JP3990654B2 - Semi-solid metal slurry manufacturing apparatus and control method thereof, and semi-solid metal slurry manufacturing method - Google Patents

Semi-solid metal slurry manufacturing apparatus and control method thereof, and semi-solid metal slurry manufacturing method Download PDF

Info

Publication number
JP3990654B2
JP3990654B2 JP2003190305A JP2003190305A JP3990654B2 JP 3990654 B2 JP3990654 B2 JP 3990654B2 JP 2003190305 A JP2003190305 A JP 2003190305A JP 2003190305 A JP2003190305 A JP 2003190305A JP 3990654 B2 JP3990654 B2 JP 3990654B2
Authority
JP
Japan
Prior art keywords
semi
metal slurry
solid metal
viscosity
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003190305A
Other languages
Japanese (ja)
Other versions
JP2005021943A (en
Inventor
孝一 黒木
健 正木
英明 恩田
慎二 風間
徹哉 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003190305A priority Critical patent/JP3990654B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to CA002530871A priority patent/CA2530871A1/en
Priority to CNB2004800189944A priority patent/CN100364697C/en
Priority to US10/562,457 priority patent/US7264037B2/en
Priority to EP10192807A priority patent/EP2292353A1/en
Priority to PCT/JP2004/009507 priority patent/WO2005002760A1/en
Priority to EP10192806A priority patent/EP2289650A1/en
Priority to EP04746976A priority patent/EP1649951B1/en
Publication of JP2005021943A publication Critical patent/JP2005021943A/en
Application granted granted Critical
Publication of JP3990654B2 publication Critical patent/JP3990654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム合金などの半凝固金属スラリーを対象とした半凝固金属スラリーの製造装置及びこれの制御方法並びに半凝固金属スラリーの製造方法に関する。
ただし、固相率=固相/(液相+固相)(%)とする。
【0002】
【従来の技術】
アルミニウム合金などの金属の溶湯をダイカスト成形する技術は、現在広く用いられており、最近では、金型の寿命向上やダイカスト成形品の寸法精度向上に適するとされる固液共存状態の半凝固金属スラリーを用いたダイカスト法が注目されている。
【0003】
半凝固金属スラリーを用いるダイカスト法では、溶湯合金の固液の割合を表す固相率の管理が重要となる。この固相率の管理に係る発明では、例えば、半凝固金属スラリーの変態点までは温度管理で、変態点から一定時間は攪拌して冷却する時間管理を行うことで、目標固相率を得ようとする方法がある(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開2002−153945公報(第3ー4頁、第6−7頁、図5、図9)
【0005】
図10は特許文献1の図5の再掲図である。ただし、一部省略する。
まず、制御開始時間Tsをインプットする。次にルツボに満たした半凝固金属スラリーを攪拌しながら冷却を開始し、熱電対で計測した半凝固金属スラリー温度を読み込む。
ここで、冷却開始からの経過時間(Time)がTsに達するまで攪拌冷却を継続し、半凝固金属スラリー温度の読み込みを続ける。経過時間(Time)がTsに達したら次のST05に進む。
【0006】
ST05は冷却カーブから変態点Ptを推定する。ST06は変態点Ptに対応するTf(Ptから目標固相率までの冷却時間)を求める。ST07はPt後の冷却時間がTfに達したら攪拌冷却を終了し、速やかにダイカストを開始する。
【0007】
図11は特許文献1の図9の再掲図であり、図10のST07の補足図でもある。半凝固金属スラリーの変態点PtからTf時間だけ攪拌すれば、目標固相率にすることができるというものである。
【0008】
【発明が解決しようとする課題】
特許文献1では、変態点の前後で冷却速度が変化しないことを前提としている。
しかし、一般に金属は変態点の前後で物性が異なり、必然的に変態点以前での冷却速度と変態点以降での冷却速度に差が生じる。
この差が、目標固相率と実際の固相率との差となって現れ、結果として、固相率の管理精度が低下する。
【0009】
近年、鋳造技術の高度化要求に伴って、半凝固金属スラリーを対象とした固相率の管理精度をより高めることが必要となった。そこで、従来の時間による固相率の管理に代わる管理技術を提供することが、本発明の目的となる。
【0010】
【課題を解決するための手段】
上記目的を達成するために請求項1は、半凝固金属スラリーをルツボに供給し、前記ルツボ内の半凝固金属スラリーを冷却するとともに、攪拌手段を水平方向に移動させて該半凝固金属スラリーを攪拌し、前記半凝固金属スラリーが所望の固相率になった後、前記冷却を終了する半凝固金属スラリーの製造装置において、ルツボに入れた半凝固金属スラリーを攪拌する攪拌手段を備え、前記攪拌手段の移動とともにルツボの形状に沿うように水平方向に移動し、下部を半凝固金属スラリーに差込まれる片持ち梁状の計測子と、この計測子が前記半凝固金属スラリーから受ける力を計測するロードセルと、このロードセルで検出した力から半凝固金属スラリーの粘度を換算する換算手段とからなる半凝固金属スラリーの粘度計測手段を備え、前記換算手段は、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すものであることを特徴とする。
【0011】
請求項1では、半凝固金属スラリーの粘度計測装置を、撹拌手段と、攪拌手段の移動とともにルツボの形状に沿うように水平方向に移動し、下部を半凝固金属スラリーに差込まれる片持ち梁状の計測子と、かかる計測子移動手段と、ロードセルと、換算手段とで構成した。いずれも、入手が容易で簡便な手段若しくは部品であり、粘度計測装置の低コスト化並びにコンパクト化が容易に達成できる。
【0012】
請求項2は、請求項1記載の半凝固金属スラリーの製造装置を制御する制御方法において、金属成分別の半凝固金属スラリーの固相率と粘度との相関を表すマップを利用して目標固相率に対応する目標粘度を定める工程と、前記測定子が受けた半凝固金属スラリーから受ける力を、前記ロードセルで検出し、前記ロードセルで検出した力から半凝固金属スラリーの粘度を、前記換算手段で換算する工程と、この換算手段は、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すようにした演算部を含有するものであり、その後、前記換算手段で換算した粘度と前記目標粘度とを比較する工程とを有し、換算された粘度が該目標粘度以上となれば、冷却を終了することを特徴とする。
請求項3は、半凝固金属スラリーをルツボに供給し、前記ルツボ内の半凝固金属スラリーを冷却するとともに、攪拌手段を水平方向に移動させて半凝固金属スラリーを攪拌し、前記半凝固金属スラリーが所望の固相率になった後に前記冷却を終了する半凝固金属スラリーの製造方法であって、金属成分別に半凝固金属スラリーの固相率と粘度との相関を表すマップを準備する工程と、このマップを利用して目標固相率に対応する目標粘度を定める工程と、ルツボに入れた半凝固金属スラリーを冷却しつつその粘度をルツボの形状に沿うように計測する粘度計測工程と、この粘度が前記目標粘度に到達するまで冷却を実施する工程からなることを特徴とする。
請求項4は、請求項3記載の半凝固スラリーの製造方法において、前記粘度計測工程は、前記攪拌手段の移動とともに水平方向に移動し、下部を半凝固金属スラリーに差込まれる計測子が、前記半凝固金属スラリーから受ける力から、半凝固金属スラリーの粘度を換算し、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すようにするものであり、これら工程群を半凝固金属スラリーの固相率と粘度との相関を表すマップの準備から、半凝固金属スラリーの冷却終了までの間に実施することで、半凝固金属スラリーの固相率を目標固相率に合致させることを特徴とする。
【0013】
請求項2及び請求項3では、半凝固金属スラリーを冷却する過程で、それの粘度を検出し、この粘度により、半凝固金属スラリーの固相率を管理する。
粘度を検出するため、冷却速度の変化や時間の影響を排除することができ、従来の時間による管理より、大幅に半凝固金属スラリーの固相率の管理精度を高めることができる。
【0014】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る粘度計測装置の実施例を示す図であり、粘度計測装置10は、撹拌手段11、12と、片持ち梁状の計測子13と、この計測子13を水平方向に移動させる計測子移動手段14と、この計測子13が受ける力を計測するロードセル15と、このロードセル15を固定する固定部品16と、ロードセル15からの物理量を粘度変換するための力換算手段21、粘度換算手段22を備えた力ー粘度換算手段23とからなることを特徴とする構成体である。
【0015】
ルツボ31に満たされた半凝固金属スラリー32中において、粘度計測装置10は、撹拌手段11、12が移動することと、計測子13が計測子移動手段14により水平方向に移動することにより、撹拌手段11、12や、計測子13が半凝固金属スラリー32から受ける力をロードセル15で例えば歪電圧V1として認知し、その後、力ー粘度換算手段23により粘度Bを求める装置である。
【0016】
図2は図1の2−2矢視図であり、撹拌手段11、12はその間に計測子13を備え、ルツボ31に満たした半凝固金属スラリー32中を、矢印の如く水平方向に移動させてルツボ31の形状に沿うように矩形に動いて半凝固金属スラリー32を撹拌する。
【0017】
撹拌手段11、12と計測子13が一体になっているので、撹拌手段11、12の矩形動作に合わせて計測子13は動くことができる。その結果、計測子13が計測子移動手段14(図示せず)によって水平方向に動いていても、撹拌手段11、12と計測子13が半凝固金属スラリー32から受ける力はほぼ同じものとしてロードセル15に伝えることができる。
【0018】
図3は時間経過に伴う粘度変化を調べたグラフであり、図1の装置を用いて、ルツボに満たした半凝固金属スラリーの粘度を調べてみた。なお、撹拌及び冷却の初期では、撹拌手段の進入直後のノイズが大きいことより安定した粘度が測定できないため、初期ノイズをカットした後の粘度を示した。
【0019】
装置の都合で、計測子は移動、停止、方向の変化を繰り返す。そのために、グラフが上下に波打つ。
計測子が同一方向に、一定速度で移動しているときのデータのみを取出すことを試みる。すなわち、+側のピークP1、P2…PNを結ぶと、右上がりの曲線Qを得ることができる。
【0020】
ところで、半凝固金属スラリーは、液相と固相との混合体であり、時間経過と共に温度が下がり、液相が凝固して固相の割合が増加する。この結果、時間と共に粘度が増加する。このことから、横軸を固相率に変えても、曲線Qに近似する曲線が得られる。この考えに基づいて、データを整理して得たのが次の図である。
【0021】
図4は固相率と粘度との相関を表すグラフであり、横軸は固相率で縦軸は粘度を表し、そこへ右上がりの曲線Rを描くことができる。この曲線Rを合金の種類毎に作成しておけば、次の要領で目標粘度Aを求めることができる。
【0022】
例えば横軸に示したアルミニウム合金ダイカスト原料であるアルミニウム合金溶湯の目標固相率を決め、その目標固相率から垂直上向きに延ばした線▲1▼とグラフ上の交点を求め、その交点から粘度軸に垂直に交わる線▲2▼を延ばして粘度軸と交わった点を目標粘度Aとして決める。
【0023】
金属成分別に半凝固金属スラリーの固相率と粘度との相関を表すマップを準備することは、あらかじめ目標固相率に対応する目標粘度を決定でき、その後の工程を円滑に進めることができる。
【0024】
図5は歪電圧と粘度との相関を表すグラフであり、図1で説明した装置を用いて、既知の粘度の流体に対する歪電圧を計測し、この計測値(×印)をプロットして曲線Sを求めた。この曲線Sがあれば、次の要領で計測値(歪電圧)からそのときの粘度Bを求めることができる。
【0025】
ロードセルにより測定した歪電圧を横軸にとり、測定した歪電圧から垂直上向きに延ばした線▲3▼とグラフ上の交点を求め、その交点から粘度軸に垂直に交わる線▲4▼を延ばして粘度軸と交わった点を粘度Bとして決める。
【0026】
図6は本発明方法の好適フロー図であり、ST××はステップ番号を示す。
ST01:まず、金属成分別に半凝固金属スラリーの固相率と粘度との相関図を準備する(図4参照)。
ST02:ST01で準備した相関図を用いて、目標固相率に対応する目標粘度Aを定める(図4参照)。
ST03:ルツボに満たした半凝固金属スラリーを撹拌しながら冷却開始する。
【0027】
ST04:半凝固金属スラリーを冷却して、ロードセルにより歪電圧を測定し、力ー粘度換算手段により粘度Bを求める(図5参照)。
ST05:ST04の工程で得られた粘度Bが目標粘度A以上になれば、ST06に進み冷却終了となるが、粘度Bが目標粘度A未満であれば、目標粘度A以上になるまで冷却を続ける。
【0028】
このように、本発明方法は目標粘度Aを検出して固相率を管理するため、冷却速度の変化や時間の影響を排除することができ、従来の時間による管理より、大幅に半凝固金属スラリーの固相率の管理精度を高めることができる。
【0029】
図7は図1の別実施例図であり、粘度計測装置10は、撹拌手段11、12が半凝固金属スラリー32から受ける力を、ロボットアーム43を使って動かすリンク機構44を介してロードセル15に伝える。ロードセル15は、リンク機構44を介して半凝固金属スラリー32から受ける力を歪電圧V1として認知する。その後、歪電圧V1は力ー粘度換算手段23により粘度Bに換算される。
【0030】
この場合において、粘度計測装置10は、ルツボ31内を動く撹拌手段11、12から受ける力を、ロボットアーム43を使って動かすリンク機構44を介してロードセル15に伝えるため、計測子13(図示せず)にロードセル15を結合する必要はなく、また、計測子13(図示せず)の位置を特定する必要はない。
【0031】
図8は図1の更なる別実施例図であり、粘度計測装置10は、撹拌手段11、12と、片持ち梁状の計測子13と、この計測子13が受ける力を計測するロードセル15と、このロードセル15を固定する固定部品16と、計測子13を回転するモータ41と、これら計測子13、ロードセル15、固定部品16、モータ41を取付ける固定部材42と、ロードセル15からの物理量を粘度変換するための力換算手段21、粘度換算手段22を備えた力ー粘度換算手段23とからなることを特徴とする構成体である。
【0032】
すなわち、図8では、計測子13が図1に示す計測子移動手段14と一体でない点が図1との違いで、この計測子13はモータ41で回転することにより、半凝固金属スラリー32から受ける力をロードセル15に伝える役目をする。ロードセル15は、半凝固金属スラリー32から計測子13が受ける力を歪電圧V1として認知する。その後、歪電圧V1は力ー粘度換算手段23により粘度Bに換算される。
【0033】
この場合において、計測子13は、ルツボ31内を動く撹拌手段11、12により撹拌され粘性が一定になった半凝固金属スラリー32中で、さらにモータ41により回転するので、均一な状態の溶湯から受ける力をロードセル15に伝えることができる。
【0034】
図9は図8の9−9矢視図であり、撹拌手段11、12とルツボ31に満たされた半凝固金属スラリー32の中央に配置した計測子13がある。撹拌手段11、12は半凝固金属スラリー32中を矢印▲5▼の如く矩形に動いて、ルツボ31に満たした半凝固金属スラリー32を撹拌する。同時に計測子13はモータにより矢印▲6▼の如く回転し、計測子13の回りの半凝固金属スラリー32を撹拌する。
【0035】
撹拌手段11、12はルツボ31中の半凝固金属スラリー32を矩形に撹拌すると同時に、計測子13が半凝固金属スラリー32の中央で半凝固金属スラリー32を回転させて撹拌する。この結果、計測子13は、撹拌手段11、12と計測子13自体の両方による撹拌で十分に均一な状態の溶湯から受ける力をロードセル15に伝えることができる。
【0036】
尚、本発明の粘度計測装置において、撹拌手段11、12は動かないで固定のまま半凝固金属スラリー32中を矩形に動くが、撹拌手段11、12が回転などで動きながら半凝固金属スラリー32中を動いても良い。
また、撹拌手段11、12及び撹拌手段11、12を含めた計測子移動手段14は、半凝固金属スラリー32中を矩形以外(例えばジグザグ移動)の動きをしても良い。
【0037】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1によれば、半凝固金属スラリーをルツボに供給し、前記ルツボ内の半凝固金属スラリーを冷却するとともに、攪拌手段を水平方向に移動させて該半凝固金属スラリーを攪拌し、前記半凝固金属スラリーが所望の固相率になった後、前記冷却を終了する半凝固金属スラリーの製造装置において、ルツボに入れた半凝固金属スラリーを攪拌する攪拌手段を備え、前記攪拌手段の移動とともにルツボの形状に沿うように水平方向に移動し、下部を半凝固金属スラリーに差込まれる片持ち梁状の計測子と、この計測子が前記半凝固金属スラリーから受ける力を計測するロードセルと、このロードセルで検出した力から半凝固金属スラリーの粘度を換算する換算手段とからなる半凝固金属スラリーの粘度計測手段を備え、前記換算手段は、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すものであることを特徴とする。
請求項1では、半凝固金属スラリーの粘度計測装置を、撹拌手段と、攪拌手段の移動とともにルツボの形状に沿うように水平方向に移動し、下部を半凝固金属スラリーに差込まれる片持ち梁状の計測子と、かかる計測子移動手段と、ロードセルと、換算手段とで構成したので、いずれも、入手が容易で簡便な手段若しくは部品であり、粘度計測ができる半凝固金属スラリーの製造装置の低コスト化並びにコンパクト化が容易に達成できる。
【0038】
請求項2、請求項1記載の半凝固金属スラリーの製造装置を制御する制御方法において、金属成分別の半凝固金属スラリーの固相率と粘度との相関を表すマップを利用して目標固相率に対応する目標粘度を定める工程と、前記測定子が受けた半凝固金属スラリーから受ける力を、前記ロードセルで検出し、前記ロードセルで検出した力から半凝固金属スラリーの粘度を、前記換算手段で換算する工程と、この換算手段は、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すようにした演算部を含有するものであり、その後、前記換算手段で換算した粘度と前記目標粘度とを比較する工程とを有し、換算された粘度が該目標粘度以上となれば、冷却を終了することを特徴とする。
請求項3は、半凝固金属スラリーをルツボに供給し、前記ルツボ内の半凝固金属スラリーを冷却するとともに、攪拌手段を水平方向に移動させて半凝固金属スラリーを攪拌し、前記半凝固金属スラリーが所望の固相率になった後に前記冷却を終了する半凝固金属スラリーの製造方法であって、金属成分別に半凝固金属スラリーの固相率と粘度との相関を表すマップを準備する工程と、このマップを利用して目標固相率に対応する目標粘度を定める工程と、ルツボに入れた半凝固金属スラリーを冷却しつつその粘度をルツボの形状に沿うように計測する粘度計測工程と、この粘度が前記目標粘度に到達するまで冷却を実施する工程からなることを特徴とする。
請求項4は、請求項3記載の半凝固スラリーの製造方法において、前記粘度計測工程は、前記攪拌手段の移動とともに水平方向に移動し、下部を半凝固金属スラリーに差込まれる計測子が、前記半凝固金属スラリーから受ける力から、半凝固金属スラリーの粘度を換算し、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すようにするものであり、これら工程群を半凝固金属スラリーの固相率と粘度との相関を表すマップの準備から、半凝固金属スラリーの冷却終了までの間に実施することで、半凝固金属スラリーの固相率を目標固相率に合致させることを特徴とする。
本発明では、半凝固金属スラリーを冷却する過程で、それの粘度を検出し、この粘度により、半凝固金属スラリーの固相率を管理する。
粘度を検出するため、冷却速度の変化や時間の影響を排除することができ、従来の時間による管理より、大幅に半凝固金属スラリーの固相率の管理精度を高めることができる。
【図面の簡単な説明】
【図1】 本発明に係る粘度計測装置の実施例を示す図
【図2】 図1の2−2矢視図
【図3】 時間経過に伴う粘度変化を調べたグラフ
【図4】 固相率と粘度との相関を表すグラフ
【図5】 歪電圧と粘度との相関を表すグラフ
【図6】 本発明方法の好適フロー図
【図7】 図1の別実施例図
【図8】 図1の更なる別実施例図
【図9】 図8の9−9矢視図
【図10】 特許文献1の図5の再掲図
【図11】 特許文献1の図9の再掲図
【符号の説明】
10…粘度計測装置、11…撹拌手段、12…撹拌手段、13…計測子、14…計測子移動手段、15…ロードセル、21…力換算手段、22…粘度換算手段、23…力ー粘度換算手段、31…ルツボ、32…半凝固金属スラリー。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for producing a semi-solid metal slurry for a semi- solid metal slurry such as an aluminum alloy, a control method therefor, and a method for producing a semi-solid metal slurry.
However, solid phase ratio = solid phase / (liquid phase + solid phase) (%).
[0002]
[Prior art]
The technology of die-casting molten metal such as aluminum alloy is widely used nowadays. Recently, it is a semi-solid metal in a solid-liquid coexistence state, which is suitable for improving die life and dimensional accuracy of die-cast products. A die casting method using a slurry has attracted attention.
[0003]
In the die casting method using a semi-solid metal slurry, it is important to manage the solid phase ratio representing the solid-liquid ratio of the molten alloy. In the invention relating to the management of the solid phase ratio, for example, the temperature control is performed up to the transformation point of the semisolid metal slurry, and the target solid phase ratio is obtained by performing the time management of stirring and cooling for a certain time from the transformation point. There is a method to try (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
JP 2002-153945 (pages 3-4, 6-7, FIG. 5, FIG. 9)
[0005]
FIG. 10 is a reprint of FIG. However, some are omitted.
First, the control start time Ts is input. Next, cooling is started while stirring the semi-solid metal slurry filled in the crucible, and the temperature of the semi-solid metal slurry measured with a thermocouple is read.
Here, the stirring and cooling is continued until the elapsed time (Time) from the start of cooling reaches Ts, and the reading of the semi-solid metal slurry temperature is continued. When the elapsed time (Time) reaches Ts, the process proceeds to the next ST05.
[0006]
In ST05, the transformation point Pt is estimated from the cooling curve. In ST06, Tf (cooling time from Pt to the target solid phase ratio) corresponding to the transformation point Pt is obtained. In ST07, when the cooling time after Pt reaches Tf, the stirring cooling is finished, and die casting is started immediately.
[0007]
FIG. 11 is a reprint of FIG. 9 of Patent Document 1, and also a supplementary diagram of ST07 of FIG. The target solid phase ratio can be achieved by stirring for a period of Tf from the transformation point Pt of the semi-solid metal slurry.
[0008]
[Problems to be solved by the invention]
In Patent Document 1, it is assumed that the cooling rate does not change before and after the transformation point.
However, in general, metal has different physical properties before and after the transformation point, and inevitably there is a difference between the cooling rate before the transformation point and the cooling rate after the transformation point.
This difference appears as a difference between the target solid phase rate and the actual solid phase rate, and as a result, the management accuracy of the solid phase rate decreases.
[0009]
In recent years, with the demand for advanced casting technology, it has become necessary to further improve the accuracy of solid phase ratio management for semi-solid metal slurries. Therefore, it is an object of the present invention to provide a management technique that replaces the conventional management of the solid phase rate by time.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1, the semi-solid metal slurry is supplied to the crucible, the semi-solid metal slurry in the crucible is cooled, and the stirring means is moved in the horizontal direction so that the semi-solid metal slurry is Stirring, and after the semi-solid metal slurry has reached a desired solid phase ratio, in the semi-solid metal slurry manufacturing apparatus that terminates the cooling, provided with stirring means for stirring the semi-solid metal slurry placed in a crucible, With the movement of the stirring means, it moves in the horizontal direction along the shape of the crucible, and the cantilever-shaped probe inserted into the semi-solid metal slurry at the bottom, and the force that this probe receives from the semi-solid metal slurry A semi-solid metal slurry viscosity measuring means comprising a load cell for measurement and a conversion means for converting the viscosity of the semi-solid metal slurry from the force detected by the load cell; Conversion means among the data of the viscosity of semi-solid metal slurry is converted, the measuring element is in the same direction, and characterized in that retrieving the data when traveling at a constant speed.
[0011]
In claim 1, the semi-solid metal slurry viscosity measuring device is moved in the horizontal direction along the shape of the crucible with the movement of the stirring means and the stirring means, and the lower part is a cantilever beam inserted into the semi-solid metal slurry. and Jo measurement element, and such measurement piece moving unit, and a load cell was constructed by the conversion means. Both are easy-to-obtain and simple means or parts, and the viscosity measuring device can be easily reduced in cost and compact.
[0012]
A second aspect of the present invention provides a control method for controlling a semi-solid metal slurry manufacturing apparatus according to the first aspect, using a map representing a correlation between a solid phase ratio and a viscosity of a semi-solid metal slurry for each metal component. The step of determining the target viscosity corresponding to the phase ratio and the force received from the semi-solid metal slurry received by the probe are detected by the load cell, and the viscosity of the semi-solid metal slurry is converted from the force detected by the load cell to the conversion The step of converting by means, and this conversion means is an arithmetic unit that takes out data when the probe moves in the same direction at a constant speed from the converted viscosity data of the semi-solid metal slurry. And then, comparing the viscosity converted by the conversion means with the target viscosity, and cooling is terminated when the converted viscosity is equal to or higher than the target viscosity. To.
According to a third aspect of the present invention, the semi-solid metal slurry is supplied to the crucible, the semi-solid metal slurry in the crucible is cooled, the stirring means is moved in the horizontal direction, the semi-solid metal slurry is stirred, and the semi-solid metal slurry A method for producing a semi-solid metal slurry in which the cooling is terminated after the solid phase ratio reaches a desired solid phase ratio, and a step of preparing a map representing the correlation between the solid phase ratio and the viscosity of the semi-solid metal slurry for each metal component; A step of determining a target viscosity corresponding to the target solid phase ratio using this map, a viscosity measuring step of measuring the viscosity along the shape of the crucible while cooling the semi-solid metal slurry put in the crucible , the viscosity is equal to or comprising the step of performing a cooling until reaching the target viscosity.
According to a fourth aspect of the present invention, in the method for producing a semi-solid slurry according to the third aspect, the viscosity measuring step moves in a horizontal direction along with the movement of the stirring means, and a measuring element inserted into the semi-solid metal slurry at the lower portion is provided. From the force received from the semi-solid metal slurry, the viscosity of the semi-solid metal slurry is converted. Among the converted viscosity data of the semi-solid metal slurry, the probe is moving in the same direction at a constant speed. By taking these data from the preparation of a map showing the correlation between the solid fraction and the viscosity of the semi-solid metal slurry until the end of the cooling of the semi-solid metal slurry, The solid phase ratio of the semi-solid metal slurry is matched with the target solid phase ratio.
[0013]
In the second and third aspects, the viscosity of the semi-solid metal slurry is detected in the course of cooling the semi-solid metal slurry, and the solid phase ratio of the semi-solid metal slurry is controlled based on this viscosity.
Since the viscosity is detected, changes in the cooling rate and the influence of time can be eliminated, and the management accuracy of the solid phase ratio of the semi-solid metal slurry can be greatly improved as compared with the conventional management by time.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a diagram showing an embodiment of a viscosity measuring device according to the present invention. A viscosity measuring device 10 includes stirring means 11 and 12, a cantilever-shaped measuring element 13, and the measuring element 13 in a horizontal direction. A measuring element moving means 14 for moving, a load cell 15 for measuring a force received by the measuring element 13, a fixed part 16 for fixing the load cell 15, a force converting means 21 for converting a physical quantity from the load cell 15 into a viscosity, It is a structure comprising force-viscosity conversion means 23 provided with viscosity conversion means 22.
[0015]
In the semi-solid metal slurry 32 filled in the crucible 31, the viscosity measuring device 10 is stirred by moving the stirring means 11, 12 and moving the measuring element 13 in the horizontal direction by the measuring element moving means 14. This is a device that recognizes the force received from the semi-solid metal slurry 32 by the means 11, 12 and the measuring element 13 as, for example, the strain voltage V 1 by the load cell 15, and then obtains the viscosity B by the force-viscosity conversion means 23.
[0016]
2 is a view taken along arrow 2-2 in FIG. 1, and the stirring means 11 and 12 are provided with a measuring element 13 therebetween, and are moved in the horizontal direction as indicated by the arrow in the semi-solid metal slurry 32 filled in the crucible 31. Then, the semi-solid metal slurry 32 is stirred by moving in a rectangular shape along the shape of the crucible 31 .
[0017]
Since the stirring means 11 and 12 and the measuring element 13 are integrated, the measuring element 13 can move in accordance with the rectangular motion of the stirring means 11 and 12. As a result, even when the tracing stylus 13 is moved in the horizontal direction by the tracing stylus moving means 14 (not shown), it is assumed that the forces received by the stirring means 11 and 12 and the tracing stylus 13 from the semi-solid metal slurry 32 are substantially the same. 15 can tell.
[0018]
FIG. 3 is a graph showing the change in viscosity with time. Using the apparatus shown in FIG. 1, the viscosity of the semi-solid metal slurry filled in the crucible was examined. In addition, since the stable viscosity cannot be measured at the initial stage of stirring and cooling due to the large noise immediately after entering the stirring means, the viscosity after the initial noise was cut is shown.
[0019]
For convenience of the device, the probe repeats moving, stopping, and changing direction. Therefore, the graph undulates up and down.
Attempt to retrieve data only when the probe is moving in the same direction at a constant speed. That is, a curve Q that rises to the right can be obtained by connecting the peaks P1, P2,.
[0020]
By the way, the semi-solid metal slurry is a mixture of a liquid phase and a solid phase, the temperature decreases with time, the liquid phase solidifies and the ratio of the solid phase increases. As a result, the viscosity increases with time. From this, even if the horizontal axis is changed to the solid phase ratio, a curve approximating the curve Q is obtained. Based on this idea, the following figure was obtained by organizing the data.
[0021]
FIG. 4 is a graph showing the correlation between the solid phase rate and the viscosity. The horizontal axis represents the solid phase rate and the vertical axis represents the viscosity, and a curve R rising to the right can be drawn there. If this curve R is prepared for each type of alloy, the target viscosity A can be obtained in the following manner.
[0022]
For example, the target solid phase ratio of the aluminum alloy molten metal, which is the aluminum alloy die casting raw material shown on the horizontal axis, is determined, the line (1) extending vertically upward from the target solid ratio and the intersection point on the graph is obtained, and the viscosity is determined from the intersection point. The point (2) extending perpendicularly to the axis is extended to determine the point where it intersects the viscosity axis as the target viscosity A.
[0023]
Preparing a map representing the correlation between the solid phase ratio and the viscosity of the semi-solid metal slurry for each metal component can determine the target viscosity corresponding to the target solid phase ratio in advance, and can smoothly proceed with the subsequent steps.
[0024]
FIG. 5 is a graph showing the correlation between the strain voltage and the viscosity. Using the apparatus described in FIG. 1, the strain voltage for a fluid having a known viscosity is measured, and the measured value (x mark) is plotted to curve. S was determined. If this curve S exists, the viscosity B at that time can be obtained from the measured value (strain voltage) in the following manner.
[0025]
Taking the strain voltage measured by the load cell on the horizontal axis, the line (3) extending vertically upward from the measured strain voltage and the intersection on the graph are obtained, and the line (4) perpendicular to the viscosity axis is extended from the intersection to increase the viscosity. The point that intersects the axis is determined as the viscosity B.
[0026]
FIG. 6 is a preferred flowchart of the method of the present invention, where STxx indicates a step number.
ST01: First, a correlation diagram between the solid phase ratio and the viscosity of the semi-solid metal slurry is prepared for each metal component (see FIG. 4).
ST02: The target viscosity A corresponding to the target solid phase ratio is determined using the correlation diagram prepared in ST01 (see FIG. 4).
ST03: Start cooling while stirring the semi-solid metal slurry filled in the crucible.
[0027]
ST04: The semi-solid metal slurry is cooled, the strain voltage is measured by a load cell, and the viscosity B is obtained by force-viscosity conversion means (see FIG. 5).
ST05: If the viscosity B obtained in the process of ST04 is equal to or higher than the target viscosity A, the process proceeds to ST06 and the cooling is completed. If the viscosity B is less than the target viscosity A, the cooling is continued until the viscosity becomes equal to or higher than the target viscosity A. .
[0028]
Thus, since the method of the present invention detects the target viscosity A and manages the solid phase ratio, it is possible to eliminate the influence of the change in cooling rate and the time, and the semi-solid metal is significantly more than the conventional management by time. The management accuracy of the solid phase ratio of the slurry can be increased.
[0029]
FIG. 7 is a diagram showing another embodiment of FIG. 1, and the viscosity measuring device 10 includes a load cell 15 via a link mechanism 44 that moves the force received by the stirring means 11, 12 from the semi-solid metal slurry 32 using the robot arm 43. To tell. The load cell 15 recognizes the force received from the semi-solid metal slurry 32 through the link mechanism 44 as the strain voltage V1. Thereafter, the strain voltage V1 is converted into the viscosity B by the force-viscosity conversion means 23.
[0030]
In this case, the viscosity measuring device 10 transmits the force received from the stirring means 11, 12 moving in the crucible 31 to the load cell 15 via the link mechanism 44 moved using the robot arm 43, so that the measuring element 13 (not shown). It is not necessary to couple the load cell 15 and the position of the measuring element 13 (not shown) need not be specified.
[0031]
FIG. 8 is a diagram showing still another embodiment of FIG. 1, in which the viscosity measuring device 10 includes a stirring means 11, 12, a cantilever-shaped measuring element 13, and a load cell 15 that measures the force received by the measuring element 13. And a fixed part 16 for fixing the load cell 15, a motor 41 for rotating the measuring element 13, a fixing member 42 for mounting the measuring element 13, the load cell 15, the fixing part 16 and the motor 41, and a physical quantity from the load cell 15. It is a structure comprising force conversion means 21 for converting viscosity and force-viscosity conversion means 23 provided with viscosity conversion means 22.
[0032]
8 is different from FIG. 1 in that the measuring element 13 is not integrated with the measuring element moving means 14 shown in FIG. 1, and this measuring element 13 is rotated by the motor 41 so that the semi-solid metal slurry 32 is removed. It serves to convey the force received to the load cell 15. The load cell 15 recognizes the force received by the probe 13 from the semi-solid metal slurry 32 as the distortion voltage V1. Thereafter, the strain voltage V1 is converted into the viscosity B by the force-viscosity conversion means 23.
[0033]
In this case, the measuring element 13 is further rotated by the motor 41 in the semi-solid metal slurry 32 which is stirred by the stirring means 11 and 12 moving in the crucible 31 and has a constant viscosity. The force received can be transmitted to the load cell 15.
[0034]
FIG. 9 is a view taken in the direction of arrows 9-9 in FIG. 8 and has a measuring element 13 arranged at the center of the semi-solid metal slurry 32 filled with the stirring means 11 and 12 and the crucible 31. The agitating means 11 and 12 move in the semi-solid metal slurry 32 in a rectangular shape as indicated by the arrow (5) to agitate the semi-solid metal slurry 32 filled in the crucible 31. At the same time, the probe 13 is rotated by a motor as indicated by the arrow (6), and the semi-solid metal slurry 32 around the probe 13 is stirred.
[0035]
The stirring means 11 and 12 stir the semi-solid metal slurry 32 in the crucible 31 in a rectangular shape, and simultaneously the measuring element 13 rotates the semi-solid metal slurry 32 at the center of the semi-solid metal slurry 32 to stir. As a result, the measuring element 13 can transmit to the load cell 15 the force received from the molten metal in a sufficiently uniform state by the stirring by both the stirring means 11 and 12 and the measuring element 13 itself.
[0036]
In the viscosity measuring device of the present invention, the stirring means 11 and 12 do not move but move in a rectangular shape in the semi-solid metal slurry 32, but the stirring means 11 and 12 move by rotation or the like while the semi-solid metal slurry 32 moves. You can move inside.
Moreover, the measuring element moving means 14 including the stirring means 11 and 12 and the stirring means 11 and 12 may move in the semi-solid metal slurry 32 other than a rectangle (for example, zigzag movement).
[0037]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
According to claim 1, the semi-solid metal slurry is supplied to the crucible, the semi-solid metal slurry in the crucible is cooled, the stirring means is moved in the horizontal direction, and the semi-solid metal slurry is stirred, After the solidified metal slurry has reached a desired solid phase ratio, the semi-solid metal slurry manufacturing apparatus that terminates the cooling includes stirring means for stirring the semi-solid metal slurry placed in a crucible, along with the movement of the stirring means A cantilever-shaped measuring element that moves horizontally along the shape of the crucible and is inserted into the semi-solid metal slurry at the bottom, and a load cell that measures the force that the measuring element receives from the semi-solid metal slurry, A semi-solid metal slurry viscosity measuring means comprising a conversion means for converting the viscosity of the semi-solid metal slurry from the force detected by the load cell; Among the data of the viscosity of semi-solid metal slurry, the measuring element is in the same direction, and wherein the data is intended to take out when moving at a constant speed.
In claim 1, the semi-solid metal slurry viscosity measuring device is moved in the horizontal direction along the shape of the crucible with the movement of the stirring means and the stirring means, and the lower part is a cantilever beam inserted into the semi-solid metal slurry. The measuring device, the measuring device moving means, the load cell, and the conversion means are both easy to obtain, simple means or parts, and a semi-solid metal slurry manufacturing apparatus capable of measuring viscosity. Cost reduction and compactness can be easily achieved.
[0038]
2. A control method for controlling a semi-solid metal slurry production apparatus according to claim 2, wherein a target solid phase is obtained using a map representing a correlation between a solid phase ratio and a viscosity of a semi-solid metal slurry for each metal component. A step of determining a target viscosity corresponding to a rate, and a force received from the semi-solid metal slurry received by the measuring element is detected by the load cell, and the viscosity of the semi-solid metal slurry is detected from the force detected by the load cell, the conversion means And the conversion means includes an arithmetic unit that extracts data when the probe moves in the same direction at a constant speed from the converted viscosity data of the semi-solid metal slurry. And a step of comparing the viscosity converted by the conversion means with the target viscosity, and cooling is terminated when the converted viscosity is equal to or higher than the target viscosity. To.
According to a third aspect of the present invention, the semi-solid metal slurry is supplied to the crucible, the semi-solid metal slurry in the crucible is cooled, the stirring means is moved in the horizontal direction, and the semi-solid metal slurry is stirred. A method for producing a semi-solid metal slurry in which the cooling is terminated after the solid phase ratio reaches a desired solid phase ratio, and a step of preparing a map representing the correlation between the solid phase ratio and the viscosity of the semi-solid metal slurry for each metal component; A step of determining a target viscosity corresponding to the target solid phase ratio using this map, a viscosity measuring step of measuring the viscosity along the shape of the crucible while cooling the semi-solid metal slurry put in the crucible , the viscosity is equal to or comprising the step of performing a cooling until reaching the target viscosity.
According to a fourth aspect of the present invention, in the method for producing a semi-solid slurry according to the third aspect, the viscosity measuring step moves in the horizontal direction along with the movement of the stirring means, and a measuring element inserted into the semi-solid metal slurry at the lower portion. From the force received from the semi-solid metal slurry, the viscosity of the semi-solid metal slurry is converted. Among the converted viscosity data of the semi-solid metal slurry, the probe is moving in the same direction at a constant speed. By taking these data from the preparation of a map representing the correlation between the solid phase ratio and viscosity of the semi-solid metal slurry to the end of cooling of the semi-solid metal slurry, The solid phase ratio of the semi-solid metal slurry is matched with the target solid phase ratio.
In the present invention, in the process of cooling the semi-solid metal slurry, its viscosity is detected, and the solid phase ratio of the semi-solid metal slurry is managed by this viscosity.
Since the viscosity is detected, the change in cooling rate and the influence of time can be eliminated, and the management accuracy of the solid phase ratio of the semi-solid metal slurry can be greatly improved as compared with the conventional management by time.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a viscosity measuring apparatus according to the present invention. FIG. 2 is a view taken along arrow 2-2 in FIG. 1. FIG. 3 is a graph showing changes in viscosity with time. FIG. 5 is a graph showing the correlation between the strain voltage and the viscosity. FIG. 6 is a preferred flow chart of the method of the present invention. FIG. 7 is another embodiment of FIG. FIG. 9 is a view taken along arrow 9-9 in FIG. 8. FIG. 10 is a reprint of FIG. 5 of Patent Document 1. FIG. 11 is a reprint of FIG. 9 of Patent Document 1. Explanation】
DESCRIPTION OF SYMBOLS 10 ... Viscosity measuring apparatus, 11 ... Agitation means, 12 ... Agitation means, 13 ... Measuring element, 14 ... Measuring element moving means, 15 ... Load cell, 21 ... Force conversion means, 22 ... Viscosity conversion means, 23 ... Force-viscosity conversion Means 31 ... crucible, 32 ... semi-solid metal slurry.

Claims (4)

半凝固金属スラリーをルツボに供給し、前記ルツボ内の半凝固金属スラリーを冷却するとともに、攪拌手段を水平方向に移動させて該半凝固金属スラリーを攪拌し、前記半凝固金属スラリーが所望の固相率になった後、前記冷却を終了する半凝固金属スラリーの製造装置において、
ルツボに入れた半凝固金属スラリーを攪拌する攪拌手段を備え、前記攪拌手段の移動とともにルツボの形状に沿うように水平方向に移動し、下部を半凝固金属スラリーに差込まれる片持ち梁状の計測子と、この計測子が前記半凝固金属スラリーから受ける力を計測するロードセルと、このロードセルで検出した力から半凝固金属スラリーの粘度を換算する換算手段とからなる半凝固金属スラリーの粘度計測手段を備え、
前記換算手段は、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すものであることを特徴とする半凝固金属スラリーの製造装置。
The semi-solid metal slurry is supplied to the crucible, the semi-solid metal slurry in the crucible is cooled, and the agitation means is moved in the horizontal direction to stir the semi-solid metal slurry. In the apparatus for producing a semi-solid metal slurry that finishes the cooling after reaching the phase ratio,
A stirring means for stirring the semi-solid metal slurry placed in the crucible is moved in the horizontal direction along the shape of the crucible along with the movement of the stirring means, and the lower part is in a cantilever shape inserted into the semi-solid metal slurry. Viscosity measurement of a semi-solid metal slurry comprising a measuring element, a load cell for measuring the force that the measuring element receives from the semi-solid metal slurry, and a conversion means for converting the viscosity of the semi-solid metal slurry from the force detected by the load cell With means,
The conversion means is for extracting data when the probe is moving in the same direction at a constant speed from the converted viscosity data of the semi-solid metal slurry. Manufacturing equipment.
請求項1記載の半凝固金属スラリーの製造装置を制御する制御方法において、
金属成分別の半凝固金属スラリーの固相率と粘度との相関を表すマップを利用して目標固相率に対応する目標粘度を定める工程と、
前記測定子が受けた半凝固金属スラリーから受ける力を、前記ロードセルで検出し、前記ロードセルで検出した力から半凝固金属スラリーの粘度を、前記換算手段で換算する工程と、
この換算手段は、
換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すようにした演算部を含有するものであり、
その後、前記換算手段で換算した粘度と前記目標粘度とを比較する工程とを有し、
換算された粘度が該目標粘度以上となれば、冷却を終了する、
ことを特徴とする半凝固金属スラリーの製造装置の制御方法。
In the control method which controls the manufacturing apparatus of the semi-solid metal slurry according to claim 1,
A step of determining a target viscosity corresponding to the target solid phase ratio using a map representing a correlation between the solid phase ratio and the viscosity of the semisolid metal slurry for each metal component;
Detecting the force received from the semi-solid metal slurry received by the probe with the load cell, and converting the viscosity of the semi-solid metal slurry from the force detected with the load cell with the conversion means;
This conversion means is
Among the converted data of the viscosity of the semi-solid metal slurry, it contains a calculation unit that is adapted to take out data when the probe is moving in the same direction at a constant speed,
Then, the step of comparing the viscosity converted by the conversion means and the target viscosity,
If the converted viscosity is equal to or higher than the target viscosity, cooling is terminated.
A method for controlling a semi-solid metal slurry production apparatus, comprising:
半凝固金属スラリーをルツボに供給し、前記ルツボ内の半凝固金属スラリーを冷却するとともに、攪拌手段を水平方向に移動させて半凝固金属スラリーを攪拌し、前記半凝固金属スラリーが所望の固相率になった後に前記冷却を終了する半凝固金属スラリーの製造方法であって、
金属成分別に半凝固金属スラリーの固相率と粘度との相関を表すマップを準備する工程と、
このマップを利用して目標固相率に対応する目標粘度を定める工程と、
ルツボに入れた半凝固金属スラリーを冷却しつつその粘度をルツボの形状に沿うように計測する粘度計測工程と、
この粘度が前記目標粘度に到達するまで冷却を実施する工程と、
からなることを特徴とする半凝固金属スラリーの製造方法。
The semi-solid metal slurry is supplied to the crucible, the semi-solid metal slurry in the crucible is cooled, and the stirring means is moved in the horizontal direction to stir the semi-solid metal slurry. A method for producing a semi-solid metal slurry that terminates the cooling after reaching a rate,
Preparing a map representing the correlation between the solid phase ratio and viscosity of the semi-solid metal slurry for each metal component;
Using this map to determine the target viscosity corresponding to the target solid fraction,
A viscosity measuring step of measuring the viscosity of the semi-solid metal slurry placed in the crucible while cooling it along the shape of the crucible ;
Cooling until the viscosity reaches the target viscosity ; and
A process for producing a semi-solid metal slurry, comprising:
請求項3記載の半凝固スラリーの製造方法において、The method for producing a semi-solid slurry according to claim 3,
前記粘度計測工程は、前記攪拌手段の移動とともに水平方向に移動し、下部を半凝固金属スラリーに差込まれる計測子が、前記半凝固金属スラリーから受ける力から、半凝固金属スラリーの粘度を換算し、換算された半凝固金属スラリーの粘度のデータのうち、測定子が同一方向に、一定速度で移動しているときのデータを取出すようにするものであり、これら工程群を半凝固金属スラリーの固相率と粘度との相関を表すマップの準備から、半凝固金属スラリーの冷却終了までの間に実施することで、半凝固金属スラリーの固相率を目標固相率に合致させることを特徴とする半凝固金属スラリーの製造方法。In the viscosity measuring step, the viscosity of the semi-solid metal slurry is converted from the force received from the semi-solid metal slurry by the measuring element that moves horizontally with the movement of the stirring means and the lower part is inserted into the semi-solid metal slurry. Of the viscosity data of the converted semi-solid metal slurry, the data when the probe is moving in the same direction at a constant speed is taken out. By carrying out from the preparation of the map showing the correlation between the solid phase rate and viscosity of the semi-solid metal slurry to the end of cooling of the semi-solid metal slurry, it is possible to match the solid phase rate of the semi-solid metal slurry with the target solid phase rate. A method for producing a semi-solid metal slurry.
JP2003190305A 2003-07-02 2003-07-02 Semi-solid metal slurry manufacturing apparatus and control method thereof, and semi-solid metal slurry manufacturing method Expired - Lifetime JP3990654B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003190305A JP3990654B2 (en) 2003-07-02 2003-07-02 Semi-solid metal slurry manufacturing apparatus and control method thereof, and semi-solid metal slurry manufacturing method
CNB2004800189944A CN100364697C (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal
US10/562,457 US7264037B2 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal
EP10192807A EP2292353A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solid metal
CA002530871A CA2530871A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal
PCT/JP2004/009507 WO2005002760A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal
EP10192806A EP2289650A1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solid metal
EP04746976A EP1649951B1 (en) 2003-07-02 2004-06-29 Molding of slurry-form semi-solidified metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003190305A JP3990654B2 (en) 2003-07-02 2003-07-02 Semi-solid metal slurry manufacturing apparatus and control method thereof, and semi-solid metal slurry manufacturing method

Publications (2)

Publication Number Publication Date
JP2005021943A JP2005021943A (en) 2005-01-27
JP3990654B2 true JP3990654B2 (en) 2007-10-17

Family

ID=34188243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003190305A Expired - Lifetime JP3990654B2 (en) 2003-07-02 2003-07-02 Semi-solid metal slurry manufacturing apparatus and control method thereof, and semi-solid metal slurry manufacturing method

Country Status (2)

Country Link
JP (1) JP3990654B2 (en)
CN (1) CN100364697C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005021891B4 (en) 2005-05-04 2011-12-22 Evgenij Sterling Method of making pigs and pigs
CN109513886A (en) 2018-12-14 2019-03-26 珠海市润星泰电器有限公司 A kind of pulping device of semi solid slurry
JP7157109B2 (en) * 2020-08-20 2022-10-19 Maアルミニウム株式会社 Viscosity characteristics calculation method and viscosity characteristics calculation program for aluminum alloys
CN115493973B (en) * 2022-11-16 2023-05-16 深圳市众德祥科技有限公司 Metal feed viscosity detection system and detection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256257A (en) * 1987-04-13 1988-10-24 Ube Ind Ltd Pressure casting method using collapsible insert core
JP3211754B2 (en) * 1996-11-28 2001-09-25 宇部興産株式会社 Equipment for manufacturing metal for semi-solid molding
JP2874990B2 (en) * 1990-09-12 1999-03-24 株式会社レオテック Method for producing semi-solid metal
FR2715088B1 (en) * 1994-01-17 1996-02-09 Pechiney Aluminium Process for shaping metallic materials in the semi-solid state.
JPH11197815A (en) * 1998-01-20 1999-07-27 Honda Motor Co Ltd Apparatus for producing semi-solidified metal
JP4726164B2 (en) * 2000-11-22 2011-07-20 本田技研工業株式会社 Method for managing solid phase ratio of semi-solid metal slurry
JP4603723B2 (en) * 2001-05-16 2010-12-22 本田技研工業株式会社 Metal molding production equipment

Also Published As

Publication number Publication date
JP2005021943A (en) 2005-01-27
CN1819884A (en) 2006-08-16
CN100364697C (en) 2008-01-30

Similar Documents

Publication Publication Date Title
Muschol et al. Surface-tension-anisotropy measurements of succinonitrile and pivalic acid: Comparison with microscopic solvability theory
CN102323184B (en) Visual testing device for liquid metal fluidity and testing method based on it
CN102998324B (en) Thermal analysis and detection method for solidification grain size of magnesium alloy melt
JP3990654B2 (en) Semi-solid metal slurry manufacturing apparatus and control method thereof, and semi-solid metal slurry manufacturing method
CN102680326B (en) Device and method for testing hot crack of aluminum alloy under condition of active applied load
CN101876642A (en) Method and device for testing interfacial heat transfer coefficient during rapid solidification
CN102661967A (en) Heat flow simulation test device of crystallizer meniscus horizontal heat transfer
El-Bealy et al. Modeling of the peritectic reaction and macro-segregation in casting of low carbon steel
CN203376227U (en) Paraffin remover and inhibitor evaluator
CN106370695B (en) Device and method for measuring thermal resistance of continuous casting mold flux film
CN105880497A (en) Method and device for measuring electromagnetic torque of electromagnetic stirrer of continuous casting crystallizer
Orrling et al. Observing and measuring solidification phenomena at high temperatures
CN102430750B (en) Method and device for carrying out online component detection and solidification structure control on magnesium alloy
CN102645446B (en) Online detection method of grain refinement and metamorphism effect of aluminum alloy melt
CN202583014U (en) Device for testing aluminum alloy hot cracking on condition of applying load actively
AU2007301495B2 (en) An apparatus and method for determining the percentage of carbon equivalent, carbon and silicon in liquid ferrous metal
JP3308276B2 (en) Non-contact continuous temperature measurement method for solidification of alloys
CN110970095B (en) Method for calculating stress of forced convection on AlN dendrites in molten steel solidification process in metallurgical field
KR100349742B1 (en) Torque measuring method for high temperature viscosity device of partially solid metal using stirring rod
CN1160560C (en) Method for measring temp gradient in directional settling procedure
JP4726164B2 (en) Method for managing solid phase ratio of semi-solid metal slurry
CN201632613U (en) Full solid induction remelting device
CN219758129U (en) Aluminium liquid thermal analysis appearance
CN202710199U (en) Continuous temperature measuring device in directional solidification process
CN104690243A (en) Test method for simulation flowing of liquid mold flux in continuous casting mold

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3990654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140727

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term