JP3991857B2 - Thermosensitive recording medium containing crystal modification of developer n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate for thermal recording medium - Google Patents

Thermosensitive recording medium containing crystal modification of developer n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate for thermal recording medium Download PDF

Info

Publication number
JP3991857B2
JP3991857B2 JP2002361994A JP2002361994A JP3991857B2 JP 3991857 B2 JP3991857 B2 JP 3991857B2 JP 2002361994 A JP2002361994 A JP 2002361994A JP 2002361994 A JP2002361994 A JP 2002361994A JP 3991857 B2 JP3991857 B2 JP 3991857B2
Authority
JP
Japan
Prior art keywords
dispersion
recording medium
developer
crystal
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002361994A
Other languages
Japanese (ja)
Other versions
JP2004189691A (en
Inventor
亜矢子 白井
貴子 瀬川
剛志 鹿野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2002361994A priority Critical patent/JP3991857B2/en
Publication of JP2004189691A publication Critical patent/JP2004189691A/en
Application granted granted Critical
Publication of JP3991857B2 publication Critical patent/JP3991857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、感熱記録体用の顕色剤として工業的利用価値の高いn−ブチル=4−(3−(p−トルエンスルホニル)ウレイド)ベンゾエート(以下、TUBEと略す)の新規な結晶変態を含有する感熱記録層を支持体上に設けた感熱記録体に関するものである。
【0002】
【従来の技術】
感熱記録体は、一般に紙、合成紙、プラスチックフィルム等の支持体上に電子供与性ロイコ染料のような発色性物質と電子受容性のフェノール性化合物等の有機酸性物質のような顕色性物質を主成分とする感熱発色層を設けてなり、それらを熱エネルギーによって反応させて記録画像を得ることができる。このような感熱記録体はたとえば特公昭43-4160号公報、および特公昭45-14039号公報に開示されており、広く実用化されている。
【0003】
感熱記録体は、記録装置がコンパクトで安価でかつ保守が容易であることから、レジ用紙や交通機関の切符、通勤定期券、ハンディターミナルの出力紙、馬券や船券あるいは超音波診断の画像出力紙など広範囲に実用されている。
近年、この画像の形成にかかわる種々の特性を改良する目的で、顕色性物質、いわゆる顕色剤の開発・発明が行なわれてきた。それらは、たとえば特開平5-32061号公報、特開平5-147357号公報、特開平8-333329号公報、および特開2000-355167号公報(特許文献1)などに開示され、実用化されている。
【0004】
これらのうち、特許文献1で開示されているTUBEを顕色性物質として用いた場合、記録感度の高く、画像の保存性も高いレベルの感熱記録体を製造することができる。
【0005】
上述のように、TUBEは、感熱記録体用の顕色剤として優れた特長を有しているが、得られる化合物の物理物性が合成法などにより異なることが見出された。これは結晶の多形現象・変態現象と考えられるが、安定に製品を製造するためには、明確なキャラクタリゼーションが必要となる。更に、それらの結晶による物性の差異を積極的に利用して、特徴を持った感熱記録体を製造する技術基盤を作ることも重要である。
結晶多形は、珍しい現象ではあるが、決してまれではなく、感熱記録材料に関連する物質では、特許文献2,3などに開示されている。しかし、どの物質で結晶変態が現れるかを予想することはきわめて困難であり、実験事実に頼るしかないのが実情である。
【0006】
【特許文献1】
特開2000-355167号公報(第2頁、請求項2)
【特許文献2】
特開平5-202301号公報(第2頁、請求項1)
【特許文献3】
特開平7-278098号公報(第2頁、請求項1)
【0007】
【発明が解決しようとする課題】
本発明は感熱記録体の顕色性物質として有用なTUBEの新規な結晶変態を含有する感熱記録層を支持体上に設けた感熱記録体を提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明は下記の態様を含む。
[1] 下記構造式(I):
【化2】

Figure 0003991857
により表わされ、かつ、そのX線回折図において、Cu−Kα線による回折角(2θ)が5.70°に強いピークを示し、かつ、18 . 15°、25 . 60°に中間強度のピークを示す結晶形Iを有するn−ブチル=4−(3−(p−トルエンスルホニル)ウレイド)ベンゾエートの結晶変態を含有する感熱記録層を支持体上に設けた感熱記録体。
【0010】
本発明者はTUBEが種々の安全性試験を高いレベルでクリアした、環境適性の高い顕色剤であるという特徴も見出した。
【0011】
TUBEは、特開2000―355167号公報(特許文献1)において既に顕色剤として有用であることが開示されている。しかし、工場レベルの量産を行なうためには、顕色剤分散液の粘度等の物性が安定していることが必須であるが、同じ化学構造式を有するTUBEの中でも分散液が安定であるものと、増粘または凝固してしまうものが存在することが明らかになった。ここで、TUBEが結晶変態を有し、その変態によって、物性が異なることが初めて明らかになった。
その後の研究により、TUBEは少なくとも3種の結晶変態を有し、そのうちの2種は、それを用いて水系分散液を作成した場合、長期の保存や、高温下での保存でも安定性を失わないのに対し、1種の結晶変態は、前の処理で安定性を失い、激しく凝集するという特性を有することを発見した。
【0012】
すなわち、上記結晶形Iは、X線回折においてCu−Kα線による回折角(2θ)が、5.70°において強いピークを示し、かつ、18.15°、25.60°に中間強度のピークを示す結晶形を有するもので、安定な分散液を形成する。上記結晶形IIは、6.90°において強いピークを示し、かつ14.90°、19.50°において中間強度のピークを示す結晶形を有するもので、安定な分散液を形成する。一方結晶形IIIはX線回折においてCu−Kα線による回折角(2θ)が、8.20°において強いピークを示し、かつ、18.05°に中間強度のピークを示す結晶形を有するもので、これは安定な分散液を形成しない。この分散液は、長期の保存では数ヶ月で,あるいは高温の保存では1日から数日で著しく増粘しあるいは分散液全体が固化する挙動を示し、感熱記録体用の塗工液調成に著しい問題を呈する。従って、事実上、工場レベルでの製造に適するものは、結晶形Iのものと、結晶形IIのもの又は、それらの混合物を含有するものである。
【0013】
TUBEは、結晶形I、結晶形II、あるいは結晶形IIIを用いて分散液を調成し、それから感熱記録体を作成しても、その感熱記録体にはほとんど差がない。いずれも高性能の感熱記録体の特性を示す。同時に研究過程において結晶形IまたはIIを加熱するとさらに相転移を起こし、第4の結晶形IV(Cu−Kα線による回折角(2θ)が19.5°に強いピークを示し、かつ、8.25°、22.05°に中間強度のピークを示す)となる事がわかった。
従って、結晶形I、IIから出発しても画像印字操作(加熱)により結晶形IVに相転移をした後、融解し染料と反応して発色を生じている可能性もある。
【0014】
本発明者らは、TUBEにはいくつかの合成法があるが、その合成法と得られる結晶形態の間に強い相関関係があることを発見した。例えば、ブチル=p−アミノベンゾエートとp−トルエンスルホニルイソシアナートをアセトニトリル溶媒中で反応させて得られたTUBEは、結晶形IまたはIIの形態をとる。これに対して、同様の反応をたとえばトルエン中またはキシレン中で行なうと結晶形IIIの形態をとりやすい。
【0015】
次にTUBEの結晶変態をX線回折図において解説する。図1〜3はCu−Kα線による粉体X線回折法において、回折角(2θ)をシンチレーションカウンターを使用して記録したX線回折図である。
【0016】
図1は結晶形IのX線回折図であり、回折角(2θ)の5.70°に強いピークを示し、かつ18.15°、25.60°に中間強度のピークを示す。
【0017】
図2は結晶形IIのX線回折図であり、回折角(2θ)の6.90°に強いピークを示し、かつ14.90°、19.50°に中間強度のピークを示す。
【0018】
図3は参考までに結晶形IIIのX線回折図であり、回折角(2θ)の8.20°に強いピークを示し、かつ18.05°に中間強度のピークを示す。
【0019】
これらX線回折図はTUBEの結晶変態を示し、各結晶変態の相違を明確に表示している。各結晶変態のTUBEは、通常はいずれも白色粉末状態であり、肉眼で見ただけではどの結晶変態なのか識別することは困難であるが、得られたものについてX線回折測定をすることによって明確に区別することができる。
【0020】
不思議なことに、TUBEは各結晶変態によってその融点はほとんど変わらない。この事実により、TUBEの結晶変態は見逃されていた。
【0021】
【実施例】
下記に実施例を示し、本発明を具体的に説明する。特に断らない限り、「部」および「%」は、それぞれ「重量部」および「重量%」を表す。
【0022】
<実施合成例1> TUBE結晶形Iの合成
滴下ロート、および温度計を装着した三口フラスコに、19.3g(0.1mol )ブチル=p−アミノベンゾエートを入れ、これを150mlのアセトニトリルに溶解した。この溶液を撹拌しながら、これに滴下ロートより、p−トルエンスルホニルイソシアナート21.7g(0.11mol )を滴下した。滴下開始と同時に発熱反応がおこった。得られた反応混合液を更に1時間70℃加熱撹拌し、冷却後析出した白色結晶を濾過して35.1gの目的物を得た。この白色結晶について、理学電機株式会社製のX線回折装置(商標:ガイガーフレックスRINT−2200)により分析を行った。Cu−Kα線による粉体X線回折法で、回折角(2θ)をシンチレーションカウンターを使用して記録すると、図1に示されるようなX線回折図を与え、その融点は156.6℃であった。
【0023】
<実施合成例2 >TUBE結晶形IIの合成
滴下ロート、および温度計を装着した三口フラスコに、19.3g(0.1mol )ブチル=p−アミノベンゾエートを入れ、これを150mlのアセトニトリルに溶解した。この溶液を撹拌しながら、これに滴下ロートより、p−トルエンスルホニルイソシアナート21.7g(0.11mol )を滴下した。滴下開始と同時に発熱反応がおこった。得られた反応混合液を更に1時間70℃加熱撹拌する。反応終了後、直ちに反応器を氷中につけ急冷し、冷却後析出した白色結晶を濾過して36.2gの目的物を得た。この白色結晶について、理学電機株式会社製のX線回折装置(商標:ガイガーフレックスRINT−2200)により分析を行った。Cu−Kα線による粉体X線回折法で、回折角(2θ)をシンチレーションカウンターを使用して記録すると、図2に示されるようなX線回折図を与え、その融点は154.0℃であった。
【0024】
<比較合成例1> TUBE結晶形IIIの合成
滴下ロート、および温度計を装着した三口フラスコに、19.3g(0.1mol )ブチル=p−アミノベンゾエートを入れ、これを200mlのトルエンに分散した。この懸濁液を撹拌しながら、これに滴下ロートより、p−トルエンスルホニルイソシアナート21.7g(0.11mol )を滴下した。滴下開始と同時に発熱反応がおこった。得られた反応混合液を更に1時間100℃加熱撹拌し、冷却後析出した白色結晶を濾過して38.2gの目的物を得た。この白色結晶について、理学電機株式会社製のX線回折装置(商標:ガイガーフレックスRINT−2200)により分析を行った。Cu−Kα線による粉体X線回折法で、回折角(2θ)をシンチレーションカウンターを使用して記録すると、図3に示されるようなX線回折図を与え、その融点は156.4℃であった。
【0025】
<比較合成例2> TUBE結晶形IIIの合成(その2)
滴下ロート、および温度計を装着した三口フラスコに、19.3g(0.1mol )ブチル=p−アミノベンゾエートを入れ、これを200mlのキシレンに分散した。この懸濁液を撹拌しながら、これに滴下ロートより、p−トルエンスルホニルイソシアナート21.7g(0.11mol )を滴下した。滴下開始と同時に発熱反応がおこった。得られた反応混合液を更に1時間100℃加熱撹拌し、冷却後析出した白色結晶を濾過して37.8gの目的物を得た。この白色結晶について、理学電機株式会社製のX線回折装置(商標:ガイガーフレックスRINT−2200)により分析を行った。Cu−Kα線による粉体X線回折法で、回折角(2θ)をシンチレーションカウンターを使用して記録すると、図3に示されるようなX線回折図を与え、その融点は156.4℃であった。
【0026】
上記各TUBEを用い、以下の手順により水系分散液を作成した。
Figure 0003991857
【0027】
上記組成物をアイメックス社製6筒式サンドグラインダーを用い、0.8mmのビーズを分散媒体とし、平均粒径が1μm以下(粒径は島津製作所製 SALD-2000Jにより測定)になるまで粉砕した。
分散終了後、ビーズを分離してTUBEの水系分散液1を得た。この分散液を3ヶ月間室温で静置し、3ヵ月後に状態を観察した。また、一部をガラス製の器に移し、栓をして60℃のチャンバーに1昼夜放置し、その後状態を観察した。結果を表1に示す。
【0028】
<実施例分散液B2の作成と安定性試験>
実施例分散液B1の調成と同様の操作、試験を行なった。ただし、TUBEは実施合成例2で合成され、 図2のX線回折図を与える結晶形IIのものを用いた。結果を表1に示す。
<比較分散液B3の作成と安定性試験>
実施例分散液1の調成と同様の操作、試験を行なった。ただし、TUBEは比較合成例1で合成され、 図3のX線回折図を与える結晶形IIIのものを用いた。結果を表1に示す。
<比較分散液B4の作成と安定性試験>
実施例分散液1の調成と同様の操作、試験を行なった。ただし、TUBEは比較合成例2で合成され、 図3のX線回折図を与える結晶形IIIのものを用いた。結果を表1に示す。
【0029】
<感熱記録紙作製実施例1>
下記操作により感熱記録紙を作製した。
(1)顔料下塗り紙の調製焼成クレイ(商標:アンシレックス、ENGELHARD社製)85部を水320部に分散して得られた分散物に、スチレン/ブタジエン共重合物エマルジョン(固形分50%)40部と、10%酸化でんぷん水溶液50部とを混合して塗液を調製した。この塗液を48g/m2 の原紙の上に乾燥後の塗布量が7.0g/m2 になるように塗工して、顔料下塗り紙を作製した。
【0030】
Figure 0003991857
上記組成物をサンドグラインダーを用い、平均粒径が1μm以下になるまで粉砕した。
【0031】
Figure 0003991857
上記組成物をサンドグラインダーを用い、平均粒径が1μm以下になるまで粉砕した。
【0032】
(4)発色層の形成
感熱発色層の形成上記A液60部、上記分散液B1を120部、およびC液120部に、炭酸カルシウム顔料26部、25%ステアリン酸亜鉛分散液12部、30%パラフィン分散液10部、および10%ポリビニルアルコール水溶液80部を混合、撹拌し、塗布液とした。この塗布液を、顔料下塗り紙の顔料塗工面に、乾燥後の塗布量が5.0g/m2 となるように塗布乾燥して感熱発色層を形成し、感熱記録紙を作製した。
【0033】
(5)スーパーカレンダー処理
カレンダー処理上記の様にして得られた感熱記録紙をスーパーカレンダーによって処理し、その表面の平滑度を800〜1200秒とした。
【0034】
(6)発色試験
こうして得られた感熱記録紙の試料について、ハンター白色度計(東洋精機製作所)で白色度を測定した。次に大倉電機製動的感熱発色シミュレーターTHPMD(印字電圧21.7V)を用い、印加パルス幅0.6msと1.0msの印字条件で試料を市松模様状に発色させた。発色濃度はマクベス反射濃度計RD−914で測定し、これを記録感度を代表する値とした。テスト結果を表2に示す
【0035】
<感熱記録紙作製実施例2>
感熱記録紙作製例1と同様の操作を行なった。但し、分散液B1の代わりに分散液B2を用いた。テスト結果を表2に示す。
【0036】
<感熱記録紙作製比較例1>
感熱記録紙作製例1と同様の操作を行なった。但し、分散液B1の代わりに分散液B3を用いた。テスト結果を表2に示す。
【0037】
<感熱記録紙作製比較例2>
感熱記録紙作製例1と同様の操作を行なった。但し、分散液B1の代わりに分散液B4を用いた。テスト結果を表2に示す。
【0038】
【表1】
Figure 0003991857
「分散液凝固」とは、分散液全体が固化する状態をいう。
【表2】
Figure 0003991857
安定性試験(高温処理、長時間保管)を行なわずに感熱記録塗料を調製し、感熱記録体を作成して試験した。
【0039】
前記表1から明らかなように、本発明のTUBEの結晶形IおよびIIを用いた場合、水系分散液は長期の保存および高温の保存でも安定に存在する。しかし、結晶形IIIのTUBEを用いた場合、水系分散液は、長期の保存または高温の保存下で著しく増粘または、凝固し、塗料の調製ができない。しかし、表2より明らかなように、結晶形IIIのTUBEを用いても、分散後短時間は分散液は安定であり、それを用いて作成した感熱紙は結晶形I、またはIIを用いて作成した実施例の感熱紙同様、高い白色度と、高い発色感度を示し、顕色剤としての適性を示した。
【0040】
【発明の効果】
本発明のTUBEの2種の新規な結晶変態は、それを用いて作成した水系分散液の安定性に優れ、かつその分散液を用いて作成した感熱紙の特性も高く、実用上極めて有用なものである。本発明の顕色剤は直接手に触れる感熱紙、オーバーコートを設けない感熱紙等にも用いることができる。
【図面の簡単な説明】
【図1】 図1は本発明顕色剤結晶形IのX線回折図であり、回折角(2θ)の5.70°に強いピークを示し、かつ18.15°、25.60°に中間強度のピークを示す。
【図2】図2は本発明顕色剤結晶形IIのX線回折図であり、回折角(2θ)の6.90°に強いピークを示し、かつ14.90°、19.50°に中間強度のピークを示す。
【図3】図3は本発明外顕色剤結晶形IIIのX線回折図であり、回折角(2θ)の8.20°に強いピークを示し、かつ18.05°に中間強度のピークを示す。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a novel crystal modification of n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate (hereinafter abbreviated as TUBE), which has a high industrial utility value as a developer for a thermal recording material. The present invention relates to a heat-sensitive recording material comprising a heat-sensitive recording layer contained on a support .
[0002]
[Prior art]
The heat-sensitive recording material is generally a color developing material such as an electron donating leuco dye and a color developing material such as an organic acid material such as an electron accepting phenolic compound on a support such as paper, synthetic paper or plastic film. Is provided as a main component, and a recorded image can be obtained by reacting them with heat energy. Such heat-sensitive recording materials are disclosed in, for example, Japanese Patent Publication No. 43-4160 and Japanese Patent Publication No. 45-14039, and are widely put into practical use.
[0003]
Because the recording device is compact, inexpensive, and easy to maintain, thermal recording media can be used for cash register sheets, transportation tickets, commuter pass tickets, handy terminal output papers, betting tickets, boat tickets, or ultrasound diagnostic image output. Widely used in paper.
In recent years, for the purpose of improving various properties related to the formation of this image, development and invention of a developer, that is, a so-called developer has been performed. They are disclosed in, for example, JP-A-5-32061, JP-A-5-147357, JP-A-8-333329, and JP-A-2000-355167 (Patent Document 1) and are put into practical use. Yes.
[0004]
Among these, when TUBE disclosed in Patent Document 1 is used as a developer, a heat-sensitive recording material having high recording sensitivity and high image storage stability can be produced.
[0005]
As described above, TUBE has excellent features as a developer for a thermal recording material, but it has been found that the physical properties of the resulting compound differ depending on the synthesis method and the like. This is considered to be a polymorphism / transformation phenomenon of crystals, but a clear characterization is required to produce a stable product. Furthermore, it is also important to create a technical base for manufacturing a heat-sensitive recording material having characteristics by actively utilizing the difference in physical properties between the crystals.
Crystal polymorphism is an unusual phenomenon, but it is not rare. Substances related to heat-sensitive recording materials are disclosed in Patent Documents 2 and 3 and the like. However, it is extremely difficult to predict which substance will cause crystal transformation, and the fact is that it depends on experimental facts.
[0006]
[Patent Document 1]
JP 2000-355167 A (page 2, claim 2)
[Patent Document 2]
JP-A-5-220301 (second page, claim 1)
[Patent Document 3]
Japanese Unexamined Patent Publication No. 7-278098 (second page, claim 1)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a heat-sensitive recording material in which a heat-sensitive recording layer containing a novel crystal modification of TUBE useful as a color developing material of the heat-sensitive recording material is provided on a support .
[0008]
[Means for Solving the Problems]
The present invention includes the following embodiments.
[1] The following structural formula (I):
[Chemical formula 2]
Figure 0003991857
Represented by, and, in its X-ray diffraction pattern, shows strong peaks at diffraction angles (2 [Theta]) is 5.70 ° by Cu-K [alpha line, and, 18. 15 °, 25. 60 ° to the intermediate intensity A heat-sensitive recording material, wherein a heat-sensitive recording layer containing a crystal modification of n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate having a crystal form I exhibiting a peak is provided on a support.
[0010]
The present inventor has also found out that TUBE is a developer with high environmental suitability that has cleared various safety tests at a high level.
[0011]
TUBE has already been disclosed in JP 2000-355167 A (Patent Document 1) as being useful as a developer. However, in order to carry out mass production at the factory level, it is essential that the physical properties such as the viscosity of the developer dispersion are stable, but among the TUBEs having the same chemical structural formula, the dispersion is stable. It became clear that there was something that thickened or coagulated. Here, it became clear for the first time that TUBE has a crystal transformation and the physical properties differ depending on the transformation.
Subsequent research shows that TUBE has at least three crystal transformations, two of which lose stability when stored for long periods of time or at high temperatures when they are used to make aqueous dispersions. while no one crystalline modification loses stability before Symbol treatment, it was found to have the property of violently aggregation.
[0012]
That is, the crystal form I shows a strong peak in the X-ray diffraction when the diffraction angle (2θ) by Cu-Kα ray is 5.70 °, and the intermediate intensity peaks at 18.15 ° and 25.60 °. And form a stable dispersion. The crystal form II has a strong peak at 6.90 ° and a peak of intermediate intensity at 14.90 ° and 19.50 °, and forms a stable dispersion. On the other hand, the crystal form III has a crystal form in which the diffraction angle (2θ) by Cu-Kα ray in X-ray diffraction shows a strong peak at 8.20 ° and an intermediate intensity peak at 18.05 °. This does not form a stable dispersion. This dispersion shows the behavior of thickening or solidifying the whole dispersion in several months for long-term storage or in one to several days for storage at high temperatures. Presents significant problems. Accordingly, those that are practically suitable for manufacturing at the factory level are those that contain crystalline Form I, crystalline Form II, or mixtures thereof.
[0013]
Even if TUBE prepares a dispersion using crystalline form I, crystalline form II, or crystalline form III, and makes a thermal recording body therefrom, there is almost no difference in the thermal recording body. Both show the characteristics of high-performance thermal recording media. At the same time, when the crystalline form I or II is heated in the course of the research, further phase transition occurs, and the fourth crystalline form IV (the diffraction angle (2θ) by Cu-Kα ray shows a strong peak at 19.5 °, and 8. It was found that the intermediate intensity peaks were observed at 25 ° and 22.05 °).
Therefore, even if starting from crystal forms I and II, there is a possibility that after phase transition to crystal form IV by image printing operation (heating), it melts and reacts with the dye to cause color development.
[0014]
The present inventors have found that there are several synthesis methods for TUBE, and there is a strong correlation between the synthesis method and the obtained crystal form. For example, TUBE obtained by reacting butyl = p-aminobenzoate and p-toluenesulfonyl isocyanate in an acetonitrile solvent takes the form of crystalline form I or II. On the other hand, when the same reaction is carried out in toluene or xylene, for example, it is easy to take the form of crystal form III.
[0015]
Next, the crystal transformation of TUBE will be explained using an X-ray diffraction diagram. 1 to 3 are X-ray diffraction diagrams in which a diffraction angle (2θ) is recorded using a scintillation counter in a powder X-ray diffraction method using Cu-Kα rays.
[0016]
FIG. 1 is an X-ray diffraction pattern of crystal form I, which shows a strong peak at a diffraction angle (2θ) of 5.70 °, and shows intermediate intensity peaks at 18.15 ° and 25.60 °.
[0017]
FIG. 2 is an X-ray diffraction diagram of crystal form II, showing a strong peak at a diffraction angle (2θ) of 6.90 °, and intermediate intensity peaks at 14.90 ° and 19.50 °.
[0018]
FIG. 3 is an X-ray diffraction diagram of crystal form III for reference, showing a strong peak at a diffraction angle (2θ) of 8.20 ° and a medium intensity peak at 18.05 °.
[0019]
These X-ray diffractograms show the crystal transformation of TUBE, and clearly show the difference between each crystal transformation. The TUBE of each crystal modification is usually in a white powder state, and it is difficult to identify which crystal modification is by visual observation. However, the obtained TUBE is measured by X-ray diffraction measurement. It can be clearly distinguished.
[0020]
Strangely, the melting point of TUBE hardly changes with each crystal transformation. Due to this fact, the crystal transformation of TUBE was overlooked.
[0021]
【Example】
The present invention will be specifically described with reference to the following examples. Unless otherwise specified, “parts” and “%” represent “parts by weight” and “% by weight”, respectively.
[0022]
Example Synthesis Example 1 19.3 g (0.1 mol) butyl = p-aminobenzoate was placed in a three-necked flask equipped with a TUBE crystal form I dropping funnel and a thermometer, and this was dissolved in 150 ml of acetonitrile. . While stirring this solution, 21.7 g (0.11 mol) of p-toluenesulfonyl isocyanate was added dropwise thereto from a dropping funnel. An exothermic reaction occurred simultaneously with the start of dropping. The obtained reaction mixture was further heated and stirred at 70 ° C. for 1 hour, and the white crystals deposited after cooling were filtered to obtain 35.1 g of the desired product. The white crystal was analyzed with an X-ray diffractometer (trademark: Geigerflex RINT-2200) manufactured by Rigaku Corporation. When the diffraction angle (2θ) is recorded using a scintillation counter by powder X-ray diffraction method using Cu-Kα ray, an X-ray diffraction diagram as shown in FIG. 1 is obtained, and its melting point is 156.6 ° C. there were.
[0023]
Example Synthesis Example 2 Synthesis of TUBE crystal form II 19.3 g (0.1 mol) of butyl p-aminobenzoate was placed in a three-necked flask equipped with a dropping funnel and a thermometer, and this was dissolved in 150 ml of acetonitrile. . While stirring this solution, 21.7 g (0.11 mol) of p-toluenesulfonyl isocyanate was added dropwise thereto from a dropping funnel. An exothermic reaction occurred simultaneously with the start of dropping. The resulting reaction mixture is further heated and stirred at 70 ° C. for 1 hour. Immediately after completion of the reaction, the reactor was put into ice and quenched, and the white crystals deposited after cooling were filtered to obtain 36.2 g of the desired product. The white crystal was analyzed with an X-ray diffractometer (trademark: Geigerflex RINT-2200) manufactured by Rigaku Corporation. When the diffraction angle (2θ) is recorded using a scintillation counter by powder X-ray diffraction method using Cu-Kα ray, an X-ray diffraction diagram as shown in FIG. 2 is obtained, and its melting point is 154.0 ° C. there were.
[0024]
Comparative Synthesis Example 1 19.3 g (0.1 mol) butyl = p-aminobenzoate was placed in a three-necked flask equipped with a TUBE crystal form III dropping funnel and a thermometer, and this was dispersed in 200 ml of toluene. . While this suspension was stirred, 21.7 g (0.11 mol) of p-toluenesulfonyl isocyanate was added dropwise thereto from a dropping funnel. An exothermic reaction occurred simultaneously with the start of dropping. The resulting reaction mixture was further heated and stirred at 100 ° C. for 1 hour, and the white crystals deposited after cooling were filtered to obtain 38.2 g of the desired product. The white crystal was analyzed with an X-ray diffractometer (trademark: Geigerflex RINT-2200) manufactured by Rigaku Corporation. When the diffraction angle (2θ) is recorded using a scintillation counter by powder X-ray diffraction method using Cu-Kα ray, an X-ray diffraction diagram as shown in FIG. 3 is obtained, and its melting point is 156.4 ° C. there were.
[0025]
<Comparative Synthesis Example 2> Synthesis of TUBE crystal form III (part 2)
In a three-necked flask equipped with a dropping funnel and a thermometer, 19.3 g (0.1 mol) butyl p-aminobenzoate was placed and dispersed in 200 ml of xylene. While this suspension was stirred, 21.7 g (0.11 mol) of p-toluenesulfonyl isocyanate was added dropwise thereto from a dropping funnel. An exothermic reaction occurred simultaneously with the start of dropping. The resulting reaction mixture was further heated and stirred at 100 ° C. for 1 hour, and the white crystals deposited after cooling were filtered to obtain 37.8 g of the desired product. The white crystal was analyzed with an X-ray diffractometer (trademark: Geigerflex RINT-2200) manufactured by Rigaku Corporation. When the diffraction angle (2θ) is recorded using a scintillation counter by the powder X-ray diffraction method using Cu-Kα rays, an X-ray diffraction diagram as shown in FIG. 3 is obtained, and its melting point is 156.4 ° C. there were.
[0026]
Using each of the above TUBEs, an aqueous dispersion was prepared by the following procedure.
Figure 0003991857
[0027]
The above composition was pulverized using an Imex 6-cylinder sand grinder using 0.8 mm beads as a dispersion medium until the average particle size was 1 μm or less (the particle size was measured by SALD-2000J manufactured by Shimadzu Corporation).
After the dispersion was completed, the beads were separated to obtain an aqueous dispersion 1 of TUBE. This dispersion was allowed to stand at room temperature for 3 months, and the state was observed after 3 months. In addition, a part was transferred to a glass vessel, stoppered and left in a 60 ° C. chamber for one day, and then the state was observed. The results are shown in Table 1.
[0028]
<Preparation of Example Dispersion B2 and Stability Test>
The same operation and test as in the preparation of Example dispersion B1 were performed. However, TUBE was synthesized in Example of Synthesis Example 2 and used the crystal form II that gives the X-ray diffraction diagram of FIG. The results are shown in Table 1.
<Preparation of comparative dispersion B3 and stability test>
The same operation and test as in the preparation of Example Dispersion 1 were performed. However, TUBE was synthesized in Comparative Synthesis Example 1 and used was crystal form III which gives the X-ray diffraction diagram of FIG. The results are shown in Table 1.
<Preparation of comparative dispersion B4 and stability test>
The same operation and test as in the preparation of Example Dispersion 1 were performed. However, TUBE was synthesized in Comparative Synthesis Example 2 and used the crystal form III that gives the X-ray diffraction diagram of FIG. The results are shown in Table 1.
[0029]
<Thermal recording paper production example 1>
A thermal recording paper was prepared by the following operation.
(1) Preparation of pigment undercoat paper A styrene / butadiene copolymer emulsion (solid content 50%) was prepared by dispersing 85 parts of calcined clay (trade name: Ansilex, manufactured by ENGELHARD) in 320 parts of water. A coating solution was prepared by mixing 40 parts with 50 parts of a 10% aqueous oxidized starch solution. This coating solution was applied onto a 48 g / m 2 base paper so that the coating amount after drying was 7.0 g / m 2 , thereby preparing a pigment undercoat paper.
[0030]
Figure 0003991857
The composition was pulverized using a sand grinder until the average particle size became 1 μm or less.
[0031]
Figure 0003991857
The composition was pulverized using a sand grinder until the average particle size became 1 μm or less.
[0032]
(4) Formation of color-forming layer Formation of heat-sensitive color-developing layer 60 parts of liquid A, 120 parts of dispersion B1 and 120 parts of liquid C, 26 parts of calcium carbonate pigment, 12 parts of 25% zinc stearate dispersion, 30 10 parts of a paraffin dispersion and 80 parts of a 10% polyvinyl alcohol aqueous solution were mixed and stirred to obtain a coating solution. This coating solution was applied and dried on the pigment coated surface of the pigment undercoat paper so that the coating amount after drying was 5.0 g / m 2 to form a heat-sensitive color forming layer, thereby producing a heat-sensitive recording paper.
[0033]
(5) Super calendar process calendar process The thermal recording paper obtained as mentioned above was processed with the super calendar, and the smoothness of the surface was made into 800-1200 second.
[0034]
(6) Color development test The sample of the thermal recording paper thus obtained was measured for whiteness with a Hunter whiteness meter (Toyo Seiki Seisakusho). Next, using a dynamic thermal coloring simulator THPMD (printing voltage 21.7 V) manufactured by Okura Electric, the sample was colored in a checkered pattern under printing conditions of applied pulse widths of 0.6 ms and 1.0 ms. The color density was measured with a Macbeth reflection densitometer RD-914, and this was a value representative of recording sensitivity. The test results are shown in Table 2. [0035]
<Example 2 for making thermal recording paper>
The same operation as in thermal recording paper preparation example 1 was performed. However, dispersion B2 was used instead of dispersion B1. The test results are shown in Table 2.
[0036]
<Thermal recording paper production comparative example 1>
The same operation as in thermal recording paper preparation example 1 was performed. However, dispersion B3 was used instead of dispersion B1. The test results are shown in Table 2.
[0037]
<Thermal recording paper production comparative example 2>
The same operation as in thermal recording paper preparation example 1 was performed. However, dispersion B4 was used instead of dispersion B1. The test results are shown in Table 2.
[0038]
[Table 1]
Figure 0003991857
“Dispersion solidification” refers to a state in which the entire dispersion is solidified.
[Table 2]
Figure 0003991857
A heat-sensitive recording paint was prepared without performing a stability test (high temperature treatment, long-term storage), and a heat-sensitive recording material was prepared and tested.
[0039]
As is apparent from Table 1, when the TUBE crystal forms I and II of the present invention are used, the aqueous dispersion stably exists even during long-term storage and high-temperature storage. However, when TUBE of crystalline form III is used, the aqueous dispersion is significantly thickened or solidified under long-term storage or storage at high temperature, and the paint cannot be prepared. However, as is apparent from Table 2, even when crystal form III TUBE is used, the dispersion is stable for a short time after dispersion, and the thermal paper made using the crystal form I or II uses crystal form I or II. Similar to the heat-sensitive paper of the prepared examples, it showed high whiteness and high color development sensitivity, and showed suitability as a developer.
[0040]
【The invention's effect】
The two new crystal modifications of TUBE of the present invention are excellent in stability of an aqueous dispersion prepared using the same, and have high characteristics of thermal paper prepared using the dispersion, and are extremely useful in practice. Is. The developer of the present invention can also be used for thermal paper that directly touches the hand, thermal paper without an overcoat, and the like.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of developer crystal form I of the present invention, showing a strong peak at 5.70 ° of diffraction angle (2θ) and at 18.15 ° and 25.60 °. A medium intensity peak is shown.
FIG. 2 is an X-ray diffraction pattern of the developer crystal form II of the present invention, showing a strong peak at a diffraction angle (2θ) of 6.90 °, and at 14.90 ° and 19.50 °. A medium intensity peak is shown.
FIG. 3 is an X-ray diffraction pattern of a developer crystal form III outside the present invention, showing a strong peak at a diffraction angle (2θ) of 8.20 ° and a medium intensity peak at 18.05 °. Indicates.

Claims (1)

下記構造式(I):The following structural formula (I):
Figure 0003991857
Figure 0003991857
により表わされ、かつ、そのX線回折図において、Cu−Kα線による回折角(2θ)が5.70°に強いピークを示し、かつ、18In the X-ray diffraction diagram, the diffraction angle (2θ) by Cu-Kα ray shows a strong peak at 5.70 °, and 18 .. 15°、2515 °, 25 .. 60°に中間強度のピークを示す結晶形Iを有するn−ブチル=4−(3−(p−トルエンスルホニル)ウレイド)ベンゾエートの結晶変態を含有する感熱記録層を支持体上に設けた感熱記録体。Thermal recording in which a thermal recording layer containing a crystal modification of n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate having a crystal form I showing an intermediate intensity peak at 60 ° is provided on a support. body.
JP2002361994A 2002-12-13 2002-12-13 Thermosensitive recording medium containing crystal modification of developer n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate for thermal recording medium Expired - Fee Related JP3991857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361994A JP3991857B2 (en) 2002-12-13 2002-12-13 Thermosensitive recording medium containing crystal modification of developer n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate for thermal recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002361994A JP3991857B2 (en) 2002-12-13 2002-12-13 Thermosensitive recording medium containing crystal modification of developer n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate for thermal recording medium

Publications (2)

Publication Number Publication Date
JP2004189691A JP2004189691A (en) 2004-07-08
JP3991857B2 true JP3991857B2 (en) 2007-10-17

Family

ID=32760570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361994A Expired - Fee Related JP3991857B2 (en) 2002-12-13 2002-12-13 Thermosensitive recording medium containing crystal modification of developer n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate for thermal recording medium

Country Status (1)

Country Link
JP (1) JP3991857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021105499A1 (en) 2019-11-28 2021-06-03 Papierfabrik August Koehler Se Polymorphic forms of n-(4-((4-(3-phenylureido)phenyl)sulfonyl)phenyl)benzolsulfonamide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136203A1 (en) * 2015-02-25 2016-09-01 日本曹達株式会社 Crystalline modification of n-(2-(3-phenylureido)phenyl)benzenesulfonamide and recording material using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021105499A1 (en) 2019-11-28 2021-06-03 Papierfabrik August Koehler Se Polymorphic forms of n-(4-((4-(3-phenylureido)phenyl)sulfonyl)phenyl)benzolsulfonamide
US11673859B2 (en) 2019-11-28 2023-06-13 Koehler Paper Se Polymorphic forms of N-(4-((4-(3-phenylureido)phenyl)sulfonyl)phenyl)benzolsulfonamide

Also Published As

Publication number Publication date
JP2004189691A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
USRE33815E (en) Heat sensitive record sheet
JP3544218B2 (en) Sulfonyl compound, method for producing the same, and heat-sensitive recording material using the same
JP3991857B2 (en) Thermosensitive recording medium containing crystal modification of developer n-butyl = 4- (3- (p-toluenesulfonyl) ureido) benzoate for thermal recording medium
JPH044316B2 (en)
JP4036309B2 (en) Nuclear-substituted aniline compound and method for producing the same, developer composition for thermal recording paper, and thermal recording material
JP2004277383A (en) CRYSTAL MODIFICATION OF N-PHENYL-N&#39;-3-(4-p-TOLUENESULFONYLAMINOCARBONYLAMINOBENZOYLOXY)-PROPYLUREA USEFUL AS COLOR DEVELOPER FOR HEAT-SENSITIVE RECORDING MATERIAL
JP3273403B2 (en) Sulfonyl compound and heat-sensitive recording material using the same
JPS60123557A (en) Fluoran derivative, and recording material using it
JP2574043B2 (en) Thermal recording medium
JP3091774B2 (en) Crystalline propanol solvate of fluoran compound, process for producing the same, and recording material containing the crystalline propanol solvate
JPH09227502A (en) Sulfonyl compound and heat-sensitive recording material using the same
JP3154581B2 (en) Thermal recording sheet
JP2656819B2 (en) Thermal recording medium
JP2968003B2 (en) Thermal recording medium
JP2963547B2 (en) Crystalline solvate of fluoran compound, method for producing the same, and recording material containing this crystalline solvate
JPH0742347B2 (en) Salicylic acid resin polyvalent metal compound and its production method and its use as a color developer for pressure-sensitive copying paper
JPH03297685A (en) Thermosensitive recording medium
JPH03288692A (en) Developer for thermal recording
JPH08208593A (en) Toluenesulfonylurea-based compound and developer containing the same for reversible heat-sensitive recording use
JPS61101556A (en) Adduct of ketone with fluoran compound and color forming recording material containing same
JPH0454598B2 (en)
JPH0454597B2 (en)
JPH07278098A (en) Crystal transformation of 4,4&#39;-bis(n&#39;-(p-toluenesulfonyl) ureido)diphenylmethane
JPH0369391A (en) Thermal recording material
JPH03169675A (en) Thermal recording material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070716

R150 Certificate of patent or registration of utility model

Ref document number: 3991857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140803

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees