JP3989220B2 - Extraction solvent composition and method for analyzing adhered oil content using the same - Google Patents

Extraction solvent composition and method for analyzing adhered oil content using the same Download PDF

Info

Publication number
JP3989220B2
JP3989220B2 JP2001325108A JP2001325108A JP3989220B2 JP 3989220 B2 JP3989220 B2 JP 3989220B2 JP 2001325108 A JP2001325108 A JP 2001325108A JP 2001325108 A JP2001325108 A JP 2001325108A JP 3989220 B2 JP3989220 B2 JP 3989220B2
Authority
JP
Japan
Prior art keywords
oil
extraction solvent
solvent composition
extracted
adhered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001325108A
Other languages
Japanese (ja)
Other versions
JP2003128631A (en
Inventor
敬太 柳川
香 大久保
良和 小田
一宏 岩部
克宏 粟山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Tosoh Corp
Original Assignee
Denso Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Tosoh Corp filed Critical Denso Corp
Priority to JP2001325108A priority Critical patent/JP3989220B2/en
Publication of JP2003128631A publication Critical patent/JP2003128631A/en
Application granted granted Critical
Publication of JP3989220B2 publication Critical patent/JP3989220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車、電機、電子、光学、機械、精密機器等の各種加工部品等(以下、部品等とする。)の清浄度評価に使用する抽出溶剤組成物に関し、さらに詳しくは、部品等に付着した熱処理油、切削油および塑性加工油等の各種工作油や、機械油、グリース、ワックス、フラックス等(以下、付着油分とする。)を抽出溶剤組成物に抽出させ、紫外分光光度法にて精度よく簡便に測定できる抽出溶剤組成物とそれを用いた付着油分の分析法に関する。
【0002】
【従来の技術】
ある部品または製品を製造するに際しては、金属、樹脂、セラミックなどの部材を切削、熱処理、プレス、研磨等を行ったり、電子基板などの半田付け等の様々な加工を行うが、その際、部品や工具の摩耗や焼き付き防止、潤滑、錆止めなどのために工作油、機械油、グリース、ワックス等を塗布して加工を行う。また電子部品の半田付けの際には、半田の接着をよくするためフラックス等を塗布して加工を行う。しかし、部品等の付着油分は、その後のメッキ処理や塗装等の表面処理加工において悪影響を及ぼし、その後の処理がない場合でも部品等の変色や腐食、及び外観不良などの問題原因となる。従って、部品等は加工後にそれらの付着油分を洗浄し、洗浄後に部品等の汚れ具合(以下、清浄度とする。)を確認するため、清浄度評価を行うのが通例である。特に、精密機械分野、電子分野等の高い品質が要求される部品等の場合、微量の付着油分でさえ問題となる場合が多く、精密な洗浄だけでなく精度の高い清浄度評価が必要である。また、洗浄条件を設定する際などのように、洗浄後に限らず、部品等の清浄度評価の必要性は高い。
【0003】
従来の清浄度評価方法としては、部品等の付着油分を目視観察により評価する方法(以下、目視判定法とする)、部品等にヌレ試薬を塗布し、その試薬のヌレ度合から清浄度を評価する方法(以下、ヌレ性判定法とする)、付着油分を四塩化炭素やCFC等の塩素系溶剤に抽出し、赤外分光光度法により付着油分を測定し評価する方法(以下、赤外分析法とする)等により行なわれている。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの清浄度評価方法には種々の問題点がある。
【0005】
例えば、目視判定法は、最も簡便な評価方法ではあるが、目視で判定を行うため、測定者の主観が入りやすく判定基準が曖昧になり、また、微量の付着油分は評価できない問題がある。
【0006】
ヌレ性判定法は、各段階の濡れ易さを有するヌレ試薬を部品表面に塗布し、その表面が濡れたかどうかを判定するため半定量的な評価が可能であるが、構造が複雑であったり、微小な部品等の様に目視が困難なものや、ヌレ試薬を塗布するのに必要な平面が無い部品等においては適用出来ない上に、目視判定法と同様に微量の付着油分は評価できない問題点がある。
【0007】
赤外分析法は、抽出溶剤として四塩化炭素やCFC等の塩素系溶剤を使用し、これらに抽出した付着油分を赤外分光光度法により測定し評価する方法であり、付着油分のC−H結合に基づく赤外線吸光度が、付着油分量に比例することを利用している。尚、これらの塩素系溶剤にはC−H結合がなく測定波長での赤外線吸収がほとんど無いため、付着油分は感度よく測定できる。しかし、これらの塩素系溶剤は毒性問題や地下水汚染、大気汚染およびオゾン層破壊等の環境問題が指摘されており、環境リスク管理のために制定されたPRTR法の対象物質にもなっていることから、今後の使用がますます困難になっている状況である。
【0008】
ところで、清浄度評価方法に要求される特性としては、広い適用範囲、高い精度、利便性(例えば短い分析時間、簡便な操作、高い安全性、法的規制がない等)があげられる。
【0009】
適用範囲が広く、利便性の高い方法としては分光光度法があげられるが、分光光度法で高い精度を得るには、次の2つの条件が必要である。
【0010】
まず、付着油分をすべて抽出溶剤組成物に抽出できることが必要である。一部の付着油分しか抽出できない場合、付着油分の組成によっては、検出できたりできなかったりするため、精度が低下する。特に微量の付着油分を測定する際には、大きな誤差を生じることとなる。
【0011】
次に必要な条件として、測定する波長で付着油分の吸光度が高く、抽出溶剤の吸光度が低いことが必要である。付着油分の吸光度が低いと感度が低下し、また抽出溶剤の吸光度が高いと相対的に付着油分の感度が低下し、いずれも分析精度が低下することとなる。
【0012】
上述した赤外分析法は、使用する塩素系溶剤の付着油分に対する高い溶解性、及び分析に際しては、塩素系溶剤に吸収が少なく、付着油分の吸収が高い赤外線を利用することによって高い精度を得ている。また、塩素系溶剤は付着油分に対して溶解性が高いことから短時間で測定が可能であり、引火点がないため火災安全性が高く、さらに部品等を浸漬して抽出を行うため部品等の形状に関わらず適用できる等の優れた利点が多い。
【0013】
このような利点から清浄度評価は、環境問題、規制等の厳しい制約があるが、塩素系溶剤を使用する赤外分析法が未だに広く一般的に行なわれているのが現状である。
【0014】
このような問題に対し、塩素系溶剤を使用しない清浄度評価方法の試みとして、特開平6−50884公報に開示されている方法がある。これは、260nm以上の紫外線波長域に吸収がない炭化水素、アルコール、セロソルブ類の溶剤に部品等の付着油分を抽出し、260〜290nmの範囲と350〜400nmの範囲の吸光度から付着油分を測定する方法であるが、これに使用される溶剤は付着油分に対する溶解性が不十分であるため、正確な評価ができない問題がある。
【0015】
例えば工作油等には、鉱油成分だけでなく極圧添加剤、耐摩耗剤、油性剤、酸化防止剤等の多種の添加剤が含まれており、これらが複合してなる付着油分に対して特開平6−50884公報に開示されている溶剤では一部の成分しか抽出できず、付着油分を抽出し測定した後も部品等にはまだ塩素系溶剤で抽出されうる付着油分が残存している。従って、精度の高い測定ができないとともに、付着油分の種類によっては検出できない問題がある。また、2系統の範囲の波長での測定が必要であるため、特殊な測定装置でなければ測定ができない。
【0016】
本発明は、上記の課題に鑑みてなされたもので、部品等の付着油分を従来の塩素系溶剤と同様に効率よく抽出し、紫外分光光度法で精度良く簡便に測定できる非塩素系の抽出溶剤組成物を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明は一般式(1)または(2)で表されるエステル類を1種以上含むことを特徴とする抽出溶剤組成物、
式(1) R1 −COO−R2
式(2) R1 −COO−R3 −O−R4
1 =CH3 またはC25
2 =C1 〜C7 の直鎖、分岐または環式アルキル基
3 =C3 〜C6 の直鎖または分岐アルキル基
4 =CH3
ならびに、上記エステル類にC6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素を含むことを特徴とする抽出溶剤組成物、
さらには、上記エステル類とC6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素の組成が、それぞれ5容量%以上、95容量%未満であることを特徴とする抽出溶剤組成物にかかわる。
【0018】
【発明の実施の形態】
以下、本発明についてさらに詳細に説明する。
【0019】
一般式(1)または(2)で表されるエステル類としては、特に限定されるものではないが、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸プロピル、酢酸ブチル、酢酸sec−ブチル、酢酸tert−ブチル、酢酸イソブチル、酢酸メチルトリメチル、酢酸アミル、酢酸エチルトリメチル、酢酸イソアミル、酢酸メトキシブチル、酢酸3−メチル−3−メトキシブチル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ヘキシル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、プロピオン酸イソアミル等が挙げられる。
【0020】
これらの溶剤では、付着油分の抽出性に優れ、精度の高い清浄度評価ができる。
【0021】
抽出溶剤組成物の使用に際しては、引火点が高く火災危険性が少ないもの、低毒性で法的規制が少ないものが好ましく使用できるが、本発明のエステル類の中でこのような特徴を併せ持つ物質として、酢酸シクロヘキシル、酢酸3−メチル−3−メトキシブチル等を例示できる。
【0022】
尚、これらの化合物は、1種または2種以上を混合して使用しても構わない。
【0023】
本発明のエステル類にC6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素を混合することにより、さらに好適に使用することができる。すなわち、これらの炭化水素は、紫外光(210〜350nm)の吸収が少ないため、混合することにより、抽出溶剤組成物自体の紫外線吸光度が低下し、さらに測定精度が高くなるうえに、抽出溶剤組成物の粘度が低下するため、付着油分の抽出を短時間で行うことができる。
【0024】
6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素としては、ヘキサン、ヘプタン、オクタン、n−ノナン、デカヒドロナフタレン、n−ブチルシクロヘキサン、t−ブチルシクロヘキサン、イソデカン、イソウンデカン、2,2,4,6,6−ペンタメチルヘプタン等の化合物が例示できる。これらも、1種または2種以上を混合して使用することができ、特に、引火点が高く、低毒性等の特徴を有するデカヒドロナフタレン、n−ブチルシクロヘキサン、t−ブチルシクロヘキサン、イソデカン、イソウンデカン、2,2,4,6,6−ペンタメチルヘプタン等が好適に使用することができる。
【0025】
本発明のエステル類及びC6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素の混合割合は、それぞれ5容量%以上、95容量%未満が好ましい。本発明のエステル類の組成が5容量%未満である場合、付着油分が十分に抽出できなくなる。一方、C6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素が5容量%未満である場合、紫外線吸収量の増加による測定精度の低下、抽出溶剤組成物自体の粘度上昇による抽出性の低下および毒性、臭気が強くなる問題が生じる可能性がある。
【0026】
本発明の抽出溶剤組成物を使用して部品等から付着油分を抽出する際は、部品等を抽出溶剤組成物に浸漬することで効果的に抽出することが可能であるが、部品等を浸漬すると同時に部品を揺動、回転、超音波照射等を行うことにより、さらに短時間で抽出することが可能である。
【0027】
本発明の抽出溶剤組成物に抽出した付着油分は、従来の検量線などを使用した紫外分光光度法で精度よく測定することができる。
【0028】
さらに本発明を図で説明する。図1は、抽出溶剤組成物を紫外分光光度法で測定した紫外線吸収スペクトルである。ここでは、エステル類として、酢酸シクロヘキシル、C6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素として、2,2,4,6,6−ペンタメチルヘプタンの組成が、それぞれ20容量%、80容量%である抽出溶剤組成物を例示する。エステル類の酢酸シクロヘキシルに対し、炭化水素の2,2,4,6,6−ペンタメチルヘプタンは紫外光の吸収が少なく、炭化水素の混合により、抽出溶剤組成物自体の紫外線吸光度を低下させていることが分かる。また、抽出溶剤組成物に対し、加工油(ユシロ化学製ユシロンNo. 4C)を50ppm 溶解させた抽出溶剤組成物では、250nm以上の波長において、吸光度差(ΔA)が生じる。この吸光度差により、抽出溶剤中の加工油量を定量し、油分量とするものである。測定波長は、加工油の種類により異なるが、例示した図では、260〜320nmが好適である。
【0029】
なお、紫外分光光度計は、特に特殊な機能を必要とせず、従来からの市販品を使用することができる。
【0030】
また、部品等に金属粉やゴミ等が付着している場合、付着油分を抽出する際に抽出用溶剤組成物中に分散し吸光度に誤差を与える。このような場合には、抽出操作後に抽出溶剤組成物をフィルターで濾過した後、測定することが好ましい。
【0031】
本発明に関する適用分野は、特に限定されるものではないが、自動車、電機、電子、光学、機械、精密機器等で扱われる部品等の清浄度評価に利用することができる。また、付着油分の抽出力が高いことから、洗浄剤としての利用も可能である。
【0032】
【実施例】
図1を参照して説明した上記の実施例のほかの実施例により、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1〜10、比較例1〜18
<各種工作油および添加剤の抽出溶剤組成物への溶解性>
30mlのガラス製試験管に抽出溶剤組成物10gを加え、これに付着油分の成分の一つであるA〜Cの工作油0.1g、またはD〜Jの添加剤類0.1gを添加した後、40℃に保温した温水槽に浸漬し、工作油および添加剤類を溶解させた。これらの溶解状態を評価した結果を表1に示す。本発明の抽出溶剤組成物は、いずれの工作油、添加剤類も溶解したのに対し、その他の溶剤は、これらの物質をすべて溶解することはできなかった。
【0033】
A:ダフニーハイテンプオイルA(出光石油化学(株))
B:ダイヤプレス14G(関西油脂製)
C:ユシロンカットuB75N(ユシロ化学(株))
D:塩素化パラフィン(東ソー製)
E:二硫化ベンジル
F:リン酸トリクレシル
G:p−メトキシフェノール
H:β−ナフトール
I:ベンゾトリアゾール
J:N−フェニル−1−ナフチルアミン
評価基準
○:完全溶解
△:一部溶解
×:不溶
実施例11〜26、比較例19〜25
<付着油分抽出率の評価>
試験片の調製
工作油(A〜C)を満たしたSUS製容器(150×200×100mm)に六角ボルト(M5×20mm/SUS製)を1分間浸漬した。工作油中から六角ボルトを引揚げ、100℃で3分間オーブン(InertOven Model DN63HI/ヤマト科学(株)製)で加熱し余分な工作油を液切りした後、六角ボルトが室温に戻るまで放冷した。これを、HC−250(精密洗浄用炭化水素系洗浄剤/東ソー(株)製)を入れた2槽式超音波洗浄機(MH2−3040R/(株)クリンビー製)で粗洗浄およびリンス洗浄を行なった後、吸引乾燥機(KS−3040R/(株)クリンビー製)でHC−250を乾燥したものを試験片とした。なお、洗浄条件は、洗浄液温度40℃、洗浄時間30秒、揺動12回/分、乾燥条件は、乾燥温度80℃、乾燥時間5分とした。
【0034】
A:ダフニーハイテンプオイルA(出光石油化学(株))
B:ダイヤプレス14G(関西油脂製)
C:ユシロンカットuB75N(ユシロ化学(株))
付着油分の測定
清浄にした100mlガラス製瓶(以下、容器とする。)に抽出溶剤組成物を30gと調製した試験片40個を入れ、蓋で密栓した後、超音波洗浄機(UT−205/シャープ(株)製)により、40℃で30分間付着油分を抽出した。冷却水にて抽出溶剤組成物を常温に下げ、0.5μm PTFEフィルター(マイショリディスクH−25−5/東ソー(株)製)で濾過後、紫外分光光度計(UV−8020/東ソー(株))にて260nmでの吸光度の測定を行ない付着油分量を算出した。なお、付着油分量の算出は、所定の工作油濃度とその吸光度の関係から得られる検量線から求めた。
【0035】
付着油分抽出率の評価
油分測定後の試験片40個を、吸引乾燥機により80℃で10分間乾燥を行ない完全に抽出溶剤組成物を除去した。清浄にした100ml容器に四塩化炭素を50gと乾燥した試験片40個を入れ、蓋で密栓した後、超音波洗浄機により、40℃、15分間付着油分を抽出した。冷却水にて四塩化炭素を常温に下げ、0.5μm PTFEフィルターで濾過後、赤外分光光度計(OIL−20/日本インスツルメンツ(株))により四塩化炭素に抽出した付着油分量を算出し、式(3)の計算式より、付着油分抽出率を求めた。なお、付着油分量の算出は、所定の工作油濃度とその赤外分光光度計の測定値の関係から得られる検量線から求めた。なお、評価基準は、以下の通り。
【0036】
式(3) 付着油分抽出率=a÷(a+b)×100[%]
a:抽出溶剤組成物に抽出した付着油分量[mg]
b:四塩化炭素に抽出した付着油分量[mg]

Figure 0003989220
本発明の抽出溶剤組成物では、ほぼすべての付着油分が抽出でき、精度の高い清浄度評価ができた。
【0037】
【表1】
Figure 0003989220
【0038】
【表2】
Figure 0003989220
【0039】
【表3】
Figure 0003989220
【0040】
【表4】
Figure 0003989220
【0041】
【表5】
Figure 0003989220
【0042】
【発明の効果】
本発明の抽出溶剤組成物により、四塩化炭素やCFC等の塩素系溶剤を使用することなく、非塩素系溶剤により各種部品等の付着油分を効率良く抽出し、紫外分光光度法により精度よく簡便に付着油分を測定することが可能となった。
【図面の簡単な説明】
【図1】本発明の実施例として酢酸シクロヘキシル、2,2,4,6,6−ペンタメチルヘプタンの混合物を抽出用溶剤組成物としたときの各成分および抽出油分の紫外光吸収度を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an extraction solvent composition used for cleanliness evaluation of various processed parts such as automobiles, electric machines, electronics, optics, machines, and precision instruments (hereinafter referred to as "parts"). Heat processing oil, cutting oil, plastic working oil, etc. adhering to oil, machine oil, grease, wax, flux, etc. (hereinafter referred to as “adhesive oil”) are extracted into the extraction solvent composition, and UV spectrophotometry The present invention relates to an extraction solvent composition that can be measured accurately and simply and a method for analyzing adhered oil using the composition.
[0002]
[Prior art]
When manufacturing a certain part or product, various processes such as cutting, heat treatment, pressing, polishing, etc. of metal, resin, ceramic, etc., and soldering of electronic boards, etc. are performed. Apply machining oil, machine oil, grease, wax, etc. to prevent tool wear and seizure, lubrication, and rust prevention. Also, when soldering electronic components, processing is performed by applying flux or the like in order to improve the adhesion of the solder. However, the oil adhering to the parts and the like adversely affects the subsequent surface treatment processing such as plating and painting, and causes problems such as discoloration and corrosion of the parts and the appearance defect even without the subsequent treatment. Therefore, it is customary to perform cleanliness evaluation for parts and the like after washing their adhering oil and confirming the degree of contamination of the parts (hereinafter referred to as cleanliness) after washing. Especially for parts that require high quality, such as precision machinery and electronics, even a small amount of adhered oil is often a problem, and not only precise cleaning but also high-precision cleanliness evaluation is required. . Moreover, the necessity of evaluating the cleanliness of parts and the like is high, not only after cleaning, such as when setting cleaning conditions.
[0003]
As a conventional cleanliness evaluation method, a method of visually evaluating the amount of oil adhering to a component, etc. (hereinafter referred to as a visual judgment method), applying a wet reagent to a component, etc., and evaluating the cleanliness based on the wetness of the reagent Method (hereinafter referred to as a wetness judgment method), a method in which the adhered oil is extracted into a chlorine-based solvent such as carbon tetrachloride or CFC, and the adhered oil is measured and evaluated by infrared spectrophotometry (hereinafter referred to as infrared analysis). Etc.).
[0004]
[Problems to be solved by the invention]
However, these cleanliness evaluation methods have various problems.
[0005]
For example, the visual determination method is the simplest evaluation method, but since the determination is made by visual observation, there is a problem that the subject's subjectivity is easy to enter and the determination criterion is ambiguous, and a minute amount of attached oil cannot be evaluated.
[0006]
In the wettability determination method, a wet reagent having wettability at each stage is applied to the surface of a component, and semi-quantitative evaluation is possible to determine whether the surface is wet, but the structure is complicated. In addition, it cannot be applied to parts that are difficult to visually observe, such as minute parts, or parts that do not have a flat surface necessary for applying Nuree's reagent, and a small amount of adhered oil cannot be evaluated in the same way as the visual judgment method. There is a problem.
[0007]
Infrared analysis is a method in which a chlorinated solvent such as carbon tetrachloride or CFC is used as an extraction solvent, and the attached oil extracted to these is measured and evaluated by infrared spectrophotometry. It utilizes the fact that the infrared absorbance based on binding is proportional to the amount of attached oil. Since these chlorinated solvents have no C—H bond and hardly absorb infrared rays at the measurement wavelength, the amount of oil adhered can be measured with high sensitivity. However, these chlorinated solvents have been pointed out as environmental problems such as toxicity problems, groundwater pollution, air pollution and ozone layer destruction, and are also subject to the PRTR Law established for environmental risk management. Therefore, future use is becoming increasingly difficult.
[0008]
By the way, characteristics required for the cleanliness evaluation method include a wide range of application, high accuracy, and convenience (for example, short analysis time, simple operation, high safety, no legal restrictions, etc.).
[0009]
A spectrophotometric method is an example of a method with a wide application range and high convenience, but the following two conditions are necessary to obtain high accuracy with the spectrophotometric method.
[0010]
First, it is necessary that all the adhered oil can be extracted into the extraction solvent composition. When only a part of the adhered oil can be extracted, the accuracy is lowered because it may or may not be detected depending on the composition of the adhered oil. In particular, when measuring a small amount of attached oil, a large error occurs.
[0011]
Next, the necessary conditions are that the absorbance of the adhering oil is high and the absorbance of the extraction solvent is low at the wavelength to be measured. When the absorbance of the adhered oil is low, the sensitivity is lowered, and when the absorbance of the extraction solvent is high, the sensitivity of the adhered oil is relatively lowered, and in both cases, the analysis accuracy is lowered.
[0012]
The above-described infrared analysis method has high solubility in the adhesion oil content of the chlorinated solvent to be used, and high accuracy is obtained by using infrared light that absorbs less in the chlorinated solvent and absorbs the adhesion oil content in the analysis. ing. Chlorinated solvents are highly soluble in the attached oil and can be measured in a short time. Since there is no flash point, fire safety is high. There are many advantages such as being applicable regardless of the shape.
[0013]
Because of these advantages, the cleanliness evaluation has severe restrictions such as environmental problems and regulations, but at present, infrared analysis methods using chlorinated solvents are still widely used.
[0014]
In order to solve such a problem, there is a method disclosed in JP-A-6-50884 as an attempt of a cleanliness evaluation method that does not use a chlorinated solvent. This is to extract the oil adhering to parts such as hydrocarbon, alcohol and cellosolve solvents that have no absorption in the ultraviolet wavelength range of 260 nm or more, and measure the oil adhering from the absorbance in the range of 260 to 290 nm and 350 to 400 nm. However, since the solvent used in this method has insufficient solubility in the adhered oil, there is a problem that accurate evaluation cannot be performed.
[0015]
For example, work oils contain not only mineral oil components but also various additives such as extreme pressure additives, antiwear agents, oiliness agents, and antioxidants. With the solvent disclosed in JP-A-6-50884, only a part of the components can be extracted, and even after the attached oil is extracted and measured, the attached oil can still be extracted with the chlorinated solvent. . Accordingly, there is a problem that high-precision measurement cannot be performed and detection cannot be performed depending on the type of oil adhering. In addition, since it is necessary to measure at wavelengths in the range of two systems, measurement is not possible unless a special measuring device is used.
[0016]
The present invention has been made in view of the above-mentioned problems. Extraction of adhering oil such as parts as efficiently as conventional chlorinated solvents is possible, and non-chlorine extraction that can be accurately and easily measured by ultraviolet spectrophotometry. An object is to provide a solvent composition.
[0017]
[Means for Solving the Problems]
The present invention includes an extraction solvent composition characterized by containing one or more esters represented by the general formula (1) or (2),
Formula (1) R 1 —COO—R 2
Formula (2) R 1 —COO—R 3 —O—R 4
R 1 = CH 3 or C 2 H 5
R 2 = C 1 -C 7 linear, branched or cyclic alkyl group R 3 = C 3 -C 6 linear or branched alkyl group R 4 = CH 3
And an extraction solvent composition characterized in that the ester contains a C 6 to C 12 linear, branched or cyclic saturated hydrocarbon or alicyclic saturated hydrocarbon,
Further, the composition of the ester and the C 6 to C 12 linear, branched or cyclic saturated hydrocarbon or alicyclic saturated hydrocarbon is 5% by volume or more and less than 95% by volume, respectively. It relates to the extraction solvent composition.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0019]
The esters represented by the general formula (1) or (2) are not particularly limited, but methyl acetate, ethyl acetate, isopropyl acetate, propyl acetate, butyl acetate, sec-butyl acetate, tert-acetate Butyl, isobutyl acetate, methyl trimethyl acetate, amyl acetate, ethyl trimethyl acetate, isoamyl acetate, methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, hexyl acetate, methyl propionate, ethyl propionate Butyl propionate, isoamyl propionate and the like.
[0020]
These solvents are excellent in extractability of adhering oil and can be evaluated with high accuracy.
[0021]
In the use of the extraction solvent composition, those having a high flash point and low fire risk and those having low toxicity and low legal regulations can be preferably used. Among the esters of the present invention, substances having such characteristics Examples thereof include cyclohexyl acetate and 3-methyl-3-methoxybutyl acetate.
[0022]
In addition, you may use these compounds 1 type or in mixture of 2 or more types.
[0023]
By mixing C 6 -C 12 linear, branched or cyclic saturated hydrocarbons or alicyclic saturated hydrocarbons with the esters of the present invention, they can be used more suitably. That is, since these hydrocarbons have little absorption of ultraviolet light (210 to 350 nm), mixing them lowers the ultraviolet absorbance of the extraction solvent composition itself, further increases the measurement accuracy, and increases the extraction solvent composition. Since the viscosity of the product is lowered, the adhered oil can be extracted in a short time.
[0024]
C 6 -C 12 linear, branched or cyclic saturated hydrocarbons or alicyclic saturated hydrocarbons include hexane, heptane, octane, n-nonane, decahydronaphthalene, n-butylcyclohexane, t-butylcyclohexane, Examples thereof include compounds such as isodecane, isoundecane, 2,2,4,6,6-pentamethylheptane. These can also be used singly or in combination of two or more, and in particular, decahydronaphthalene, n-butylcyclohexane, t-butylcyclohexane, isodecane, isodecane having a high flash point and characteristics such as low toxicity. Undecane, 2,2,4,6,6-pentamethylheptane and the like can be preferably used.
[0025]
The mixing ratio of the esters of the present invention and the C 6 -C 12 linear, branched or cyclic saturated hydrocarbon or alicyclic saturated hydrocarbon is preferably 5% by volume or more and less than 95% by volume, respectively. When the composition of the ester of the present invention is less than 5% by volume, the adhered oil cannot be sufficiently extracted. On the other hand, when the C 6 to C 12 linear, branched or cyclic saturated hydrocarbon or alicyclic saturated hydrocarbon is less than 5% by volume, the measurement accuracy decreases due to an increase in the amount of ultraviolet absorption, and the extraction solvent composition itself There is a possibility that the extractability is lowered due to the increase in viscosity of the liquid, and that the toxicity and odor are increased.
[0026]
When using the extraction solvent composition of the present invention to extract adhering oil from parts, etc., it is possible to extract the parts etc. effectively by immersing the parts in the extraction solvent composition. At the same time, the components can be extracted in a shorter time by swinging, rotating, irradiating ultrasonic waves, and the like.
[0027]
The adhering oil extracted in the extraction solvent composition of the present invention can be measured with high accuracy by the ultraviolet spectrophotometry using a conventional calibration curve or the like.
[0028]
Further, the present invention will be described with reference to the drawings. FIG. 1 is an ultraviolet absorption spectrum obtained by measuring an extraction solvent composition by ultraviolet spectrophotometry. Here, the composition of 2,2,4,6,6-pentamethylheptane as cyclohexyl acetate, C 6 -C 12 linear, branched or cyclic saturated hydrocarbon or alicyclic saturated hydrocarbon as esters However, the extraction solvent composition is 20% by volume and 80% by volume, respectively. The hydrocarbon 2,2,4,6,6-pentamethylheptane has less ultraviolet light absorption than the cyclohexyl acetate ester, and the mixing of the hydrocarbon reduces the ultraviolet absorbance of the extraction solvent composition itself. I understand that. Moreover, in the extraction solvent composition in which 50 ppm of processing oil (Yushiron No. 4C manufactured by Yushiro Chemical Co., Ltd.) is dissolved in the extraction solvent composition, an absorbance difference (ΔA) occurs at a wavelength of 250 nm or more. Based on this difference in absorbance, the amount of processing oil in the extraction solvent is quantified to obtain the amount of oil. The measurement wavelength varies depending on the type of processing oil, but in the illustrated example, 260 to 320 nm is suitable.
[0029]
The ultraviolet spectrophotometer does not require any special function, and a commercially available product can be used.
[0030]
Further, when metal powder or dust adheres to parts or the like, when the adhering oil is extracted, it is dispersed in the extraction solvent composition and gives an error in absorbance. In such a case, it is preferable to measure after extracting the extraction solvent composition through a filter after the extraction operation.
[0031]
Although the application field regarding this invention is not specifically limited, It can utilize for the cleanliness evaluation of the components etc. which are handled by a motor vehicle, an electric machine, an electronic, an optical, a machine, a precision instrument, etc. Moreover, since the extractability of adhering oil is high, it can be used as a cleaning agent.
[0032]
【Example】
Although the present invention will be described in more detail with reference to other embodiments described above with reference to FIG. 1, the present invention is not limited thereto.
Examples 1-10, Comparative Examples 1-18
<Solubility of various working oils and additives in the extraction solvent composition>
10 g of the extraction solvent composition was added to a 30 ml glass test tube, and 0.1 g of a working oil of AC, which is one of the components of the adhered oil, or 0.1 g of additives of D to J was added thereto. Then, it was immersed in a hot water tank kept at 40 ° C. to dissolve the working oil and additives. The results of evaluating these dissolved states are shown in Table 1. While the extraction solvent composition of the present invention dissolved all the working oils and additives, the other solvents could not dissolve all these substances.
[0033]
A: Daphne High Temp Oil A (Idemitsu Petrochemical Co., Ltd.)
B: Diamond press 14G (manufactured by Kansai Yushi)
C: Yusilon cut uB75N (Yushiro Chemical Co., Ltd.)
D: Chlorinated paraffin (manufactured by Tosoh)
E: benzyl disulfide F: tricresyl phosphate G: p-methoxyphenol H: β-naphthol I: benzotriazole J: N-phenyl-1-naphthylamine
Evaluation criteria ○: Complete dissolution Δ: Partial dissolution ×: Insoluble
Examples 11-26, Comparative Examples 19-25
<Evaluation of adhesion oil extraction rate>
Preparation of test piece Hexagonal bolts (M5 x 20 mm / manufactured by SUS) were immersed in a SUS container (150 x 200 x 100 mm) filled with working oil (A to C) for 1 minute. Pull up the hexagon bolt from the machine oil, heat it in an oven (InertOven Model DN63HI / manufactured by Yamato Kagaku Co., Ltd.) for 3 minutes at 100 ° C, drain off the excess work oil, and let it cool until the hexagon bolt returns to room temperature. did. This was subjected to rough cleaning and rinsing with a two-tank ultrasonic cleaner (MH2-3040R / Crimby) containing HC-250 (hydrocarbon cleaning agent for precision cleaning / manufactured by Tosoh Corporation). After the test, a test piece was prepared by drying HC-250 with a suction dryer (KS-3040R / Crimby). The cleaning conditions were a cleaning liquid temperature of 40 ° C., a cleaning time of 30 seconds and a swing of 12 times / minute, and the drying conditions were a drying temperature of 80 ° C. and a drying time of 5 minutes.
[0034]
A: Daphne High Temp Oil A (Idemitsu Petrochemical Co., Ltd.)
B: Diamond press 14G (manufactured by Kansai Yushi)
C: Yusilon cut uB75N (Yushiro Chemical Co., Ltd.)
Measurement of adhered oil content 30 g of extraction solvent composition and 40 prepared test pieces were placed in a cleaned 100 ml glass bottle (hereinafter referred to as a container), sealed with a lid, and then an ultrasonic cleaner. (UT-205 / manufactured by Sharp Corporation), the adhered oil was extracted at 40 ° C. for 30 minutes. The extraction solvent composition is cooled to room temperature with cooling water, filtered through a 0.5 μm PTFE filter (Maisho Disc H-25-5 / manufactured by Tosoh Corporation), and then an ultraviolet spectrophotometer (UV-8020 / Tosoh Corporation). )), The absorbance at 260 nm was measured, and the amount of attached oil was calculated. The amount of attached oil was calculated from a calibration curve obtained from the relationship between a predetermined working oil concentration and its absorbance.
[0035]
Evaluation of attached oil content extraction rate 40 test pieces after oil content measurement were dried at 80 ° C for 10 minutes with a suction drier to completely remove the extraction solvent composition. After putting 40 g of carbon tetrachloride and dried 40 test pieces into a cleaned 100 ml container and sealing with a lid, the adhered oil was extracted for 15 minutes at 40 ° C. by an ultrasonic cleaner. Reduce the carbon tetrachloride to room temperature with cooling water, filter with a 0.5 μm PTFE filter, and then calculate the amount of attached oil extracted to carbon tetrachloride with an infrared spectrophotometer (OIL-20 / Nippon Instruments Co., Ltd.). From the calculation formula of formula (3), the adhered oil content extraction rate was obtained. The amount of adhered oil was calculated from a calibration curve obtained from the relationship between a predetermined working oil concentration and the measured value of the infrared spectrophotometer. The evaluation criteria are as follows.
[0036]
Formula (3) Adhesive oil extraction rate = a ÷ (a + b) × 100 [%]
a: Amount of attached oil extracted to the extraction solvent composition [mg]
b: Amount of adhered oil extracted to carbon tetrachloride [mg]
Figure 0003989220
In the extraction solvent composition of the present invention, almost all of the attached oil component could be extracted, and highly accurate cleanliness evaluation was possible.
[0037]
[Table 1]
Figure 0003989220
[0038]
[Table 2]
Figure 0003989220
[0039]
[Table 3]
Figure 0003989220
[0040]
[Table 4]
Figure 0003989220
[0041]
[Table 5]
Figure 0003989220
[0042]
【The invention's effect】
The extraction solvent composition of the present invention efficiently extracts adhering oil from various parts with a non-chlorine solvent without using a chlorine-based solvent such as carbon tetrachloride or CFC, and is simple and accurate by ultraviolet spectrophotometry. It was possible to measure the amount of oil adhering to.
[Brief description of the drawings]
FIG. 1 shows the ultraviolet light absorbance of each component and extracted oil when a mixture of cyclohexyl acetate and 2,2,4,6,6-pentamethylheptane is used as an extraction solvent composition as an example of the present invention. .

Claims (4)

一般式(1)または(2)で表されるエステル類を1種以上含むことを特徴とする抽出溶剤組成物。
式(1) R1 −COO−R2
式(2) R1 −COO−R3 −O−R4
1 =CH3 またはC25
2 =C1 〜C7 の直鎖、分岐または環式アルキル基
3 =C3 〜C6 の直鎖または分岐アルキル基
4 =CH3
An extraction solvent composition comprising at least one ester represented by the general formula (1) or (2).
Formula (1) R 1 —COO—R 2
Formula (2) R 1 —COO—R 3 —O—R 4
R 1 = CH 3 or C 2 H 5
R 2 = C 1 -C 7 linear, branched or cyclic alkyl group R 3 = C 3 -C 6 linear or branched alkyl group R 4 = CH 3
上記エステル類にC6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素を含むことを特徴とする請求項1記載の抽出溶剤組成物。The extraction solvent composition according to claim 1, wherein the ester contains a C 6 to C 12 linear, branched or cyclic saturated hydrocarbon or alicyclic saturated hydrocarbon. 上記エステル類とC6 〜C12の直鎖、分岐または環式飽和炭化水素または脂環式飽和炭化水素の組成が、それぞれ5容量%以上、95容量%未満であることを特徴とする請求項1記載の抽出溶剤組成物。The composition of the ester and a C 6 to C 12 linear, branched or cyclic saturated hydrocarbon or alicyclic saturated hydrocarbon is 5% by volume or more and less than 95% by volume, respectively. 2. The extraction solvent composition according to 1. 請求項1〜3のいずれかに記載の抽出溶剤組成物を用いて付着油分を抽出し、紫外分光光度法で分析することを特徴とする付着油分の分析方法。An attached oil content is extracted using the extraction solvent composition according to any one of claims 1 to 3, and analyzed by ultraviolet spectrophotometry.
JP2001325108A 2001-10-23 2001-10-23 Extraction solvent composition and method for analyzing adhered oil content using the same Expired - Lifetime JP3989220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325108A JP3989220B2 (en) 2001-10-23 2001-10-23 Extraction solvent composition and method for analyzing adhered oil content using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325108A JP3989220B2 (en) 2001-10-23 2001-10-23 Extraction solvent composition and method for analyzing adhered oil content using the same

Publications (2)

Publication Number Publication Date
JP2003128631A JP2003128631A (en) 2003-05-08
JP3989220B2 true JP3989220B2 (en) 2007-10-10

Family

ID=19141727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325108A Expired - Lifetime JP3989220B2 (en) 2001-10-23 2001-10-23 Extraction solvent composition and method for analyzing adhered oil content using the same

Country Status (1)

Country Link
JP (1) JP3989220B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841203B2 (en) * 2005-08-30 2011-12-21 株式会社デンソー Cleanliness evaluation method and reference material used therefor
JP7153923B2 (en) * 2016-08-04 2022-10-17 アクトファイブ株式会社 Oil concentration measuring device and oil concentration measuring method

Also Published As

Publication number Publication date
JP2003128631A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
KR20080025071A (en) Method and test kit for the determination or iron content of in-use lubricants
Greeley et al. Impact of environmental contaminants on machining properties of metalworking fluids
WO2004061438A1 (en) Method for determining the surface cleanliness with infrared spectroscopy
JP3989220B2 (en) Extraction solvent composition and method for analyzing adhered oil content using the same
Woskie et al. Summary of the findings from the exposure assessments for metalworking fluid mortality and morbidity studies
GB2425835A (en) Fluorescent metal ion chelating agent probe for the detection of corrosion
RU2400734C2 (en) Method of detecting residual impurities on articles
CN105521973A (en) Cleaning method for laser device cooling box and detection method for detecting cleanness of cleaning method
US20090227035A1 (en) Method and test kit for the determination of iron content of in-use lubricants
EP3638764B1 (en) A novel minimum boiling azeotrope of n-butyl-3-hydroxybutyrate and n-undecane and application of the azeotrope to solvent cleaning
JP4841203B2 (en) Cleanliness evaluation method and reference material used therefor
Volckens et al. Mist concentration measurements II: Laboratory and field evaluations
JPH09502461A (en) Highlighting of surface flaws on metal surfaces
Abner Jr Lubricant deterioration in service
JPH0961349A (en) Measuring method and measuring device for dirt quantity in detergent
White et al. Effects of fluid composition on mist composition
JPS63256163A (en) Method for cleaning inside of paint transfer piping
Kumar et al. Lubricant performance characteristics in metalworking manufacturing
Oketa et al. Formulation of Cutting Oil Using Green Base Extract (Soya-Bean and Groundnut)
RU2694417C1 (en) Method of finding and detecting hand traces on metal and other non-porous surfaces
KR101399385B1 (en) Manufacturing method of detergent for aircraft exterior
Eisenmann Liquid Penetrant Inspection
JPH11335697A (en) Detergent composition
Asgari et al. Development of a New Method for Analysis of Oil Mists
KR100212805B1 (en) Method for measuring sandpaper contamination

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3989220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20220727

Year of fee payment: 15

EXPY Cancellation because of completion of term