JP3989148B2 - Light immobilization method for metal fine particles - Google Patents

Light immobilization method for metal fine particles Download PDF

Info

Publication number
JP3989148B2
JP3989148B2 JP34214699A JP34214699A JP3989148B2 JP 3989148 B2 JP3989148 B2 JP 3989148B2 JP 34214699 A JP34214699 A JP 34214699A JP 34214699 A JP34214699 A JP 34214699A JP 3989148 B2 JP3989148 B2 JP 3989148B2
Authority
JP
Japan
Prior art keywords
fine particles
metal fine
metal
substrate
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34214699A
Other languages
Japanese (ja)
Other versions
JP2001149774A (en
Inventor
淳 山田
康郎 新留
綾子 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP34214699A priority Critical patent/JP3989148B2/en
Publication of JP2001149774A publication Critical patent/JP2001149774A/en
Application granted granted Critical
Publication of JP3989148B2 publication Critical patent/JP3989148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機化合物により金属微粒子表面を修飾した金属微粒子のコロイド溶液に被コーティング材料を浸漬して、金属微粒子を励起するレーザー光を照射することにより金属微粒子を該被コーティング材料表面に固定する方法に関する。
【0002】
【従来技術】
被コーティング材料、例えば基板の表面に金微粒子を形成する従来方法として、1.金微粒子を有機溶媒に分散させたコロイド溶液をキャストし乾燥させる方法、2.ガラス表面等に吸着させたポリカチオンやカチオン性分子膜の上に静電相互作用によって金微粒子を吸着させる方法、さらには3.基板表面をチオール誘導体で修飾(処理)し、金−イオウ間の自発的な結合形成を利用して金微粒子を固定化させる方法などがあるが、1.の場合には、揮発する溶剤による健康への問題があり、更には、任意の形状に固定化させることが困難であり、2.および3.の場合には、基板表面を予め修飾剤で処理しておく必要である。4.また最近では金微粒子が負に帯電していることを利用して、電気泳動法により電極上に金微粒子を集積する方法も開発されているが、基板が導電性に限定される。
【0003】
また、Au、Ag、Ptなど数十nm〜数nmの貴金属微粒子、例えば金微粒子は、紫外域〜近赤外域のレーザー光を吸収し、その結果、粒子の凝集と粒子の分裂(分散)の両現象があらわれることが知られている。
【0004】
ところで、金属による表面加工は、種々の機能性部材の製造にも利用されている。例えば、テフロン多孔質電極はテフロン多孔膜を金属材料で処理することによって得られているし、表面増強ラマン(Surface Enhanced Raman Spectroscopy:SERS)センサー基板は、基板表面に金属を島状に薄く真空蒸着することによって得られている。従って、金属による新しい表面加工技術の開発は、新たな機能を持った部材の開発の面でも重要であることが認識されている。
【0005】
【発明が解決しようとする課題】
本発明の課題は、前記従来の金属微粒子の固着方法における、健康への問題や特殊な処理を予め基板表面にするという不都合がない金属微粒子の固着方法を提供することであり、更に、新しい機能性を持った部材が得られる金属微粒子の固着方法を提供することにある。前記課題を解決するのに、前記金属微粒子のコロイド溶液にレーザーを照射した時の現象を応用できないかとの考えに基づいて鋭意検討したところ、金属微粒子の有機溶媒のコロイド溶液に金属による表面加工すべき材料を浸漬した状態で、前記コロイド溶液および前記加工すべき材料の表面を、紫外域のレーザー光又は近赤外域までの赤外線レーザー光を照射することにより、前記加工すべき材料の表面に金属微粒子を固定することができることを発見し、前記課題を解決したものである。更に、前記現象は基板を構成する材料に限定されることなく適用でき、透明基板としては、ガラスに限らずフツ素系高分子フィルムなどの非伝導性かつ不活性な基板に対しても適用可能であることも発見された。
【0006】
【課題を解決するための手段】
本発明は、(1)有機溶媒に可溶化する高級アルキルチオール化合物又は高級脂肪酸から選択される安定化剤により安定化した金属微粒子の溶媒が有機溶媒であるコロイド溶液中に被コーティング材料を浸漬し、前記金属微粒子の安定化剤を前記金属微粒子表面から脱離する紫外線レーザー光又は近赤外域までの赤外域のレーザー光を前記コロイド溶液に照射することにより前記金属微粒子表面から安定化剤を脱離させ金属微粒子を該被コーティング材料表面に固定する方法である。好ましくは、(2)金属微粒子のコロイド溶液は50nm未満1nm以上の金属微粒子表面に有機溶媒に可溶化する高級アルキルチオール化合物又は高級脂肪酸から選択される安定化剤を結合し、有機溶媒中に分散したものであることを特徴とする前記(1)に記載の金属微粒子を被コーティング材料表面に固定する方法であり、より好ましくは、(3)パルス幅5ns〜10nsであり、かつパルスエネルギーが20mJ〜400mJであることを特徴とする前記(1)または(2)に記載の金属微粒子を被コーティング材料表面に固定する方法である。本発明は、金属微粒子を有機溶媒に分散したコロイド溶液から、紫外線レーザー光又は近赤外域までの赤外域のレーザー光照射により、前記基体表面への金属微粒子の析出および固着現象があることを発見することによって、前記課題を解決したのである。また、このようにして固着された金属微粒子のサイズは平均約10nm(おおむね30nm以下であり)であり、共鳴ラマンセンサーとしての機能性が改善されることが予想される。
【0007】
【本発明の実施の態様】
本発明をより詳細に説明する。
A.本発明で使用する金属微粒子のコロイド溶液とは、粒径1nm〜100nmの、好ましくは50nm〜5nmの金属微粒子表面を、レーザー光照射により前記金属微粒子表面から分離する安定化剤で安定化したものである。このような材料を構成する、金属としては、Ag、Au、Cuなどのプラズモン励起の起こし易いものを好ましい材料として挙げることができる。安定化剤としては、有機溶媒に可溶化する硫黄原子含有有機化合物である、例えば、ドデカンチオールなどのチオール化合物や、オレイン酸などの脂肪酸などを挙げることができる。
B.分散する溶媒としては、ヘキサンなどの脂肪族、シクロヘキサンなどの脂環式、ベンゼン、トルエンなどの芳香族等の炭化水素類などを挙げることができる。
【0008】
C.レーザー光と金属微粒子コロイドの基板表面への金属微粒子固定現象。前記金属微粒子の基板表面への固定には、紫外域〜近赤外域のレーザー光が利用でき、特にパルスレーザー光の利用は効率の良い方法である。パルスレーザー光としては、Nd:YAGレーザーの基本波(1064nm)、2倍波(532nm)、3倍波(355nm)、幅5ns〜10ns、およびパルスエネルギー20mJ〜400mJのものが、レーザー光による金属微粒子コロイドから基板表面への金属微粒子の固定に有用である。本出願の発明においては、前記基本波を含む近赤外光までの赤外光、又は前記3倍波を含む紫外光のレーザーを用いて金属微粒子コロイドから基板表面への金属微粒子の固定を行うものである。
【0009】
D.図1には、本発明の金属微粒子コロイドから基板表面への金属微粒子の析出・固定方法を原理的に説明するものである。パルスレーザー発生手段(L.R)からのパルスレーザーは、マスク(M.S)を介し、被コーティング基板、具体的にはガラス基板(B.P)が浸漬されている金属コロイド溶液に照射される。照射された前記基板表面に金属微粒子(M.P.L)が固定される。 前記金属微粒子の固定の工程は、マスクを介することなく、レーザー光を所望の描画図形に従って操作することによっても実施できる。図2は、マスクに対応して固定された金微粒子(M.P.L)の走査電子顕微鏡写真(SEM像)である。白い丸形のものが析出・固定した金コロイドである。粒径の違いはレーザー光照射前の金微粒子の粒径分布にも依存するものと推測される。図3は、レーザー照射によるガラス表面に付着した金コロイドの吸収スペクトルであり、金微粒子のプラズモンバンドが540nm付近に観察されている。E.パルスレーザー発生手段としては、Nd:YAGレーザー(波長1064nm、532nm、355nm)、その他チタン:サファイヤレーザー、エキシマーレーザー等を使用できる。
【0010】
前記金属コロイドからの金属微粒子の析出・固定の現象は、金属コロイドの光子吸収に伴う現象である。パルスレーザー光の照射によって光子を吸収した金微粒子は、急激な温度上昇を起こすことが知られている。その際に、安定化剤として微粒子表面にくっついている安定化剤(保護剤)の一部が光で外れ、分散安定性が失われると考えられる。その結果、基体近傍に存在する不安定化された微粒子が、基体に固定化することで安定化すると考えられる。一方、溶液中では、前記現象による微粒子の凝集と成長も進行するものと考えられる。したがって、固定化は、安定化剤や用いる溶媒にも影響されるものと考えられる。
【0011】
【実施例】
実施例1
金微粒子の固定A.金コロイドの作製。塩化金酸を水素化ホウ素ナトリウムで還元するレフ(Leff)らの方法(J.Phys.Chem.,99,7036(1995))により金コロイド溶液を得た。透過電子顕微鏡(TEM)で測定した結果、金微粒子の平均粒径は3〜4nmであった。
B.光固定化方法 前記作製した金コロイドをシクロへキサンに溶解してコロイド溶液(M.C.S)とした。この溶液3mLを蛍光測定用石英セル(4×1×4cm)(SE)に入れ、ガラス基板(B.P)(2×2×0.02cm)を溶液中に浸し、20℃の温度の下で、パルスレーザー光(Nd:YAGレーザー、波長1064nm、パルス幅5-7ns,パルスエネルギー260mJ、くり返し数10Hz)を照射した。10分程度でガラス表面への固定化が確認できるようになった。20−30分でほぼ一定に達し、それ以上照射すると脱着が認められるようになった。ガラス基板を取り出し、レーザー光照射部のみに金微粒子の付着(M.P.L)が確認された。石英セルについても、レーザー光照射部のみに金微粒子の付着が確認された。ガラス基板の吸収スペクトルを測定すると(図2)、金微粒子に特徴的なプラズモンバンドが540nm付近に観測された。また、前記金微粒子はガラス基板上に均一に配列されて、荒くされた表面が観察された。ガラス基板をトルエン、硝酸中に浸漬したが、金微粒子の脱離はみとめられなかった。また超音波照射によっても脱離は明確には認められなかった。すなわち、金微粒子はガラス基板上に、機械力により脱離しない付着力によって固定されていることが確認された。
【0012】
実施例2
基板をフッ化カルシウム板に代えただけで、実施例1の操作を繰り返した。フッ化カルシウム板(直径1.8cm,厚さ0.1cm)でも同様の結果が得られた。
【0013】
実施例3
基板をテフロンメンブレンフィルターに代えただけで、実施例1の操作を繰り返した。テフロンメンブレンフィルター(ミリポア社デュラポアVVLP、孔径100nm)でも、照射したレーザー光の形状に金粒子が固定された。吸収スペクトル測定から固定された粒子はコロイド的に分散した金の微粒子(平均粒径約10nm)であることが明らかになった。
【0014
施例4
照射するレーザー光の波長を変えて実施例1の操作を繰り返した。Nd-YAGレーザーの3倍波〔355nm、20mJ/パルス(pulse)〕のレーザー光を用いて、ガラス基板上に金微粒子を固定できることが明らかになった。
【0015】
金属の表面を荒くした基板では、吸着した物質のラマン散乱強度が非常に増大することが知られている。この現象は表面増強ラマン(Surface Enhanced RamanSpectroscopy:SERS)といわれる。これまではこのような表面として、表面をエッチングした金や銀の基板や、金属が島状に付着するように非常に薄く真空蒸著した基板が用いられてきた。しかし、一方で金属微粒子を2次元的に配列した基板はSERSセンサー基板としてもっとも有効であるということが明らかにされている。従来、金微粒子を基板表面に並べるためには交互吸着法やLB法がもちいられているが、いずれの手法でも大量の有機物が金粒子近傍に存在しているし、基板表面を予め修飾剤で処理しておく必要がある。本手法で作成した金属微粒子固定基板では金属微粒子は有機化合物に一層囲まれているだけであり、さらにその有機分子は硝酸処理によって金属微粒子表面からはぎ取ることが可能である。得られる清浄な表面を持つ金属微粒子固定基板はSERSセンサ基板として従来に無い感受性、選択制を持たせることが可能だと考えられる。
【0016】
【発明の効果】
以上述べたように、本発明の金属微粒子の固定化方法は、基板材料に限定されずに適用できること、レーザー手段として、本発明による金属微粒子の固定化用のものと、熱融着作用のものとを組み合わせて用いることなどによって、前記SERSセンサ基板の製造、多孔質電極の製造といったものへの適用が考えられる点で優れた効果がもたらされる。
【図面の簡単な説明】
【図1】 本発明の金属微粒子コロイドから基板表面への金属微粒子の析出・固定方法の原理的説明(a)、(b)は(a)のA−A’面図
【図2】 固定された金属微粒子(M.P.L)の走査電子顕微鏡写真(SEM像)
【図3】 金微粒子のプラズモンバンドの測定
【符号の説明】
L.R パルスレーザー発生器 M.S マスクM.C.S 金属コロイド溶液 B.P 基板 SE セルM.P.L 固定金属微粒子
[0001]
BACKGROUND OF THE INVENTION
In the present invention, the material to be coated is immersed in a colloidal solution of metal fine particles whose surface is modified with an organic compound, and the metal fine particles are fixed to the surface of the material to be coated by irradiating laser light that excites the metal fine particles. Regarding the method.
[0002]
[Prior art]
As a conventional method for forming gold fine particles on the surface of a material to be coated, for example, a substrate, 1. a method of casting and drying a colloidal solution in which gold fine particles are dispersed in an organic solvent; 2. a method of adsorbing gold fine particles on a polycation or cationic molecular film adsorbed on a glass surface or the like by electrostatic interaction; There is a method in which the surface of a substrate is modified (treated) with a thiol derivative, and gold fine particles are immobilized using spontaneous bond formation between gold and sulfur. In this case, there is a health problem due to the solvent that volatilizes, and it is difficult to fix it in an arbitrary shape. And 3. In this case, it is necessary to treat the substrate surface with a modifier in advance. 4). Recently, a method of collecting gold fine particles on an electrode by electrophoresis using the negatively charged gold fine particles has been developed, but the substrate is limited to conductivity.
[0003]
Further, noble metal fine particles of several tens to several nanometers such as Au, Ag, and Pt, such as gold fine particles, absorb laser light in the ultraviolet region to the near infrared region, and as a result, aggregate particles and break up (disperse) particles. Both phenomena are known to appear.
[0004]
By the way, the surface processing by a metal is utilized also for manufacture of various functional members. For example, a Teflon porous electrode is obtained by treating a Teflon porous film with a metal material, and a surface enhanced Raman (SERS) sensor substrate is formed by vacuum deposition of metal on the substrate surface in a thin island shape. Is obtained by doing. Accordingly, it has been recognized that the development of new surface processing techniques using metals is also important in the development of members having new functions.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a metal fine particle fixing method that does not have a problem of health or special treatment in advance in the conventional metal fine particle fixing method, and that has a new function. An object of the present invention is to provide a method for fixing metal fine particles, which can provide a member having a property. To solve the above problems, as a result of intensive studies based on the idea that if not applicable to a phenomenon when irradiated with a laser in a colloidal solution of metal fine particles, to the surface processed with metal colloidal solution of an organic solvent of the fine metal particles By irradiating the surface of the colloidal solution and the material to be processed with an ultraviolet laser beam or an infrared laser beam up to the near infrared region in a state where the material to be processed is immersed, a metal is applied to the surface of the material to be processed. The present inventors have found that fine particles can be fixed and solved the above problems. Further, the above phenomenon can be applied without being limited to the material constituting the substrate, and the transparent substrate is not limited to glass but can be applied to non-conductive and inert substrates such as fluorine-based polymer films. It was also discovered.
[0006]
[Means for Solving the Problems]
In the present invention, (1) a coating material is immersed in a colloidal solution in which a metal fine particle solvent stabilized by a stabilizer selected from a higher alkylthiol compound or higher fatty acid solubilized in an organic solvent is an organic solvent. Irradiating the colloid solution with an ultraviolet laser beam that desorbs the metal fine particle stabilizer from the surface of the metal fine particle or an infrared laser beam up to the near infrared region, thereby removing the stabilizer from the surface of the metal fine particle. In this method, the metal fine particles are separated and fixed to the surface of the material to be coated. Preferably, (2) the colloidal solution of metal fine particles is bonded to the surface of the metal fine particles of less than 50 nm and 1 nm or more with a stabilizer selected from higher alkylthiol compounds or higher fatty acids solubilized in an organic solvent, and dispersed in the organic solvent. The method of fixing the metal fine particles according to the above (1) to the surface of the material to be coated, more preferably (3) a pulse width of 5 ns to 10 ns and a pulse energy of 20 mJ The method for fixing the metal fine particles according to (1) or (2) to the surface of the material to be coated, which is characterized by being -400 mJ. The present invention has discovered that metal fine particles are deposited and fixed on the surface of a substrate by irradiating ultraviolet laser light or laser light in the infrared region up to the near infrared region from a colloidal solution in which metal fine particles are dispersed in an organic solvent. By doing so, the above-mentioned problem was solved. Further, the size of the metal fine particles fixed in this way is about 10 nm (approximately 30 nm or less) on average, and it is expected that the functionality as a resonance Raman sensor is improved.
[0007]
[Embodiments of the present invention]
The present invention will be described in more detail.
A. The colloidal solution of metal fine particles used in the present invention is a metal fine particle surface having a particle diameter of 1 nm to 100 nm, preferably 50 nm to 5 nm, stabilized with a stabilizer that separates from the metal fine particle surface by laser light irradiation. It is. As a metal constituting such a material, a material that easily causes plasmon excitation, such as Ag, Au, or Cu, can be cited as a preferable material. Examples of the stabilizer include sulfur atom-containing organic compounds solubilized in an organic solvent, for example, thiol compounds such as dodecanethiol, and fatty acids such as oleic acid.
B. Examples of the solvent to be dispersed include aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, and aromatic hydrocarbons such as benzene and toluene.
[0008]
C. Fixing phenomenon of metal particles on the substrate surface of laser beam and metal particle colloid. For fixing the metal fine particles to the substrate surface, laser light in the ultraviolet region to near infrared region can be used, and in particular, the use of pulsed laser light is an efficient method. As the pulsed laser light, Nd: YAG laser fundamental wave (1064 nm), 2nd harmonic (532 nm), 3rd harmonic (355 nm), width 5 ns to 10 ns, and pulse energy 20 mJ to 400 mJ are used. This is useful for fixing metal fine particles from the fine particle colloid to the substrate surface. In the invention of the present application, the metal fine particles are fixed to the substrate surface from the metal fine particle colloid using a laser of infrared light up to near infrared light including the fundamental wave or ultraviolet light including the third harmonic wave. Is.
[0009]
D. FIG. 1 illustrates in principle the method for depositing and fixing metal fine particles on a substrate surface from a metal fine particle colloid according to the present invention. The pulse laser from the pulse laser generating means (LR) is irradiated through a mask (MS) to a metal colloid solution in which a substrate to be coated, specifically, a glass substrate (BP) is immersed. The Metal fine particles (MPL) are fixed to the irradiated substrate surface. The step of fixing the metal fine particles can also be performed by operating laser light according to a desired drawing pattern without using a mask. FIG. 2 is a scanning electron micrograph (SEM image) of gold fine particles (MPL) fixed corresponding to the mask. White colloidal gold colloid is deposited and fixed. The difference in particle size is presumed to depend on the particle size distribution of the gold fine particles before laser light irradiation. Figure 3 is an absorption spectrum of a gold colloid adhered to the glass surface by laser irradiation, the plasmon band of the gold fine particles are observed around 540 nm. E. As the pulse laser generating means, Nd: YAG laser (wavelengths 1064 nm, 532 nm, 355 nm), titanium: sapphire laser, excimer laser, etc. can be used.
[0010]
The phenomenon of precipitation and fixation of metal fine particles from the metal colloid is a phenomenon accompanying photon absorption of the metal colloid. It is known that gold fine particles that have absorbed photons by irradiation with pulsed laser light cause a rapid temperature rise. At that time, it is considered that a part of the stabilizer (protective agent) adhering to the surface of the fine particles as a stabilizer is removed by light and the dispersion stability is lost. As a result, it is considered that the destabilized fine particles existing in the vicinity of the substrate are stabilized by being immobilized on the substrate. On the other hand, it is considered that the aggregation and growth of fine particles due to the above phenomenon also proceed in the solution. Therefore, the immobilization is considered to be affected by the stabilizer and the solvent used.
[0011]
【Example】
Example 1
Fixation of gold fine particles Production of colloidal gold. A colloidal gold solution was obtained by the method of Leff et al. (J. Phys. Chem., 99, 7036 (1995)) in which chloroauric acid was reduced with sodium borohydride. As a result of measurement with a transmission electron microscope (TEM), the average particle size of the gold fine particles was 3 to 4 nm.
B. Photoimmobilization method The colloidal gold solution prepared above was dissolved in cyclohexane to obtain a colloidal solution (MCS). 3 mL of this solution was placed in a quartz cell for fluorescence measurement (4 × 1 × 4 cm) (SE), a glass substrate (BP) (2 × 2 × 0.02 cm) was immersed in the solution, and at a temperature of 20 ° C., Pulsed laser light (Nd: YAG laser, wavelength 1064 nm, pulse width 5-7 ns, pulse energy 260 mJ, repetition rate 10 Hz) was irradiated. Immobilization on the glass surface can be confirmed in about 10 minutes. Desorption was observed after irradiation for more than 20-30 minutes. The glass substrate was taken out, and adhesion of gold fine particles (MPL) was confirmed only in the laser light irradiation part. Also in the quartz cell, it was confirmed that gold fine particles were attached only to the laser light irradiation part. When the absorption spectrum of the glass substrate was measured (FIG. 2), a plasmon band characteristic of gold fine particles was observed around 540 nm. Further, the gold fine particles were uniformly arranged on the glass substrate, and a roughened surface was observed. Although the glass substrate was immersed in toluene and nitric acid, no desorption of gold fine particles was observed. In addition, desorption was not clearly observed by ultrasonic irradiation. That is, it was confirmed that the gold fine particles were fixed on the glass substrate by an adhesive force that was not detached by mechanical force.
[0012]
Example 2
The operation of Example 1 was repeated only by replacing the substrate with a calcium fluoride plate. Similar results were obtained with a calcium fluoride plate (diameter 1.8 cm, thickness 0.1 cm).
[0013]
Example 3
The operation of Example 1 was repeated only by replacing the substrate with a Teflon membrane filter. Even with a Teflon membrane filter (Millipore Durapore VVLP, pore size 100 nm), gold particles were fixed in the shape of the irradiated laser light. Absorption spectrum measurements revealed that the fixed particles were colloidally dispersed gold microparticles (average particle size of about 10 nm).
[0014 ]
Real施例4
The operation of Example 1 was repeated while changing the wavelength of the laser beam to be irradiated. It has been clarified that gold fine particles can be fixed on a glass substrate by using a laser beam of a third harmonic of an Nd-YAG laser (355 nm, 20 mJ / pulse).
[0015]
It is known that the Raman scattering intensity of the adsorbed substance is greatly increased in a substrate having a rough metal surface. This phenomenon is called surface enhanced Raman spectroscopy (SERS). In the past, gold or silver substrates whose surfaces have been etched, or substrates that have been very thinly evaporated in a vacuum so that the metal adheres like islands have been used as such surfaces. However, on the other hand, it has been clarified that a substrate in which metal fine particles are two-dimensionally arranged is most effective as a SERS sensor substrate. Conventionally, the alternating adsorption method and the LB method are used to arrange the gold fine particles on the surface of the substrate. However, in any method, a large amount of organic substances exist in the vicinity of the gold particles, and the substrate surface is preliminarily coated with a modifier. It needs to be processed. Metal fine particles are metallic fine particles fixed substrate produced in this method is only being more surrounded by organic compounds, further organic molecules can rip off from the metal particle surface by nitric acid treatment. It is considered that the obtained metal fine particle fixed substrate having a clean surface can have a sensitivity and a selection system which are not present as a SERS sensor substrate.
[0016]
【The invention's effect】
As described above, the method for immobilizing metal fine particles of the present invention can be applied without being limited to the substrate material, and the laser means is for immobilizing metal fine particles according to the present invention and has a heat fusion function. Are used in combination, and the like, an excellent effect is brought about in that it can be applied to the production of the SERS sensor substrate and the production of the porous electrode.
[Brief description of the drawings]
FIG. 1 is a principle explanation (a) and (b) of a method for depositing and fixing metal fine particles on a substrate surface from a metal fine particle colloid according to the present invention. FIG. Scanning electron micrograph (SEM image) of fine metal particles (MPL)
[Figure 3] Measurement of plasmon band of gold fine particles [Explanation of symbols]
L. R pulse laser generator S mask M.M. C. S. Metal colloid solution P substrate SE cell M.P. P. L Fixed metal fine particles

Claims (3)

有機溶媒に可溶化する高級アルキルチオール化合物又は高級脂肪酸から選択される安定化剤により安定化した金属微粒子の溶媒が有機溶媒であるコロイド溶液中に被コーティング材料を浸漬し、前記金属微粒子の安定化剤を前記金属微粒子表面から脱離する紫外線レーザー光又は近赤外域までの赤外域のレーザー光を前記コロイド溶液に照射することにより前記金属微粒子表面から安定化剤を脱離させ金属微粒子を該被コーティング材料表面に固定する方法。 Stabilize the metal fine particles by immersing the coating material in a colloidal solution in which the solvent of the metal fine particles stabilized by a stabilizer selected from a higher alkyl thiol compound or higher fatty acid that is solubilized in an organic solvent is an organic solvent. By irradiating the colloid solution with an ultraviolet laser beam that detaches the agent from the surface of the metal fine particle or an infrared laser beam up to the near infrared region, the stabilizer is desorbed from the surface of the metal fine particle, and the metal fine particle is applied to the colloid solution. A method of fixing to the surface of the coating material. 金属微粒子のコロイド溶液は50nm未満1nm以上の金属微粒子表面に有機溶媒に可溶化する高級アルキルチオール化合物又は高級脂肪酸から選択される安定化剤を結合し、有機溶媒中に分散したものであることを特徴とする請求項1に記載の金属微粒子を被コーティング材料表面に固定する方法。The colloidal solution of metal fine particles is a material in which a stabilizer selected from a higher alkyl thiol compound or higher fatty acid solubilized in an organic solvent is bonded to the surface of the metal fine particles of less than 50 nm and 1 nm or more and dispersed in the organic solvent. A method for fixing metal fine particles according to claim 1 to the surface of a material to be coated. パルス幅5ns〜10nsであり、かつパルスエネルギーが20mJ〜400mJであることを特徴とする請求項1または2に記載の金属微粒子を被コーティング材料表面に固定する方法。  The method for fixing metal fine particles to the surface of a coating material according to claim 1 or 2, wherein the pulse width is 5 ns to 10 ns and the pulse energy is 20 mJ to 400 mJ.
JP34214699A 1999-12-01 1999-12-01 Light immobilization method for metal fine particles Expired - Fee Related JP3989148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34214699A JP3989148B2 (en) 1999-12-01 1999-12-01 Light immobilization method for metal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34214699A JP3989148B2 (en) 1999-12-01 1999-12-01 Light immobilization method for metal fine particles

Publications (2)

Publication Number Publication Date
JP2001149774A JP2001149774A (en) 2001-06-05
JP3989148B2 true JP3989148B2 (en) 2007-10-10

Family

ID=18351488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34214699A Expired - Fee Related JP3989148B2 (en) 1999-12-01 1999-12-01 Light immobilization method for metal fine particles

Country Status (1)

Country Link
JP (1) JP3989148B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361313B2 (en) * 2003-02-18 2008-04-22 Intel Corporation Methods for uniform metal impregnation into a nanoporous material
JP2005082795A (en) * 2003-09-11 2005-03-31 Shinwa Kako Kk Method for surface-coating of particulate on solid substrate
JP4163606B2 (en) * 2003-12-10 2008-10-08 富士フイルム株式会社 Fine structure, method for producing fine structure, Raman spectroscopy method and apparatus
US20080037022A1 (en) * 2004-02-13 2008-02-14 Takeo Nishikawa Surface Plasmon Resonance Sensor
JP4250651B2 (en) * 2006-09-28 2009-04-08 株式会社東芝 Particle arranging method and light emitting device manufacturing method
JP2011111355A (en) * 2009-11-25 2011-06-09 Ricoh Co Ltd Method for manufacturing thin film, and thin film element
JP2015083540A (en) * 2014-12-03 2015-04-30 株式会社リコー Thin film manufacturing method, piezoelectric element manufacturing method, and recording head manufacturing method
WO2022172972A1 (en) * 2021-02-09 2022-08-18 国立大学法人山形大学 Method for producing composite by laser irradiation, and composite
JP2023074685A (en) * 2021-11-18 2023-05-30 浜松ホトニクス株式会社 Specimen analysis method

Also Published As

Publication number Publication date
JP2001149774A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
Semenova et al. Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips
Link et al. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence
US10361083B2 (en) Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
Peng et al. Laser-assisted synthesis of Au− Ag alloy nanoparticles in solution
JP3989148B2 (en) Light immobilization method for metal fine particles
US20090072161A1 (en) Plasmonic Laser Nanoablation Methods
Lee et al. Simultaneous preparation of SERS‐active metal colloids and plates by laser ablation
JP2006349463A (en) Surface reinforcing raman spectroscopic analyzing jig and its manufacturing method
Veziroglu et al. Photocatalytic growth of hierarchical Au needle clusters on highly active TiO2 thin film
Schmidt-Stein et al. X-ray induced photocatalysis on TiO2 and TiO2 nanotubes: Degradation of organics and drug release
Umar et al. Formation of high-yield gold nanoplates on the surface: effective two-dimensional crystal growth of nanoseed in the presence of poly (vinylpyrrolidone) and cetyltrimethylammonium bromide
Torrisi et al. Biocompatible nanoparticles production by pulsed laser ablation in liquids
Uwada et al. Preparation and micropatterning of gold nanoparticles by femtosecond laser-induced optical breakdown
JP3823245B2 (en) Photodeposition and fixation method of metal fine particles on the surface of conductive material
Werner et al. In-situ spectroscopic measurements of laser ablation-induced splitting and agglomeration of metal nanoparticles in solution
Alhajj et al. Customization of structure, morphology and optical characteristics of silver and copper nanoparticles: Role of laser fluence tuning
KR101259267B1 (en) A method for preparation of color patterning and surface-enhanced Raman scattering patterning using photoinduced disassembly of gelated gold nanoparticle aggregates
Kranz et al. Size-Dependent Threshold of the Laser-Induced Phase Transition of Colloidally Dispersed Copper Oxide Nanoparticles
TW200844257A (en) Methods of adhering particles to a material by heating
JP2004035978A (en) Method for forming fine structure of metallic microparticle group
Krivonosov et al. Evolution of size distribution of Si nanoparticles produced by pulsed laser ablation in water
WO2012055569A1 (en) Method for modifying the structural properties of silicon by ultrasonication
WO2016074653A2 (en) Method for preparation of silver colloidal particle layers onto glass substrate for surface enhanced raman spectroscopy, substrate and use thereof
KR102105929B1 (en) Method of forming patterned nanogap and patterned nanogap thereof
Bai et al. Femtosecond Laser Near-Field Reduction for Fabrication of 3D Gold Nanocluster Array Assisted by MoS2 Quantum Dots

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040123

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees