JP3991860B2 - Alloy hot-dip galvanized steel sheet - Google Patents

Alloy hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP3991860B2
JP3991860B2 JP2002373579A JP2002373579A JP3991860B2 JP 3991860 B2 JP3991860 B2 JP 3991860B2 JP 2002373579 A JP2002373579 A JP 2002373579A JP 2002373579 A JP2002373579 A JP 2002373579A JP 3991860 B2 JP3991860 B2 JP 3991860B2
Authority
JP
Japan
Prior art keywords
steel sheet
oxide
plating film
interface
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002373579A
Other languages
Japanese (ja)
Other versions
JP2004204280A (en
Inventor
正泰 名越
悦男 濱田
純一 小崎
理孝 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002373579A priority Critical patent/JP3991860B2/en
Publication of JP2004204280A publication Critical patent/JP2004204280A/en
Application granted granted Critical
Publication of JP3991860B2 publication Critical patent/JP3991860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、合金化溶融亜鉛めっき鋼板に係わる。より詳細には、めっき皮膜の密着性に優れた合金化溶融亜鉛めっき鋼板に係わる。さらに詳細には、めっき皮膜の密着性に優れた高強度合金化溶融亜鉛めっき鋼板に係わる。
【0002】
【従来の技術】
従来より、自動車車体や家電製品などの素材として、塗装後の耐食性に優れる合金化溶融亜鉛めっき鋼板が多用されている。その際、合金化溶融亜鉛めっき鋼板は、プレス成形により加工される場合が多い。
【0003】
合金化溶融亜鉛めっき鋼板をプレス成形により加工する場合には、皮膜の剥離や割れなどが問題となる。加工時の皮膜剥離は、V曲げなどの局所変形でおきるパウダリング、高面圧でしゅう動距離が長い変形で多く発生するフレーキングなどがある。一方、加工後に塗装された合金化溶融亜鉛めっき鋼板においても、例えば自動車走行時に石跳ねなどで塗装とともにめっきが剥離するチッピング等の現象が問題となる。これらの皮膜の剥離は、すべてめっき皮膜/下地鋼板の界面、あるいはめっき皮膜中の異なる鉄−亜鉛合金相間の界面で起こると考えられている。
【0004】
自動車車体において、衝突安全性や環境問題に立脚した高燃費性に対する認識の高まりにつれて、従来よりも高い強度を有する車体パネル用の合金化溶融亜鉛めっき鋼板が要求されている。高強度の薄板を得るためには鋼にSiやMnなどを添加することが有効である。しかし、これらの元素を添加した鋼板では、溶融亜鉛めっきを施す前に実施する焼鈍過程において、鋼板表面に、添加したSiやMnを含む酸化物が析出し、これがめっきはじき等の欠陥、合金化不良、あるいはめっき皮膜剥離につながることが知られている。特にめっき皮膜剥離は、自動車等の鋼板加工製品に使用する際に致命的である。
【0005】
めっき皮膜剥離の要因の一つは、めっき皮膜と下地鋼板の界面に残存する上記酸化物の存在によると考えられている。すなわち、皮膜中で発生した亀裂が界面に達した場合、酸化物が存在する界面では界面に沿って亀裂が容易に進展するし、界面に存在する酸化物自体が亀裂の発生点になる可能性もある。また、めっきはじきや合金化不良なども上記酸化物がめっき皮膜と下地鋼板の界面に存在し、鉄−亜鉛の反応を抑制するためと考えられている。
【0006】
これらの酸化物による悪影響を防ぐ目的で、焼鈍条件を制御して鋼板表面の酸化膜厚や酸化物組成を制御する方法(特許文献1、特許文献2)、FeやNiなどの元素をあらかじめ鋼板にめっきする方法(特許文献3、特許文献4、特許文献5)などが開示されている。しかし、いずれの発明でもコストに見合い、かつ十分な強度特性を有し、界面密着性に優れる合金化溶融亜鉛めっき鋼板は得られていない。そのため、新しい視点に立った解決策が望まれている。
【0007】
以下に、先行技術文献情報について記載する。
【0008】
【特許文献1】
特開昭55-122865号公報
【0009】
【特許文献2】
特開平8-246121号公報
【0010】
【特許文献3】
特開昭60-110859号公報
【0011】
【特許文献4】
特開平5-263206号公報
【0012】
【特許文献5】
特開平7-252622号公報
【0013】
【発明が解決しようとする課題】
本発明は、上記の事情に鑑みてなされたものであり、めっき皮膜剥離の原因となっている酸化物の存在位置を制御することに視点をおいて、従来よりめっき皮膜の密着性に優れた合金化溶融亜鉛めっき鋼板を提供することを目的とする。
【0014】
【課題を解決するための手段】
前記課題を解決するため、以下の発明(1)を提供する。
(1)下地鋼板が、Si:0.1質量%以上2.0質量%以下、Mn:0.5質量%以上3.0質量%以下、P:0.01質量%以上0.15質量%以下のうちの1種類以上を含む合金化溶融亜鉛めっき鋼板であって、めっき前の下地鋼板表面に存在するSi、Mn、Pのうちの1種類以上の元素を含む酸化物の少なくとも一部が、めっき皮膜/下地鋼板界面から隔離されてめっき皮膜中に存在するとともに、断面組織でみて、該酸化物下方で鉄−亜鉛合金相が下地鋼板と接している界面形態の割合が、界面長さの30%以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
【0017】
【発明の実施の形態】
以下に本発明を詳細に説明する。
通常、合金化溶融亜鉛めっき鋼板は、素材鋼板を連続焼鈍設備で還元雰囲気中で焼鈍した後、亜鉛めっき浴に浸漬して亜鉛めっきを施し、亜鉛めっき浴から引き上げてガスワイピングノズルでめっき付着量を調整し、合金化加熱炉でめっき皮膜の合金化処理を施して製造される。合金化溶融亜鉛めっき鋼板を高強度化するには、鋼にSi、Mn、Pなどを添加することが有効である。しかし、これらの元素を添加した鋼板は、溶融亜鉛めっきを施す前に実施する焼鈍過程において、鋼板表面に、添加したSi、Mn、Pの酸化物が析出し、これがめっき皮膜の密着性を低下する。
【0018】
発明(1)は、合金化溶融亜鉛めっき鋼板において、めっき前の鋼板表面に存在したSi、Mn、Pを含む酸化物が、めっき後に、めっき皮膜/下地鋼板界面に存在するよりも、めっき皮膜/下地鋼板界面から隔離されためっき皮膜中に存在する方が、めっき皮膜の密着性に優れていることを見出したことに基づく。
【0019】
発明(1)において、下地鋼板を、Si:0.1質量%以上2.0質量%以下、Mn:0.5質量%以上3.0質量%以下、P:0.01質量%以上0.15質量%以下のうちの1種類以上を含む鋼板に限定したのは次の理由による。すなわち、鋼板の強度特性を制御するために、Si:0.1質量%以上、Mn:0.5質量%以上、P:0.01質量%以上のうちの1種類以上を添加することが必要であり、さらに本発明が目的とする密着性を向上させる効果が、前記組成の成分を含む鋼板で特に顕著なためである。また、Si、Mn、およびPが、それぞれ2.0質量%、3.0質量%、0.15質量%を超えると、めっき性を著しく低下させ不めっき等を生じやすくなるためである。
【0020】
酸化物に含まれる元素をSi、Mn、Pのうちの1種類以上に限定したのは、これらの元素を含まない酸化物はめっき皮膜の密着性に悪影響を及ぼさないためである。めっき皮膜/下地鋼板界面から隔離されてめっき皮膜中に存在する酸化物には、前記元素の酸化物以外にAl酸化物が含まれていることがある。
【0021】
酸化物の存在する位置は、合金化溶融亜鉛めっき鋼板のめっき皮膜(鉄−亜鉛合金相)と下地鋼板の界面よりめっき皮膜側に入ったところであり、酸化物はめっき皮膜/下地鋼板界面とは接していない(すなわち、前記酸化物は、めっき皮膜/下地鋼板界面から隔離されている)。本発明ではめっき皮膜/下地鋼板界面と酸化物の距離を限定するものではないが、酸化物が界面からより遠くに離れている方が有利である。
【0022】
図1は本発明に係る合金化溶融亜鉛めっき鋼板のめっき皮膜/下地鋼板界面付近の酸化物の存在状態を説明する断面模式図である。(a)に示すように、酸化物はめっき皮膜(鉄−亜鉛合金相)中に点在して存在していてもよいし、(b)に示すように、点在する酸化物同士が部分的につながり連続して層状で存在していてもよい。いずれの図でも、酸化物は、めっき皮膜/下地鋼板界面から隔離されためっき皮膜中に存在する。
【0023】
また、酸化物が存在するめっき皮膜の鉄−亜鉛合金相は、ζ、δ相あるいはΓ1相、またはこれらの2つ以上の合金相の組合わせのいずれであってもよい。しかしこの鉄−亜鉛合金相はΓ相でないほうが望ましい。その理由は、Γ相は前記合金相に比べて硬度が高いため、めっき皮膜の剥離が、下地鋼板と高い硬度を有するΓ相との界面において発生しやすくなり、酸化物をめっき皮膜/下地鋼板界面から隔離してめっき皮膜中に存在せしめたことによる本発明のめっき皮膜の密着性向上効果が相対的に小さくなるからである。
【0024】
本発明により合金化溶融亜鉛めっき鋼板の密着性が向上する理由として次の2つのメカニズムを推定している。▲1▼密着性を低下させる酸化物がめっき皮膜/下地鋼板界面に存在しないこと、および▲2▼結果として、鉄−亜鉛合金相と下地の鉄が直接接合していることである。後者においては、鉄−亜鉛合金相と下地の鉄の結晶同士が特定の結晶方位関係を有していれば、より強固に結合すると考えられる。
【0025】
記酸化物が粒子状であって、該粒子状酸化物のめっき皮膜/下地鋼板界面に平行方向の長さ(平均長さ、以下同じ。)が500nm以下であると、合金化溶融亜鉛めっき鋼板のめっき皮膜の密着性がより向上する。
【0026】
酸化物が粒子状であると、めっき皮膜内で発生したクラックの伝播を防止する作用が特に大きいため、密着性を向上する効果により優れる。酸化物の皮膜/下地鋼板界面に平行方向の長さが500nmを超えると、酸化物が粒子状であることによる密着性向上効果が低下する。これは酸化物の長さが500nmを超えると集合した酸化物が、もはや粒子状とみなされず、連続した層を形成した状態になり、めっき皮膜内で発生したクラックが前記層内を伝播しやすくなり、クラックの伝播を防止する作用が低下することによると推定している。ここで、粒子状酸化物とは、断面組織で観察される酸化物の形態が概ね円型、楕円型、矩形などのものを指しており、その界面は凹凸状であってもよい。
【0027】
発明(1)は、さらに、断面組織でみて、めっき皮膜 / 下地鋼板界面から隔離されてめっき皮膜中に存在する Si Mn P のうちの 1 種類以上の元素を含む酸化物下方で鉄−亜鉛合金相が下地鋼板と接している界面形態が、界面長さの30%以上存在することを規定する。
【0028】
ここで、前記で規定する界面形態の割合とは、ある断面における断面長さに対する、上方に隔離された酸化物を含む鉄−亜鉛合金相が下地鋼板と接している界面長さを合計したもの(いずれも板面に平行方向の寸法)の割合である。
【0029】
前記界面形態は、めっき皮膜/下地鋼板界面方向の全長に渡って存在していなくても、平均値で前記界面長さの30%以上であれば密着性の向上効果が顕著となる。この割合が30%未満であると密着性向上効果は低下する。残りの界面部分には酸化物が存在しないことが好ましい。
【0030】
本発明者等は、めっき前の鋼板表面の酸化物の形態とめっき皮膜およびめっき皮膜/下地鋼板界面およびその近傍の酸化物の形態、およびこれらとめっき皮膜の密着性との関係を精力的に調査した。その結果、めっき前の鋼板表面に存在するSi、Mn、Pのうちの1種類以上の元素を含む酸化物の形態を、粒子状形態あるいは前記粒子状酸化物の基部が薄い酸化膜でつながった層状の混合形態とするとともに、その酸化物の量を制御した後、該鋼板を溶融亜鉛めっき浴に浸漬し、次に合金化処理を施し、めっき皮膜中の亜鉛と鋼板中の鉄との鉄−亜鉛反応によって、前記酸化物をめっき皮膜/下地鋼板界面から隔離されためっき皮膜中に存在せしめることができ、これによって、密着性に優れる合金化溶融亜鉛めっき鋼板を得ることができる。
【0031】
めっき前に鋼板表面に存在する酸化物を、めっき皮膜/下地鋼板界面から隔離されためっき皮膜中に存在せしめることができるのは、めっき浴中に存在するAlの還元作用に基づくと考えられる。すなわち、めっき前の鋼板表面に存在するSi、Mn、Pのうちの1種類以上の元素を含む酸化物の形態を、粒子状形態あるいは粒子状と層状の混合形態とするとともに、その酸化物の量を制御した後、該鋼板を溶融亜鉛めっき浴に浸漬し、次いで合金化処理を施すと、溶融亜鉛めっき浴中に含まれるAlの還元作用によって、前記酸化物は部分的に還元されて不連続な酸化物となる。次いで前記酸化物のない部分で下地鋼板中の鉄とめっき皮膜の亜鉛との鉄−亜鉛反応が前記酸化物を回り込むように起こり、前記酸化物はめっき皮膜/下地鋼板界面から隔離されためっき皮膜中に存在するようになると考えられる。前記酸化物のない部分では、鉄−亜鉛合金相と下地鋼板が直接接合している。▲1▼密着性を低下させる酸化物がめっき皮膜/下地鋼板界面に存在しないこと、および▲2▼鉄−亜鉛合金相と下地の鉄が直接接合していることによって、めっき皮膜/下地鋼板界面におけるめっき皮膜の密着性が良好になり、密着性に優れた合金化溶融亜鉛めっき鋼板が得られる。
【0032】
本発明が対象とする下地鋼板において、本発明で規定する界面形態の割合が30%未満になると、例えばSi、Mn、Pのうちの1種類以上の元素を含む酸化物の還元のためのAl消費量が増加することで、めっき/鋼板界面近傍でAl濃度が低下して合金化処理時の合金化反応が早くなり過ぎるため、密着性に優れる合金化めっき皮膜を安定して得ることができなくなる。さらに、Γ相の成長が起こりやすくなり皮膜密着性の低下につながる。また前記酸化物が全く還元されなかったり、あるいは還元不足により酸化物がめっき皮膜/下地鋼板界面に層状に残っていたりすると合金化反応が著しく低下し、めっき性に劣るようになるだけでなく、生産性も低下する。
【0033】
めっき前の鋼板表面の酸化物を制御する方法としては、めっき前の焼鈍条件(温度分布、雰囲気)を制御したり、予め鋼板表面に種々の前処理を施すこと、などが考えられるが、本発明ではその方法は限定されない。
【0034】
本発明では、めっき皮膜中に存在する酸化物の存在位置や大きさを規定するものである。めっき皮膜全体の合金相の種類や構成に限定されるものではない。また本発明の合金化溶融亜鉛めっき鋼板において、下地鋼板の製造方法については特に限定されず、通常の酸洗板あるいは冷圧板でよい。通常、板厚は5mm以下である。また、合金化溶融亜鉛めっき鋼板の製造装置についても特に限定されず、例えば通常使用されている連続式溶融亜鉛めっき装置であってもよい。また、本発明の合金化溶融亜鉛めっき鋼板に、FeあるいはNiを主成分とした上層めっきを施し、プレス成形性を更に改善してもよい。
【0035】
【実施例】
本発明の実施例を以下に示す。
【0036】
表1は、合金化溶融亜鉛めっき鋼板の酸化物の位置、界面構造、めっき皮膜の密着性の関係を調査した結果である。
【0037】
本発明例と比較例は、ともに発明(1)の範囲内の成分組成で板厚1.0mmで冷間圧延された鋼板を焼鈍後、溶融亜鉛めっきを施し、めっき付着量を片面あたり50〜60g/m2に調整後、合金化処理を行って製造した合金化溶融亜鉛めっき鋼板である。合金化処理は、皮膜中のFe濃度は9.5〜12質量%になるようにした。
【0038】
本発明例では、20g/lの硫酸浴(pH:2.5)に5秒間浸漬し水洗を施した後に輻射加熱炉で焼鈍を行うか(処理X)、または、20g/lの硫酸浴(pH:2.5)に5秒間浸漬し水洗を施した後に焼鈍時に直火型バーナーを使用して直火加熱後輻射加熱炉で焼鈍を行うか(処理Y)のいずれかで、めっき前の鋼板表面の酸化物を制御した。比較例では前記硫酸浴への浸漬処理を行うことなく焼鈍した(処理Z)。本発明例と比較例の鋼板の成分組成および処理条件を表1に記載した。
【0039】
なお、合金化溶融亜鉛めっき鋼板の酸化物の位置と界面構造は、集束イオンビーム装置(FIB)を用いて作製した断面の薄片を分析機能付き走査電子顕微鏡(SEM)で観察・分析することにより決定した。必要に応じて透過電子顕微鏡(TEM)による合金相の同定を行った。
【0040】
また、めっき皮膜の密着性は、ドロービード試験を行い、単位面積当たりの皮膜の剥離量を測定して評価した。ここで、ドロービード試験とは、潤滑油を塗布した鋼板を、ビードとダイスで挟んだ状態で引き抜き、その後テープ剥離試験を行い、試験の前後の質量差から、めっき皮膜の剥離量を評価する試験方法である。ビードは先端角度90°の三角ビードを用い、成形高さは4mm、ビードとダイスの押し付け荷重は4903N(500kgf)とした。
【0041】
【表1】

Figure 0003991860
【0042】
本発明例は、比較例と比較して明らかに密着性が良好である。本発明例1と2を比較すると、めっき皮膜/下地界面から離れためっき皮膜中に存在するSi、Mnを含む酸化物は粒子状であって界面に平行方向の長さが500nm以下である本発明例2は、本発明例1に比べて、さらに優れた密着性を有することがわかる。また、本発明例3は、発明(1)の範囲を外れる参考例に比べて密着性が良好である。
【0043】
【発明の効果】
以上に示したように、本発明によれば、めっき皮膜の密着性に優れた合金化溶融亜鉛めっき鋼板が得られる。
【0044】
本発明の鋼板は、表面に合金化溶融亜鉛めっき皮膜を有しているために耐食性に優れ、かつめっき皮膜の密着性に優れている。また、下地鋼板が、Si:0.1質量%以上2.0質量%以下、Mn:0.5質量%以上3.0質量%以下、P:0.01質量%以上0.15質量%以下のうちの1種類以上を含むので、鋼板強度を高強度化できる。
【0045】
本発明の合金化溶融亜鉛めっき鋼板は、自動車車体をはじめ多くの用途に使用することができる。
【図面の簡単な説明】
【図1】本発明に係る合金化溶融亜鉛めっき鋼板のめっき皮膜/下地鋼板界面付近の酸化物の存在状態を説明する断面模式図で、(a)は酸化物がめっき皮膜(鉄−亜鉛合金相)中に点在して存在している状態、(b)は点在する酸化物同士が部分的につながり連続して層状で存在している状態を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an alloyed hot-dip galvanized steel sheet. More specifically, the present invention relates to an alloyed hot-dip galvanized steel sheet having excellent plating film adhesion. More specifically, the present invention relates to a high-strength galvannealed steel sheet having excellent plating film adhesion.
[0002]
[Prior art]
Conventionally, alloyed hot-dip galvanized steel sheets that are excellent in corrosion resistance after painting have been frequently used as materials for automobile bodies and home appliances. At that time, the galvannealed steel sheet is often processed by press forming.
[0003]
When an alloyed hot-dip galvanized steel sheet is processed by press forming, peeling or cracking of the film becomes a problem. Film peeling during processing includes powdering that occurs due to local deformation such as V-bending, and flaking that often occurs due to deformation with a high surface pressure and a long sliding distance. On the other hand, even in the alloyed hot-dip galvanized steel sheet coated after processing, a phenomenon such as chipping in which the plating peels off together with the coating due to, for example, hopping when driving a car becomes a problem. It is considered that all of these films are peeled off at the plating film / underlying steel plate interface or the interface between different iron-zinc alloy phases in the plating film.
[0004]
In the automobile body, as the recognition of high fuel efficiency based on collision safety and environmental problems increases, an alloyed hot-dip galvanized steel sheet for body panels having higher strength than before has been required. In order to obtain a high strength thin plate, it is effective to add Si or Mn to the steel. However, in steel sheets with these elements added, oxides containing added Si and Mn are precipitated on the steel sheet surface during the annealing process before hot dip galvanizing, which causes defects such as plating repellency and alloying. It is known to lead to defects or plating film peeling. Plating film peeling is particularly fatal when used for steel plate processed products such as automobiles.
[0005]
One of the factors of plating film peeling is considered to be due to the presence of the oxide remaining at the interface between the plating film and the base steel sheet. In other words, when a crack generated in the film reaches the interface, the crack easily propagates along the interface at the interface where the oxide exists, and the oxide itself present at the interface may become a crack generation point. There is also. In addition, it is considered that the above-mentioned oxide exists at the interface between the plating film and the base steel plate to suppress the reaction of iron-zinc, such as plating repellency and poor alloying.
[0006]
In order to prevent the negative effects of these oxides, the method of controlling the oxide film thickness and oxide composition on the steel sheet surface by controlling the annealing conditions (Patent Document 1, Patent Document 2), and elements such as Fe and Ni in advance. And the like (Patent Document 3, Patent Document 4, Patent Document 5) and the like are disclosed. However, in any of the inventions, an alloyed hot-dip galvanized steel sheet having a sufficient strength characteristic and excellent interfacial adhesion has not been obtained. Therefore, a solution from a new viewpoint is desired.
[0007]
The prior art document information will be described below.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 55-122865
[Patent Document 2]
Japanese Patent Laid-Open No. 8-246121
[Patent Document 3]
Japanese Patent Laid-Open No. 60-110859
[Patent Document 4]
JP-A-5-263206 [0012]
[Patent Document 5]
Japanese Patent Laid-Open No. 7-252622 [0013]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and from the viewpoint of controlling the position of the oxide that causes the plating film peeling, the present invention has superior plating film adhesion. An object is to provide a galvannealed steel sheet.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the following invention (1) is provided.
(1) Alloying and melting in which the base steel sheet contains at least one of Si: 0.1% by mass to 2.0% by mass, Mn: 0.5% by mass to 3.0% by mass, and P: 0.01% by mass to 0.15% by mass A galvanized steel sheet that is plated with at least part of the oxide containing one or more elements of Si, Mn, and P existing on the surface of the base steel sheet before plating isolated from the plating film / base steel plate interface. An alloy characterized in that the ratio of the interface form in which the iron-zinc alloy phase is in contact with the underlying steel sheet below the oxide is 30% or more of the interface length as it exists in the film and viewed in the cross-sectional structure Hot-dip galvanized steel sheet.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
Normally, alloyed hot-dip galvanized steel sheets are annealed in a reducing atmosphere using continuous annealing equipment, and then dipped in a galvanizing bath, galvanized, and pulled up from the galvanizing bath, and the amount of coating deposited with a gas wiping nozzle It is manufactured by subjecting the plating film to alloying treatment in an alloying heating furnace. In order to increase the strength of the galvannealed steel sheet, it is effective to add Si, Mn, P, etc. to the steel. However, in steel sheets with these elements added, the added Si, Mn, and P oxides precipitate on the steel sheet surface during the annealing process before hot dip galvanizing, which reduces the adhesion of the plating film. To do.
[0018]
Invention (1) is an alloyed hot-dip galvanized steel sheet, in which the oxide containing Si, Mn, P present on the surface of the steel sheet before plating is present in the plated film rather than present at the plating film / underlying steel plate interface after plating. This is based on the finding that the presence in the plating film isolated from the / steel plate interface is superior in the adhesion of the plating film.
[0019]
In invention (1), the base steel sheet includes one or more of Si: 0.1% by mass to 2.0% by mass, Mn: 0.5% by mass to 3.0% by mass, and P: 0.01% by mass to 0.15% by mass. The reason for limiting to steel plate is as follows. That is, in order to control the strength characteristics of the steel sheet, it is necessary to add one or more of Si: 0.1% by mass or more, Mn: 0.5% by mass or more, P: 0.01% by mass or more, and the present invention. This is because the effect of improving the intended adhesion is particularly remarkable in the steel sheet containing the component of the composition. Further, if Si, Mn, and P exceed 2.0% by mass, 3.0% by mass, and 0.15% by mass, respectively, the plating property is remarkably deteriorated and non-plating is likely to occur.
[0020]
The reason why the elements contained in the oxide are limited to one or more of Si, Mn, and P is that the oxide not containing these elements does not adversely affect the adhesion of the plating film. The oxide present in the plating film isolated from the plating film / underlying steel plate interface may contain Al oxide in addition to the oxide of the element.
[0021]
The position where the oxide exists is where it entered the plating film side from the interface between the plating film (iron-zinc alloy phase) of the galvannealed steel sheet and the base steel sheet. There is no contact (that is, the oxide is isolated from the plating film / underlying steel plate interface). In the present invention, the distance between the plating film / underlying steel plate interface and the oxide is not limited, but it is advantageous that the oxide is further away from the interface.
[0022]
FIG. 1 is a schematic cross-sectional view illustrating the state of the presence of an oxide near the plating film / underlying steel plate interface of a galvannealed steel plate according to the present invention. As shown in (a), oxides may be scattered and present in the plating film (iron-zinc alloy phase), and as shown in (b), the scattered oxides are partly present. May be continuously connected and present in layers. In either figure, the oxide is present in the plating film isolated from the plating film / underlying steel plate interface.
[0023]
Further, the iron-zinc alloy phase of the plating film in which the oxide is present may be any of ζ phase , δ phase, Γ 1 phase, or a combination of two or more alloy phases thereof. However, the iron-zinc alloy phase is preferably not a Γ phase. The reason is that since the Γ phase has a higher hardness than the alloy phase, peeling of the plating film is likely to occur at the interface between the base steel plate and the Γ phase having a high hardness, and the oxide is applied to the plating film / base steel plate. This is because the effect of improving the adhesion of the plating film of the present invention due to being separated from the interface and existing in the plating film is relatively small.
[0024]
The following two mechanisms are presumed as the reason why the adhesion of the galvannealed steel sheet is improved by the present invention. (1) The oxide that lowers the adhesion does not exist at the plating film / underlying steel plate interface, and (2) As a result, the iron-zinc alloy phase and the underlying iron are directly joined. In the latter, if the iron-zinc alloy phase and the underlying iron crystals have a specific crystal orientation relationship, they are considered to be bonded more firmly.
[0025]
A front Symbol oxide particulate, plating film / substrate steel sheet surface to a length of the parallel direction of the particulate oxides when (the average length, the same applies hereinafter.) Is 500nm or less, galvannealed The adhesion of the plating film on the steel sheet is further improved.
[0026]
When the oxide is in the form of particles, the effect of preventing the propagation of cracks generated in the plating film is particularly great, so that the effect of improving the adhesion is excellent. If the length in the direction parallel to the oxide film / underlying steel plate interface exceeds 500 nm, the effect of improving the adhesion due to the oxide being in the form of particles decreases. This is because when the oxide length exceeds 500 nm, the aggregated oxide is no longer considered to be particulate, but forms a continuous layer, and cracks generated in the plating film are likely to propagate through the layer. Therefore, it is estimated that the effect of preventing the propagation of cracks is reduced. Here, the particulate oxide refers to those in which the form of the oxide observed in the cross-sectional structure is approximately circular, elliptical, rectangular or the like, and the interface may be uneven.
[0027]
Invention (1) is further seen in cross-sectional structure, Si present in the plating film is isolated from the plated film / substrate steel sheet interface, Mn, iron oxide below containing one or more elements of the P - It is defined that the interface form in which the zinc alloy phase is in contact with the base steel sheet is 30% or more of the interface length.
[0028]
Here, the ratio of the interface form defined above is the sum of the interface lengths in which the iron-zinc alloy phase containing the oxide isolated above is in contact with the underlying steel plate with respect to the sectional length in a certain section. (Both are dimensions in the direction parallel to the plate surface).
[0029]
Even if the interface form does not exist over the entire length in the plating film / underlying steel plate interface direction, if the average value is 30% or more of the interface length, the effect of improving the adhesion becomes remarkable. If this proportion is less than 30%, the effect of improving the adhesion is lowered. It is preferable that no oxide exists in the remaining interface portion.
[0030]
The present inventors vigorously investigated the form of oxide on the surface of the steel sheet before plating, the form of the plating film and the plating film / underlying steel plate interface and the vicinity of the oxide, and the relationship between these and the adhesion of the plating film. investigated. As a result, the oxide form containing one or more elements of Si, Mn, and P existing on the surface of the steel sheet before plating is connected to the particulate form or the base of the particulate oxide with a thin oxide film. After making the layered mixed form and controlling the amount of the oxide, the steel sheet is immersed in a hot dip galvanizing bath and then subjected to an alloying treatment, and iron of zinc in the plating film and iron in the steel sheet -By the zinc reaction, the oxide can be present in the plating film isolated from the plating film / underlying steel plate interface, whereby an alloyed hot-dip galvanized steel plate having excellent adhesion can be obtained.
[0031]
The reason why the oxide present on the surface of the steel sheet before plating can be present in the plating film isolated from the plating film / underlying steel plate interface is considered to be based on the reducing action of Al present in the plating bath. That is, the form of the oxide containing one or more elements of Si, Mn, and P existing on the surface of the steel sheet before plating is changed to a particulate form or a mixed form of the particulate form and the layer form. After controlling the amount, when the steel sheet is immersed in a hot dip galvanizing bath and then subjected to an alloying treatment, the oxide is partially reduced due to the reducing action of Al contained in the hot dip galvanizing bath. It becomes a continuous oxide. Next, an iron-zinc reaction between iron in the base steel sheet and zinc in the plating film occurs around the oxide in a portion where the oxide is not present, and the oxide film is isolated from the plating film / base steel plate interface. It is thought that it comes to exist inside. In the portion without the oxide, the iron-zinc alloy phase and the base steel plate are directly joined. (1) Oxide reducing adhesion does not exist at the plating film / underlying steel plate interface, and (2) The plating film / underlying steel plate interface because the iron-zinc alloy phase and the underlying iron are directly bonded. As a result, the adhesion of the plated film is improved, and an alloyed hot-dip galvanized steel sheet having excellent adhesion can be obtained.
[0032]
In the base steel sheet targeted by the present invention, when the proportion of the interface form defined by the present invention is less than 30%, for example, Al for reducing oxides containing one or more elements of Si, Mn, and P As the consumption increases, the Al concentration decreases in the vicinity of the plating / steel interface and the alloying reaction during alloying process becomes too fast, so an alloyed plating film with excellent adhesion can be obtained stably. Disappear. Further, the Γ phase grows easily, leading to a decrease in film adhesion. In addition, the oxide is not reduced at all, or when the oxide remains in a layered state at the plating film / underlying steel plate interface due to insufficient reduction, not only the alloying reaction is significantly reduced, but the plating property is inferior, Productivity also decreases.
[0033]
As a method for controlling the oxide on the surface of the steel sheet before plating, it is conceivable to control the annealing conditions (temperature distribution, atmosphere) before plating or to perform various pretreatments on the surface of the steel sheet in advance. In the invention, the method is not limited.
[0034]
In the present invention, the position and size of the oxide present in the plating film are defined. It is not limited to the type or configuration of the alloy phase of the entire plating film. In the galvannealed steel sheet of the present invention, the method for producing the base steel sheet is not particularly limited, and a normal pickling plate or cold pressure plate may be used. Usually, the plate thickness is 5 mm or less. Moreover, it does not specifically limit about the manufacturing apparatus of an galvannealed steel plate, For example, the continuous hot-dip galvanizing apparatus currently used normally may be sufficient. In addition, the alloyed hot-dip galvanized steel sheet of the present invention may be subjected to upper layer plating mainly containing Fe or Ni to further improve the press formability.
[0035]
【Example】
Examples of the present invention are shown below.
[0036]
Table 1 shows the results of investigating the relationship between the oxide position of the galvannealed steel sheet, the interface structure, and the adhesion of the plating film.
[0037]
Both the inventive example and the comparative example were subjected to hot dip galvanizing after annealing a steel sheet cold-rolled with a thickness of 1.0 mm with the component composition within the range of the invention (1), and the amount of plating applied was 50-60 g per side It is an alloyed hot-dip galvanized steel sheet produced by performing an alloying treatment after adjusting to / m 2 . In the alloying treatment, the Fe concentration in the film was adjusted to 9.5 to 12% by mass.
[0038]
In the example of the present invention, the sample is immersed in a 20 g / l sulfuric acid bath (pH: 2.5) for 5 seconds, washed with water and then annealed in a radiant heating furnace (treatment X), or a 20 g / l sulfuric acid bath (pH: Oxidation of the steel sheet surface before plating, either by immersion in 2.5) for 5 seconds, washing with water and then using a direct-fired burner during annealing, followed by direct-fired heating and annealing in a radiant heating furnace (treatment Y) The thing was controlled. In the comparative example, annealing was performed without performing the immersion treatment in the sulfuric acid bath (treatment Z). Table 1 shows the component compositions and processing conditions of the steel sheets of the present invention and the comparative examples.
[0039]
The position and interface structure of the oxide in the galvannealed steel sheet can be determined by observing and analyzing a thin section of the cross section produced using a focused ion beam device (FIB) with a scanning electron microscope (SEM) with an analytical function. Were determined. The alloy phase was identified by transmission electron microscope (TEM) as needed.
[0040]
The adhesion of the plating film was evaluated by performing a draw bead test and measuring the amount of peeling of the film per unit area. Here, the draw bead test is a test in which a steel plate coated with lubricating oil is pulled out in a state of being sandwiched between a bead and a die, and then a tape peeling test is performed, and the amount of peeling of the plating film is evaluated from a mass difference before and after the test. Is the method. The bead was a triangular bead with a tip angle of 90 °, the molding height was 4 mm, and the pressing load between the bead and the die was 4903 N (500 kgf).
[0041]
[Table 1]
Figure 0003991860
[0042]
The inventive examples clearly have better adhesion than the comparative examples. Comparing the present invention Examples 1 and 2, Si present in the plating film in a distance from the plating film / base interface, oxide containing Mn is is under 500nm or less length of the parallel direction to the interface a particulate Inventive example 2, as compared to the present invention example 1, it is found to have better adhesion. In addition, the inventive example 3 has better adhesion than the reference example that is outside the scope of the invention (1).
[0043]
【The invention's effect】
As described above, according to the present invention, an alloyed hot-dip galvanized steel sheet having excellent plating film adhesion can be obtained.
[0044]
Since the steel sheet of the present invention has an alloyed hot-dip galvanized film on the surface, it has excellent corrosion resistance and excellent adhesion of the plated film. In addition, the steel plate strength includes one or more of Si: 0.1% by mass to 2.0% by mass, Mn: 0.5% by mass to 3.0% by mass, and P: 0.01% by mass to 0.15% by mass. Can be strengthened.
[0045]
The alloyed hot-dip galvanized steel sheet of the present invention can be used for many applications including automobile bodies.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic cross-sectional view for explaining the existence state of an oxide in the vicinity of a plating film / underlying steel plate interface of a galvannealed steel sheet according to the present invention, wherein (a) is a plating film (iron-zinc alloy). (B) shows a state in which the dispersed oxides are partially connected and continuously present in a layered state.

Claims (1)

下地鋼板が、Si:0.1質量%以上2.0質量%以下、Mn:0.5質量%以上3.0質量%以下、P:0.01質量%以上0.15質量%以下のうちの1種類以上を含む合金化溶融亜鉛めっき鋼板であって、めっき前の下地鋼板表面に存在するSi、Mn、Pのうちの1種類以上の元素を含む酸化物の少なくとも一部が、めっき皮膜/下地鋼板界面から隔離されてめっき皮膜中に存在するとともに、断面組織でみて、該酸化物下方で鉄−亜鉛合金相が下地鋼板と接している界面形態の割合が、界面長さの30%以上であることを特徴とする合金化溶融亜鉛めっき鋼板。  An alloyed hot-dip galvanized steel sheet containing at least one of Si: 0.1% by mass to 2.0% by mass, Mn: 0.5% by mass to 3.0% by mass, and P: 0.01% by mass to 0.15% by mass And at least a part of the oxide containing one or more elements of Si, Mn, and P existing on the surface of the base steel plate before plating is isolated from the plating film / underlying steel plate interface in the plating film. The alloyed molten zinc characterized in that the ratio of the interface form in which the iron-zinc alloy phase is in contact with the underlying steel sheet below the oxide is 30% or more of the interface length when present in the cross-sectional structure Plated steel sheet.
JP2002373579A 2002-12-25 2002-12-25 Alloy hot-dip galvanized steel sheet Expired - Fee Related JP3991860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373579A JP3991860B2 (en) 2002-12-25 2002-12-25 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373579A JP3991860B2 (en) 2002-12-25 2002-12-25 Alloy hot-dip galvanized steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007034843A Division JP2007154317A (en) 2007-02-15 2007-02-15 Alloyed hot dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2004204280A JP2004204280A (en) 2004-07-22
JP3991860B2 true JP3991860B2 (en) 2007-10-17

Family

ID=32811820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373579A Expired - Fee Related JP3991860B2 (en) 2002-12-25 2002-12-25 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3991860B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004027803D1 (en) 2003-03-31 2010-08-05 Nippon Steel Corp AFTER THE HEATING METHOD WITH ALLOYED ZINC COATED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
JP5194366B2 (en) * 2006-02-10 2013-05-08 新日鐵住金株式会社 Hot-dip galvanized steel sheet with excellent surface appearance
JP4411326B2 (en) 2007-01-29 2010-02-10 株式会社神戸製鋼所 High-strength galvannealed steel sheet with excellent phosphatability
JP5029256B2 (en) * 2007-09-26 2012-09-19 住友金属工業株式会社 Manufacturing method of galvannealed steel sheet with excellent press formability

Also Published As

Publication number Publication date
JP2004204280A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
EP2798094B1 (en) High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same
JP5113385B2 (en) Method for manufacturing hardened steel parts
WO2012053694A1 (en) Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same
US9175375B2 (en) Metal-coated steel sheet
EP2527493A1 (en) Hot-dip zinc-coated steel sheet
JP2005074464A (en) Hot-pressing formed product and its producing method
CN116670317A (en) Plated steel sheet excellent in sealant adhesion and method for producing same
JP2010070784A (en) HOT-DIP Al-Zn PLATED STEEL SHEET, AND METHOD FOR MANUFACTURING THE SAME
CN113924379B (en) Hot-pressing galvanized steel sheet, method for producing hot-pressing galvanized steel sheet, and hot-pressed molded body
JP3991860B2 (en) Alloy hot-dip galvanized steel sheet
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
JP2007154317A (en) Alloyed hot dip galvanized steel sheet
JP4237478B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5206114B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality
CN113811630B (en) Hot-pressed molded body
JP2576329B2 (en) Method for producing high-strength alloyed hot-dip galvanized steel sheet with excellent coating uniformity and powdering resistance
JP2005336545A (en) Steel sheet to be galvannealed
KR101115848B1 (en) Zn-plated steel sheet for hot press forming having excellent surface property and hot pressed parts using the same
KR20110018701A (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
JP3111929B2 (en) Galvanized steel sheet
JP2618306B2 (en) High P content high tensile galvanized steel sheet
KR100244632B1 (en) The zn coating method of steel with good adherence
JP4848738B2 (en) Method for producing galvannealed steel sheet
JP2005200711A (en) Method of producing hot dip galvannealed steel sheet
JP5604784B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good plating properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060818

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Ref document number: 3991860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees