JP3990672B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP3990672B2
JP3990672B2 JP2004002360A JP2004002360A JP3990672B2 JP 3990672 B2 JP3990672 B2 JP 3990672B2 JP 2004002360 A JP2004002360 A JP 2004002360A JP 2004002360 A JP2004002360 A JP 2004002360A JP 3990672 B2 JP3990672 B2 JP 3990672B2
Authority
JP
Japan
Prior art keywords
intake
opening
valve
air amount
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004002360A
Other languages
Japanese (ja)
Other versions
JP2005194941A (en
Inventor
雄治 岸本
有啓 浜田
亮治 西山
敏 和知
弘道 津上
隆史 松本
敏克 齋藤
浩治 永尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004002360A priority Critical patent/JP3990672B2/en
Publication of JP2005194941A publication Critical patent/JP2005194941A/en
Application granted granted Critical
Publication of JP3990672B2 publication Critical patent/JP3990672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

この発明は、車両用内燃機関のポンピングロスを低減して燃料消費量の改善を図ることが可能な内燃機関制御装置に関するものである。   The present invention relates to an internal combustion engine control device capable of reducing a pumping loss of an internal combustion engine for a vehicle and improving fuel consumption.

車両などに用いられる多気筒内燃機関において、内燃機関の各気筒に対して気筒毎に独立した独立吸気管(吸気枝管)を設け、各独立吸気管にスロットルバルブを配して出力制御を行う所謂多連スロットルバルブが知られている。このように、各独立吸気管にスロットルバルブを設けることにより、スロットルバルブ下流側における吸気管の内容積を減少させることができ、スロットルバルブ開度の制御に対する吸気管内圧力の応答性を向上させて、内燃機関の出力応答性の向上を図ることができる。   In a multi-cylinder internal combustion engine used in a vehicle, etc., an independent intake pipe (intake branch pipe) is provided for each cylinder of the internal combustion engine for each cylinder, and a throttle valve is provided in each independent intake pipe for output control. A so-called multiple throttle valve is known. Thus, by providing a throttle valve in each independent intake pipe, the internal volume of the intake pipe on the downstream side of the throttle valve can be reduced, and the response of the pressure in the intake pipe to the control of the throttle valve opening is improved. The output response of the internal combustion engine can be improved.

しかし、このような多連スロットルバルブの内燃機関は、吸気管集合部に単一のスロットルバルブを配置した単一スロットルバルブの内燃機関と比較すると、特にアイドル運転などの低回転低負荷状態においてスロットルバルブの開度変化に対する吸気量変化のゲインが大きくなり、そのためにスロットルバルブの開度変化に対する内燃機関の出力変化も大きくなって、安定した回転を得るためには各スロットルバルブの微妙な制御が必要となり、スロットルバルブの微妙な制御ができないときには内燃機関の円滑な運転が困難になるという問題があった。   However, such a multi-throttle valve internal combustion engine has a throttle which is particularly low in a low rotation and low load state such as idle operation, as compared with a single throttle valve internal combustion engine in which a single throttle valve is arranged in the intake pipe assembly. The gain of the intake air amount change with respect to the change in the valve opening increases, so the output change of the internal combustion engine with respect to the change in the throttle valve opening also increases, and subtle control of each throttle valve is necessary to obtain stable rotation. There is a problem that it becomes difficult to smoothly operate the internal combustion engine when the throttle valve cannot be delicately controlled.

特許文献1に開示された技術はこのような課題に対応するもので、各気筒に設けられた各独立吸気管にそれぞれが連結されて連動する多連スロットルバルブを配した内燃機関において、各スロットルバルブの下流側に独立吸気管の相互間を連通するバランス通路を設け、このバランス通路を集合管にまとめてスロットルバルブの上流側にある吸気管の集合部と連通させると共に、集合管に電磁バルブを設け、低回転域においては電磁バルブをON−OFF制御することにより回転変動の安定性を向上させたものである。しかし、この文献のように各スロットルバルブが連結され、連動する形式の多連スロットルバルブにおいてはバラツキや経年変化により、各スロットルバルブの開度を一定に維持することは困難である。   The technique disclosed in Patent Document 1 addresses such a problem. In an internal combustion engine provided with multiple throttle valves that are linked to and linked to each independent intake pipe provided in each cylinder, each throttle A balance passage communicating between the independent intake pipes is provided on the downstream side of the valve. The balance passage is integrated into a collecting pipe to communicate with a collecting portion of the intake pipe on the upstream side of the throttle valve, and an electromagnetic valve is connected to the collecting pipe. And the stability of rotational fluctuation is improved by controlling the electromagnetic valve on and off in a low rotation range. However, it is difficult to maintain the opening of each throttle valve constant due to variations and aging in a multiple throttle valve in which each throttle valve is connected and linked as in this document.

また、特許文献2に開示された技術は、内燃機関の各気筒に独立した独立吸気管を配設し、各独立吸気管にスロットルバルブを配設した内燃機関において、各独立吸気管のスロットルバルブ下流側とスロットルバルブ上流側(吸気管の集合部)とを制御弁を有する吸気連通路により連通し、吸気連通路の制御弁下流側の圧力を検出して制御弁を開閉することによりこの圧力を補正すると共に、この補正された圧力に基づき吸入空気量を演算し、制御弁開度の急変に対してはマップから収束補正値を得て演算値を補正することにより、吸入空気量を高精度に設定するようにしたものである。   In addition, the technique disclosed in Patent Document 2 is such that an independent intake pipe is provided for each cylinder of the internal combustion engine, and a throttle valve is provided for each independent intake pipe. This pressure is established by connecting the downstream side and the upstream side of the throttle valve (collection part of the intake pipe) through an intake communication passage having a control valve, and detecting the pressure downstream of the control valve in the intake communication passage to open and close the control valve. In addition, the intake air amount is calculated based on the corrected pressure, and for sudden changes in the control valve opening, the convergence correction value is obtained from the map and the calculated value is corrected to increase the intake air amount. The accuracy is set.

特開昭63−306252号公報(第2頁、第1〜3図)JP-A-63-306252 (2nd page, FIGS. 1 to 3) 特開平07−77440号公報(第3〜6頁、第1〜8図)JP 07-77440 A (pages 3-6, FIGS. 1-8)

車両用内燃機関においては排気ガス対策の一環としてEGR(排ガス再循環)ガスやブローバイガスなどが導入され、吸気管内にはこれらの物質が長期間に亘って存在することになり、その結果スロットルバルブの吸気通路となる有効間隙を閉塞したり減少させたりすることが知られている。このような汚染物質の影響を各気筒間において均等に発生させることは困難であるから、初期に各スロットルバルブの開度を精密に調整しておいても、経時変化により各気筒に対する吸気の供給量は異なったものになってしまい、この不均等な吸気量を相互に連動するように構成された多連スロットルバルブで補正することは困難である。   In an internal combustion engine for a vehicle, EGR (exhaust gas recirculation) gas, blow-by gas, etc. are introduced as part of exhaust gas countermeasures, and these substances exist in the intake pipe for a long period of time. As a result, the throttle valve It is known to close or reduce the effective gap serving as the intake passage. Since it is difficult to generate such pollutant effects evenly among the cylinders, even if the opening of each throttle valve is adjusted precisely at the initial stage, the intake air supply to each cylinder will change over time. The amount becomes different, and it is difficult to correct this uneven intake amount with a multiple throttle valve configured to be linked to each other.

また、内燃機関の出力効率に影響するポンピングロスについては、吸気管の集合部に単一のスロットルバルブを配した形式の内燃機関に対し、各独立吸気管に気筒毎のスロットルバルブを配した形式の方が少なくなることが知られている。ポンピングロスは吸気行程にてスロットルバルブ下流側の大気圧以下に低下した空気を気筒内に吸入し、これを排気行程で大気圧下の排気管に排出することによる損失エネルギである。この損失エネルギは各独立吸気管に気筒毎のスロットルバルブを配した内燃機関では、単一スロットルバルブを有する内燃機関より減少はするものの、比較的大きな損失として残存し、このポンピングロスを低減することにより燃費の向上を図ることができる。   As for the pumping loss that affects the output efficiency of the internal combustion engine, a type in which a throttle valve for each cylinder is arranged in each independent intake pipe in contrast to an internal combustion engine in which a single throttle valve is arranged in the collection section of the intake pipe. Is known to be less. The pumping loss is energy lost by sucking air that has dropped below the atmospheric pressure downstream of the throttle valve in the intake stroke into the cylinder and discharging it into the exhaust pipe under atmospheric pressure in the exhaust stroke. This loss energy is reduced as a relatively large loss in an internal combustion engine in which a throttle valve for each cylinder is arranged in each independent intake pipe, but is reduced as compared with an internal combustion engine having a single throttle valve. As a result, fuel consumption can be improved.

この発明は、このような課題を解決するためになされたもので、各独立吸気管に気筒毎のスロットルバルブを配した内燃機関において、さらにポンピングロスを低減し、燃費を向上させることが可能な内燃機関制御装置を得ることを目的とするものである。   The present invention has been made to solve such a problem. In an internal combustion engine in which a throttle valve for each cylinder is arranged in each independent intake pipe, it is possible to further reduce pumping loss and improve fuel efficiency. An object of the present invention is to obtain an internal combustion engine control device.

この発明に係る内燃機関制御装置は、内燃機関の複数の気筒に対して気筒毎に吸気を供給する独立吸気管、前記独立吸気管のそれぞれに設けられ、それぞれの吸気通路断面積をその開度により個別に制御する個別吸気量制御手段、前記複数の気筒に対する燃料供給を個別に行う燃料噴射弁、前記複数の気筒と前記独立吸気管との接合部にそれぞれ設けられた吸気バルブ、前記吸気バルブの開閉動作を気筒毎に判別する気筒識別センサ、前記独立吸気管の吸気量と燃料供給量とを演算してこの演算結果に基づき前記個別吸気量制御手段と前記燃料噴射弁とを制御する制御手段を備え、前記内燃機関が定常運転の状態にあるとき、前記吸気バルブが開状態のときには前記個別吸気量制御手段の開度を第一の開度の吸気通路断面積に設定し、前記吸気バルブが開状態から閉状態に移行したときには前記個別吸気量制御手段を前記第一の開度の吸気通路断面積より大きい第二の開度の吸気通路断面積に設定して所定時間保持し、前記内燃機関が加速運転など出力増加状態にあるとき、前記吸気バルブが閉状態に移行すると前記個別吸気量制御手段の開度を第三の開度から第四の開度まで吸気通路断面積を徐々に増加させ、前記吸気バルブが閉状態から開状態に移行すると前記個別吸気量制御手段の開度を前記第四の開度から前記第三の開度より大きい第五の開度まで徐々に減少させると共に、前記出力増加状態にあるときに於いて、前記吸気バルブが閉状態にあるときに前記燃料噴射弁のよる燃料噴射が開始されると前記吸気バルブの次回の閉状態が開始されるまで前記個別吸気量制御手段の開度を保持するようにしたものである。 An internal combustion engine control apparatus according to the present invention is provided in each of an independent intake pipe for supplying intake air to each of a plurality of cylinders of the internal combustion engine, and the independent intake pipe, and the respective intake passage cross-sectional areas are represented by their opening degrees. Individual intake air amount control means for individually controlling the fuel, a fuel injection valve for individually supplying fuel to the plurality of cylinders, an intake valve provided at a joint portion between the plurality of cylinders and the independent intake pipe, and the intake valve A cylinder identification sensor for discriminating the opening / closing operation of each cylinder, and a control for calculating the intake amount and the fuel supply amount of the independent intake pipe and controlling the individual intake amount control means and the fuel injection valve based on the calculation result And when the internal combustion engine is in a steady operation state and the intake valve is open, the opening of the individual intake air amount control means is set to the intake passage cross-sectional area of the first opening, and the intake When the valve transitions from the open state to the closed state, the individual intake air amount control means is set to an intake passage cross-sectional area of a second opening larger than the intake passage cross-sectional area of the first opening, and is held for a predetermined time, When the internal combustion engine is in an output increasing state such as an acceleration operation, when the intake valve shifts to the closed state, the opening of the individual intake air amount control means is increased from the third opening to the fourth opening. When the intake valve shifts from a closed state to an open state, the opening of the individual intake air amount control means is gradually increased from the fourth opening to a fifth opening that is larger than the third opening. When the fuel injection by the fuel injection valve is started when the intake valve is in the closed state, the next closed state of the intake valve is started. Until said individual intake air amount control means It is obtained so as to hold the opening.

また、この発明に係る内燃機関制御装置は、内燃機関の複数の気筒に対して気筒毎に吸気を供給する独立吸気管、前記独立吸気管のそれぞれに設けられ、それぞれの吸気通路断面積をその開度により個別に制御する個別吸気量制御手段、前記複数の気筒に対する燃料供給を個別に行う燃料噴射弁、前記複数の気筒と前記独立吸気管との接合部にそれぞれ設けられた吸気バルブ、前記吸気バルブの開閉動作を気筒毎に判別する気筒識別センサ、前記独立吸気管の吸気量と燃料供給量とを演算してこの演算結果に基づき前記個別吸気量制御手段と前記燃料噴射弁とを制御する制御手段を備え、前記内燃機関が定常運転の状態にあるとき、前記吸気バルブが開状態のときには前記個別吸気量制御手段の開度を第一の開度の吸気通路断面積に設定し、前記吸気バルブが開状態から閉状態に移行したときには前記個別吸気量制御手段を前記第一の開度の吸気通路断面積より大きい第二の開度の吸気通路断面積に設定して所定時間保持し、前記内燃機関が減速運転など出力減少状態にあるとき、前記吸気バルブが閉状態に移行すると前記個別吸気量制御手段の開度を第三の開度から第四の開度まで吸気通路断面積を徐々に増加させ、前記吸気バルブが閉状態から開状態に移行すると前記個別吸気量制御手段の開度を前記第四の開度から前記第三の開度より小さい第六の開度まで徐々に減少させると共に、前記出力減少状態にあるときに於いて、前記吸気バルブが閉状態にあるときに前記燃料噴射弁のよる燃料噴射が開始されると前記吸気バルブの次回の閉状態が開始されるまで前記個別吸気量制御手段の開度を保持するようにしたものである。An internal combustion engine control apparatus according to the present invention is provided in each of an independent intake pipe for supplying intake air to a plurality of cylinders of the internal combustion engine for each cylinder, and each of the independent intake pipes. Individual intake air amount control means for individually controlling by opening, fuel injection valves for individually supplying fuel to the plurality of cylinders, intake valves provided respectively at joints between the plurality of cylinders and the independent intake pipes, Cylinder identification sensor for discriminating the opening / closing operation of the intake valve for each cylinder, calculating the intake amount of the independent intake pipe and the fuel supply amount, and controlling the individual intake amount control means and the fuel injection valve based on the calculation result And when the internal combustion engine is in a steady operation state, when the intake valve is open, the opening of the individual intake air amount control means is set to the intake passage cross-sectional area of the first opening, When the intake valve shifts from an open state to a closed state, the individual intake air amount control means is set to an intake passage cross-sectional area with a second opening larger than the intake passage cross-sectional area with the first opening and held for a predetermined time. When the internal combustion engine is in an output decreasing state such as a deceleration operation, when the intake valve shifts to the closed state, the opening of the individual intake air amount control means is changed from the third opening to the fourth opening. When the area is gradually increased and the intake valve shifts from the closed state to the open state, the opening of the individual intake air amount control means is changed from the fourth opening to a sixth opening that is smaller than the third opening. When the fuel injection by the fuel injection valve is started when the intake valve is in the closed state, the next closed state of the intake valve is started. The individual intake air amount system until It is obtained so as to hold the opening means.

この発明による内燃機関制御装置によれば、内燃機関が定常運転の状態にあるとき、前記吸気バルブが開状態のときには前記個別吸気量制御手段の開度を第一の開度の吸気通路断面積に設定し、前記吸気バルブが開状態から閉状態に移行したときには前記個別吸気量制御手段を前記第一の開度の吸気通路断面積より大きい第二の開度の吸気通路断面積に設定して所定時間保持し、内燃機関が加速運転など出力増加状態にあるとき、前記吸気バルブが閉状態に移行すると前記個別吸気量制御手段の開度を第三の開度から第四の開度まで吸気通路断面積を徐々に増加させ、前記吸気バルブが閉状態から開状態に移行すると前記個別吸気量制御手段の開度を前記第四の開度から前記第三の開度より大きい第五の開度まで徐々に減少させると共に、前記出力増加状態にあるときに於いて、前記吸気バルブが閉状態にあるときに前記燃料噴射弁のよる燃料噴射が開始されると前記吸気バルブの次回の閉状態が開始されるまで前記個別吸気量制御手段の開度を保持するようにしたので、各気筒の吸気量を個別に制御して高精度に空燃比を制御できると共に、低速回転域でも経時変化のない安定した回転を得るように制御ができ、また、吸気行程初期における各独立吸気管のスロットルバルブ下流側の吸気管内圧力を高めることができるので、ポンピングロスを大幅に低下させることができ、燃費効率の優れた内燃機関制御装置を得ることができるものである。更に、内燃機関の出力増加状態にあるときに於いても、燃料噴射量に対する吸気量の変化は抑制され、空燃比の変化による排出ガスの悪化を最小限に抑制することができる。 According to the internal combustion engine control apparatus of the present invention, when the internal combustion engine is in a steady operation state and the intake valve is open, the opening of the individual intake air amount control means is set to the intake passage cross-sectional area of the first opening. When the intake valve transitions from the open state to the closed state, the individual intake air amount control means is set to an intake passage cross-sectional area with a second opening larger than the intake passage cross-sectional area with the first opening. And when the internal combustion engine is in an output increasing state such as an acceleration operation, when the intake valve shifts to a closed state, the opening of the individual intake air amount control means is changed from the third opening to the fourth opening. When the intake passage cross-sectional area is gradually increased and the intake valve shifts from the closed state to the open state, the opening of the individual intake air amount control means is changed from the fourth opening to the fifth opening larger than the third opening. Decrease gradually to the opening and When the fuel injection by the fuel injection valve is started when the intake valve is in the closed state when the output is in the increased state, the individual intake air amount until the next closed state of the intake valve is started. Since the opening of the control means is maintained , the air intake ratio of each cylinder can be individually controlled to control the air-fuel ratio with high accuracy, and control can be performed so as to obtain a stable rotation that does not change with time even in the low-speed rotation range. In addition, since the intake pipe pressure on the downstream side of the throttle valve of each independent intake pipe at the beginning of the intake stroke can be increased, the pumping loss can be greatly reduced, and an internal combustion engine control device with excellent fuel efficiency can be achieved. It can be obtained. Further, even when the output of the internal combustion engine is increased, the change in the intake air amount with respect to the fuel injection amount is suppressed, and the deterioration of the exhaust gas due to the change in the air-fuel ratio can be suppressed to the minimum.

更に、この発明による内燃機関制御装置によれば、内燃機関が定常運転の状態にあるとき、前記吸気バルブが開状態のときには前記個別吸気量制御手段の開度を第一の開度の吸気通路断面積に設定し、前記吸気バルブが開状態から閉状態に移行したときには前記個別吸気量制御手段を前記第一の開度の吸気通路断面積より大きい第二の開度の吸気通路断面積に設定して所定時間保持し、前記内燃機関が減速運転など出力減少状態にあるとき、前記吸気バルブが閉状態に移行すると前記個別吸気量制御手段の開度を第三の開度から第四の開度まで吸気通路断面積を徐々に増加させ、前記吸気バルブが閉状態から開状態に移行すると前記個別吸気量制御手段の開度を前記第四の開度から前記第三の開度より小さい第六の開度まで徐々に減少させると共に、前記出力減少状態にあるときに於いて、前記吸気バルブが閉状態にあるときに前記燃料噴射弁のよる燃料噴射が開始されると前記吸気バルブの次回の閉状態が開始されるまで前記個別吸気量制御手段の開度を保持するようにしたので、各気筒の吸気量を個別に制御して高精度に空燃比を制御できると共に、低速回転域でも経時変化のない安定した回転を得るように制御ができ、また、吸気行程初期における各独立吸気管のスロットルバルブ下流側の吸気管内圧力を高めることができるので、ポンピングロスを大幅に低下させることができ、燃費効率の優れた内燃機関制御装置を得ることができる。更に、内燃機関の出力減少状態の時に於いても燃料噴射量に対する吸気量の変化は抑制され、空燃比の変化による排出ガスの悪化を最小限に抑制することができる。Further, according to the internal combustion engine control apparatus of the present invention, when the internal combustion engine is in a steady operation state and the intake valve is open, the opening of the individual intake air amount control means is set to the intake passage having the first opening. When the intake valve is shifted from the open state to the closed state, the individual intake air amount control means is set to an intake passage sectional area with a second opening larger than the intake passage sectional area with the first opening. When the internal combustion engine is in an output decreasing state such as a deceleration operation and the intake valve shifts to a closed state when the internal combustion engine is in a reduced output state, the opening of the individual intake air amount control means is changed from the third opening to the fourth opening. When the intake passage cross-sectional area is gradually increased to the opening, and the intake valve shifts from the closed state to the open state, the opening of the individual intake air amount control means is smaller than the third opening from the fourth opening Decrease gradually until the 6th opening In both cases, when the fuel injection by the fuel injection valve is started when the intake valve is in the closed state when the output is in the reduced state, the intake valve is started until the next closed state of the intake valve is started. Since the opening of the individual intake air amount control means is maintained, the intake air amount of each cylinder can be individually controlled to control the air-fuel ratio with high accuracy, and stable rotation without change with time can be obtained even in the low speed rotation region. And can increase the pressure in the intake pipe on the downstream side of the throttle valve of each independent intake pipe at the beginning of the intake stroke, so that the pumping loss can be greatly reduced, and the internal combustion engine with excellent fuel efficiency A control device can be obtained. Further, even when the output of the internal combustion engine is decreasing, the change in the intake air amount with respect to the fuel injection amount is suppressed, and the deterioration of the exhaust gas due to the change in the air-fuel ratio can be suppressed to the minimum.

発明の基礎となる技術
図1ないし図6は、この発明の基礎となる技術による内燃機関制御装置を説明するためのもので、図1は、内燃機関の給排気通路の概略構成図、図2は、ポンピングロスを説明するPV線図、図3は、独立スロットルバルブの場合と単一スロットルバルブの場合との吸気管内の圧力を示す比較説明図、図4は、独立スロットルバルブの場合と単一スロットルバルブの場合とのポンピングロスの差を説明するPV線図、図5は、この発明の基礎となる技術による吸気管内圧力変化を従来例と比較した吸気管内圧力変動図、図6は、この発明の内燃機関制御装置による加減速時における吸気管内圧力を示す説明図である。
Technical FIGS. 1 to 6 that underlying the invention is intended to illustrate the internal combustion engine control apparatus according to the underlying technique of the present invention, FIG. 1 is a schematic block diagram of a supply and exhaust passage of an internal combustion engine, FIG. 2 Fig. 3 is a PV diagram explaining the pumping loss, Fig. 3 is a comparative explanatory diagram showing the pressure in the intake pipe in the case of the independent throttle valve and the case of the single throttle valve, and Fig. 4 is a simple diagram of the case of the independent throttle valve. PV diagram for explaining a difference in pumping loss between the case one throttle valve, Fig. 5, the intake pipe pressure fluctuation view the intake pipe pressure change due to the underlying technology of the present invention was compared with the conventional example, FIG. 6, It is explanatory drawing which shows the pressure in an intake pipe at the time of acceleration / deceleration by the internal combustion engine control apparatus of this invention.

図1の概略構成図は四気筒の内燃機関を一例としたもので、以下の動作説明を含め、四気筒の内燃機関を対象として説明する。図において内燃機関1は四つの気筒1aないし1dを有しており、各気筒1aないし1dに吸入空気を供給する吸気管2は、その上流部がエアクリーナ3を有する吸気管集合部4を形成し、各気筒1aないし1dには吸気管集合部4から分岐して設けられた独立吸気管(吸気枝管)5aないし5dが気筒毎に吸気を供給するように構成され、各気筒1aないし1dと独立吸気管5aないし5dとの接合部には吸気バルブ6aないし6dが設けられている。   The schematic configuration diagram of FIG. 1 is an example of a four-cylinder internal combustion engine, and will be described for a four-cylinder internal combustion engine, including the following operation description. In the figure, an internal combustion engine 1 has four cylinders 1a to 1d, and an intake pipe 2 for supplying intake air to the cylinders 1a to 1d forms an intake pipe assembly 4 having an air cleaner 3 at an upstream portion thereof. The cylinders 1a to 1d are configured such that independent intake pipes (intake branch pipes) 5a to 5d that are branched from the intake pipe collecting portion 4 supply intake air to the respective cylinders. Intake valves 6a to 6d are provided at the joints with the independent intake pipes 5a to 5d.

独立吸気管5aないし5dのそれぞれには下流側より、気筒毎に燃料を供給する燃料噴射弁7aないし7dと、気筒毎の吸気量を検出する吸気圧センサ8aないし8dと、図示しないアクセルペダルの操作量に基づき気筒毎にスロットル開度を制御する電子制御のスロットルバルブであるETV9aないし9dとが設けられており、このETV9aないし9dは個別吸気量制御手段として吸気通路の有効断面積を気筒毎に制御するものである。また、各気筒1aないし1dには排気バルブ10aないし10dを介して排気管11が接合されており、排気管11の集合部には内燃機関1の空燃比を検出する空燃比センサ12が設けられている。そして、内燃機関1には各気筒の吸気行程などを判別すると共に内燃機関1の回転速度を検出する気筒識別センサ13が設けられている。   Each of the independent intake pipes 5a to 5d has a fuel injection valve 7a to 7d for supplying fuel to each cylinder from the downstream side, an intake pressure sensor 8a to 8d for detecting the intake amount for each cylinder, and an accelerator pedal (not shown). ETVs 9a to 9d, which are electronically controlled throttle valves for controlling the throttle opening for each cylinder based on the operation amount, are provided. These ETVs 9a to 9d serve as the individual intake air amount control means for determining the effective sectional area of the intake passage for each cylinder. To control. Further, an exhaust pipe 11 is joined to each cylinder 1a to 1d via exhaust valves 10a to 10d, and an air-fuel ratio sensor 12 for detecting an air-fuel ratio of the internal combustion engine 1 is provided at a collecting portion of the exhaust pipe 11. ing. The internal combustion engine 1 is provided with a cylinder identification sensor 13 that discriminates the intake stroke of each cylinder and detects the rotational speed of the internal combustion engine 1.

制御手段14は、気筒識別センサ13から内燃機関1の回転速度やクランク角などの情報を入力して点火時期を演算し、図示しない点火系を制御すると共に、図示しないアクセルペダルの操作量や吸気圧センサ8aないし8dの出力などに基づき気筒別に吸気量を演算し、この演算された気筒別の吸気量と気筒識別センサ13が出力する気筒判別信号とによりETV9aないし9dのスロットル開度を制御する。さらに制御手段14は、この気筒別の吸気量と気筒識別センサ13の気筒識別信号とから各気筒1aないし1dに対する適切な燃料供給量を演算し、燃料噴射弁7aないし7dを制御する。   The control means 14 inputs information such as the rotational speed and crank angle of the internal combustion engine 1 from the cylinder identification sensor 13 to calculate the ignition timing, controls the ignition system (not shown), and controls the operation amount and the suction of an accelerator pedal (not shown). The intake air amount is calculated for each cylinder based on the output of the atmospheric pressure sensors 8a to 8d, and the throttle opening of the ETVs 9a to 9d is controlled based on the calculated intake air amount for each cylinder and the cylinder discrimination signal output from the cylinder identification sensor 13. . Further, the control means 14 calculates an appropriate fuel supply amount for each cylinder 1a to 1d from the intake air amount for each cylinder and the cylinder identification signal of the cylinder identification sensor 13, and controls the fuel injection valves 7a to 7d.

エアクリーナ3を経由して独立吸気管5aないし5dに分配された吸気はETV9aないし9dにより制御されて各気筒1aないし1dに供給される。この吸気の空気圧はETV9aないし9dのスロットル開度により変化するため、各気筒1aないし1dの吸気量は吸気圧センサ8aないし8dが検知する吸気圧と、気筒識別センサ13が検出する内燃機関1の回転速度などから検出することができる。また、制御手段14による図示しない点火系の制御は、内燃機関1の環境に応じたMBTまたはMBT近傍にて点火を行うように制御される。   The intake air distributed to the independent intake pipes 5a to 5d via the air cleaner 3 is controlled by the ETVs 9a to 9d and supplied to the cylinders 1a to 1d. Since the air pressure of the intake air changes depending on the throttle opening of the ETVs 9a to 9d, the intake air amount of each cylinder 1a to 1d is the intake pressure detected by the intake pressure sensors 8a to 8d and the internal combustion engine 1 detected by the cylinder identification sensor 13. It can be detected from the rotational speed. The control of the ignition system (not shown) by the control means 14 is controlled so as to perform ignition in the MBT or in the vicinity of the MBT corresponding to the environment of the internal combustion engine 1.

制御手段14による吸気量と燃料噴射量との制御は、排気管11の集合部に設けられた空燃比センサ12の出力信号によるフィードバック制御であり、これにより、ETV9aないし9dからの吸気量が経時変化などによりバラツキが生じても、燃料噴射量と吸気量との過不足が演算されてETV9aないし9dのスロットルバルブ開度が制御され、吸気量のバラツキが補正されて高精度に空燃比を制御する。   The control of the intake air amount and the fuel injection amount by the control means 14 is feedback control based on the output signal of the air-fuel ratio sensor 12 provided in the collective portion of the exhaust pipe 11, whereby the intake air amount from the ETVs 9a to 9d is changed over time. Even if there is variation due to changes, the excess or deficiency between the fuel injection amount and the intake air amount is calculated, the throttle valve opening of the ETVs 9a to 9d is controlled, and the air-fuel ratio is controlled with high accuracy by correcting the variation of the intake air amount. To do.

さらに制御手段14は、ETV9aないし9dのスロットルバルブ開度を次のように制御する。すなわち、吸気バルブ6aないし6dが閉状態にある所定の期間においては、スロットルバルブの開度はアクセル操作に基づく指令開度より吸気通路が拡大する方向に制御されてスロットルバルブより下流側の独立吸気管の負圧を低減させ、吸気バルブ6aないし6dが開状態になると共にスロットルバルブ開度は吸気通路が縮小する方向に制御変更され、全体としての吸気量はアクセル操作に基づく吸気量に制御されて空燃比を維持しながらポンピングロスを低減させる。例えば、運転者がアクセル操作を行って車両が加速状態であっても、このスロットル開度を変化させる制御は行われ、アクセル操作に基づく加速を維持すると共にポンピングロスを低減させ、燃料消費量を低減させる。   Further, the control means 14 controls the throttle valve openings of the ETVs 9a to 9d as follows. That is, during a predetermined period in which the intake valves 6a to 6d are closed, the opening of the throttle valve is controlled in the direction in which the intake passage is expanded from the command opening based on the accelerator operation, and the independent intake downstream of the throttle valve is controlled. The negative pressure of the pipe is reduced, the intake valves 6a to 6d are opened, and the throttle valve opening is controlled and changed so that the intake passage is reduced. The overall intake amount is controlled to the intake amount based on the accelerator operation. The pumping loss is reduced while maintaining the air-fuel ratio. For example, even if the driver performs an accelerator operation and the vehicle is in an accelerated state, control is performed to change the throttle opening, maintaining acceleration based on the accelerator operation, reducing pumping loss, and reducing fuel consumption. Reduce.

図2のPV線図によりポンピングロスを説明すると、図は吸気、圧縮、燃焼、排気の各行程における気筒内(シリンダ内)の圧力を示した線図であり、この内、負圧状態の吸気管から吸気する吸気行程と大気圧の排気管に排気する排気行程との圧力差、図に斜線で示した部分がポンピングロスであり、このポンピングロスは吸気行程における吸気管内の負圧値を小さくすることにより減少させることができる。これを図3ように、吸気管の集合部に単一のスロットルバルブを配した形式の内燃機関(以下、単一スロットルバルブと称す)と独立吸気管のそれぞれに個別制御が可能な独立スロットルバルブを配した場合(以下、独立スロットルバルブと称す)とで、時間に対する吸気管内圧力の変化で比較すると、単一スロットルバルブの場合は負圧がほぼ一定値を継続して各気筒が一定の負圧値から吸気を行うのに対し、独立スロットルバルブの場合における吸気管内圧力は、単一スロットルバルブの場合より小さな負圧値からほぼ単一スロットルバルブの負圧に近い値まで変動する。   The pumping loss will be described with reference to the PV diagram of FIG. 2. The diagram is a diagram showing the pressure in the cylinder (inside the cylinder) in each stroke of intake, compression, combustion, and exhaust, of which the intake in the negative pressure state The difference in pressure between the intake stroke that is sucked from the pipe and the exhaust stroke that is discharged to the exhaust pipe at atmospheric pressure is the pumping loss. The pumping loss reduces the negative pressure value in the intake pipe during the intake stroke. This can be reduced. As shown in FIG. 3, an independent throttle valve that can be individually controlled for each of an internal combustion engine (hereinafter referred to as a single throttle valve) of a type in which a single throttle valve is arranged at a collecting portion of the intake pipe and an independent intake pipe. In the case of a single throttle valve, the negative pressure continues to be almost constant and each cylinder has a constant negative pressure. While intake is performed from the pressure value, the pressure in the intake pipe in the case of the independent throttle valve varies from a negative pressure value smaller than that in the case of the single throttle valve to a value close to the negative pressure of the single throttle valve.

これを図4のPV線図で説明すると、図4はシリンダ内圧力の変化を単一スロットルバルブの内燃機関と、独立スロットルバルブの内燃機関とで比較したPV線図であり、単一スロットルバルブの場合は、四つの気筒の内、常にいずれかの気筒が吸気行程にあって吸気管内の空気がいずれかの気筒に流入しているため、図の線図(b)に示すように吸気行程におけるシリンダ内圧力は常に低圧力である。これに対して独立スロットルバルブの場合は各気筒の吸気管が独立しているため、気筒間における吸気の干渉はなく、吸気行程が終了して吸気バルブが閉じると吸気管内にはスロットルバルブから空気が流入し吸気管内圧力は上昇する。この結果、図4の(a)に示すように、吸気行程開始直後のシリンダ内圧力は単一スロットルバルブの場合より高くなり吸気の進展と共に気圧が低下することになる。図の斜線部(A)と(B)とがその差であり、(A)部分が(B)部分より大きいので平均圧力は単一スロットルバルブの場合より高くなり、ポンピングロスは独立スロットルバルブの方が小さくなる。   This will be explained with reference to the PV diagram of FIG. 4. FIG. 4 is a PV diagram in which the change in the cylinder pressure is compared between an internal combustion engine with a single throttle valve and an internal combustion engine with an independent throttle valve. In this case, since one of the four cylinders is always in the intake stroke and the air in the intake pipe flows into one of the cylinders, the intake stroke is as shown in the diagram (b) of the figure. The cylinder pressure at is always low. In contrast, in the case of an independent throttle valve, the intake pipe of each cylinder is independent, so there is no interference of intake air between the cylinders, and when the intake stroke is completed and the intake valve is closed, the air is drawn from the throttle valve into the intake pipe. Flows in and the intake pipe pressure rises. As a result, as shown in FIG. 4A, the cylinder pressure immediately after the start of the intake stroke becomes higher than that in the case of a single throttle valve, and the atmospheric pressure decreases with the progress of intake. The hatched portions (A) and (B) in the figure are the difference, and since the (A) portion is larger than the (B) portion, the average pressure is higher than in the case of a single throttle valve, and the pumping loss is that of the independent throttle valve. Is smaller.

このように、独立スロットルバルの方が単一スロットルバルブよりポンピングロスが少なくなるのは吸気行程開始直後における吸気管内圧力が高いためである。従って、吸気行程開始直後における吸気管内圧力をより高めることにより、ポンピングロスをさらに小さくすることができる。上記したように、この発明の実施の形態1による内燃機関制御装置では、それぞれの気筒において、吸気バルブ6aないし6dが閉状態にある所定の期間、制御手段14がスロットルバルブの開度を操作してアクセルペダルの操作により設定される吸気通路の断面積より大きな断面積となるように制御するので、吸気管内の圧力は高くなり、ポンピングロスを大幅に低減して燃費の向上を図ることができる。   As described above, the pumping loss in the independent throttle valve is smaller than that in the single throttle valve because the intake pipe pressure immediately after the start of the intake stroke is high. Therefore, the pumping loss can be further reduced by increasing the intake pipe pressure immediately after the start of the intake stroke. As described above, in the internal combustion engine controller according to Embodiment 1 of the present invention, in each cylinder, the control means 14 operates the throttle valve opening for a predetermined period in which the intake valves 6a to 6d are closed. Therefore, the cross-sectional area of the intake passage that is set by operating the accelerator pedal is controlled so that the pressure in the intake pipe increases, and the pumping loss can be greatly reduced to improve fuel efficiency. .

図5(a)は、このように制御したときの吸気管内圧力の変化を示すものであり、この発明の基礎となる技術による吸気バルブの開閉と共に開度操作がなされる独立スロットルバルブの場合と、比較例として吸気バルブの開閉と共に開度操作がなされない独立スロットルバルブの場合との吸気管内圧力特性を併記したものである。この発明の基礎となる技術による独立スロットルバルブの場合には、吸気管内圧力は吸気バルブが閉じる時間(t1)からスロットル開度が大きくなるため流入空気量が大きくなって比較例よりも高くなり、吸気バルブが開くと吸気により吸気管内圧力は低下し始めるが、比較例よりは高い値を維持することになってポンピングロスが低下することになる。 FIG. 5 (a) shows changes in the intake pipe pressure when controlled in this way. In the case of an independent throttle valve that is operated to open and close the intake valve according to the technology underlying the present invention. As a comparative example, the intake pipe pressure characteristics are shown together with the case of an independent throttle valve in which the opening operation is not performed together with the opening and closing of the intake valve. In the case of an independent throttle valve based on the technology that forms the basis of the present invention, the intake pipe pressure increases from the time (t1) when the intake valve closes, so the amount of inflow air increases and becomes higher than the comparative example. When the intake valve opens, the intake pipe pressure starts to decrease due to intake, but a higher value than the comparative example is maintained, and the pumping loss decreases.

図5(b)は、スロットルバルブの開度変化を示したものであり、この発明の基礎となる技術による独立スロットルバルブの場合には吸気バルブが閉じる時間(t1)にてスロットル開度が大きくなりはじめ、一定値に落ち着く。この一定値は所定の期間保持されて吸気バルブの閉期間内の所定時間(t2)になるとスロットル開度は元の開度まで低下する。これに対して比較例は吸気バルブの開閉と共に開度操作がなされないので図5の鎖線で示したように、吸気バルブの開閉に関わらず一定である。 FIG. 5B shows changes in the throttle valve opening. In the case of an independent throttle valve based on the technology underlying the present invention, the throttle opening increases at the time (t1) when the intake valve closes. It starts to become a certain value. This constant value is maintained for a predetermined period, and when the predetermined time (t2) within the closing period of the intake valve is reached, the throttle opening decreases to the original opening. On the other hand, in the comparative example, since the opening operation is not performed simultaneously with the opening and closing of the intake valve, as shown by the chain line in FIG. 5, it is constant regardless of the opening and closing of the intake valve.

図5の(c)と(d)はスロットル開度の他の制御法を示すものである。図5(c)は吸気バルブの閉期間においてスロットル開度を大きく、吸気バルブの開期間はスロットル開度を小さくしたもので、スロットル開度大の期間が長い分、図5(b)の場合より比較例に対する差は小さくなっている。図5(d)は、スロットル開度を同様に制御した場合に一定値に固定されることなく徐々に開度が大きくなったり小さくなるようにした例を示すものである。このように、種々の制御法があるがいずれの場合も比較例と比べて吸気バルブ閉の所定期間はスロットル開度が大きく、吸気バルブ開期間はスロットル開度が小さくなるように制御され、スロットル開度大の期間が小の期間より長く設定される。 FIGS. 5C and 5D show other control methods of the throttle opening. FIG. 5 (c) shows a case where the throttle opening is large during the intake valve closing period, and the throttle opening is small during the intake valve opening period. The difference with respect to the comparative example is smaller. FIG. 5 (d) shows an example in which the opening is gradually increased or decreased without being fixed to a constant value when the throttle opening is similarly controlled. As described above, there are various control methods, but in any case, the throttle opening is controlled to be large during the predetermined period when the intake valve is closed, and the throttle opening is decreased during the intake valve opening period. The large opening period is set longer than the small opening period.

図6は車両が加速または減速するようにアクセル操作がなされた場合の動作を説明するものである。加速状態では要求トルクを発生させるのに必要な吸気を吸気行程の前半で気筒内に吸入させるために、各吸気バルブ6aないし6dが開く前に吸気管内に空気が導入されて吸気管内圧力を高めるよう各ETV9aないし9dが動作する。また、減速状態においても同様に、吸気行程の前半で気筒内に吸入させるために、各吸気バルブ6aないし6dが開く前に吸気管内に空気が導入されて吸気管内圧力を高めるよう各ETV9aないし9dが動作する。従って、加速状態および減速状態においてもポンピングロスの低減ができると共に、動力性能を向上させることができる。   FIG. 6 illustrates the operation when the accelerator operation is performed so that the vehicle accelerates or decelerates. In the acceleration state, air is introduced into the intake pipe before the intake valves 6a to 6d are opened to increase the pressure in the intake pipe so that the intake air necessary for generating the required torque is sucked into the cylinder in the first half of the intake stroke. Each ETV 9a to 9d operates as described above. Similarly, in the deceleration state, in order to inhale into the cylinder in the first half of the intake stroke, air is introduced into the intake pipe before each intake valve 6a to 6d is opened to increase the pressure in the intake pipe. Works. Therefore, the pumping loss can be reduced and the power performance can be improved in the acceleration state and the deceleration state.

実施の形態1.
図7は、この発明の実施の形態1による内燃機関制御装置のスロットルバルブの動作状態を説明する説明図である。この実施の形態1による内燃機関制御装置は空燃比をより最適状態に制御するための制御機能を制御手段14に付加したものである。内燃機関の加減速状態などの過渡運転時においては、アクセル操作による吸気量の変化に対して時間的に制御手段14による燃料供給量の制御が行えない状態が発生する。すなわち、制御手段14は上記したようにアクセルペダルの操作量や、吸気圧センサ8aないし8dの出力、および、内燃機関1の回転速度に基づいて、気筒別に吸気量を演算してETV9aないし9dを制御すると共に、燃料供給量を演算して燃料噴射弁7aないし7dを制御し、所定の空燃比に基づく空気と燃料との供給を行うが、車両の運転状況は自由度が極めて高いため、燃料噴射弁7aないし7dによる燃料供給が開始された後にアクセルペダルの操作量が変化するような場合も有り、このような場合には燃料噴射量の変更ができないにもかかわらず、スロットル開度が変化するため、所定の空燃比が維持できないことがある。
Embodiment 1 FIG.
FIG. 7 is an explanatory diagram for explaining the operating state of the throttle valve of the internal combustion engine control apparatus according to Embodiment 1 of the present invention. The internal combustion engine control apparatus according to the first embodiment is obtained by adding a control function to the control means 14 for controlling the air-fuel ratio to an optimum state. During a transient operation such as an acceleration / deceleration state of the internal combustion engine, a state in which the control of the fuel supply amount by the control means 14 cannot be performed with respect to a change in the intake air amount due to the accelerator operation occurs. That is, as described above, the control means 14 calculates the intake amount for each cylinder based on the operation amount of the accelerator pedal, the outputs of the intake pressure sensors 8a to 8d, and the rotational speed of the internal combustion engine 1, and calculates the ETVs 9a to 9d. In addition to controlling, the fuel supply amount is calculated and the fuel injection valves 7a to 7d are controlled to supply air and fuel based on a predetermined air-fuel ratio. In some cases, the amount of operation of the accelerator pedal may change after the fuel supply by the injection valves 7a to 7d is started. In such a case, the throttle opening changes even though the fuel injection amount cannot be changed. Therefore, the predetermined air-fuel ratio may not be maintained.

このような場合、制御手段14は燃料供給量の補正が行えない期間中においてはETV9aないし9dを制御してスロットル開度の変化を禁止し、燃料供給量の制御が可能な期間になってからスロットル開度の制御を行うように動作する。この燃料供給量の制御または補正が行えない期間は、燃料噴射量の演算完了後、もしくは、燃料噴射開始後からその気筒の吸気バルブが閉じるまでであるから、この間はスロットル開度の変化を禁止し、吸気バルブが閉状態になった後はアクセルペダルの操作量に基づくスロットル開度に制御する。この制御により、燃料噴射量に対する吸気量の変化は抑制され、空燃比の変化による排出ガスの悪化を最小限に抑制することができる。   In such a case, the control means 14 controls the ETVs 9a to 9d during the period in which the fuel supply amount cannot be corrected, prohibits changes in the throttle opening, and after the period during which the fuel supply amount can be controlled. Operates to control the throttle opening. The period during which the fuel supply amount cannot be controlled or corrected is after the calculation of the fuel injection amount is completed or until the intake valve of the cylinder is closed after the fuel injection starts. Then, after the intake valve is closed, the throttle opening is controlled based on the operation amount of the accelerator pedal. By this control, the change in the intake air amount with respect to the fuel injection amount is suppressed, and the deterioration of the exhaust gas due to the change in the air-fuel ratio can be suppressed to the minimum.

従来の制御では同様な状態に対し、燃料の非同期噴射により補正していたが、時間的に充分な補正ができないものであり、排気ガスとドライバビリティは充分に改善できないものであった。この実施の形態1による内燃機関制御装置では上記のように、制御手段14が燃料供給量の補正が行えない期間中、すなわち、燃料噴射の開始以降、または、燃料噴射量演算後はETV9aないし9dによる吸気通路断面積の変化を禁止し、燃料噴射の開始前の吸気通路断面積を維持すると共に、これを内燃機関1の吸気バルブ6aないし6dが閉じるまで継続し、吸気バルブ6aないし6dが閉じた後はアクセルペダルの操作量に基
づくスロットルバルブ開度に戻すので空燃比を維持することができ、排気ガスやドライバビリティの悪化を防止することができるものである。
In the conventional control, the same state is corrected by asynchronous fuel injection, but sufficient correction cannot be made in terms of time, and exhaust gas and drivability cannot be sufficiently improved. In the internal combustion engine control apparatus according to the first embodiment , as described above, the ETVs 9a to 9d are in a period during which the control unit 14 cannot correct the fuel supply amount, that is, after the start of fuel injection or after the calculation of the fuel injection amount. The change of the intake passage cross-sectional area due to the fuel injection is prohibited, the intake passage cross-sectional area before the start of fuel injection is maintained, this is continued until the intake valves 6a to 6d of the internal combustion engine 1 are closed, and the intake valves 6a to 6d are closed. After that, the throttle valve opening based on the operation amount of the accelerator pedal is restored, so that the air-fuel ratio can be maintained, and deterioration of exhaust gas and drivability can be prevented.

以上のようにこの発明の内燃機関制御装置は、内燃機関1の過渡運転時における空燃比の制御精度の向上と、ポンピングロスの低減とを図ったものである。ポンピングロスを低減させるためには、吸気バルブ6aないし6dが閉じている期間にETV9aないし9dの下流側の独立吸気管5aないし5dの吸気を増大させるが、このためには吸気通路断面積を増大させるように制御を行い、さらに空燃比制御精度の向上のためには燃料噴射量の補正が行えない期間中は吸気通路断面積の変化を禁止する必要があり、内燃機関1の回転と同期してETV9aないし9dをきめ細かく制御することになる。しかし、高負荷時にはポンピングロスは極めて小さくなり、高速回転域では行程期間が短くなって吸気量制御の絶対量が減少するので、回転速度と負荷量とのいずれか、または、双方が所定値以上にあるとき、ETV9aないし9dの上記制御を停止させることもでき、この場合には安価なETVでも充分な制御ができるものである。   As described above, the internal combustion engine control device of the present invention is intended to improve the control accuracy of the air-fuel ratio and reduce the pumping loss during the transient operation of the internal combustion engine 1. In order to reduce the pumping loss, the intake air in the independent intake pipes 5a to 5d on the downstream side of the ETVs 9a to 9d is increased while the intake valves 6a to 6d are closed. For this purpose, the intake passage cross-sectional area is increased. In order to improve the air-fuel ratio control accuracy, it is necessary to prohibit changes in the intake passage cross-sectional area during the period in which the fuel injection amount cannot be corrected, and in synchronization with the rotation of the internal combustion engine 1. Thus, the ETVs 9a to 9d are finely controlled. However, when the load is high, the pumping loss is extremely small, and in the high speed rotation range, the stroke period is shortened and the absolute amount of intake air amount control is reduced. In this case, the control of the ETVs 9a to 9d can be stopped, and in this case, sufficient control can be performed even with an inexpensive ETV.

この発明による内燃機関制御装置は、電気点火方式の車両用内燃機関および船舶用内燃機関などに適用できるものである。   The internal combustion engine control apparatus according to the present invention can be applied to an electric ignition type internal combustion engine for a vehicle, a marine internal combustion engine, and the like.

この発明の基礎となる技術による内燃機関制御装置を説明する内燃機関吸排気通路の概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram of an internal combustion engine intake / exhaust passage for explaining an internal combustion engine control device according to a technology underlying the present invention; ポンピングロスを説明するPV線図である。It is a PV diagram explaining a pumping loss. 独立スロットルバルブと単一スロットルバルブとの吸気管内圧力を示す比較説明図である。It is comparison explanatory drawing which shows the intake pipe internal pressure of an independent throttle valve and a single throttle valve. 独立スロットルバルブと単一スロットルバルブとのポンピングロスの差を説明するPV線図である。It is a PV diagram explaining the difference of the pumping loss of an independent throttle valve and a single throttle valve. この発明の基礎となる技術による内燃機関制御装置と従来例とを比較した吸気管内圧力変動図である。FIG. 3 is an intake pipe pressure fluctuation diagram comparing an internal combustion engine control device according to the technology underlying the present invention and a conventional example. この発明の基礎となる技術による内燃機関制御装置の加速時における吸気管内圧力を示す説明図である。It is explanatory drawing which shows the pressure in an intake pipe at the time of acceleration of the internal combustion engine control apparatus by the technique on which this invention is based . この発明の実施の形態1による内燃機関制御装置のスロットルバルブ動作状態の説明図である。It is explanatory drawing of the throttle-valve operating state of the internal combustion engine control apparatus by Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 内燃機関、1a〜1d 気筒、2 吸気管、3 エアクリーナ、
4 吸気管集合部、5a〜5d 独立吸気管、
6a〜6d 吸気バルブ、7a〜7d 燃料噴射弁、
8a〜8d 吸気圧センサ、9a〜9d ETV(個別吸気量制御手段)、
10a〜10d 排気バルブ、11 排気管、12 空燃比センサ、
13気筒識別センサ、14 制御手段。
1 internal combustion engine, 1a to 1d cylinder, 2 intake pipe, 3 air cleaner,
4 Intake pipe assembly, 5a to 5d Independent intake pipe,
6a to 6d intake valve, 7a to 7d fuel injection valve,
8a to 8d intake pressure sensor, 9a to 9d ETV (individual intake air amount control means),
10a to 10d exhaust valve, 11 exhaust pipe, 12 air-fuel ratio sensor,
13 cylinder identification sensor, 14 control means.

Claims (2)

内燃機関の複数の気筒に対して気筒毎に吸気を供給する独立吸気管、前記独立吸気管のそれぞれに設けられ、それぞれの吸気通路断面積をその開度により個別に制御する個別吸気量制御手段、前記複数の気筒に対する燃料供給を個別に行う燃料噴射弁、前記複数の気筒と前記独立吸気管との接合部にそれぞれ設けられた吸気バルブ、前記吸気バルブの開閉動作を気筒毎に判別する気筒識別センサ、前記独立吸気管の吸気量と燃料供給量とを演算してこの演算結果に基づき前記個別吸気量制御手段と前記燃料噴射弁とを制御する制御手段を備え、前記内燃機関が定常運転の状態にあるとき、前記吸気バルブが開状態のときには前記個別吸気量制御手段の開度を第一の開度の吸気通路断面積に設定し、前記吸気バルブが開状態から閉状態に移行したときには前記個別吸気量制御手段を前記第一の開度の吸気通路断面積より大きい第二の開度の吸気通路断面積に設定して所定時間保持し、前記内燃機関が加速運転など出力増加状態にあるとき、前記吸気バルブが閉状態に移行すると前記個別吸気量制御手段の開度を第三の開度から第四の開度まで吸気通路断面積を徐々に増加させ、前記吸気バルブが閉状態から開状態に移行すると前記個別吸気量制御手段の開度を前記第四の開度から前記第三の開度より大きい第五の開度まで徐々に減少させるとともに、前記出力増加状態にあるときに於いて、前記吸気バルブが閉状態にあるときに前記燃料噴射弁のよる燃料噴射が開始されると前記吸気バルブの次回の閉状態が開始されるまで前記個別吸気量制御手段の開度を保持することを特徴とする内燃機関制御装置。  An independent intake pipe for supplying intake air to each of a plurality of cylinders of an internal combustion engine, and an individual intake air amount control means for individually controlling the cross-sectional area of each intake passage by its opening degree , A fuel injection valve that individually supplies fuel to the plurality of cylinders, an intake valve provided at a joint portion between the plurality of cylinders and the independent intake pipe, and a cylinder that determines opening / closing operation of the intake valve for each cylinder An identification sensor; and a control unit that calculates an intake air amount and a fuel supply amount of the independent intake pipe and controls the individual intake air amount control unit and the fuel injection valve based on a result of the calculation. When the intake valve is in the open state, the opening of the individual intake air amount control means is set to the intake passage cross-sectional area of the first opening, and the intake valve shifts from the open state to the closed state. Sometimes, the individual intake air amount control means is set to an intake passage cross-sectional area with a second opening larger than the intake passage cross-sectional area with the first opening and held for a predetermined time, and the internal combustion engine is in an output increasing state such as an acceleration operation. When the intake valve shifts to the closed state, the opening of the individual intake air amount control means is gradually increased from the third opening to the fourth opening, and the intake valve is closed. When the state is shifted from the open state to the open state, the opening degree of the individual intake air amount control means is gradually decreased from the fourth opening degree to the fifth opening degree that is larger than the third opening degree, and is in the output increasing state. In some cases, when fuel injection by the fuel injection valve is started when the intake valve is in the closed state, the opening degree of the individual intake air amount control means until the next closed state of the intake valve is started. It is characterized by holding Combustion engine control unit. 内燃機関の複数の気筒に対して気筒毎に吸気を供給する独立吸気管、前記独立吸気管のそれぞれに設けられ、それぞれの吸気通路断面積をその開度により個別に制御する個別吸気量制御手段、前記複数の気筒に対する燃料供給を個別に行う燃料噴射弁、前記複数の気筒と前記独立吸気管との接合部にそれぞれ設けられた吸気バルブ、前記吸気バルブの開閉動作を気筒毎に判別する気筒識別センサ、前記独立吸気管の吸気量と燃料供給量とを演算してこの演算結果に基づき前記個別吸気量制御手段と前記燃料噴射弁とを制御する制御手段を備え、前記内燃機関が定常運転の状態にあるとき、前記吸気バルブが開状態のときには前記個別吸気量制御手段の開度を第一の開度の吸気通路断面積に設定し、前記吸気バルブが開状態から閉状態に移行したときには前記個別吸気量制御手段を前記第一の開度の吸気通路断面積より大きい第二の開度の吸気通路断面積に設定して所定時間保持し、前記内燃機関が減速運転など出力減少状態にあるとき、前記吸気バルブが閉状態に移行すると前記個別吸気量制御手段の開度を第三の開度から第四の開度まで吸気通路断面積を徐々に増加させ、前記吸気バルブが閉状態から開状態に移行すると前記個別吸気量制御手段の開度を前記第四の開度から前記第三の開度より小さい第六の開度まで徐々に減少させるとともに、前記出力減少状態にあるときに於いて、前記吸気バルブが閉状態にあるときに前記燃料噴射弁のよる燃料噴射が開始されると前記吸気バルブの次回の閉状態が開始されるまで前記個別吸気量制御手段の開度を保持することを特徴とする内燃機関制御装置。  An independent intake pipe for supplying intake air to each of a plurality of cylinders of an internal combustion engine, and an individual intake air amount control means for individually controlling the cross-sectional area of each intake passage by its opening degree , A fuel injection valve that individually supplies fuel to the plurality of cylinders, an intake valve provided at a joint portion between the plurality of cylinders and the independent intake pipe, and a cylinder that determines opening / closing operation of the intake valve for each cylinder An identification sensor; and a control unit that calculates an intake air amount and a fuel supply amount of the independent intake pipe and controls the individual intake air amount control unit and the fuel injection valve based on a result of the calculation. When the intake valve is in the open state, the opening of the individual intake air amount control means is set to the intake passage cross-sectional area of the first opening, and the intake valve shifts from the open state to the closed state. Sometimes, the individual intake air amount control means is set to an intake passage cross-sectional area with a second opening larger than the intake passage cross-sectional area with the first opening and held for a predetermined time, and the internal combustion engine is in an output decreasing state such as a deceleration operation. When the intake valve shifts to the closed state, the opening of the individual intake air amount control means is gradually increased from the third opening to the fourth opening, and the intake valve is closed. When the state is shifted from the open state to the open state, the opening degree of the individual intake air amount control means is gradually reduced from the fourth opening degree to the sixth opening degree smaller than the third opening degree, and is in the output decreasing state. In some cases, when fuel injection by the fuel injection valve is started when the intake valve is in the closed state, the opening degree of the individual intake air amount control means until the next closed state of the intake valve is started. It is characterized by holding Combustion engine control unit.
JP2004002360A 2004-01-07 2004-01-07 Internal combustion engine control device Expired - Fee Related JP3990672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002360A JP3990672B2 (en) 2004-01-07 2004-01-07 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002360A JP3990672B2 (en) 2004-01-07 2004-01-07 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2005194941A JP2005194941A (en) 2005-07-21
JP3990672B2 true JP3990672B2 (en) 2007-10-17

Family

ID=34817600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002360A Expired - Fee Related JP3990672B2 (en) 2004-01-07 2004-01-07 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP3990672B2 (en)

Also Published As

Publication number Publication date
JP2005194941A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
JP4433051B2 (en) Control device for internal combustion engine
JP4277897B2 (en) Control device for internal combustion engine
JP2005220888A (en) Supercharging pressure presuming device of internal combustion engine with supercharger
JP2007198157A (en) Control device and control method for engine
JP5171738B2 (en) Electric throttle characteristic learning control device and method
JP3966243B2 (en) Internal combustion engine
JP4415509B2 (en) Control device for internal combustion engine
JP4196343B2 (en) Internal combustion engine and method for operating the same
JP2007132224A (en) Control device for internal combustion engine
JP3990672B2 (en) Internal combustion engine control device
JP2005083275A (en) Control device and control method of internal combustion engine
JP2006037762A (en) Control device for engine
JP2009209758A (en) Control device and control method for internal combustion engine with mechanical supercharger
JP2010270631A (en) Control device for internal combustion engine system
JP3879491B2 (en) Control device for internal combustion engine
JP2006299859A (en) Control device of internal combustion engine
JP4273950B2 (en) Intake control device for internal combustion engine
JP2006046297A (en) Controller for hybrid vehicle
JPH10196381A (en) Control device of internal combustion engine mounted with variable nozzle type turbocharger
JP2000130174A (en) Control device of engine with supercharger
JP2005226479A (en) Control device and control method for diesel engine
JP4779738B2 (en) Control device and control method for internal combustion engine provided with turbocharger
JP4367147B2 (en) Control device for internal combustion engine
JP2006258015A (en) Control device for internal combustion engine
JPH06101484A (en) Swirl control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3990672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees