. FIG. 5 (b) shows the nitrogen concentration profile N as a function of depth, as a function of depth, in a device processed in a conventional manner using fast thermal oxidation or a furnace, and the desired O profile. Comparison with is shown. In order to prevent boron diffusion into the oxide without affecting the carrier mobility, a method of placing nitrogen at the interface between the oxide and the polysilicon gate is required.
[0023]
Implantation of nitrogen into the gate polysilicon using conventional implantation techniques has been shown to improve boron diffusion properties. Nitrogen located within the polysilicon film itself also prevents boron diffusion. However, the problem with this technique is that it is important to control the implantation energy. Implanting with too high energy can damage the oxide, thus reducing reliability. Implanting with too low energy can leave nitrogen in the polysilicon, which can lead to increased resistance and poly depietion effects.
[0024]
As previously mentioned, an object of the present invention is to place nitrogen on the top surface of the oxide prior to gate polysilicon deposition. This effectively blocks boron from diffusing into the insulator layer, maintains reliability, and maintains the desired characteristics of the polysilicon layer.
[0025]
The method of the invention results in nitrogen being placed on the upper surface of the oxide layer 16 by plasma ion implantation (PIII). In FIG. 7, the PIII device is indicated generally by the reference numeral 20. The PIII device 20 includes a vacuum chamber 22. A plasma discharge 24 is formed in the vacuum chamber 22 containing the material desired to be implanted, in this case N 2 + and N + ions. Wafer 26 is placed on chuck 28. Chuck 28 is biased by a negative voltage pulse with a very short duration and an amplitude of less than 3 kV but with a high repetition rate, as shown in inset graph G. The negative voltage pulse on the chuck 28 attracts positively charged species to the substrate of the wafer 26. By adjusting the power and voltage amplitudes, pulse widths, and repetition rates of the plasma discharge, the ionized species are directed to either the lower interface, the majority of the oxide, or the upper surface of the gate oxide layer 16. Embedded in. In carrying out the method of the present invention, the variables are adjusted so that nitrogen ions are embedded near the top surface of the oxide layer 16.
[0026]
The feasibility of the method of the present invention was examined by conducting experiments using various techniques and changing parameters, resulting in the nitrogen profile of FIG. FIG. 8 shows the SIMS profiles of oxygen and nitrogen obtained as a result of N 2 plasma implantation into 120 Å gate oxide. The oxygen concentration according to the prior art is shown by trace 30. Only being exposed to N 2 plasma without applying an injection pulse will incorporate a small amount of nitrogen into the film and interface, far beyond the detection limit, as shown in trace 32. As shown in trace 34, when the injection pulse was applied for 2 minutes, one more digit of nitrogen was obtained for most of the oxide in the 10 nm thick oxide layer. At this time, nitrogen is also present at the interface, but the amount is about 0.1 atomic%, and FIG. 5 shows that the resulting deterioration in carrier mobility is only 5%. As shown in trace 36, the injection pulse was applied for a longer period (5 minutes) and as a result, more nitrogen was detected at most of the 1.0 nm to 10 nm thick oxide layer and at the interface. This indicates that the dose can be controlled by the implantation time. The optimization of the implantation conditions needs to be done for each gate oxide thickness using the parameters shown herein.
[0027]
Thus, a method of manufacturing a MOSFET device that requires a reliable gate oxide process for transistor control, particularly for boron-doped gate polysilicon for pMOS portion of CMOS flow, threshold voltage control and device size. Disclosed is a method for manufacturing submicron-depth devices required for insensitivity to. While preferred embodiments of the invention have been disclosed, it will be appreciated that further modifications and changes may be made without departing from the scope of the invention as defined in the appended claims.
[0028]
【The invention's effect】
According to the present invention, in a semiconductor device such as a MOSFET, nitrogen is disposed on the surface of the oxide layer before the gate polysilicon is deposited, so that boron diffusion into the oxide layer can be effectively blocked. . As a result, the reliability of the element can be maintained and the desired characteristics of the polysilicon layer can be maintained.
[Brief description of the drawings]
FIG. 1 shows a step in the formation of a CMOS gate oxide according to the present invention.
FIG. 2 shows a step in the formation of a CMOS gate oxide according to the present invention.
FIG. 3 shows a step in the formation of a CMOS gate oxide according to the present invention.
FIG. 4 shows a step in the formation of a CMOS gate oxide according to the present invention.
FIG. 5A is a diagram showing secondary ion mass spectrometry (SIMS) nitrogen concentration profile as a function of depth in a device processed by a conventional method, and FIG. 5B is a diagram showing rapid thermal oxidation. FIG. 6 is a diagram showing a comparison between a nitrogen concentration profile and a desired oxygen concentration profile in an element processed by a furnace.
FIG. 6 is a diagram showing the influence of the nitrogen concentration at the SiO 2 / Si interface on the carrier mobility of an nMOS transistor.
FIG. 7 is a schematic diagram of a plasma ion implantation apparatus.
FIG. 8 shows the SIMS profile of oxygen and nitrogen resulting from N 2 plasma implantation for 120 Å gate oxide.
[Explanation of symbols]
10 silicon wafer 12 p - Si substrate 14 n - well 16 thin gate oxide layer 17 SiO 2 / Si interface 18 Jun N 2 plasma 20 PIII device 22 vacuum chamber 24 plasma discharge 26 wafer 28 chuck

Claims (2)

CMOSFETの製造方法であって、
シリコン基板を準備する工程と、
1.0nmと10nmとの間の厚さを有する酸化物層を、準備された前記シリコン基板上に形成する工程と、
プラズマイオン注入装置(plasma immersion ion implantation apparatus)における真空チャンバ内のチャック上に前記シリコン基板を設置して、該チャックを負電圧パルスによってバイアスした状態で、窒素含有酸化剤を用いて前記真空チャンバ内に形成されるプラズマ放電により、前記酸化物層へ、N イオンを、0.1keVと2.0keVとの間のエネルギーおよび1×1013cm-2と1×1016cm-2との間のドーズ量で、少なくとも2分間にわたって注入することによって、前記酸化物層の上表面に窒素を配置する工程と、
次いで、前記酸化物層上にゲートポリシリコンを堆積する工程と、
堆積された前記ゲートポリシリコンにボロンをドーピングして、アニーリングおよびパターニングを実施する工程と、
を含むCMOSFETの製造方法。
A method of manufacturing a CMOSFET comprising:
Preparing a silicon substrate;
Forming an oxide layer having a thickness between 1.0 nm and 10 nm on the prepared silicon substrate;
A silicon substrate is placed on a chuck in a vacuum chamber in a plasma immersion ion implantation apparatus , and the chuck is biased by a negative voltage pulse, and a nitrogen-containing oxidant is used in the vacuum chamber. The plasma discharge formed on the oxide layer causes N + ions to enter the energy between 0.1 keV and 2.0 keV and between 1 × 10 13 cm −2 and 1 × 10 16 cm −2. Placing nitrogen on the upper surface of the oxide layer by implanting at a dose of
Depositing gate polysilicon on the oxide layer;
Doping the deposited gate polysilicon with boron to perform annealing and patterning;
A method of manufacturing a CMOSFET comprising:
前記窒素を配置する工程の後であって前記ゲートポリシリコンを堆積する工程の前に、前記酸化物層の上表面に窒素が配置された前記シリコン基板を600℃と1050℃との間の温度で10秒間から1時間にわたってアニーリングする工程を含む、請求項1に記載のCMOSFETの製造方法。After the step of placing nitrogen and before the step of depositing the gate polysilicon, the silicon substrate with nitrogen placed on the upper surface of the oxide layer is heated to a temperature between 600 ° C. and 1050 ° C. The method of manufacturing a CMOSFET according to claim 1, further comprising: annealing for 10 seconds to 1 hour.
JP36805898A 1998-04-30 1998-12-24 CMOSFET manufacturing method Expired - Fee Related JP3992211B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/071.234 1998-04-30
US09/071,234 US6184110B1 (en) 1998-04-30 1998-04-30 Method of forming nitrogen implanted ultrathin gate oxide for dual gate CMOS devices

Publications (2)

Publication Number Publication Date
JPH11317461A JPH11317461A (en) 1999-11-16
JP3992211B2 true JP3992211B2 (en) 2007-10-17

Family

ID=22100092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36805898A Expired - Fee Related JP3992211B2 (en) 1998-04-30 1998-12-24 CMOSFET manufacturing method

Country Status (4)

Country Link
US (1) US6184110B1 (en)
JP (1) JP3992211B2 (en)
KR (1) KR100389279B1 (en)
TW (1) TW405226B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100353402B1 (en) * 1999-04-19 2002-09-18 주식회사 하이닉스반도체 Method of fabricating a semiconductor device
US6649543B1 (en) 2000-06-22 2003-11-18 Micron Technology, Inc. Methods of forming silicon nitride, methods of forming transistor devices, and transistor devices
US6833329B1 (en) 2000-06-22 2004-12-21 Micron Technology, Inc. Methods of forming oxide regions over semiconductor substrates
US6686298B1 (en) * 2000-06-22 2004-02-03 Micron Technology, Inc. Methods of forming structures over semiconductor substrates, and methods of forming transistors associated with semiconductor substrates
US6660657B1 (en) * 2000-08-07 2003-12-09 Micron Technology, Inc. Methods of incorporating nitrogen into silicon-oxide-containing layers
US6395654B1 (en) * 2000-08-25 2002-05-28 Advanced Micro Devices, Inc. Method of forming ONO flash memory devices using rapid thermal oxidation
US6544907B1 (en) * 2000-10-12 2003-04-08 Agere Systems Inc. Method of forming a high quality gate oxide layer having a uniform thickness
US6613695B2 (en) * 2000-11-24 2003-09-02 Asm America, Inc. Surface preparation prior to deposition
JP4772183B2 (en) * 2000-11-30 2011-09-14 ルネサスエレクトロニクス株式会社 Semiconductor device
KR100386451B1 (en) * 2000-12-29 2003-06-02 주식회사 하이닉스반도체 Method for forming gate oxide layer of semiconductor device
US20020132457A1 (en) * 2001-03-13 2002-09-19 Macronix International Co., Ltd. Method for avoiding the ion penetration with the plasma doping
US6503846B1 (en) * 2001-06-20 2003-01-07 Texas Instruments Incorporated Temperature spike for uniform nitridization of ultra-thin silicon dioxide layers in transistor gates
US6878585B2 (en) 2001-08-29 2005-04-12 Micron Technology, Inc. Methods of forming capacitors
US6960537B2 (en) * 2001-10-02 2005-11-01 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
KR20030044394A (en) * 2001-11-29 2003-06-09 주식회사 하이닉스반도체 Method for fabricating semiconductor device with dual gate dielectric layer
US6723599B2 (en) * 2001-12-03 2004-04-20 Micron Technology, Inc. Methods of forming capacitors and methods of forming capacitor dielectric layers
US6780720B2 (en) * 2002-07-01 2004-08-24 International Business Machines Corporation Method for fabricating a nitrided silicon-oxide gate dielectric
KR100568859B1 (en) * 2003-08-21 2006-04-10 삼성전자주식회사 Method for manufacturing transistor of dynamic random access memory semiconductor
US7314812B2 (en) * 2003-08-28 2008-01-01 Micron Technology, Inc. Method for reducing the effective thickness of gate oxides by nitrogen implantation and anneal
US7138691B2 (en) * 2004-01-22 2006-11-21 International Business Machines Corporation Selective nitridation of gate oxides
TWI252541B (en) * 2004-03-17 2006-04-01 Nanya Technology Corp Method for growing a gate oxide layer on a silicon surface with preliminary N2O anneal
US20070082454A1 (en) * 2005-10-12 2007-04-12 Infineon Technologies Ag Microelectronic device and method of manufacturing a microelectronic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672541A (en) * 1995-06-14 1997-09-30 Wisconsin Alumni Research Foundation Ultra-shallow junction semiconductor device fabrication
JPH0992729A (en) * 1995-09-22 1997-04-04 Mitsubishi Electric Corp Semiconductor device and fabrication thereof
US5629221A (en) * 1995-11-24 1997-05-13 National Science Council Of Republic Of China Process for suppressing boron penetration in BF2 + -implanted P+ -poly-Si gate using inductively-coupled nitrogen plasma
US5683918A (en) * 1996-04-01 1997-11-04 Motorola, Inc. Method of making semiconductor-on-insulator device with closed-gate electrode
FR2756104B1 (en) * 1996-11-19 1999-01-29 Sgs Thomson Microelectronics MANUFACTURE OF BIPOLAR / CMOS INTEGRATED CIRCUITS

Also Published As

Publication number Publication date
JPH11317461A (en) 1999-11-16
KR19990082711A (en) 1999-11-25
KR100389279B1 (en) 2003-06-27
US6184110B1 (en) 2001-02-06
TW405226B (en) 2000-09-11

Similar Documents

Publication Publication Date Title
JP3992211B2 (en) CMOSFET manufacturing method
US6297535B1 (en) Transistor having a gate dielectric which is substantially resistant to drain-side hot carrier injection
US6444550B1 (en) Laser tailoring retrograde channel profile in surfaces
US5552332A (en) Process for fabricating a MOSFET device having reduced reverse short channel effects
US5908312A (en) Semiconductor device fabrication
US6124620A (en) Incorporating barrier atoms into a gate dielectric using gas cluster ion beam implantation
KR100389899B1 (en) Field effect transistor having improved hot carrier immunity
US6180476B1 (en) Dual amorphization implant process for ultra-shallow drain and source extensions
KR100522758B1 (en) Method for manufacturing semiconductor device
KR100718823B1 (en) A silicon-germanium transistor and associated methods
US6051865A (en) Transistor having a barrier layer below a high permittivity gate dielectric
CA2023023A1 (en) Carbon doping mosfet substrate to suppress hot electron trapping
US5920103A (en) Asymmetrical transistor having a gate dielectric which is substantially resistant to hot carrier injection
KR100617894B1 (en) MOS transistor and method of manufacture
US6069046A (en) Transistor fabrication employing implantation of dopant into junctions without subjecting sidewall surfaces of a gate conductor to ion bombardment
US6432780B2 (en) Method for suppressing boron penetrating gate dielectric layer by pulsed nitrogen plasma doping
CN112885716B (en) Method for forming semiconductor structure
KR0137901B1 (en) Mos transistor device & method for fabricating the same
US7151059B2 (en) MOS transistor and method of manufacture
JP2700320B2 (en) Method for manufacturing semiconductor device
US6979658B2 (en) Method of fabricating a semiconductor device containing nitrogen in a gate oxide film
KR20050118686A (en) Improved gate electrode for semiconductor devices
JPH0434942A (en) Manufacture of semiconductor device
KR100334965B1 (en) Formation method of device of mos field effect transistor
JP4045642B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20051014

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees