JP3990202B2 - Internal heat exchange distillation column - Google Patents

Internal heat exchange distillation column Download PDF

Info

Publication number
JP3990202B2
JP3990202B2 JP2002175690A JP2002175690A JP3990202B2 JP 3990202 B2 JP3990202 B2 JP 3990202B2 JP 2002175690 A JP2002175690 A JP 2002175690A JP 2002175690 A JP2002175690 A JP 2002175690A JP 3990202 B2 JP3990202 B2 JP 3990202B2
Authority
JP
Japan
Prior art keywords
tube
heat exchange
distillation column
pipe
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002175690A
Other languages
Japanese (ja)
Other versions
JP2004016928A (en
Inventor
一正 阿曽
俊成 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Original Assignee
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd filed Critical Kimura Chemical Plants Co Ltd
Priority to JP2002175690A priority Critical patent/JP3990202B2/en
Publication of JP2004016928A publication Critical patent/JP2004016928A/en
Application granted granted Critical
Publication of JP3990202B2 publication Critical patent/JP3990202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低圧塔と高圧塔を備え、高圧塔(濃縮部)側から、低圧塔(回収部)側に熱移動させることにより両者の間で熱交換を行う内部熱交換型蒸留塔に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
省エネルギー性に優れた蒸留塔として、低圧塔と高圧塔とを備え、両者の間で熱交換を行うように構成され、他との熱の授受を必要としない内部熱交換型の蒸留塔が知られている。この内部熱交換型蒸留塔は、蒸留操作の省エネルギー化を進める見地からすれば、省エネルギーに最も忠実な理論であることは、原理的にも当然であり、また、学問上からも認められているところである。
【0003】
また、内部熱交換型蒸留塔として、複数の管を両端管板によって本体胴と連結させることにより、本体胴の内部において、各管の管内と管外が隔離された構造とし、管内及び管外のそれぞれに気液の出入口を設け、管内側と管外側の操作圧力に差をつけることにより操作温度を異ならせ、各管の管壁を伝熱面として、高圧側から低圧側に熱移動させることにより、高圧側を濃縮部、低圧側を回収部として一つの蒸留塔を構成するようにした構造が提案されている(特開平8−66601号(特許第2694425号))。
【0004】
この内部熱交換型蒸留塔は、図5に示すように、本体胴1と、本体胴1内に挿入された複数の管25を両端管板(上側管板(塔頂側管板)3a及び下側管板(塔底側管板)3b)によって本体胴1と連結させることにより形成されている。そして、各管25の管内4と管外5は互いに隔離された構造を有しており、管内4が高圧側の濃縮部となり、管外5が低圧側の回収部となるように構成されている。
【0005】
また、本体胴1の上部には、管外(回収部)5に液を供給するための回収部液入口6、管外(回収部)5からの蒸気を抜き出す回収部蒸気出口7が配設されており、上側管板3aより上側の、管内(濃縮部)4と連通する端室14aには、管内(濃縮部)4に液を供給するための濃縮部液入口8が配設され、また、管内(濃縮部)4からの蒸気を抜き出す濃縮部蒸気出口9が配設されている。
【0006】
一方、本体胴1の下部には、管外(回収部)5に蒸気を供給するための回収部蒸気入口10、管外(回収部)5からの液を抜き出す回収部液出口11が配設されており、下側管板3bより下側の、管内(濃縮部)4と連通する端室14bには、管内(濃縮部)4に蒸気を供給するための濃縮部蒸気入口12が配設され、また、管内(濃縮部)4からの液を抜き出す濃縮部液出口13が配設されている。
【0007】
ところで、このような内部熱交換型蒸留塔においては、濃縮部あるいは回収部を構成する、管内側及び管外側の蒸留部における気液接触の状態が、蒸留作用に大きな影響を与えるため、例えば、図5の内部熱交換型蒸留塔のように、管外に充填物を充填して回収部(充填塔)としているような場合において、気液の流れに偏りがあると、目標とするような蒸留効果を得ることができなくなる。
すなわち、充填塔の塔頂で充填層上面に表面積当たり均等に散布された液は、引力により充填物表面を流下し、塔底に供給された蒸気は、塔頂・塔底間の圧力差を推進力として充填物間の隙間を上昇し、充填塔内で液と蒸気が接触することによって蒸留が行われるが、充填塔における気液の流れについてみると、通常、上昇蒸気は下降液量の少ないところに流れ、下降液は上昇蒸気量の少ないところに流れる傾向があるため、少しの偏流が加速度的に大きな偏流を引き起こすことになる。したがって、下降液量と上昇蒸気量の割合の位置的な偏りが、塔頂から塔底にむかって増大し、結果として、設計どおりの気液接触効果、すなわち蒸留性能を得ることができなくなる。
【0008】
そこで、従来の充填塔では、必ず所定の充填層高さ毎に(塔径にもよるが、一般的には2〜5m毎に)、充填層を区切り、この区切り部分に充填層受け、集液具、液体分散具などを配設し、設計どおりの気液接触効果が得られるようにしている。しかしながら、このような構成とした場合、設備構造が複雑になるだけでなく、充填層受け、集液具、液体分散具などの配設されるスペースは、蒸留作用を行う蒸留部としては機能しないことから、蒸留塔の高さがその分だけ高くなり、設備の大型化及びコストの増大を招くという問題点がある。
【0009】
また、管外に充填物を充填して充填塔とした場合、管外の水平断面形状は複雑で、気液接触状態の偏りが生じやすく、上述の充填塔の問題(気液接触状態の偏りによる問題)はより顕著となり、水平断面上の単位面積当たりの気液接触状態を均一にすることはますます困難になる傾向がある。
【0010】
本発明は、上記問題点を解決するものであり、コストの増大を招くことなく、蒸留部における気液接触状態に偏りが少なく、目標とする蒸留性能を発揮させることが可能な内部熱交換型蒸留塔を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明(請求項1)の内部熱交換型蒸留塔は、
複数の管を両端管板によって本体胴と連結することにより、本体胴の内部において各管の管内と管外が隔離され、かつ、管内及び管外のそれぞれが気液の出入口を備えた構造とし、
少なくとも各管の周囲に充填物を配設するとともに、
管内側と管外側の操作圧力に差をつけることにより操作温度を異ならせ、各管の管壁を伝熱面として、高圧側から低圧側に熱移動させることにより、高圧側が濃縮部、低圧側が回収部として機能するように構成された内部熱交換型蒸留塔であって、
(a)充填物が配設される前記管外側の空間を、区画壁により各管の周囲毎に分割するとともに、
(b)区画壁により分割された各領域(区画領域)の水平断面形状がそれぞれ同一形状になるようにしたこと
を特徴としている。
【0012】
管外側の空間を、区画壁により各管の周囲毎に分割するとともに、区画壁により分割された各領域(区画領域)の水平断面形状が同一形状となるようにした場合、下降液及び上昇蒸気の水平方向の流れが区画壁により遮断され、管外を流下する液の流れる範囲は各区画領域内に限定されるとともに、上昇蒸気が各区画領域を流下する均一な液量の下降液を抵抗として、各区画領域毎に上昇することになるため、充填物が充填された管外の下部より、各管1本当たりについて均一な量の蒸気が各区画領域、すなわち、各管1本毎の管の周囲に供給されることになる。
【0013】
したがって、各区画領域を通過する気液量は同一(一定)となり、目標とする設計通りの気液接触を充填物が充填された管外(各区画領域)で行わせて、所望の蒸留性能を発揮させることが可能になる。
また、各区画領域の水平断面積は十分に小さくすることができるので、塔頂・塔底間の途中で集液・再分布を行うことを不要にして、装置の複雑化を招くことを回避することができる。
なお、本発明の内部熱交換型蒸留塔において、管外に配設される好適な充填物としては、層状構造を有し、各層状部材が略縦向きになるように配設される規則充填物などが例示されるが、その他の種々の充填物を用いることが可能である。また、本発明の内部熱交換型蒸留塔においては、管内に充填物を充填した構造とすることも可能であり、また、充填物を充填しない構造とすることも可能である。また、管内に充填物を充填する場合の好適な充填物としては、層状構造を有し、各層状部材が略縦向きになるように配設される規則充填物などが例示されるが、これ以外の充填物を用いることも可能である。
【0014】
また、請求項2の内部熱交換型蒸留塔は、前記区画壁により分割された各領域(区画領域)の水平断面形状が、正六角形、十二角形、及び円形のいずれかであることを特徴としている。
【0015】
区画壁により分割された各区画領域の水平断面形状を正六角形、十二角形、及び円形のいずれかとすることにより、気液接触状態に偏りが生じにくい平面形状を有する管外領域を形成することが可能になるとともに、管外のスペースを有効に利用することが可能になり、本発明を実効あらしめることが可能になる。
【0016】
また、請求項3の内部熱交換型蒸留塔は、前記本体胴の内壁と、前記複数の管のうちの最外側に位置する管の周囲を仕切る区画壁との間に形成される空間を蒸留部としないことを特徴としている。
【0017】
本体胴の内壁と、最外側の管の周囲の管外側空間を仕切る区画壁との間に形成される空間を蒸留部としないようにすることにより、気液接触状態に偏りが生じにくい平面形状を有する管外領域を容易に形成することが可能になり、本発明をさらに実効あらしめることができる。
なお、この場合、本体胴の内壁と、最外側に位置する管の周囲を仕切る区画壁との間に形成される空間は蒸留部とならないので、設備がいくらか大型化することになるが、最外側に位置する管の周囲を仕切る区画壁との間に形成される空間の水平断面積は本体胴の水平断面積に比べて小さく、実用上問題となるほどの設備の大型化を招くことはない。
【0018】
また、請求項4の内部熱交換型蒸留塔は、前記区画壁により分割された各領域(区画領域)の水平断面形状が、十二角形又は円形である場合において、互いに隣り合う3本の管の区画壁により形成される、管を包囲しない空間を蒸留部としないことを特徴としている。
【0019】
区画領域の水平断面形状が、十二角形又は円形である場合において、互いに隣り合う3本の管の区画壁により形成される、管を包囲しない空間を蒸留部としないようにすることにより、水平断面形状が、十二角形又は円形である区画領域を形成して、気液接触状態に偏りが生じにくくすることが可能になる。
なお、互いに隣り合う3本の管の周囲の区画壁によって形成される管を包囲しない空間は蒸留部とならないので、設備がいくらか大型化することになるが、管を包囲しない空間の水平断面積は本体胴の水平断面積に比べて小さく、実用上問題となるほどの設備の大型化を招くことはない。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を示して、その特徴とするところを詳しく説明する。
【0021】
[実施形態1]
図1は本発明の一実施形態にかかる内部熱交換型蒸留塔の主要部の構成を模式的に示す正面断面図、図2は平面断面図である。
この内部熱交換型蒸留塔は、本体胴1と、本体胴1内に挿入された複数の管25を上側管板3a及び下側管板3bによって本体胴1と連結させることにより形成されている。そして、各管25の管内4と管外5は互いに隔離された構造を有しており、管内4が高圧側の濃縮部となり、管外5が低圧側の回収部となるように構成されている。
【0022】
また、本体胴1の上部には、管外(回収部)5に液を供給するための回収部液入口6、管外(回収部)5からの蒸気を抜き出す回収部蒸気出口7が配設されており、上側管板3aより上側の、管内(濃縮部)4と連通する端室14aには、管内(濃縮部)4に液を供給するための濃縮部液入口8が配設され、また、管内(濃縮部)4からの蒸気を抜き出す濃縮部蒸気出口9が配設されている。
【0023】
一方、本体胴1の下部には、管外(回収部)5に蒸気を供給するための回収部蒸気入口10、管外(回収部)5からの液を抜き出す回収部液出口11が配設されており、下側管板3bより下側の、管内(濃縮部)4と連通する端室14bには、管内(濃縮部)4に蒸気を供給するための濃縮部蒸気入口12が配設され、また、管内(濃縮部)4からの液を抜き出す濃縮部液出口13が配設されている。
【0024】
そして、この実施形態の内部熱交換型蒸留塔においては、図2に示すように、管25の周囲の空間である管外(管外側の空間)5が、区画壁15により、各管25の周囲毎に分割されている。そして、区画壁15により分割された各領域(区画領域)16の水平断面形状がそれぞれ正六角形の同一形状になるように構成されている。なお、ここで区画領域16の形状とは、区画壁15に囲まれた、管外5、管25及び管内4を含む領域の形状をいう。
また、この内部熱交換型蒸留塔においては、管内4及び区画領域16(管外5)には充填物(規則充填物)4a,5aが充填されている。
【0025】
また、本体胴1の内壁と、最外側の管25の周囲に配設された区画壁15(15a)との間に形成される空間(外周領域)17には気液が供給されないように(すなわち、蒸留部として機能しないように)構成されている。
【0026】
このように構成された内部熱交換型蒸留塔においては、管外(管外側の空間)5を、各管25の周囲毎に分割する区画壁15を設けるとともに、区画壁15により分割された各領域(区画領域)16の水平断面形状がいずれも正六角形で同一の形状となるようにしているので、下降液及び上昇蒸気の水平方向の流れが区画壁により遮断され、充填物が配設された管外5を流下する液の流れる範囲が各区画領域16内に限定されるとともに、上昇蒸気が各区画領域16を流下する均一な液量の下降液を抵抗として、各区画領域16毎に上昇することになるため、管外5(すなわち各区画領域16)の下部より、各管25の1本当たりについて均一な量の蒸気が各管25の周囲の区画領域16に供給されることになる。
【0027】
したがって、充填塔である各区画領域16を通過する気液量は、各区画領域16間で一定となり、管外5(区画領域16)において目標とする設計通りの気液接触を行わせることが可能になり、所望の蒸留性能を得ることができるようになる。
また、各区画領域16の水平断面積は十分に小さいので、塔頂・塔底間の途中で集液・再分布を行うことが不要になり、装置の複雑化を招くことを回避することができる。
【0028】
[実施形態2]
図3は本発明の他の実施形態(実施形態2)にかかる内部熱交換型蒸留塔の内部構造を示す平面断面図である。なお、図3において、図2と同一符号を付した部分は同一又は相当する部分を示している。
この実施形態2の内部熱交換型蒸留塔においては、管25の周囲の空間である管外(管外側の空間)5が、区画壁15により、各管25の周囲毎に分割されているとともに、区画壁15により分割された各領域(区画領域)16の水平断面形状がそれぞれ円形の同一形状になるように構成されている。また、この内部熱交換型蒸留塔においても、管内4及び区画領域16(管外5)には充填物(規則充填物)4a,5aが充填されている。
【0029】
また、本体胴1の内壁と、最外側の管25の周囲に配設された区画壁15(15a)との間に形成される空間(外周領域)17には気液が供給されないように(すなわち、蒸留部として機能しないように)構成されている。
さらに、この実施形態2の内部熱交換型蒸留塔においては、互いに隣り合う3本の管25の周囲の区画壁15により形成される、管25を包囲しない空間18にも気液が供給されないように(すなわち、蒸留部として機能しないように)構成されている。
【0030】
このように構成された実施形態2の内部熱交換型蒸留塔においては、管外(管外側の空間)5を、各管25の周囲毎に分割する区画壁15を設けるとともに、区画壁15により分割された各領域(区画領域)17の水平断面形状がいずれも円形で同一の形状となるようにしているので、上記実施形態1の場合と同様に、下降液及び上昇蒸気の水平方向の流れが区画壁15により遮断され、管外5を流下する液の流れる範囲が各区画領域16内に限定されるとともに、上昇蒸気が各区画領域16を流下する均一な液量の下降液を抵抗として、各区画領域16毎に上昇することになるため、管外5(すなわち各区画領域16)の下部より、各管25の1本当たりについて均一な量の蒸気が各管25の周囲の区画領域16に供給されることになる。
【0031】
したがって、各区画領域16を通過する気液量は、各区画領域16で一定となり、管外5(区画領域16)において目標とする設計通りの気液接触を行わせて、所望の蒸留性能を得ることができる。
さらに、この実施形態2の内部熱交換型蒸留塔においては、各区画領域16が円形であることから、管外における気液接触状態の偏りをさらに確実に抑制することが可能になる。
【0032】
また、この実施形態2の場合も、各区画領域16の水平断面積は十分に小さいので、塔頂・塔底間の途中で集液・再分布を行うことが不要になり、装置の複雑化を招くことを回避することができる。
但し、この実施形態2の場合には、互いに隣り合う3本の管25の周囲の区画壁15によって、管25を包囲しない空間18が形成されることになるが、その水平断面積は本体胴1の水平断面積に比べて小さく、実用上問題となるほどの設備の大型化を招くことはない。
【0033】
[実施形態3]
図4は本発明のさらに他の実施形態(実施形態3)にかかる内部熱交換型蒸留塔の内部構造を示す水平断面図である。なお、図4において、図2,3と同一符号を付した部分は同一又は相当する部分を示している。
この実施形態3の内部熱交換型蒸留塔においては、管25の周囲の空間である管外(管外側の空間)5が、区画壁15により、各管25の周囲毎に分割されているとともに、区画壁15により分割された各領域(区画領域)16の水平断面形状がそれぞれ十二角形の同一形状になるように構成されている。
【0034】
また、本体胴1の内壁と、最外側の管25の周囲の管外側空間5を仕切る区画壁15(15a)との間に形成される空間(外周領域)17には気液が供給されないように(すなわち、蒸留部として機能しないように)構成されている。
さらに、この実施形態3の内部熱交換型蒸留塔においては、互いに隣り合う3本の管25の周囲の区画壁15により形成される、管25を包囲しない三角形の空間18にも気液が供給されないように(すなわち、蒸留部として機能しないように)構成されている。
【0035】
このように構成された内部熱交換型蒸留塔においても、上記実施形態1及び2の内部熱交換型蒸留塔と同様の作用効果を得ることが可能で、管外5(区画領域16)で目標とする設計通りの気液接触を行わせることが可能になり、所望の蒸留性能を得ることができるようになる。
なお、この実施形態3の内部熱交換型蒸留塔においては、各区画領域16が円形に近い十二角形であることから、管外5(区画領域16)における気液接触状態の偏りを効率よく抑制することが可能になる。
また、この実施形態3の場合には、互いに隣り合う3本の管25の周囲の区画壁15によって、管25を包囲しない三角形の空間18が形成されることになるが、その水平断面積は本体胴1の水平断面積に比べて小さく、実用上問題となるほどの設備の大型化を招くことはない。
【0036】
なお、上記実施形態1〜3では、区画領域の形状が正六角形、円形、及び十二角形である場合を例にとって説明したが、区画領域の形状はこれに限られるものではなく、管の配設態様などに応じて、四角形、八角形その他の種々の形状とすることが可能である。
【0037】
また、上記実施形態では、管外が回収部である場合を例にとって説明したが、管内が回収部となるように構成された内部熱交換型蒸留塔にも適用することが可能であり、その場合にも上記実施形態の場合と同様の効果を得ることが可能である。
【0038】
本発明はさらにその他の点においても上記実施形態に限定されるものではなく、発明の範囲内において、種々の応用、変形を加えることが可能である。
【0039】
【発明の効果】
上述のように、本発明(請求項1)の内部熱交換型蒸留塔は、管外側の空間を、区画壁により各管の周囲毎に分割するとともに、区画壁により分割された各領域(区画領域)の水平断面形状が同一形状となるようにしているので、下降液及び上昇蒸気の水平方向の流れが区画壁により遮断され、管外を流下する液の流れる範囲は各区画領域内に限定されるとともに、上昇蒸気が各区画領域を流下する均一な液量の下降液を抵抗として、各区画領域毎に上昇することになるため、充填物が充填された管外の下部より、各管1本当たりについて均一な量の蒸気を各区画領域、すなわち、各管1本毎の管の周囲に供給することが可能になる。したがって、各区画領域を通過する気液量を同一(一定)として、各区画領域で、目標とする設計通りの気液接触を行わせて、所望の蒸留性能を発揮させることが可能になる。
また、各区画領域の水平断面積は十分に小さくすることができるので、塔頂・塔底間の途中で集液・再分布を行うことを不要にして、装置の複雑化を招くことを回避することができる。
【0040】
また、請求項2の内部熱交換型蒸留塔のように、区画壁により分割された各区画領域の水平断面形状を正六角形、十二角形、及び円形のいずれかの形状とした場合、気液接触状態に偏りが生じにくい平面形状を有する管外領域を形成することが可能になるとともに、管外のスペースを有効に利用することが可能になり、本発明を実効あらしめることが可能になる。
【0041】
また、請求項3の内部熱交換型蒸留塔のように、本体胴の内壁と、最外側の管の周囲の管外側空間を仕切る区画壁との間に形成される空間を蒸留部としないようにすることにより、気液接触状態に偏りが生じにくい平面形状を有する管外領域を容易に形成することが可能になり、本発明をさらに実効あらしめることができる。
なお、本体胴の内壁と、最外側に位置する管の周囲を仕切る区画壁との間に形成される空間は蒸留部とならないので、設備がいくらか大型化することになるが、最外側に位置する管の周囲を仕切る区画壁との間に形成される空間の水平断面積は本体胴の水平断面積に比べて小さく、実用上問題となるほどの設備の大型化を招くことはない。
【0042】
また、請求項4の内部熱交換型蒸留塔のように、区画領域の水平断面形状が、十二角形又は円形である場合において、互いに隣り合う3本の管の区画壁により形成される、管を包囲しない空間を蒸留部としないようにすることにより、水平断面形状が、十二角形又は円形である区画領域を形成して、気液接触状態に偏りが生じにくくすることが可能になる。
なお、互いに隣り合う3本の管の周囲の区画壁によって形成される管を包囲しない空間は蒸留部とならないので、設備がいくらか大型化することになるが、管を包囲しない空間の水平断面積は本体胴の水平断面積に比べて小さく、実用上問題となるほどの設備の大型化を招くことはない。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる内部熱交換型蒸留塔の主要部を示す正面断面図である。
【図2】本発明の一実施形態(実施形態1)にかかる内部熱交換型蒸留塔の内部構造を示す平面断面図である。
【図3】本発明の他の実施形態(実施形態2)にかかる内部熱交換型蒸留塔の内部構造を示す平面断面図である。
【図4】本発明のさらに他の実施形態(実施形態3)にかかる内部熱交換型蒸留塔の内部構造を示す平面断面図である。
【図5】本発明が関連する従来の内部熱交換型蒸留塔の構成を示す図である。
【符号の説明】
1 本体胴
3a 上側管板
3b 下側管板
4 管内(濃縮部)
4a 管内に配設された充填物(規則充填物)
5 管外(回収部)
5a 管外に配設された充填物(規則充填物)
6 回収部液入口
7 回収部蒸気出口
8 濃縮部液入口
9 濃縮部蒸気出口
10 回収部蒸気入口
11 回収部液出口
12 濃縮部蒸気入口
13 濃縮部液出口
14a,14b 端室
15 区画壁
15a 最外側の管の周囲の管外側空間を仕切る区画壁
16 区画領域
17 外周領域
18 管を包囲しない空間
25 管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal heat exchange distillation column that includes a low-pressure column and a high-pressure column and performs heat exchange between the high-pressure column (concentration unit) side and the low-pressure column (recovery unit) side.
[0002]
[Prior art and problems to be solved by the invention]
As an distillation column that excels in energy conservation, a low-pressure column and a high-pressure column are configured to exchange heat between them, and an internal heat exchange type distillation column that does not require heat exchange with others is known. It has been. From the standpoint of promoting energy saving in distillation operation, this internal heat exchange distillation column is of course the principle that is most faithful to energy saving, and it is recognized from the academic viewpoint. By the way.
[0003]
In addition, as an internal heat exchange type distillation column, a plurality of tubes are connected to the main body cylinder by both end tube plates so that the inside and outside of each pipe are separated from each other inside the main body cylinder. Each is provided with a gas-liquid inlet / outlet, and the operating temperature is varied by making a difference in the operating pressure between the inside and outside of the pipe, and the pipe wall of each pipe is used as a heat transfer surface to transfer heat from the high pressure side to the low pressure side Thus, there has been proposed a structure in which one distillation column is configured with the high-pressure side as the concentrating section and the low-pressure side as the recovery section (Japanese Patent Laid-Open No. 8-66601 (Japanese Patent No. 2694425)).
[0004]
As shown in FIG. 5, this internal heat exchange distillation column includes a main body cylinder 1 and a plurality of tubes 25 inserted into the main body cylinder 1, with both end tube sheets (upper tube sheet (top-side tube sheet) 3 a and It is formed by connecting with the main body cylinder 1 by a lower tube sheet (a tower bottom tube sheet) 3b). The inner pipe 4 and the outer pipe 5 of each pipe 25 are separated from each other. The inner pipe 4 serves as a high pressure side concentrating part, and the outer pipe 5 serves as a low pressure side collecting part. Yes.
[0005]
In addition, a recovery unit liquid inlet 6 for supplying a liquid to the outside of the tube (collection unit) 5 and a recovery unit steam outlet 7 for extracting steam from the outside of the tube (collection unit) 5 are disposed at the top of the main body barrel 1. A concentrating section liquid inlet 8 for supplying a liquid to the inside of the pipe (concentrating section) 4 is disposed in the end chamber 14a that communicates with the inside of the pipe (concentrating section) 4 above the upper tube plate 3a. Further, a concentrating part steam outlet 9 for extracting steam from the inside of the pipe (concentrating part) 4 is provided.
[0006]
On the other hand, a recovery unit steam inlet 10 for supplying steam to the outside of the tube (collection unit) 5 and a recovery unit liquid outlet 11 for extracting the liquid from the outside of the tube (collection unit) 5 are disposed at the lower part of the main body barrel 1. The concentrating section steam inlet 12 for supplying steam to the inside of the pipe (concentrating section) 4 is disposed in the end chamber 14b communicating with the inside of the pipe (concentrating section) 4 below the lower tube plate 3b. In addition, a concentration unit liquid outlet 13 for extracting the liquid from the pipe (concentration unit) 4 is provided.
[0007]
By the way, in such an internal heat exchange type distillation column, since the state of gas-liquid contact in the distillation part inside and outside the pipe constituting the concentrating part or the recovery part greatly affects the distillation action, for example, As in the case of the internal heat exchange distillation column in FIG. 5, in the case where the collection unit (packed column) is filled with a packing outside the tube, and the gas-liquid flow is uneven, the target is The distillation effect cannot be obtained.
That is, the liquid sprayed evenly per surface area on the top of the packed bed at the top of the packed tower flows down the packed surface by attractive force, and the steam supplied to the bottom of the tower creates a pressure difference between the top and bottom of the tower. Distillation is carried out by raising the gap between the packings as a driving force and bringing the liquid and steam into contact with each other in the packed tower. Since there is a tendency to flow to a small place and the descending liquid flows to a place where the amount of the rising steam is small, a slight drift causes a large drift in an accelerated manner. Therefore, the positional deviation of the ratio between the descending liquid amount and the ascending steam amount increases from the tower top to the tower bottom, and as a result, the designed gas-liquid contact effect, that is, the distillation performance cannot be obtained.
[0008]
Therefore, in the conventional packed tower, the packed bed is divided at every predetermined packed bed height (generally depending on the tower diameter, but generally every 2 to 5 m). A liquid tool, a liquid dispersing tool, etc. are arranged so that the gas-liquid contact effect as designed can be obtained. However, in such a configuration, not only the equipment structure is complicated, but also the space in which the packed bed receiver, the liquid collecting tool, the liquid dispersing tool and the like are disposed does not function as a distillation unit that performs a distillation action. For this reason, there is a problem in that the height of the distillation column is increased by that amount, resulting in an increase in equipment size and cost.
[0009]
In addition, when a packed column is packed outside the tube, the horizontal cross-sectional shape outside the tube is complicated, and the gas-liquid contact state is likely to be biased. The problem due to (1) becomes more prominent, and it tends to be more difficult to make the gas-liquid contact state per unit area on the horizontal section uniform.
[0010]
The present invention solves the above-mentioned problems, and there is little bias in the gas-liquid contact state in the distillation section without incurring an increase in cost, and an internal heat exchange type capable of exhibiting the target distillation performance An object is to provide a distillation column.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the internal heat exchange distillation column of the present invention (Claim 1) comprises:
By connecting a plurality of tubes to the main body cylinder with both end tube plates, the inside of the main body is separated from the inside and outside of the pipe, and each of the inside and outside of the pipe has a gas-liquid inlet / outlet. ,
At least around each tube with a filling,
By making the operating temperature different by making a difference in the operating pressure between the inside and outside of the pipe, the pipe wall of each pipe is used as the heat transfer surface, and heat is transferred from the high pressure side to the low pressure side, so that the high pressure side is the concentrating section and the low pressure side is An internal heat exchange distillation column configured to function as a recovery unit,
(a) dividing the space outside the tube in which the filler is disposed for each tube periphery by a partition wall;
(b) Each region (partition region) divided by the partition wall has the same horizontal cross-sectional shape.
[0012]
When the space outside the pipe is divided for each pipe by the partition wall, and the horizontal sectional shape of each region (partition region) divided by the partition wall is the same shape, the descending liquid and the rising steam The horizontal flow of the liquid is blocked by the partition wall, and the range of the liquid flowing down the tube is limited to each partition area, and the rising vapor resists the uniform amount of descending liquid flowing down each partition area. Therefore, a uniform amount of steam is generated for each tube from the lower part outside the tube filled with the filling material, that is, for each tube. It will be supplied around the tube.
[0013]
Therefore, the amount of gas-liquid passing through each compartment is the same (constant), and the desired liquid distillation performance can be achieved by making the gas-liquid contact as planned in the outside of the tube (each compartment) filled with packing. Can be demonstrated.
In addition, since the horizontal cross-sectional area of each section area can be made sufficiently small, it is not necessary to collect and redistribute in the middle between the top and bottom of the tower, thereby avoiding complicating the equipment. can do.
In the internal heat exchange distillation column of the present invention, the preferred packing disposed outside the tube has a layered structure, and regular packing in which each layered member is disposed substantially vertically. Although various things etc. are illustrated, it is possible to use other various filling materials. Further, the internal heat exchange distillation column of the present invention can have a structure in which the packing is filled in the tube, and can also have a structure in which the packing is not filled. In addition, as a suitable filling when filling a tube with a filling material, there is exemplified a regular filling material having a layered structure and arranged so that each layered member is substantially vertically oriented. It is also possible to use other fillers.
[0014]
Further, in the internal heat exchange distillation column according to claim 2, the horizontal sectional shape of each region (compartment region) divided by the partition wall is any one of a regular hexagon, a dodecagon, and a circle. It is said.
[0015]
By forming the horizontal cross-sectional shape of each partition area divided by the partition wall as one of a regular hexagon, a dodecagon, and a circle, an extra-tube region having a planar shape that is less likely to be biased in the gas-liquid contact state is formed. It becomes possible to make effective use of the space outside the tube, and the present invention can be effectively realized.
[0016]
The internal heat exchange distillation column according to claim 3 is a distillation of a space formed between an inner wall of the main body cylinder and a partition wall partitioning the periphery of a tube located on the outermost side of the plurality of tubes. It is characterized by not being part.
[0017]
Planar shape that makes it difficult for the gas-liquid contact state to be biased by avoiding the space formed between the inner wall of the main body cylinder and the partition wall that partitions the outer tube space around the outermost tube as a distillation section It is possible to easily form the outside region of the tube having the above, and the present invention can be further improved.
In this case, the space formed between the inner wall of the main body cylinder and the partition wall that partitions the periphery of the outermost pipe does not serve as a distillation section. The horizontal cross-sectional area of the space formed between the outer wall and the partition wall that divides the periphery of the pipe is smaller than the horizontal cross-sectional area of the main body trunk, and does not lead to an increase in the size of the facility that is problematic in practice. .
[0018]
The internal heat exchange distillation column according to claim 4 has three tubes adjacent to each other when the horizontal sectional shape of each region (compartment region) divided by the partition wall is a dodecagon or a circle. The space that is formed by the partition walls and does not surround the pipe is not a distillation section.
[0019]
In the case where the horizontal sectional shape of the partition region is a dodecagon or a circle, the space formed by the partition walls of three tubes adjacent to each other and not surrounding the tube is not used as a distillation part. It is possible to form a partition region having a dodecagonal shape or a circular shape in cross-section so that the gas-liquid contact state is less likely to be biased.
Note that the space that does not surround the pipes formed by the partition walls around the three adjacent pipes does not become a distillation section, so the equipment will be somewhat larger, but the horizontal cross-sectional area of the space that does not surround the pipes Is smaller than the horizontal cross-sectional area of the main body, and does not lead to an increase in the size of the facility that causes practical problems.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be shown and features thereof will be described in detail.
[0021]
[Embodiment 1]
FIG. 1 is a front sectional view schematically showing the configuration of the main part of an internal heat exchange distillation column according to an embodiment of the present invention, and FIG. 2 is a plan sectional view.
This internal heat exchange distillation column is formed by connecting the main body cylinder 1 and a plurality of tubes 25 inserted into the main body cylinder 1 to the main body cylinder 1 by the upper tube plate 3a and the lower tube plate 3b. . The inner pipe 4 and the outer pipe 5 of each pipe 25 are separated from each other. The inner pipe 4 serves as a high pressure side concentrating part, and the outer pipe 5 serves as a low pressure side collecting part. Yes.
[0022]
In addition, a recovery unit liquid inlet 6 for supplying a liquid to the outside of the tube (collection unit) 5 and a recovery unit steam outlet 7 for extracting steam from the outside of the tube (collection unit) 5 are disposed at the top of the main body barrel 1. A concentrating section liquid inlet 8 for supplying a liquid to the inside of the pipe (concentrating section) 4 is disposed in the end chamber 14a that communicates with the inside of the pipe (concentrating section) 4 above the upper tube plate 3a. Further, a concentrating part steam outlet 9 for extracting steam from the inside of the pipe (concentrating part) 4 is provided.
[0023]
On the other hand, a recovery unit steam inlet 10 for supplying steam to the outside of the tube (recovery unit) 5 and a recovery unit liquid outlet 11 for extracting the liquid from the outside of the tube (collection unit) 5 are disposed at the lower part of the main body barrel 1. The concentrating section steam inlet 12 for supplying steam to the inside of the pipe (concentrating section) 4 is disposed in the end chamber 14b communicating with the inside of the pipe (concentrating section) 4 below the lower tube plate 3b. In addition, a concentration unit liquid outlet 13 for extracting the liquid from the pipe (concentration unit) 4 is provided.
[0024]
In the internal heat exchange distillation column of this embodiment, as shown in FIG. 2, the outside of the pipe (space outside the pipe) 5, which is the space around the pipe 25, is separated by the partition wall 15. Divided by perimeter. And each horizontal area | region (division area | region) 16 divided | segmented by the division wall 15 is comprised so that it may become the same shape of a regular hexagon, respectively. Here, the shape of the partition region 16 refers to the shape of the region including the outer tube 5, the tube 25, and the inner tube 4 surrounded by the partition wall 15.
Further, in this internal heat exchange type distillation column, the inside 4 and the partition region 16 (outside 5) are filled with packings (regular packing) 4a and 5a.
[0025]
Further, gas / liquid is not supplied to the space (outer peripheral region) 17 formed between the inner wall of the main body barrel 1 and the partition wall 15 (15a) disposed around the outermost tube 25 ( That is, it is configured so as not to function as a distillation section.
[0026]
In the internal heat exchange distillation column configured as described above, a partition wall 15 that divides the outside of the tube (space outside the tube) 5 for each circumference of each tube 25 is provided, and each of the partitions divided by the partition wall 15 is provided. Since the horizontal cross-sectional shape of the region (compartment region) 16 is a regular hexagon and the same shape, the horizontal flow of the descending liquid and the rising steam is blocked by the partition wall, and the packing is provided. The range of the liquid flowing down the outside of the pipe 5 is limited to each partition region 16, and the rising liquid flows down each partition region 16 with a uniform amount of descending liquid as resistance to each partition region 16. In order to rise, a uniform amount of steam is supplied to the partition region 16 around each tube 25 from the lower part of the outside of the tube 5 (that is, each partition region 16). Become.
[0027]
Therefore, the amount of gas and liquid that passes through each partition region 16 that is a packed tower is constant between the partition regions 16, and the target gas-liquid contact can be performed outside the tube 5 (compartment region 16). And the desired distillation performance can be obtained.
In addition, since the horizontal cross-sectional area of each partition region 16 is sufficiently small, it becomes unnecessary to collect and redistribute in the middle between the tower top and the tower bottom, thereby avoiding complication of the apparatus. it can.
[0028]
[Embodiment 2]
FIG. 3 is a plan sectional view showing the internal structure of an internal heat exchange distillation column according to another embodiment (Embodiment 2) of the present invention. In FIG. 3, the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
In the internal heat exchange distillation column of the second embodiment, the outside of the tube (space outside the tube) 5 that is the space around the tube 25 is divided by the partition wall 15 for each periphery of each tube 25. The horizontal sectional shape of each region (partition region) 16 divided by the partition wall 15 is configured to be the same circular shape. Also in this internal heat exchange distillation column, the inside 4 and the partition area 16 (outside 5) are filled with packing (regular packing) 4a and 5a.
[0029]
Further, gas / liquid is not supplied to the space (outer peripheral region) 17 formed between the inner wall of the main body barrel 1 and the partition wall 15 (15a) disposed around the outermost tube 25 ( That is, it is configured so as not to function as a distillation section.
Furthermore, in the internal heat exchange distillation column of the second embodiment, gas and liquid are not supplied to the space 18 that does not surround the pipe 25 and is formed by the partition wall 15 around the three pipes 25 adjacent to each other. (That is, it does not function as a distillation section).
[0030]
In the internal heat exchange distillation column of the second embodiment configured as described above, a partition wall 15 that divides the outside of the tube (space outside the tube) 5 for each circumference of each tube 25 is provided. Since the horizontal sectional shapes of the divided regions (partition regions) 17 are all circular and have the same shape, the horizontal flow of descending liquid and rising steam is the same as in the first embodiment. Is blocked by the partition wall 15, and the range of flow of the liquid flowing down the outside of the tube 5 is limited to each partition region 16, and the descending liquid with a uniform liquid amount in which the rising steam flows down each partition region 16 is used as resistance. Therefore, a uniform amount of steam is generated for each tube 25 from the lower part of the outside of the tube 5 (that is, each partition region 16), and the partition region around each tube 25. 16 will be supplied.
[0031]
Therefore, the amount of gas and liquid that passes through each partition region 16 is constant in each partition region 16, and the desired gas-liquid contact is performed outside the tube 5 (compartment region 16) as designed to achieve the desired distillation performance. Obtainable.
Further, in the internal heat exchange distillation column of the second embodiment, since each partition region 16 is circular, it is possible to further reliably suppress the deviation of the gas-liquid contact state outside the tube.
[0032]
Also in the case of the second embodiment, since the horizontal sectional area of each partition region 16 is sufficiently small, it becomes unnecessary to collect and redistribute the liquid between the tower top and the tower bottom, and the apparatus becomes complicated. Can be avoided.
However, in the case of the second embodiment, a space 18 that does not surround the pipe 25 is formed by the partition wall 15 around the three adjacent pipes 25. It is smaller than the horizontal cross-sectional area of 1 and does not cause an increase in the size of the facility that causes a practical problem.
[0033]
[Embodiment 3]
FIG. 4 is a horizontal sectional view showing the internal structure of an internal heat exchange distillation column according to still another embodiment (Embodiment 3) of the present invention. In FIG. 4, the parts denoted by the same reference numerals as those in FIGS. 2 and 3 indicate the same or corresponding parts.
In the internal heat exchange distillation column of the third embodiment, the outside of the tube (space outside the tube) 5 that is the space around the tube 25 is divided by the partition wall 15 for each periphery of each tube 25. The horizontal sectional shape of each region (partition region) 16 divided by the partition wall 15 is configured to be the same shape of a dodecagon.
[0034]
In addition, gas and liquid are not supplied to the space (outer peripheral region) 17 formed between the inner wall of the main body body 1 and the partition wall 15 (15a) that partitions the tube outer space 5 around the outermost tube 25. (That is, it does not function as a distillation section).
Furthermore, in the internal heat exchange distillation column of the third embodiment, gas and liquid are also supplied to a triangular space 18 that does not surround the pipe 25 and is formed by the partition wall 15 around the three pipes 25 adjacent to each other. (That is, it does not function as a distillation section).
[0035]
Also in the internal heat exchange distillation column configured as described above, it is possible to obtain the same effect as that of the internal heat exchange distillation column in the first and second embodiments, and the target can be obtained in the outside 5 (compartment region 16). It becomes possible to make the gas-liquid contact as designed, and to obtain a desired distillation performance.
In the internal heat exchange distillation column of the third embodiment, each partition region 16 has a dodecagonal shape close to a circle, so that the deviation of the gas-liquid contact state outside the tube 5 (the partition region 16) can be efficiently performed. It becomes possible to suppress.
Further, in the case of the third embodiment, a triangular space 18 that does not surround the pipe 25 is formed by the partition wall 15 around the three adjacent pipes 25. It is smaller than the horizontal cross-sectional area of the main body barrel 1 and does not cause an increase in the size of the facility that causes a practical problem.
[0036]
In the first to third embodiments, the case where the shape of the partition area is a regular hexagon, a circle, and a dodecagon has been described as an example. However, the shape of the partition area is not limited to this, and the arrangement of the tubes is not limited thereto. Depending on the configuration, etc., various shapes such as a quadrangle, an octagon, and the like are possible.
[0037]
In the above embodiment, the case where the outside of the tube is the recovery unit has been described as an example, but the present invention can also be applied to an internal heat exchange distillation column configured so that the inside of the tube becomes the recovery unit. Even in this case, it is possible to obtain the same effect as in the above embodiment.
[0038]
The present invention is not limited to the above embodiment in other points, and various applications and modifications can be made within the scope of the invention.
[0039]
【The invention's effect】
As described above, the internal heat exchange distillation column of the present invention (Claim 1) divides the space outside the pipes by the partition walls for each circumference of each pipe, and each region (sections) divided by the partition walls. Since the horizontal cross-sectional shape of the region is the same shape, the horizontal flow of descending liquid and rising vapor is blocked by the partition wall, and the range of the liquid flowing down the tube is limited to each partition region In addition, since the rising steam rises for each partition region using the descending liquid of a uniform liquid amount flowing down each partition region as a resistance, each tube is discharged from the lower part outside the tube filled with the packing. It is possible to supply a uniform amount of steam per tube around each compartment, i.e. around each tube. Therefore, it is possible to achieve the desired distillation performance by making the gas-liquid amount passing through each partition region the same (constant) and making the gas-liquid contact as the target design in each partition region.
In addition, since the horizontal cross-sectional area of each section area can be made sufficiently small, it is not necessary to collect and redistribute in the middle between the top and bottom of the tower, thereby avoiding complicating the equipment. can do.
[0040]
Further, as in the internal heat exchange distillation column according to claim 2, when the horizontal sectional shape of each partition region divided by the partition wall is a regular hexagonal shape, a dodecagonal shape, or a circular shape, It is possible to form a region outside the tube having a planar shape that is less likely to be biased in the contact state, and it is possible to effectively use the space outside the tube, and to effectively present the present invention. .
[0041]
Further, as in the internal heat exchange distillation column of claim 3, the space formed between the inner wall of the main body and the partition wall partitioning the outer tube space around the outermost tube is not used as a distillation part. By doing so, it becomes possible to easily form a region outside the tube having a planar shape in which the gas-liquid contact state is less likely to be biased, and the present invention can be further effectively realized.
Note that the space formed between the inner wall of the main body cylinder and the partition wall that partitions the periphery of the outermost tube does not become a distillation section, so the equipment will be somewhat larger, but it is located on the outermost side. The horizontal cross-sectional area of the space formed between the partition walls that divide the periphery of the pipe is smaller than the horizontal cross-sectional area of the main body cylinder, and the size of the equipment that is practically problematic is not increased.
[0042]
Further, as in the internal heat exchange distillation column according to claim 4, when the horizontal sectional shape of the partition region is a dodecagon or a circle, the tube is formed by partition walls of three tubes adjacent to each other By avoiding the space that does not surround the distillation portion as a distillation part, it is possible to form a partition region having a dodecagonal shape or a circular shape in the horizontal cross section, and to make it difficult for the gas-liquid contact state to be biased.
Note that the space that does not surround the pipes formed by the partition walls around the three adjacent pipes does not become a distillation section, so the equipment will be somewhat larger, but the horizontal cross-sectional area of the space that does not surround the pipes Is smaller than the horizontal cross-sectional area of the main body, and does not lead to an increase in the size of the facility that causes practical problems.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a main part of an internal heat exchange distillation column according to an embodiment of the present invention.
FIG. 2 is a plan sectional view showing the internal structure of the internal heat exchange distillation column according to one embodiment (Embodiment 1) of the present invention.
FIG. 3 is a plan sectional view showing the internal structure of an internal heat exchange distillation column according to another embodiment (Embodiment 2) of the present invention.
FIG. 4 is a plan sectional view showing the internal structure of an internal heat exchange distillation column according to still another embodiment (Embodiment 3) of the present invention.
FIG. 5 is a diagram showing the configuration of a conventional internal heat exchange distillation column to which the present invention relates.
[Explanation of symbols]
1 Body trunk 3a Upper tube plate 3b Lower tube plate 4 Inside the tube (concentration part)
4a Filler disposed in the pipe (regular filler)
5 Outside the tube (collection unit)
5a Packing outside the pipe (regular packing)
6 Recovery part liquid inlet 7 Recovery part steam outlet 8 Concentration part liquid inlet 9 Concentration part steam outlet 10 Recovery part steam inlet 11 Recovery part liquid outlet 12 Concentration part steam inlet 13 Concentration part liquid outlets 14a and 14b End chamber 15 Partition wall 15a A partition wall 16 that partitions a tube outer space around an outer tube, a partition region 17, an outer peripheral region 18, and a space 25 that does not surround the tube.

Claims (4)

複数の管を両端管板によって本体胴と連結することにより、本体胴の内部において各管の管内と管外が隔離され、かつ、管内及び管外のそれぞれが気液の出入口を備えた構造とし、
少なくとも各管の周囲に充填物を配設するとともに、
管内側と管外側の操作圧力に差をつけることにより操作温度を異ならせ、各管の管壁を伝熱面として、高圧側から低圧側に熱移動させることにより、高圧側が濃縮部、低圧側が回収部として機能するように構成された内部熱交換型蒸留塔であって、
(a)充填物が配設される前記管外側の空間を、区画壁により各管の周囲毎に分割するとともに、
(b)区画壁により分割された各領域(区画領域)の水平断面形状がそれぞれ同一形状になるようにしたこと
を特徴とする内部熱交換型蒸留塔。
By connecting a plurality of tubes to the main body cylinder with both end tube plates, the inside of the main body is separated from the inside and outside of the pipe, and each of the inside and outside of the pipe has a gas-liquid inlet / outlet. ,
At least around each tube with a filling,
By differentiating the operating pressure between the inside and outside of the pipe, the operating temperature is varied, and the pipe wall of each pipe is used as a heat transfer surface to transfer heat from the high-pressure side to the low-pressure side. An internal heat exchange distillation column configured to function as a recovery unit,
(a) dividing the space outside the tube in which the filler is disposed for each tube periphery by a partition wall;
(b) An internal heat exchange distillation column characterized in that the horizontal sectional shape of each region (compartment region) divided by the partition wall is the same.
前記区画壁により分割された各領域(区画領域)の水平断面形状が、正六角形、十二角形、及び円形のいずれかであることを特徴とする請求項1記載の内部熱交換型蒸留塔。2. The internal heat exchange distillation column according to claim 1, wherein a horizontal sectional shape of each region (compartment region) divided by the partition wall is any one of a regular hexagon, a dodecagon, and a circle. 前記本体胴の内壁と、前記複数の管のうちの最外側に位置する管の周囲を仕切る区画壁との間に形成される空間を蒸留部としないことを特徴とする請求項1又は2記載の内部熱交換型蒸留塔。The space formed between the inner wall of the main body cylinder and a partition wall that partitions the periphery of the pipe located on the outermost side of the plurality of pipes is not a distillation section. Internal heat exchange distillation column. 前記区画壁により分割された各領域(区画領域)の水平断面形状が、十二角形又は円形である場合において、互いに隣り合う3本の管の区画壁により形成される、管を包囲しない空間を蒸留部としないことを特徴とする請求項1〜3のいずれかに記載の内部熱交換型蒸留塔。When the horizontal sectional shape of each region (partition region) divided by the partition wall is a dodecagon or a circle, a space that does not surround the tube is formed by the partition walls of three adjacent tubes. The internal heat exchange distillation column according to any one of claims 1 to 3, wherein the internal heat exchange distillation column is not a distillation section.
JP2002175690A 2002-06-17 2002-06-17 Internal heat exchange distillation column Expired - Lifetime JP3990202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175690A JP3990202B2 (en) 2002-06-17 2002-06-17 Internal heat exchange distillation column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175690A JP3990202B2 (en) 2002-06-17 2002-06-17 Internal heat exchange distillation column

Publications (2)

Publication Number Publication Date
JP2004016928A JP2004016928A (en) 2004-01-22
JP3990202B2 true JP3990202B2 (en) 2007-10-10

Family

ID=31174266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175690A Expired - Lifetime JP3990202B2 (en) 2002-06-17 2002-06-17 Internal heat exchange distillation column

Country Status (1)

Country Link
JP (1) JP3990202B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766916A (en) * 2010-03-03 2010-07-07 南京斯迈柯特种金属装备股份有限公司 High-efficiency evaporator
CN101991968A (en) * 2010-10-14 2011-03-30 天津大学 Internal heat integration energy-saving rectification device and assembly method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803470B2 (en) 2009-10-05 2011-10-26 独立行政法人産業技術総合研究所 Heat exchange type distillation equipment
JP5956772B2 (en) * 2012-02-20 2016-07-27 東洋エンジニアリング株式会社 Heat exchange type distillation equipment
JP5923335B2 (en) * 2012-02-24 2016-05-24 東洋エンジニアリング株式会社 Heat exchange type distillation equipment
JP5923367B2 (en) * 2012-03-30 2016-05-24 東洋エンジニアリング株式会社 Heat exchange type distillation equipment
JP6006596B2 (en) 2012-09-21 2016-10-12 東洋エンジニアリング株式会社 Stripper for separation process of aromatic production apparatus and operation method thereof
JP6266876B2 (en) 2012-11-15 2018-01-24 東洋エンジニアリング株式会社 Distillation apparatus and control method thereof
JP6033050B2 (en) 2012-11-16 2016-11-30 東洋エンジニアリング株式会社 Aromatic hydrocarbon production equipment
JP6140591B2 (en) 2013-11-21 2017-05-31 東洋エンジニアリング株式会社 Distillation equipment
JP6289112B2 (en) 2014-01-17 2018-03-07 東洋エンジニアリング株式会社 Distillation tower
JP6566876B2 (en) 2016-01-26 2019-08-28 東洋エンジニアリング株式会社 Heat exchange amount adjustment method for internal heat exchange distillation column
CN112957761A (en) * 2021-02-02 2021-06-15 南京工业大学 Cluster type rectifying tower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766916A (en) * 2010-03-03 2010-07-07 南京斯迈柯特种金属装备股份有限公司 High-efficiency evaporator
CN101991968A (en) * 2010-10-14 2011-03-30 天津大学 Internal heat integration energy-saving rectification device and assembly method thereof
CN101991968B (en) * 2010-10-14 2012-10-24 天津大学 Internal heat integration energy-saving rectification device and assembly method thereof

Also Published As

Publication number Publication date
JP2004016928A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3990202B2 (en) Internal heat exchange distillation column
US7111673B2 (en) System for stripping and rectifying a fluid mixture
JP4745444B2 (en) Random packing element and column including the same
EP1476235B1 (en) Heat integrated distillation column
JP4523220B2 (en) Packing for heat exchange column and mass exchange column
US6286818B1 (en) Internal members for mass transfer columns
US2757915A (en) Gas-liquid contact apparatus
JPH0866601A (en) Inner heat exchange type distillation column
JPH0744668U (en) Improved steam horn for chemical process towers.
JP2004034026A (en) Plate tower equipped with entrainment prevention packings under tray
JP3990203B2 (en) Internal heat exchange distillation column and method for producing the same
US1669062A (en) Heat-exchange apparatus
CA2043834A1 (en) Gas/liquid distributor for a counter-current column
JP3076763U (en) Water bed structure
CN214891971U (en) Evaporator heat exchange tube, evaporator and air conditioning unit
EP3086037B1 (en) Water-cooled column and hearth having same
JP4966655B2 (en) Multi-structure internal heat exchange distillation column
CN203474491U (en) Heat recycling device of high-temperature and high-pressure waste water
JPS59147632A (en) Multicolumn-type packed tower
JP2694427B2 (en) Internal heat exchange type distillation column
JP2004216338A (en) Internal heat exchanging type distillation column
CN211635238U (en) Pre-concentration tower
JP3306523B2 (en) Distillation tower
CN211255782U (en) Steaming washing tower
JP2011206681A (en) Liquid distributor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3990202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term