JP3992173B2 - Metal surface treatment composition, surface treatment liquid, and surface treatment method - Google Patents

Metal surface treatment composition, surface treatment liquid, and surface treatment method Download PDF

Info

Publication number
JP3992173B2
JP3992173B2 JP29196799A JP29196799A JP3992173B2 JP 3992173 B2 JP3992173 B2 JP 3992173B2 JP 29196799 A JP29196799 A JP 29196799A JP 29196799 A JP29196799 A JP 29196799A JP 3992173 B2 JP3992173 B2 JP 3992173B2
Authority
JP
Japan
Prior art keywords
surface treatment
metal
film
corrosion resistance
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29196799A
Other languages
Japanese (ja)
Other versions
JP2000199077A (en
Inventor
和也 中田
元哉 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP29196799A priority Critical patent/JP3992173B2/en
Priority to KR1019990046319A priority patent/KR20000029286A/en
Priority to CA002349376A priority patent/CA2349376A1/en
Priority to PCT/US1999/023982 priority patent/WO2000024948A1/en
Priority to EP99963840A priority patent/EP1171648A1/en
Priority to AU20202/00A priority patent/AU2020200A/en
Priority to US09/830,736 priority patent/US6361833B1/en
Priority to BR9914970-2A priority patent/BR9914970A/en
Publication of JP2000199077A publication Critical patent/JP2000199077A/en
Application granted granted Critical
Publication of JP3992173B2 publication Critical patent/JP3992173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/02Anti-oxidant compositions; Compositions inhibiting chemical change containing inorganic compounds

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金、亜鉛めっき鋼板のような各種金属の表面に優れた耐食性と塗膜密着性を付与するための新規な金属表面処理液、ならびに表面処理方法に関するものである。
【0002】
【従来の技術】
一般に、アルミニウムまたはアルミニウム合金材料用表面処理液は、クロメ−トタイプとノンクロメ−トタイプとに大別できる。クロメ−トタイプの処理液の代表的なものとしては、クロム酸クロメ−ト化成処理液とりん酸クロメ−ト化成処理液が挙げられる。
【0003】
まず、クロム酸クロメ−ト化成処理液について説明する。
クロム酸クロメ−ト化成処理液は1950年頃に実用化され、現在も自動車用熱交換器、アルミホイール、建築材料、航空機材料の表面処理に広く使用されている。このクロム酸クロメ−ト化成処理液は、クロム酸と反応促進剤としてのフッ化物を主成分として含有するもので、金属材料表面上に若干の6価クロムを含有する化成皮膜を形成する。
【0004】
また、りん酸クロメ−ト化成処理液は米国特許第2438877号に開示された発明によるもので、クロム酸、りん酸及びフッ化水素酸を主成分として含有し、金属材料表面上に水和したりん酸クロムを主成分とする化成皮膜を形成する。この化成皮膜中には6価クロムが含有されていないことから、飲料缶のボディ−材及び蓋材の塗装下地処理などに現在広く使用されている。
このようなクロメ−トタイプの表面処理液により形成された化成皮膜は優れた耐食性と塗膜密着性を有するものの、有害な6価クロムを処理液中に含有しているので、環境上の問題から6価クロムを全く含有しない処理液の使用が望まれている。
【0005】
クロムを含有しないノンクロメ−トタイプの表面処理液の代表的な発明としては、特開昭52−131937号公報に開示の処理液が挙げられる。この表面処理液はジルコニウムまたはチタンあるいはこれらの混合物と、ホスフェ−ト及びフッ化物とを含有し、且つpHが約1.5〜4.0の酸性の水性コ−ティング溶液である。この表面処理液を用いて金属材料表面を処理すると、金属表面上にジルコニウムあるいはチタンの酸化物を主成分とする化成皮膜が形成される。このノンクロメ−トタイプの表面処理液は、6価クロムを含有しないという利点を有しており、現在アルミニウムDI缶の表面処理等に広く用いられているが、形成された皮膜の耐食性がクロメ−ト皮膜よりも劣るという欠点がある。
【0006】
ノンクロメートタイプ処理液としてはさらに以下の特許公報に開示されたものが挙げられる。
例えば、特開昭57−41376号公報に開示の処理方法は、アルミニウム、マグネシウム及びその合金の表面に、チタン塩またはジルコニウム塩の1種または2種以上とイミダゾール誘導体の1種または2種以上と、硝酸、過酸化水素、過マンガン酸カリウム等の酸化剤とを含有する水溶液を用いて表面処理するものであり、この処理液により形成された皮膜の耐食性は15年前には十分であったが、現在では到底満足とは言えない。
また、特開昭56−136978号公報には、バナジウム化合物と、チタニウム塩、ジルコニウム塩及び亜鉛塩の群から選定された少なくとも1種の化合物とを含む水溶液より成ることを特徴とする化成処理液が開示されている。しかし、この処理液により形成された化成皮膜では、長期間の耐食性試験を実施した場合、クロメート皮膜と同等以上の耐食性を期待することはできない。
【0007】
以上のように、前記従来のノンクロメートタイプの表面処理液を用いた場合、とくに形成された化成皮膜の耐食性に課題が残る。このようなことから、特に優れた耐食性が要求されるアルミニウム合金製熱交換器、アルミニウム系金属材料のコイル及びシ−ト材等の表面処理ラインにおいて、現状ではノンクロメ−トタイプの表面処理液はほとんど使用されていないのである。
【0008】
従って、現在のところ処理液中に6価クロムを含有せず、廃水処理性に優れ、しかも耐食性及び塗膜密着性に優れる化成皮膜の形成が可能な、アルミニウムまたはアルミニウム合金材料用表面処理液は確立できていないのである。
【0009】
次に、マグネシウムまたはマグネシウム合金用の表面処理液及び表面処理方法について説明する。
マグネシウムまたはマグネシウム合金材料用の表面処理方法としては、JIS−H−8651やMIL−M−3171などに代表されるクロメート処理が実用化されている。このようなクロメ−トタイプの表面処理液により形成された化成皮膜は優れた耐食性と塗膜密着性を有するものの、非常に有害な6価クロムを処理液中に含有しているため、環境上の問題から6価クロムを全く含有しない処理液の使用が望まれている。
【0010】
クロムを含有しないノンクロメ−トタイプの表面処理液の代表的な発明としては、特公平3−6994号に開示の方法が挙げられる。この処理方法はりん酸塩処理後に珪酸塩処理を施し、さらにその上にシリコーン処理を施すものであるが、りん酸塩処理単独皮膜ではマグネシウムまたはマグネシウム合金材料表面の塗装下地処理方法として、耐食性及び塗膜密着性のレベルが低いという問題点がある。さらに、この処理方法では多段処理工程を必要とし、処理温度が高く、処理時間が長いなどの欠点がある。
りん酸塩を用いる表面処理方法としては、りん酸亜鉛系、りん酸鉄系、りん酸カルシウム系、りん酸ジルコニウム系などの処理液を用いる方法が知られているが、これらの方法では実用上十分な耐食性を付与することが困難である。
例えば、JIS−H−8651の7種にはりん酸マンガン処理が示されているが、この処理液はクロムを含有するものであり、処理温度が80〜90℃と高く、処理時間も30〜60分とかなり長いため、実用的に不満足なものである。
【0011】
ノンクロメートタイプの技術としては、以下の公報が挙げられる。
特開平9−228062号公報には金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートから選ばれる少なくとも1種の有機金属化合物と、酸、アルカリ、その塩類、または水酸基、カルボキシル基、アミノ基のいずれかを有する有機化合物から選ばれる少なくとも1種の皮膜形成助剤または皮膜形成安定剤を含む水溶液を、温度0〜50℃でマグネシウム材料に適用する表面処理方法が開示されている。しかし、この処理液により形成された化成皮膜では、長期間の耐食性試験を実施した場合、クロメート皮膜と同等以上の耐食性を期待することはできない。
【0012】
以上のように、前記マグネシウムまたはマグネシウム合金用に従来提案されているノンクロメートタイプの表面処理液を用いた場合、形成された化成皮膜の耐食性や処理温度が高い、処理時間が長い、処理濃度が高い、耐食性が低いなどの実用上の処理条件に課題が残る。このようなことから、優れた耐食性や塗膜密着性が要求されるマグネシウム合金製の自動車材料、航空機材料、電子機器材料及び通信機器材料などの表面処理ラインにおいて、現状ではノンクロメ−トタイプの表面処理液はほとんど使用されていないのである。
従って、現在のところ処理液中に6価クロムを含有せず、作業性に優れ、しかも耐食性及び塗膜密着性に優れる化成皮膜の形成が可能な、マグネシウムまたはマグネシウム合金材料用表面処理液は確立できていないのである。
【0013】
次に、亜鉛めっき材料の表面処理について説明する。
亜鉛めっき材料用の処理方法としては、クロメート処理やりん酸亜鉛処理が一般的である。クロメート処理では優れた皮膜性能は得られるが、処理液中に有害なクロムを含有しており、作業上及び廃棄上の問題となっている。また、りん酸亜鉛処理においては十分な耐食性が得られない場合がある。
【0014】
亜鉛めっき材料のノンクロメートタイプの技術としては、以下の公報で提案された方法が挙げられる。
特開平1−104783号公報にはSi、Ti、Zr、Al、W、Ce、Sn、Yのアルコキシドもしくはアセチルアセトネート塩の1種または2種以上を含有するアルコール溶液を亜鉛、アルミニウムまたは亜鉛−アルミニウム合金めっき鋼板に塗布して200〜500℃に加熱し、溶液中に含まれる金属の酸化物皮膜を鋼板表面に形成することを特徴とする表面処理鋼板の製造方法が開示されている。しかし、この製造方法では引火性のあるアルコールを使用しなければならず、さらに皮膜形成の際にかなり高い温度が必要となるため、作業環境上及びエネルギーコスト上問題がある。
【0015】
このようなことから、亜鉛めっき材料の表面処理についてもアルミニウム系材料やマグネシウム系材料の場合と同様に、処理液中に有害なクロムを含有せず、作業性に優れ、しかも耐食性及び塗膜密着性に優れる化成皮膜の形成が可能な表面処理液は確立できていないのである。
【0016】
【発明が解決しようとする課題】
本発明は、従来技術の抱える上記問題点を解決するためのものであり、具体的には金属表面に優れた耐食性と塗膜密着性を付与することが可能な表面処理液ならびに表面処理方法を提供することを目的とするものである。
【0017】
【課題を解決するための手段】
本発明者らは、従来技術の抱える前記問題点を解決するための手段について鋭意検討を行った。その結果、特定量のAl(C572)3、V(C572)3、VO(C572)2、Zn(C572)2及びZr(C572)4から選ばれる少なくとも1種の金属アセチルアセトネートと、水溶性無機チタン化合物及び水溶性無機ジルコニウム化合物から選ばれる少なくとも1種の化合物を特定比率で含有する表面処理組成物、及びこの組成物を用いた表面処理液を用いることで、金属表面に優れた耐食性と塗膜密着性を有する化成皮膜を形成し得ることを新たに見出し、本発明を完成するに至った。
【0018】
即ち、本発明の表面処理液は、Al( C572)3 、V( C572)3 、VO( C572)2 、Zn( C572)2 及びZr( C572)4 から選ばれた少なくとも1種の金属アセチルアセトネートを0.01〜50g/Lと、水溶性無機チタン化合物及び水溶性無機ジルコニウム化合物から選ばれる少なくとも1種の化合物を0.01〜50g/L含有し、且つ2.0〜7.0のpHを有することを特徴とするものである。さらに、本発明の表面処理方法は、前記金属表面処理液と、アルミニウムもしくはその合金、マグネシウムもしくはその合金、あるいは亜鉛もしくはその合金と接触させることにより皮膜重量が5〜2000mg/m2 の有機−無機複合化成皮膜を形成することを特徴とする金属の表面処理方法である。
次に、本発明の構成について詳細に説明する。なお、本発明の処理液の水を除いた成分を表面処理組成物と称する。
【0019】
本発明の表面処理組成物は、Al(C572)3、V(C572)3、VO(C572)2、Zn(C572)2及びZr(C572)4から成る群から選ばれた少なくとも1種の金属アセチルアセトネートと、水溶性無機チタン化合物及び水溶性無機ジルコニウム化合物から選ばれる少なくとも1種の化合物を必須成分として含有するものである。
本発明においては、特定の金属アセチルアセトネートとチタンの無機化合物、特定の金属アセチルアセトネートとジルコニウムの無機化合物、あるいは特定の金属アセチルアセトネートとチタンとジルコニウムの無機化合物のように、金属アセチルアセトネートとチタン及びまたはジルコニウムの無機化合物から成る有機−無機複合皮膜を形成させることが最も重要であり、これによって、特に形成された化成皮膜の耐食性が向上すると考えられる。
本発明の表面処理組成物の必須成分である金属アセチルアセトネートとしては、Al(C572)3、V(C572)3、VO(C572)2、Zn(C572)2及びZr(C572)4から成る群から選ばれる少なくとも1種である。
【0020】
本発明の表面処理組成物の必須成分である水溶性無機チタン化合物または水溶性無機ジルコニウム化合物としては、チタンまたはジルコニウムの硫酸塩、オキシ硫酸塩、硝酸塩、りん酸塩、塩化物、アンモニウム塩及びフッ化物等から選ばれる1種または2種以上を使用することができ、水溶性の無機化合物であればその種類に特に限定はない。これらの水溶性無機チタン化合物及び水溶性無機ジルコニウム化合物は被処理金属表面にTi,Zrの酸化物、りん酸塩あるいはフッ化物などの状態で析出し、さらに同時に析出した金属アセチルアセトネートとの間で形成される有機−無機複合皮膜の骨格部分となる。そして、このTi,Zrの存在により、皮膜の腐食環境に対するバリア性(遮蔽力)が向上し、その結果、金属アセチルアセトネートを単独で使用する場合よりも耐食性及び塗膜密着性に優れる皮膜の形成が可能となる。
【0021】
前記金属アセチルアセトネートと水溶性無機化合物の配合比率は、1:100〜400:1である必要がある。好ましくは1:50〜100:1、更に好ましいのは1:10〜10:1である。この重量比が1:100未満であると、形成された有機−無機複合皮膜の耐食性が劣る。逆に400:1を超えると、有機−無機複合皮膜が形成され難くなる。
【0022】
次に、本発明の金属表面処理液は、基本的に前記表面処理組成物と水を用いたものである。
まず、金属アセチルアセトネートの処理液中の含有量は0.01〜50g/Lの範囲が好ましく、より好ましくは0.1〜20g/Lの範囲である。金属アセチルアセトネートの含有量が0.01g/L未満でも化成皮膜は形成されるが、耐食性及び塗膜密着性が劣るので好ましくない。また、50g/Lを超えても良好な化成皮膜は形成されるが、その効果は飽和し処理液のコストが高くなり経済的に無駄である。
また、水溶性無機チタン化合物及び水溶性無機ジルコニウム化合物の含有量は0.01〜50g/Lの範囲が好ましく、より好ましくは0.05〜10g/Lの範囲である。含有量が0.01g/L未満でも化成皮膜は形成されるが、耐食性が劣るので好ましくない。また、50g/Lを超えても良好な化成皮膜は形成されるが、その効果は飽和しコストが高くなり経済的に無駄である。
【0023】
本発明の表面処理液のpHは、2.0〜7.0の範囲に調整されなければならない。より好ましくは、pH3.0〜6.0の範囲である。pHが2.0未満では、金属材料表面に対するエッチング過多に起因する外観ムラを生じたり、金属アセチルアセトネートが金属表面に析出しにくいため好ましくない。また、pHが7.0を超えると、耐食性に優れた化成皮膜の形成が困難であったり、処理液中に含有されている金属イオンが沈澱物を生成し易くなるため液の安定性に問題を生じる場合があるので、好ましくない。本発明の表面処理液のpHを2.0〜7.0の範囲に調整する際には、必要に応じて硝酸、硫酸、りん酸、フッ化水素酸及びケイフッ化水素酸などの酸、並びに水酸化ナトリウム、炭酸ナトリウム、水酸化カリウム及び水酸化アンモニウムなどのアルカリを使用することができる。
【0024】
なお、本発明の表面処理に際して、被処理金属材料からアルミニウム、マグネシウム、亜鉛などの金属イオンが表面処理液中に溶出することにより処理液の安定性が著しく低下することがあるので、この場合にはこれらの金属イオンをキレートするために、封鎖剤としてグルコン酸、ヘプトグルコン酸、蓚酸、酒石酸、有機ホスホン酸及びエチレンジアミンテトラ酢酸などの有機酸またはこれらのアルカリ金属塩を処理液に添加してもよい。
【0025】
また、本発明においては化成皮膜の形成を促進させるために、過酸化水素、タングステン酸及びそれらの塩、モリブデン酸及びそれらの塩、過マンガン酸及びそれらの塩、並びにtert-Butyl hydroperoxide((CH3)3C-O-OH)等の水溶性有機過酸化物などの酸化剤を併用してもよい。
【0026】
上記方法により形成される有機−無機複合化成皮膜の皮膜重量は、5〜2000mg/m2の範囲が好ましく、より好ましくは50〜500mg/m2の範囲である。皮膜重量が5mg/m2未満では、耐食性及び塗膜密着性が不十分になることがあり、好ましくない。また、皮膜重量が2000mg/m2を超えても耐食性は優れるが、その効果は飽和しコストが高くなり経済的に無駄である。なお、皮膜重量が2000mg/m2を超えると塗膜密着性が低下する傾向があり、また皮膜の外観にムラが目立ち、これらの点からも好ましくない。
【0027】
また、化成皮膜の構成成分の一つであるアルミニウム、バナジウム、亜鉛、ジルコニウム、チタンの金属成分については、その結合状態、酸化状態、高分子化状態など、皮膜中での存在形態については特に限定はない。
【0028】
次に、本発明の表面処理液と、アルミニウムもしくはその合金、マグネシウムもしくはその合金、あるいは亜鉛もしくはその合金と接触させることにより、耐食性及び塗膜密着性に優れる化成皮膜を形成することができる。以下、各種金属材料を表面処理する方法について説明する。
【0029】
本発明の表面処理液は、好ましい例として次に示す工程で適用される。
▲1▼表面清浄:脱脂(酸系、中性系、アルカリ系、溶剤系のいずれの洗浄剤でもよい)
▲2▼水洗
▲3▼本発明処理液による表面処理
▲4▼水洗
▲5▼脱イオン水洗
▲6▼乾燥
【0030】
また、本発明の表面処理液については温度10〜80℃、時間1〜600秒の条件下で金属材料の表面に接触させることが好ましい。この接触温度が10℃未満では、処理液と金属表面との反応性が不十分であり良好な化成皮膜が形成されず、また、それが80℃を超えると化成皮膜は形成されるが、エネルギ−コストが高くなり経済的に無駄である。また、処理時間が1秒未満では十分に反応せず、耐食性に優れた化成皮膜は形成されない。一方、時間が600秒を超えても、得られる化成皮膜の耐食性及び塗膜密着性の向上は認められない。
なお、本発明において表面処理液との接触方式は、浸漬法、スプレ−法のいずれでもよい。
【0031】
本発明の表面処理組成物及び表面処理液が適用されるアルミニウムまたはアルミニウム合金材料は、純アルミニウム及びアルミニウム合金よりなる金属を包含し、アルミニウム合金は、例えばAl−Cu、Al−Mn、Al−Si、Al−Mg、Al−Mg−Si、Al−Zn−Mgなどの多様の成分系の合金、ならびにAlもしくはAl合金めっきを施した金属材料(アルミニウムめっき鋼板など)を包含する。
また、マグネシウムまたはマグネシウム合金材料は、純マグネシウム及びマグネシウム合金よりなる金属を包含し、マグネシウム合金は、例えばMg−Al−Zn、Mg−Zn及びMg−Al−Zn−Mnなどの多様な成分系の合金を包含する。
さらに、亜鉛または亜鉛合金は、特にZnめっきを施した金属材料であり、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、Al−Zn合金めっき鋼板(商品名:ガルファン、ガルバリウム)、電気亜鉛めっき鋼板及び合金電気亜鉛めっき鋼板などを包含する。
なお、前記アルミニウム及びアルミニウム合金材料、マグネシウム及びマグネシウム合金材料、亜鉛及び亜鉛合金材料には、その形状、寸法などに制限はなく、例えば板材及び各種成形品などを包含する。また、これらの材料の表面は所定の金属が少なくとも一部に存在しておればよく、例えば圧延もしくはめっきのまま、あるいは更にショットブラスト、酸もしくはアルカリによるによる粗面化、活性化などの処理を施した状態であってもよい。
【0032】
【実施例】
以下に、実施例を比較例とともに挙げ、本発明の表面処理組成物及び表面処理液ならびに表面処理方法の効果をより具体的に説明する。
【0033】
実施例1〜5及び比較例1〜4
[供試材]
被表面処理アルミニウム合金材料としては、Al−Mn系合金板(JIS3004)を使用した(寸法:150mm×70mm,板厚0.2mm)。
被表面処理マグネシウム合金材料としては、JIS H2222に規定されるマグネシウム合金AZ91Dのダイカスト板を使用した(寸法:150mm×100mm,板厚1mm)。
被表面処理亜鉛めっき材料としては、合金化溶融亜鉛めっき鋼板を使用した(寸法:150mm×70mm,板厚0.8mm)。
【0034】
[処理条件]
次の工程▲1▼→▲2▼→▲3▼→▲4▼→▲5▼→▲6▼の順序で処理を行い、表面処理板を作製した。
▲1▼脱脂(43℃,2分,浸漬法)
市販のアルカリ性脱脂剤(登録商標:ファインクリーナーL4460A;2%とファインクリーナーL4460B;1.2%の混合水溶液,いずれも日本パ−カライジング株式会社製)を用いた。
▲2▼水洗(常温,30秒,スプレ−法)
▲3▼表面処理(浸漬法)
図1(表5)及び図2(表6)に示される組成の表面処理液及び処理条件で表面処理を行った。実施例1〜5及び比較例1〜4の表面処理液に用いた物質を表1〜3に示す。なお、表2及び表3の処理液組成の欄に示した各物質の重量は、純分として換算した値である。
また、比較例5〜9の表面処理条件については以下に示す。
▲4▼水洗(常温,30秒,スプレー法)
▲5▼脱イオン水洗(常温,30秒,スプレー法)
▲6▼加熱乾燥(80℃,3分,熱風オーブン)
【0035】
【表1】
実施例1〜5及び比較例1〜4の表面処理液に用いた金属アセチルアセネート

Figure 0003992173
【0036】
【表2】
実施例1〜5及び比較例1〜4の表面処理液に用いた水溶性チタン化合物
Figure 0003992173
【0037】
【表3】
実施例1〜5及び比較例1〜4の表面処理液に用いた水溶性ジルコニウム化合物
Figure 0003992173
【0038】
【表4】
実施例1〜5及び比較例1〜4の表面処理液に用いたpH調整剤
Figure 0003992173
【0039】
比較例1は金属アセチルアセトネートのみを処理液成分とし、金属アセチルアセトネートの単独皮膜を形成するようにした比較例である。
比較例2は水溶性の無機チタン化合物のみを処理液成分とし、無機チタン化合物の単独皮膜を形成するようにした比較例である。
比較例3は水溶性無機チタン化合物と水溶性無機ジルコニウム化合物とから成る処理液組成とし、金属アセチルアセトネートを含まないチタンとジルコニウムから構成される無機複合皮膜を形成するようにした比較例である。
比較例4は皮膜重量が極めて少ない皮膜を形成するようにした比較例である。
【0040】
比較例5
表面処理に、市販のりん酸ジルコニウム系表面処理剤(登録商標:アロジン4040,日本パ−カライジング株式会社製)の2%水溶液を用いた。そして、この液を温度50℃、時間60秒、スプレー法の条件で前記Al合金板に施し、耐食性及び塗膜密着性を評価した。
【0041】
比較例6
表面処理に、市販のりん酸クロメート系表面処理剤の水溶液(登録商標:アルクロムK702SL;4%及びアルクロムK702AC;0.3%の混合水溶液,いずれも日本パ−カライジング株式会社製)を用いた。そして、この液を温度50℃、時間20秒、スプレー法の条件で前記Al合金板に施し、耐食性及び塗膜密着性を評価した。
【0042】
比較例7
表面処理に、市販のクロム酸クロメート系表面処理剤(登録商標:アルクロム713M,日本パ−カライジング株式会社製)の7%水溶液を用いた。そして、この液を温度40℃、時間60秒、浸漬法の条件で前記Al合金板、Mg合金板及びZnめっき鋼板に施し、耐食性及び塗膜密着性を評価した。
【0043】
比較例8
表面処理に重クロム酸ナトリウムを主成分とするMIL−M−3171C(TYPE III )による処理液を用いた。そして、この液を温度95℃、時間30分、浸漬法の条件で前記Mg合金板に施し、耐食性及び塗膜密着性を評価した。
【0044】
比較例9
前記▲1▼の脱脂及び▲2▼の水洗後、市販のチタン系表面調整剤(登録商標:プレパレン4040,日本パ−カライジング株式会社製)の0.1%水溶液を温度25℃、時間30秒、浸漬法の条件で実施し、その後、常温、30秒、スプレ−法の条件で水洗後、表面処理に市販のりん酸亜鉛系表面処理剤の水溶液(登録商標:パルボンドL3020−5%と、添加剤4813−0.5%と、添加剤4856−2%、及び中和剤4055−1%の混合水溶液,いずれも日本パ−カライジング株式会社製)を用いた。そして、この液を温度43℃、時間120秒、浸漬法の条件で前記Znめっき鋼板に施し、耐食性及び塗膜密着性を評価した。
【0045】
[評価方法]
(1)皮膜重量
蛍光X線分析装置あるいは5重量%クロム酸水溶液、90℃、5分浸漬による剥離法を用いて、有機−無機複合皮膜の全体の皮膜重量を測定した。
(2)耐食性
耐食性の評価は、JIS−Z−2371に準拠した塩水噴霧試験を用いた。塩水噴霧試験後の表面処理板の腐食発生状態を目視で評価した。
表面処理を施した各供試材に対する塩水噴霧時間及び耐食性の評価基準は、以下の通りである。
噴霧時間
Al合金板・・・・・・・ 480時間
Mg合金板・・・・・・・ 24時間
Znメッキ鋼板・・・ 120時間
評価基準
◎:腐食面積率10%未満
○:腐食面積率10%以上、30%未満
△:腐食面積率30%以上、50%未満
×:腐食面積率50%以上
(3)塗膜密着性
実施例1〜5及び比較例1〜9の条件で表面処理されたAl合金板、Mg合金板あるいはZnめっき鋼板の表面に、エポキシ樹脂系塗料(関西ペイント株式会社製)を乾燥膜厚10μmになるように塗装し、200℃で10分間の焼付けを行った。次に、この塗装板の中央部にカッターで2mm幅100マスの碁盤目を入れ、脱イオン沸騰水中に60分間浸漬した。そして、塗装板を風乾後、セロテープ剥離テストを実施し、この時に剥離しなかった碁盤目の残存数で塗膜密着性を評価した。
なお、この残存数が多いほど塗膜密着性が優れることを意味し、残存数が98以上であれば実用上十分な性能である。
【0046】
評価結果は図1(表5)及び図2(表6)に示す。
表5及び表6より、本発明の表面処理液により形成される化成皮膜は従来のクロメート皮膜と同等の耐食性及び塗膜密着性を有し、かつ相当皮膜重量の金属アセチルアセトネートとTi/Zrの共存した有機無機複合皮膜を形成することにより、優れた耐食性を実現できることがわかる。
【0047】
【発明の効果】
上記の説明から明らかなように、本発明に係わる表面処理組成物及び表面処理液をアルミニウム含有材料、またはマグネシウム含有材料、または亜鉛めっき材料に適用することにより、優れた耐食性と塗膜密着性を有する化成皮膜を形成させることが可能となった。
従って、本発明の表面処理液は実用上極めて有用なものである。
【図面の簡単な説明】
【図1】 実施例1〜5における表面処理液の組成、条件及び評価試験結果を示す図表(表5)である。
【図2】 比較例1〜9における表面処理液の組成、条件及び評価試験結果を示す図表(表6)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel metal surface treatment liquid and a surface treatment method for imparting excellent corrosion resistance and coating film adhesion to the surfaces of various metals such as aluminum, aluminum alloys, magnesium, magnesium alloys, and galvanized steel sheets. Is.
[0002]
[Prior art]
In general, the surface treatment liquid for aluminum or aluminum alloy material can be roughly classified into a chromate type and a non-chromate type. Typical examples of the chromate type treatment liquid include a chromic acid chromate treatment liquid and a phosphoric acid chromate chemical treatment liquid.
[0003]
First, the chromic acid chromate treatment solution will be described.
The chromic acid chromate treatment solution was put into practical use around 1950 and is still widely used for surface treatment of automotive heat exchangers, aluminum wheels, building materials and aircraft materials. This chromic acid chromate treatment solution contains chromic acid and a fluoride as a reaction accelerator as main components, and forms a chemical conversion film containing some hexavalent chromium on the surface of the metal material.
[0004]
Further, the phosphoric acid chromate conversion treatment solution is in accordance with the invention disclosed in US Pat. No. 2,438,877, which contains chromic acid, phosphoric acid and hydrofluoric acid as main components and is hydrated on the surface of the metal material. A chemical conversion film mainly composed of chromium phosphate is formed. Since this chemical film does not contain hexavalent chromium, it is currently widely used for the coating base treatment of the body material and lid material of beverage cans.
Although the chemical conversion film formed with such a chromite-type surface treatment liquid has excellent corrosion resistance and coating film adhesion, it contains harmful hexavalent chromium in the treatment liquid. It is desired to use a treatment solution containing no hexavalent chromium.
[0005]
As a typical invention of a non-chromate type surface treatment solution containing no chromium, there is a treatment solution disclosed in JP-A-52-131937. This surface treatment solution is an acidic aqueous coating solution containing zirconium or titanium or a mixture thereof, phosphate and fluoride and having a pH of about 1.5 to 4.0. When the surface of the metal material is treated using this surface treatment liquid, a chemical conversion film mainly composed of an oxide of zirconium or titanium is formed on the metal surface. This non-chromate type surface treatment solution has the advantage of not containing hexavalent chromium, and is currently widely used for the surface treatment of aluminum DI cans, etc., but the corrosion resistance of the formed film is chromate. There is a disadvantage that it is inferior to the film.
[0006]
Non-chromate type treatment liquids further include those disclosed in the following patent publications.
For example, the treatment method disclosed in Japanese Patent Application Laid-Open No. 57-41376 has one or more of a titanium salt or a zirconium salt and one or more of an imidazole derivative on the surface of aluminum, magnesium and an alloy thereof. Surface treatment is performed using an aqueous solution containing an oxidizing agent such as nitric acid, hydrogen peroxide, potassium permanganate, and the corrosion resistance of the film formed by this treatment solution was sufficient 15 years ago. However, it is not very satisfactory now.
JP-A-56-136978 discloses a chemical conversion treatment liquid comprising an aqueous solution containing a vanadium compound and at least one compound selected from the group consisting of a titanium salt, a zirconium salt and a zinc salt. Is disclosed. However, the chemical conversion film formed with this treatment liquid cannot be expected to have a corrosion resistance equivalent to or higher than that of the chromate film when a long-term corrosion resistance test is performed.
[0007]
As described above, when the conventional non-chromate type surface treatment solution is used, there remains a problem in the corrosion resistance of the formed chemical conversion film. For this reason, in surface treatment lines for aluminum alloy heat exchangers, coils of aluminum-based metal materials and sheet materials that require particularly excellent corrosion resistance, there are currently almost no non-chromate type surface treatment liquids. It is not used.
[0008]
Therefore, the surface treatment liquid for aluminum or aluminum alloy material that does not contain hexavalent chromium in the treatment liquid at present, is capable of forming a chemical conversion film that has excellent wastewater treatment properties, and is excellent in corrosion resistance and coating film adhesion. It has not been established.
[0009]
Next, the surface treatment liquid and surface treatment method for magnesium or magnesium alloy will be described.
As a surface treatment method for magnesium or magnesium alloy material, chromate treatment represented by JIS-H-8651, MIL-M-3171 and the like has been put into practical use. Although the chemical conversion film formed by such a chromate type surface treatment liquid has excellent corrosion resistance and adhesion to the coating film, it contains extremely harmful hexavalent chromium in the treatment liquid. In view of the problem, it is desired to use a treatment solution containing no hexavalent chromium.
[0010]
As a typical invention of a non-chromate type surface treatment solution containing no chromium, there is a method disclosed in Japanese Patent Publication No. 3-6994. In this treatment method, a silicate treatment is performed after the phosphate treatment, and a silicone treatment is further performed thereon. However, in the case of a phosphate treatment single film, the corrosion resistance and the coating surface treatment method on the surface of the magnesium or magnesium alloy material are used. There is a problem that the level of coating film adhesion is low. Furthermore, this processing method has the disadvantages of requiring a multistage processing step, a high processing temperature, and a long processing time.
As surface treatment methods using phosphate, methods using treatment solutions such as zinc phosphate, iron phosphate, calcium phosphate, and zirconium phosphate are known, but these methods are practically used. It is difficult to provide sufficient corrosion resistance.
For example, seven types of JIS-H-8651 show manganese phosphate treatment, but this treatment solution contains chromium, the treatment temperature is as high as 80 to 90 ° C., and the treatment time is 30 to 30 minutes. Since it is as long as 60 minutes, it is unsatisfactory in practice.
[0011]
Non-chromate type technologies include the following publications.
Japanese Patent Application Laid-Open No. 9-228062 discloses at least one organometallic compound selected from metal alkoxides, metal acetylacetonates and metal carboxylates, and acids, alkalis, salts thereof, hydroxyl groups, carboxyl groups or amino groups. A surface treatment method is disclosed in which an aqueous solution containing at least one film-forming aid or film-forming stabilizer selected from organic compounds having a temperature of 0 to 50 ° C. is applied to a magnesium material. However, the chemical conversion film formed with this treatment liquid cannot be expected to have a corrosion resistance equivalent to or higher than that of the chromate film when a long-term corrosion resistance test is performed.
[0012]
As described above, when the non-chromate type surface treatment solution conventionally proposed for the magnesium or magnesium alloy is used, the formed chemical conversion film has high corrosion resistance and treatment temperature, treatment time is long, treatment concentration is high. Problems remain in practical processing conditions such as high and low corrosion resistance. Therefore, in surface treatment lines such as magnesium alloy automobile materials, aircraft materials, electronic device materials, and communication device materials that require excellent corrosion resistance and coating film adhesion, currently non-chromat type surface treatments are used. The liquid is rarely used.
Therefore, a surface treatment solution for magnesium or magnesium alloy materials that does not contain hexavalent chromium in the treatment solution at present and is capable of forming a chemical conversion film with excellent workability and excellent corrosion resistance and coating film adhesion has been established. It is not done.
[0013]
Next, the surface treatment of the galvanized material will be described.
As a treatment method for the galvanized material, chromate treatment or zinc phosphate treatment is generally used. Although excellent film performance can be obtained by the chromate treatment, harmful chromium is contained in the treatment liquid, which is a problem in terms of work and disposal. Moreover, sufficient corrosion resistance may not be obtained in the zinc phosphate treatment.
[0014]
Examples of the non-chromate type technology for the galvanized material include the methods proposed in the following publications.
JP-A-1-104783 discloses an alcohol solution containing one or more of alkoxides or acetylacetonate salts of Si, Ti, Zr, Al, W, Ce, Sn, Y, zinc, aluminum or zinc- A method for producing a surface-treated steel sheet is disclosed, which is applied to an aluminum alloy plated steel sheet and heated to 200 to 500 ° C. to form a metal oxide film contained in the solution on the steel sheet surface. However, in this manufacturing method, flammable alcohol must be used, and a considerably high temperature is required for film formation, which causes problems in work environment and energy cost.
[0015]
For this reason, the surface treatment of galvanized materials does not contain harmful chromium in the treatment liquid, as in the case of aluminum-based materials and magnesium-based materials, and has excellent workability, and also has corrosion resistance and coating adhesion. A surface treatment solution capable of forming a chemical conversion film having excellent properties has not been established.
[0016]
[Problems to be solved by the invention]
The present invention is for solving the above-mentioned problems of the prior art, specifically, a surface treatment liquid and a surface treatment method capable of imparting excellent corrosion resistance and coating film adhesion to a metal surface. It is intended to provide.
[0017]
[Means for Solving the Problems]
The present inventors diligently studied a means for solving the above-described problems of the prior art. As a result, specific amounts of Al (C 5 H 7 O 2 ) 3 , V (C 5 H 7 O 2 ) 3 , VO (C 5 H 7 O 2 ) 2 , Zn (C 5 H 7 O 2 ) 2 and Surface treatment containing at least one metal acetylacetonate selected from Zr (C 5 H 7 O 2 ) 4 and at least one compound selected from water-soluble inorganic titanium compounds and water-soluble inorganic zirconium compounds in a specific ratio By using the composition and the surface treatment liquid using this composition, it has been newly found that a chemical conversion film having excellent corrosion resistance and coating film adhesion can be formed on the metal surface, and the present invention has been completed. It was.
[0018]
That is, the surface treatment solution of the present invention, Al (C 5 H 7 O 2) 3, V (C 5 H 7 O 2) 3, VO (C 5 H 7 O 2) 2, Zn (C 5 H 7 O 2 ) 0.01-50 g / L of at least one metal acetylacetonate selected from 2 and Zr (C 5 H 7 O 2 ) 4 , selected from a water-soluble inorganic titanium compound and a water-soluble inorganic zirconium compound It contains 0.01 to 50 g / L of at least one compound and has a pH of 2.0 to 7.0. Furthermore, the surface treatment method of the present invention comprises an organic-inorganic film having a coating weight of 5 to 2000 mg / m 2 by bringing the metal surface treatment solution into contact with aluminum or an alloy thereof, magnesium or an alloy thereof, or zinc or an alloy thereof. A metal surface treatment method characterized in that a composite chemical conversion film is formed.
Next, the configuration of the present invention will be described in detail. In addition, the component except the water of the process liquid of this invention is called a surface treatment composition.
[0019]
Surface treatment composition of the present invention, Al (C 5 H 7 O 2) 3, V (C 5 H 7 O 2) 3, VO (C 5 H 7 O 2) 2, Zn (C 5 H 7 O 2 ) 2 and Zr (C 5 H 7 O 2 ) 4 , at least one metal acetylacetonate selected from the group consisting of 4 and at least one compound selected from water-soluble inorganic titanium compounds and water-soluble inorganic zirconium compounds It is contained as an essential component.
In the present invention, an inorganic compound of a specific metal acetylacetonate and titanium, an inorganic compound of a specific metal acetylacetonate and zirconium, or a specific metal acetylacetonate and an inorganic compound of titanium and zirconium is used. It is most important to form an organic-inorganic composite film composed of an inorganic compound of nate and titanium and / or zirconium, and this is considered to improve the corrosion resistance of the formed chemical conversion film.
Examples of the metal acetylacetonate that is an essential component of the surface treatment composition of the present invention include Al (C 5 H 7 O 2 ) 3 , V (C 5 H 7 O 2 ) 3 , and VO (C 5 H 7 O 2 ). 2 , at least one selected from the group consisting of Zn (C 5 H 7 O 2 ) 2 and Zr (C 5 H 7 O 2 ) 4 .
[0020]
Examples of the water-soluble inorganic titanium compound or water-soluble inorganic zirconium compound that are essential components of the surface treatment composition of the present invention include titanium, zirconium sulfate, oxysulfate, nitrate, phosphate, chloride, ammonium salt, and fluoride. One type or two or more types selected from chemical compounds and the like can be used, and the type is not particularly limited as long as it is a water-soluble inorganic compound. These water-soluble inorganic titanium compounds and water-soluble inorganic zirconium compounds are deposited in the state of Ti, Zr oxides, phosphates, fluorides, etc. on the surface of the metal to be treated. It becomes the skeleton part of the organic-inorganic composite film formed by The presence of Ti and Zr improves the barrier property (shielding power) against the corrosive environment of the coating, and as a result, the coating has better corrosion resistance and coating adhesion than when metal acetylacetonate is used alone. Formation is possible.
[0021]
The compounding ratio of the metal acetylacetonate and the water-soluble inorganic compound needs to be 1: 100 to 400: 1. Preferably it is 1: 50-100: 1, More preferably, it is 1: 10-10: 1. When this weight ratio is less than 1: 100 , the formed organic-inorganic composite film has poor corrosion resistance. Conversely, when it exceeds 400: 1, it becomes difficult to form an organic-inorganic composite film.
[0022]
Next, the metal surface treatment liquid of the present invention basically uses the surface treatment composition and water.
First, the content of metal acetylacetonate in the treatment liquid is preferably in the range of 0.01 to 50 g / L, more preferably in the range of 0.1 to 20 g / L. Although the chemical conversion film is formed even when the content of metal acetylacetonate is less than 0.01 g / L, it is not preferable because the corrosion resistance and coating film adhesion are poor. Moreover, even if it exceeds 50 g / L, a good chemical conversion film is formed, but the effect is saturated and the cost of the treatment liquid is increased, which is economically wasteful.
The content of the water-soluble inorganic titanium compound and the water-soluble inorganic zirconium compound is preferably in the range of 0.01 to 50 g / L, more preferably in the range of 0.05 to 10 g / L. Although the chemical conversion film is formed even when the content is less than 0.01 g / L, it is not preferable because the corrosion resistance is inferior. Moreover, even if it exceeds 50 g / L, a good chemical conversion film is formed, but the effect is saturated and the cost becomes high, which is economically wasteful.
[0023]
The pH of the surface treatment solution of the present invention must be adjusted in the range of 2.0 to 7.0. More preferably, it is in the range of pH 3.0 to 6.0. When the pH is less than 2.0, it is not preferable because the appearance unevenness due to excessive etching on the surface of the metal material is caused or the metal acetylacetonate is hardly deposited on the metal surface. On the other hand, if the pH exceeds 7.0, it is difficult to form a chemical conversion film having excellent corrosion resistance, and the metal ions contained in the treatment liquid are liable to form precipitates. Is not preferable. When adjusting the pH of the surface treatment solution of the present invention to a range of 2.0 to 7.0, an acid such as nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid and hydrofluoric acid, and Alkalis such as sodium hydroxide, sodium carbonate, potassium hydroxide and ammonium hydroxide can be used.
[0024]
In the case of the surface treatment of the present invention, since the metal ions such as aluminum, magnesium, zinc and the like are eluted from the metal material to be treated into the surface treatment solution, the stability of the treatment solution may be significantly lowered. In order to chelate these metal ions, organic acids such as gluconic acid, heptogluconic acid, succinic acid, tartaric acid, organic phosphonic acid and ethylenediaminetetraacetic acid or alkali metal salts thereof may be added to the treatment liquid as a sequestering agent. .
[0025]
In the present invention, hydrogen peroxide, tungstic acid and their salts, molybdic acid and their salts, permanganic acid and their salts, and tert-Butyl hydroperoxide ((CH 3) 3 CO-OH) may be used in combination oxidizing agent such as water-soluble organic peroxides such as.
[0026]
The film weight of the organic-inorganic composite chemical film formed by the above method is preferably in the range of 5 to 2000 mg / m 2 , more preferably in the range of 50 to 500 mg / m 2 . When the film weight is less than 5 mg / m 2 , the corrosion resistance and the coating film adhesion may be insufficient, which is not preferable. Further, even if the coating weight exceeds 2000 mg / m 2 , the corrosion resistance is excellent, but the effect is saturated and the cost becomes high, which is economically wasteful. In addition, when the film weight exceeds 2000 mg / m 2 , the adhesion of the coating film tends to be reduced, and unevenness in the appearance of the film is conspicuous, which is not preferable from these points.
[0027]
In addition, regarding the metal components of aluminum, vanadium, zinc, zirconium, and titanium, which are one of the components of the chemical conversion film, there is a particular limitation on the existence form in the film, such as the bonding state, oxidation state, and polymerized state. There is no.
[0028]
Next, a chemical conversion film having excellent corrosion resistance and coating film adhesion can be formed by bringing the surface treatment solution of the present invention into contact with aluminum or an alloy thereof, magnesium or an alloy thereof, or zinc or an alloy thereof. Hereinafter, a method for surface-treating various metal materials will be described.
[0029]
The surface treatment liquid of the present invention is applied in the following steps as a preferred example.
(1) Surface cleaning: Degreasing (Any cleaning agent of acid type, neutral type, alkaline type or solvent type may be used)
(2) Washing with water (3) Surface treatment with the treatment liquid of the present invention (4) Washing with water (5) Deionized washing with water (6) Drying
Moreover, about the surface treatment liquid of this invention, it is preferable to make it contact the surface of a metal material on the conditions of temperature 10-80 degreeC and time 1-600 second. If the contact temperature is less than 10 ° C., the reactivity between the treatment liquid and the metal surface is insufficient and a good chemical conversion film is not formed. If the contact temperature exceeds 80 ° C., a chemical conversion film is formed. -It is costly and economically wasteful. Further, when the treatment time is less than 1 second, it does not react sufficiently and a chemical conversion film having excellent corrosion resistance is not formed. On the other hand, even when the time exceeds 600 seconds, the corrosion resistance and coating film adhesion of the resulting chemical conversion film are not improved.
In the present invention, the contact method with the surface treatment liquid may be either an immersion method or a spray method.
[0031]
The aluminum or aluminum alloy material to which the surface treatment composition and the surface treatment liquid of the present invention are applied includes a metal made of pure aluminum and an aluminum alloy. Examples of the aluminum alloy include Al—Cu, Al—Mn, and Al—Si. , Al—Mg, Al—Mg—Si, Al—Zn—Mg alloys of various components, and metal materials (aluminum-plated steel sheets, etc.) plated with Al or Al alloy.
Magnesium or a magnesium alloy material includes pure magnesium and a metal made of a magnesium alloy, and the magnesium alloy includes various component systems such as Mg—Al—Zn, Mg—Zn, and Mg—Al—Zn—Mn. Includes alloys.
Furthermore, zinc or a zinc alloy is a metal material that has been subjected to Zn plating in particular. And alloy electrogalvanized steel sheet.
The aluminum and aluminum alloy materials, magnesium and magnesium alloy materials, zinc and zinc alloy materials are not limited in shape and size, and include, for example, plate materials and various molded products. In addition, the surface of these materials should have a predetermined metal in at least a part thereof, for example, as it is rolled or plated, or further processed by shot blasting, roughening with acid or alkali, activation, etc. It may be in the applied state.
[0032]
【Example】
Hereinafter, examples will be given together with comparative examples to more specifically explain the effects of the surface treatment composition, the surface treatment liquid and the surface treatment method of the present invention.
[0033]
Examples 1-5 and Comparative Examples 1-4
[Sample material]
As the surface-treated aluminum alloy material, an Al—Mn alloy plate (JIS3004) was used (dimensions: 150 mm × 70 mm, plate thickness 0.2 mm).
As the surface-treated magnesium alloy material, a die-cast plate of a magnesium alloy AZ91D defined in JIS H2222 was used (dimensions: 150 mm × 100 mm, plate thickness 1 mm).
As the surface-treated galvanized material, an alloyed hot-dip galvanized steel sheet was used (dimensions: 150 mm × 70 mm, plate thickness 0.8 mm).
[0034]
[Processing conditions]
Next step (1) → (2) → (3) → (4) → (5) → (6) In this order, a surface-treated plate was produced.
(1) Degreasing (43 ° C, 2 minutes, immersion method)
A commercially available alkaline degreasing agent (registered trademark: Fine Cleaner L4460A; 2% and Fine Cleaner L4460B; 1.2% mixed aqueous solution, both manufactured by Nihon Parkerizing Co., Ltd.) was used.
(2) Washing with water (room temperature, 30 seconds, spray method)
(3) Surface treatment (immersion method)
Surface treatment was performed with the surface treatment liquid and treatment conditions having the compositions shown in FIG. 1 (Table 5) and FIG. 2 (Table 6). The substances used for the surface treatment liquids of Examples 1 to 5 and Comparative Examples 1 to 4 are shown in Tables 1 to 3. In addition, the weight of each substance shown in the column of the treatment liquid composition in Tables 2 and 3 is a value converted as a pure component.
Moreover, it shows below about the surface treatment conditions of Comparative Examples 5-9.
(4) Washing with water (room temperature, 30 seconds, spray method)
(5) Deionized water washing (normal temperature, 30 seconds, spray method)
(6) Heat drying (80 ° C, 3 minutes, hot air oven)
[0035]
[Table 1]
Metal acetylacetonate used in the surface treatment liquids of Examples 1 to 5 and Comparative Examples 1 to 4
Figure 0003992173
[0036]
[Table 2]
Water-soluble titanium compounds used in the surface treatment liquids of Examples 1 to 5 and Comparative Examples 1 to 4
Figure 0003992173
[0037]
[Table 3]
Water-soluble zirconium compounds used in the surface treatment liquids of Examples 1 to 5 and Comparative Examples 1 to 4
Figure 0003992173
[0038]
[Table 4]
The pH adjuster used for the surface treatment liquid of Examples 1-5 and Comparative Examples 1-4
Figure 0003992173
[0039]
Comparative Example 1 is a comparative example in which only metal acetylacetonate is used as a treatment liquid component and a single film of metal acetylacetonate is formed.
Comparative Example 2 is a comparative example in which only a water-soluble inorganic titanium compound is used as a treatment liquid component to form a single film of an inorganic titanium compound.
Comparative Example 3 is a comparative example in which a treatment liquid composition composed of a water-soluble inorganic titanium compound and a water-soluble inorganic zirconium compound was used, and an inorganic composite film composed of titanium and zirconium containing no metal acetylacetonate was formed. .
Comparative Example 4 is a comparative example in which a film having an extremely small film weight is formed.
[0040]
Comparative Example 5
For the surface treatment, a 2% aqueous solution of a commercially available zirconium phosphate surface treatment agent (registered trademark: Allodin 4040, manufactured by Nihon Parkerizing Co., Ltd.) was used. Then, this solution was applied to the Al alloy plate under the conditions of a temperature of 50 ° C., a time of 60 seconds, and a spray method, and the corrosion resistance and coating film adhesion were evaluated.
[0041]
Comparative Example 6
For the surface treatment, an aqueous solution of a commercially available phosphate chromate-based surface treatment agent (registered trademark: Alchrome K702SL; 4% and Alchrome K702AC; 0.3% mixed aqueous solution, both manufactured by Nihon Parkerizing Co., Ltd.) was used. . Then, this solution was applied to the Al alloy plate under the conditions of a temperature of 50 ° C., a time of 20 seconds, and a spray method to evaluate corrosion resistance and coating film adhesion.
[0042]
Comparative Example 7
A 7% aqueous solution of a commercially available chromate chromate surface treatment agent (registered trademark: Alchrome 713M, manufactured by Nippon Parkerizing Co., Ltd.) was used for the surface treatment. Then, this solution was applied to the Al alloy plate, Mg alloy plate and Zn-plated steel plate under the conditions of a dipping method at a temperature of 40 ° C. for 60 seconds to evaluate the corrosion resistance and coating film adhesion.
[0043]
Comparative Example 8
A treatment solution of MIL-M-3171C (TYPE III) containing sodium dichromate as a main component was used for the surface treatment. Then, this solution was applied to the Mg alloy plate at a temperature of 95 ° C. for 30 minutes under the conditions of the dipping method, and the corrosion resistance and coating film adhesion were evaluated.
[0044]
Comparative Example 9
After degreasing (1) and washing with water (2), a 0.1% aqueous solution of a commercially available titanium-based surface conditioner (registered trademark: Preparene 4040, manufactured by Nihon Parkerizing Co., Ltd.) was used at a temperature of 25 ° C. for 30 hours. Second, it was carried out under the conditions of the immersion method, and then washed with water at room temperature, 30 seconds, under the conditions of the spray method, and then a surface-treated aqueous solution of zinc phosphate surface treatment agent (registered trademark: Palbond L3020-5%) , Additive 4813-0.5%, additive 4856-2%, and neutralizing agent 4055-1% mixed aqueous solution, all manufactured by Nippon Parkerizing Co., Ltd.). Then, this solution was applied to the Zn-plated steel sheet under the conditions of a dipping method at a temperature of 43 ° C. for 120 seconds to evaluate corrosion resistance and coating film adhesion.
[0045]
[Evaluation methods]
(1) Film weight The entire film weight of the organic-inorganic composite film was measured using a fluorescent X-ray analyzer or a 5 wt% aqueous chromic acid solution at 90 ° C. for 5 minutes.
(2) Corrosion resistance The salt spray test based on JIS-Z-2371 was used for evaluation of corrosion resistance. The corrosion occurrence state of the surface treatment plate after the salt spray test was visually evaluated.
The evaluation criteria of the salt spray time and the corrosion resistance for each specimen subjected to the surface treatment are as follows.
Spraying time Al alloy plate ... 480 hours Mg alloy plate ... 24 hours Zn plated steel plate ... 120 hours
Evaluation criteria ◎: Corrosion area ratio less than 10% ○: Corrosion area ratio 10% or more, less than 30% △: Corrosion area ratio 30% or more, less than 50% ×: Corrosion area ratio 50% or more (3) Coating film adhesion An epoxy resin-based paint (manufactured by Kansai Paint Co., Ltd.) has a dry film thickness of 10 μm on the surface of the Al alloy plate, Mg alloy plate or Zn-plated steel plate surface-treated under the conditions of Examples 1 to 5 and Comparative Examples 1 to 9. And then baked at 200 ° C. for 10 minutes. Next, a grid of 2 mm wide 100 squares was placed in the center of the painted plate with a cutter and immersed in deionized boiling water for 60 minutes. Then, the coated plate was air-dried, and then a cello tape peeling test was performed. The coating film adhesion was evaluated by the remaining number of grids that were not peeled at this time.
In addition, it means that coating-film adhesiveness is excellent, so that this remaining number is large, and if the remaining number is 98 or more, it is practically sufficient performance.
[0046]
The evaluation results are shown in FIG. 1 (Table 5) and FIG. 2 (Table 6).
From Tables 5 and 6, the chemical conversion film formed by the surface treatment solution of the present invention has the same corrosion resistance and coating adhesion as those of the conventional chromate film, and the metal acetylacetonate and Ti / Zr having an equivalent film weight. It can be seen that excellent corrosion resistance can be realized by forming an organic-inorganic composite film coexisting with each other.
[0047]
【The invention's effect】
As is clear from the above description, by applying the surface treatment composition and the surface treatment liquid according to the present invention to an aluminum-containing material, a magnesium-containing material, or a galvanized material, excellent corrosion resistance and coating film adhesion can be obtained. It became possible to form the chemical conversion film which has.
Therefore, the surface treatment liquid of the present invention is extremely useful in practice.
[Brief description of the drawings]
1 is a table (Table 5) showing compositions, conditions and evaluation test results of surface treatment liquids in Examples 1 to 5. FIG.
FIG. 2 is a table (Table 6) showing the composition, conditions and evaluation test results of surface treatment liquids in Comparative Examples 1 to 9.

Claims (2)

Al(CAl (C 5Five HH 77 OO 22 )) 3Three , V(CV (C 5Five HH 77 OO 22 )) 3Three , VO(CVO (C 5Five HH 77 OO 22 )) 22 , Zn(CZn (C 5Five HH 77 OO 22 )) 22 及びas well as Zr(CZr (C 5Five HH 77 OO 22 )) 4Four から成る群から選ばれる少なくともAt least selected from the group consisting of 11 種の金属アセチルアセトネートをSeed metal acetylacetonate 0.010.01 ~ 50g/L50g / L と、水溶性無機チタン化合物及び水溶性無機ジルコニウム化合物から選ばれた少なくともAnd at least selected from a water-soluble inorganic titanium compound and a water-soluble inorganic zirconium compound 11 種の化合物をSeed compounds 0.010.01 ~ 50g/L50g / L 含有し、前記Containing Al(CAl (C 5Five HH 77 OO 22 )) 3Three , V(CV (C 5Five HH 77 OO 22 )) 3Three , VO(CVO (C 5Five HH 77 OO 22 )) 22 , Zn(CZn (C 5Five HH 77 OO 22 )) 22 及びas well as Zr(CZr (C 5Five HH 77 OO 22 )) 4Four から成る群から選ばれた少なくともAt least selected from the group consisting of 11 種の金属アセチルアセトネートと、前記水溶性無機チタン化合物及び水溶性無機ジルコニウム化合物から選ばれる少なくともAt least selected from the group of metal acetylacetonate and the water-soluble inorganic titanium compound and water-soluble inorganic zirconium compound 11 種の化合物の重量比がThe weight ratio of the seed compound is 1 :100 1: 100 ~ 400:1400: 1 であり、且つAnd 2.02.0 ~ 7.07.0 of pHpH を有することを特徴とする金属表面処理液。A metal surface treatment solution comprising: 請求項1記載の金属表面処理液と、アルミニウムもしくはその合金、マグネシウムもしくはその合金、あるいは亜鉛もしくはその合金とを接触させることにより皮膜重量が5〜2000mg/m2の有機―無機複合化成皮膜を形成することを特徴とする金属の表面処理方法。An organic-inorganic composite chemical conversion film having a coating weight of 5 to 2000 mg / m 2 is formed by contacting the metal surface treatment solution according to claim 1 with aluminum or an alloy thereof, magnesium or an alloy thereof, or zinc or an alloy thereof. A metal surface treatment method comprising:
JP29196799A 1998-10-28 1999-10-14 Metal surface treatment composition, surface treatment liquid, and surface treatment method Expired - Fee Related JP3992173B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP29196799A JP3992173B2 (en) 1998-10-28 1999-10-14 Metal surface treatment composition, surface treatment liquid, and surface treatment method
KR1019990046319A KR20000029286A (en) 1998-10-28 1999-10-25 A process treatment of metallic materials and treatment solution
PCT/US1999/023982 WO2000024948A1 (en) 1998-10-28 1999-10-27 Composition and process for treating metal surfaces
EP99963840A EP1171648A1 (en) 1998-10-28 1999-10-27 Composition and process for treating metal surfaces
CA002349376A CA2349376A1 (en) 1998-10-28 1999-10-27 Composition and process for treating metal surfaces
AU20202/00A AU2020200A (en) 1998-10-28 1999-10-27 Composition and process for treating metal surfaces
US09/830,736 US6361833B1 (en) 1998-10-28 1999-10-27 Composition and process for treating metal surfaces
BR9914970-2A BR9914970A (en) 1998-10-28 1999-10-27 Liquid aqueous composition for treating a metal surface and process to provide a corrosion-reducing coating on a surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-307665 1998-10-28
JP30766598 1998-10-28
JP29196799A JP3992173B2 (en) 1998-10-28 1999-10-14 Metal surface treatment composition, surface treatment liquid, and surface treatment method

Publications (2)

Publication Number Publication Date
JP2000199077A JP2000199077A (en) 2000-07-18
JP3992173B2 true JP3992173B2 (en) 2007-10-17

Family

ID=26558781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29196799A Expired - Fee Related JP3992173B2 (en) 1998-10-28 1999-10-14 Metal surface treatment composition, surface treatment liquid, and surface treatment method

Country Status (7)

Country Link
EP (1) EP1171648A1 (en)
JP (1) JP3992173B2 (en)
KR (1) KR20000029286A (en)
AU (1) AU2020200A (en)
BR (1) BR9914970A (en)
CA (1) CA2349376A1 (en)
WO (1) WO2000024948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132653A1 (en) 2013-02-28 2014-09-04 日鉄住金鋼板株式会社 Steel sheet plated with aluminum-containing zinc and process for producing same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001261544A1 (en) * 2000-05-11 2001-11-20 Henkel Corporation Metal surface treatment agent
US7147934B2 (en) 2000-11-07 2006-12-12 Nisshin Steel Co., Ltd. Chemically processed steel sheet excellent in corrosion resistance
DE60127793T2 (en) * 2000-11-07 2007-12-27 Nisshin Steel Co., Ltd. Chemically processed steel sheet with excellent corrosion resistance
TWI268965B (en) 2001-06-15 2006-12-21 Nihon Parkerizing Treating solution for surface treatment of metal and surface treatment method
TW567242B (en) 2002-03-05 2003-12-21 Nihon Parkerizing Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
JP4242827B2 (en) 2004-12-08 2009-03-25 日本パーカライジング株式会社 Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
WO2006098359A1 (en) * 2005-03-16 2006-09-21 Nihon Parkerizing Co., Ltd. Surface-treated metallic material
US7695771B2 (en) * 2005-04-14 2010-04-13 Chemetall Gmbh Process for forming a well visible non-chromate conversion coating for magnesium and magnesium alloys
JP2007162098A (en) * 2005-12-15 2007-06-28 Nippon Parkerizing Co Ltd Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP4983078B2 (en) * 2006-04-13 2012-07-25 Jfeスチール株式会社 Surface treatment agent for galvanized steel and surface-treated galvanized steel sheet
AU2007241748B2 (en) 2006-04-20 2010-12-16 Nippon Steel Corporation Zinc-plated steel material coated with composite film excellent in corrosion resistance, unsusceptibility to blackening, coating adhesion, and alkali resistance
JP4975378B2 (en) 2006-06-07 2012-07-11 日本パーカライジング株式会社 Metal surface treatment liquid, surface treatment method, surface treatment material
JP2007314888A (en) * 2007-07-17 2007-12-06 Toyota Motor Corp Multilayer coating film structure
JP2010013677A (en) 2008-07-01 2010-01-21 Nippon Parkerizing Co Ltd Chemical conversion liquid for metal structure and surface treatment method
JP2012017524A (en) * 2010-06-09 2012-01-26 Nippon Paint Co Ltd Inorganic chromium-free metal surface treatment agent
JP6184051B2 (en) 2011-09-21 2017-08-23 日本ペイント・サーフケミカルズ株式会社 Surface treatment method for aluminum heat exchanger
JP6146954B2 (en) * 2012-03-09 2017-06-14 日本ペイント・サーフケミカルズ株式会社 Chemical conversion treatment agent and chemical conversion treatment film
JP6105979B2 (en) * 2012-03-09 2017-03-29 日本ペイント・サーフケミカルズ株式会社 Surface treatment method for aluminum heat exchanger
CN105143512B (en) 2013-04-03 2018-01-12 日涂表面处理化工有限公司 The surface treatment method of aluminum-made heat exchanger
CN105164314A (en) 2013-04-03 2015-12-16 日涂表面处理化工有限公司 Chemical conversion treatment agent and metal surface processing method
JP6837332B2 (en) 2016-12-28 2021-03-03 日本パーカライジング株式会社 Chemical conversion agent, manufacturing method of chemical conversion film, metal material with chemical conversion film, and coated metal material
KR102110222B1 (en) * 2018-07-26 2020-05-13 주식회사 노루코일코팅 Composition for pretreating plated steel sheet containing magnesium and method for manufacturing pcm steel sheet using the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148670A (en) * 1976-04-05 1979-04-10 Amchem Products, Inc. Coating solution for metal surface
US5718817A (en) * 1993-07-28 1998-02-17 Elf Atochem North America, Inc. Catalyst for low temperature cure of blocked isocyanates
US5667845A (en) * 1993-08-05 1997-09-16 Henkel Corporation Treatment to improve corrosion resistance of autodeposited coatings on metallic surfaces
US5397390A (en) * 1993-08-13 1995-03-14 Ardrox, Inc. Composition and method for treatment of phosphated metal surfaces
US5415749A (en) * 1994-03-04 1995-05-16 E. I. Du Pont De Nemours And Company Process for electrodeposition of resist formulations which contain metal salts of β-diketones
US5783539A (en) * 1995-05-19 1998-07-21 Lever Brothers Company Process for incorporating aluminum salts into an automatic dishwashing composition
US5711996A (en) * 1995-09-28 1998-01-27 Man-Gill Chemical Company Aqueous coating compositions and coated metal surfaces
JP3598163B2 (en) * 1996-02-20 2004-12-08 ソニー株式会社 Metal surface treatment method
KR100269830B1 (en) * 1996-04-18 2000-10-16 포만 제프리 엘 Organic-metallic composite coating for copper surface protection
US6020034A (en) * 1997-11-14 2000-02-01 E. I. Du Pont De Nemours And Company Process for producing corrosion- and creep resistant coatings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132653A1 (en) 2013-02-28 2014-09-04 日鉄住金鋼板株式会社 Steel sheet plated with aluminum-containing zinc and process for producing same
US10053753B2 (en) 2013-02-28 2018-08-21 Nippon Steel & Sumikin Coated Sheet Corporation Aluminum-zinc plated steel sheet and method for producing the same

Also Published As

Publication number Publication date
BR9914970A (en) 2001-10-30
KR20000029286A (en) 2000-05-25
EP1171648A1 (en) 2002-01-16
JP2000199077A (en) 2000-07-18
WO2000024948A1 (en) 2000-05-04
AU2020200A (en) 2000-05-15
CA2349376A1 (en) 2000-05-04

Similar Documents

Publication Publication Date Title
JP3992173B2 (en) Metal surface treatment composition, surface treatment liquid, and surface treatment method
US6361833B1 (en) Composition and process for treating metal surfaces
US6193815B1 (en) Composition and process for treating the surface of aluminiferous metals
JP4205939B2 (en) Metal surface treatment method
EP1433875B1 (en) Chemical conversion coating agent and surface-treated metal
WO2002103080A1 (en) Treating solution for surface treatment of metal and surface treatment method
WO2003074761A1 (en) Treating liquid for surface treatment of aluminum or magnesium based metal and method of surface treatment
JP3623015B2 (en) Surface treatment liquid for aluminum-containing metal material and surface treatment method
JPH07310189A (en) Surface treating composition for aluminum containing metallic material and surface treatment
KR20090023213A (en) Method for surface modifying hot dip coated steel materials and surface modified hot dip coated steel materials
JP4344222B2 (en) Chemical conversion metal plate
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
JP4510079B2 (en) Surface-treated metal material
US6485580B1 (en) Composition and process for treating surfaces or light metals and their alloys
JPH11335864A (en) Production of surface treated steel plate having excellent corrosion resistance
JPH11335863A (en) Production of surface treated steel plate having excellent corrosion resistance
JP3737168B2 (en) Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability
JP3930640B2 (en) Surface treatment solution for light metal or light alloy materials
US5888315A (en) Composition and process for forming an underpaint coating on metals
JP2000319786A (en) Surface treated steel sheet excellent in corrosion resistance
JPH11335862A (en) Production of surface treated steel plate having excellent corrosion resistance
JP2003293168A (en) PRECOATED Al-Si ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE
TW448077B (en) Composition for metal surface treating, surface treating liquid and surface treating method
EP1177329A1 (en) Composition and process for treating surfaces of light metals and their alloys
MXPA01004311A (en) Composition and process for treating metal surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

R150 Certificate of patent or registration of utility model

Ref document number: 3992173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees