JP3986744B2 - Lithium ion secondary battery separator and lithium ion secondary battery - Google Patents

Lithium ion secondary battery separator and lithium ion secondary battery Download PDF

Info

Publication number
JP3986744B2
JP3986744B2 JP2000310482A JP2000310482A JP3986744B2 JP 3986744 B2 JP3986744 B2 JP 3986744B2 JP 2000310482 A JP2000310482 A JP 2000310482A JP 2000310482 A JP2000310482 A JP 2000310482A JP 3986744 B2 JP3986744 B2 JP 3986744B2
Authority
JP
Japan
Prior art keywords
lithium
separator
battery
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000310482A
Other languages
Japanese (ja)
Other versions
JP2002117826A (en
Inventor
聡 西川
高弘 大道
宏昌 峯松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2000310482A priority Critical patent/JP3986744B2/en
Publication of JP2002117826A publication Critical patent/JP2002117826A/en
Application granted granted Critical
Publication of JP3986744B2 publication Critical patent/JP3986744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明はリチウムイオンの出入りにより起電力を得るリチウムイオン二次電池及びこれに用いるセパレータに関するものである。特に安全性の向上を目的にした過充電防止技術に関するものである。
【0002】
【従来の技術】
近年の携帯電話、ノートパソコン等に代表される小型携帯機器の普及に伴い高エネルギー密度を有する二次電池への要求は非常に高い。高エネルギー密度を有する二次電池によりこれらの携帯機器の小型化、軽量化が実現でき、また1回の充電で長時間使用可能になる。
【0003】
二次電池の高容量化という観点から負極材料として金属リチウムまたはこれを主体とする金属は注目されてきた。理論的には金属リチウムは負極材料として最高のエネルギー密度を有する。しかし、充放電を繰り返すと負極表面が荒れることから電流集中が起こりデンドライトが次第に生成されてくる。このデンドライトによる内部短絡等で十分なサイクル特性が得られないといった問題があり実用化には至っていない。また、金属リチウムは非常に活性の高い金属であり安全性の問題も危惧されている。
【0004】
これらの問題は負極にリチウムをドープ・脱ドープする炭素材料を用いることで解決されている。いわゆるリチウムイオン二次電池である。これらの炭素材料は金属リチウムに比べ容量的には劣るが、リチウムをドープ・脱ドープする電位はリチウムの酸化還元電位に非常に近く高い起電力が得られるため、リチウムイオン二次電池は従来の二次電池に比べ高いエネルギー密度を有する。また、リチウムは炭素材料中にドープされるので、金属リチウムを負極に用いたときのように充放電に伴いデンドライトは生成しないので十分なサイクル特性が得らる。
【0005】
正極にコバルト酸リチウムに代表されるリチウム含有遷移金属を用いた4V級リチウムイオン二次電池は非常に高いエネルギー密度を有する点で広く実用化されているが、電解液に有機溶媒を用いているため誤使用で発火等を引き起こすということから安全性の確保には細心の注意が払われてる。
【0006】
特にリチウムイオン二次電池は過充電時が危険である。リチウムイオン二次電池は過充電されると正極界面で電解液の分解が起こり、この反応熱で電池温度が上昇する。温度が上昇すると負極界面でも電解液の分解が起り、さらに電池温度は上昇する。このように電池の温度が上昇していくと電解液の自己分解反応が爆発的に起る。これがいわゆる暴走反応である。暴走反応が起ると、電池温度は急激に上昇し、電解液の分解によりガスが発生することから電池内圧も急上昇する。このとき電池は発火、破裂、爆発を起す。
【0007】
このようにリチウムイオン二次電池の安全性を確保する上で過充電防止は非常に重要である。現在市販されているリチウムイオン電池では電池パックに電子回路(保護回路)を搭載して過充電を防止している。また、この保護回路が壊れたときを想定してセパレータの熱ヒューズ機能、安全弁、PTC素子といった安全装置も搭載している。ただし、これらの二次的な安全装置は過充電されたときの電池の発火等を抑えるもので過充電自体を防止するものではない。
【0008】
保護回路による過充電防止技術はコストが高いという問題がある。単セルの場合、電池パックの約三分の一が保護回路のコストとなっている。また、単セルから組セルになるに伴い構造が複雑になり、電気自動車等の大型リチウムイオン二次電池の実用化が成されていない一つの要因ともなっている。また、電子回路による制御なので壊れるという問題があり必ずしも安全とは言い切れない。壊れたときを想定して先に述べたような二次的な安全装置が搭載されているが、これらの安全装置は過充電そのものを防止するものではないので確実に安全とは言い切れない。例えば、セパレータがメルトダウンしてしまうとその機能を失う。この間に電池温度が低下すればよいが、そうでないときは爆発することが想定される。
【0009】
電子回路を用いる技術とは別の過充電防止技術として、添加剤を用いてケミカルな反応を利用するものがある。これらの添加剤は電解液、電極といった電池内のさまざまな場所に添加される。添加剤が反応するとガスを発生することで安全弁を過充電される前に作動させるものや添加剤が重合し膜を形成することで電池の内部インピーダンスを上昇させ過充電を防止する技術など添加剤の効果はさまざまである。また、添加剤が起こす反応を誘発するドライビングフォースも熱や電気(電解)などさまざまである。
【0010】
上記のような添加剤を添加する例として、特開平6−338347号公報、特開平7−302614号公報に提案されている酸化還元種(レドックスシャトル)を添加するものが挙げられる。これは電解液に4.0〜4.5Vの酸化還元電位を有する化学種を添加し、この化学種の正負極間における酸化還元反応で過充電電流を消費させ過充電に至るのを防止するという技術である。しかし、酸化還元種の電極反応速度及び電解液中の拡散を考えると、1C以上の急速充電において過充電電流を消費するためには多量に添加する必要がある。このような多量な添加は電池特性の低下を招き好ましくない。また、溶解性の問題から1Cといった電流を消費するだけ添加できないといった問題もある。このような問題からレドックスシャトルいわれる酸化還元試薬の添加は採用されていないのが現状である。
【0011】
また、速度論的に高レート充電の場合は安全性の確保が難しく、過充電が十分保護される前に暴走反応が起きてしまうことが十分考えられる。また、過充電を十分保護しようとして添加剤を多量に添加すると電池特性の低下を招きがちであるなど、添加剤を用いる過充電防止手段は制御が難しく、採用されていないのが現状である。
【0012】
【発明が解決しようとする課題】
過充電はリチウムイオン二次電池において非常に危険な状態であり、過充電から電池を保護する方法としては電子回路により制御する手段しかないのが現状である。しかし、電子回路により制御する方法はコストが高く、組セルでは構造が複雑になる。しかも、電子回路は壊れることもあり、確実に過充電を保護できるわけではない。
【0013】
また、リチウムイオン二次電池には、電子回路に加えて安全弁などの二次的な安全装置も搭載されているが、この安全装置の過充電されたときの電池の発火などを抑えるもので過充電自体を防止するものではない。むしろ、例えば安全弁が開くような状態自体が危険であり、本質的に安全な電池とは言い難い。
【0014】
すなわち、本発明の目的は、過充電に対して本質的に安全なリチウムイオン二次電池用セパレータ、及びそれを用いたリチウムイオン二次電池を提供することにある。
さらに、本発明の目的は、過充電をより低コストで確実に保護するリチウムイオン二次電池用セパレータ、及びそれを用いたリチウムイオン二次電池を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、リチウムイオン二次電池用セパレータとして特定の物性を有する膜を用いた場合にかかる問題が解決できることを見出して、本発明に至った。
すなわち本発明は、マクミラン数2〜10、膜厚5〜40μm、空孔率30〜50%であり、かつその開孔面積が1〜100μm2でその曲路率が1の貫通孔を有し、該貫通孔の開孔総面積が表面面積の0.1〜10%であるリチウムイオン二次電池用セパレータ、及び負極にリチウムをドープ・脱ドープ可能な炭素系材料を用い、正極にリチウム含有遷移金属酸化物を用いたリチウム二次電池において、かかるセパレータを用いることを特徴とするリチウムイオン二次電池である。
【0016】
【発明の実施の形態】
以下、本発明のリチウムイオン二次電池用セパレータ及びリチウムイオン二次電池について詳細に説明する。
本発明のリチウムイオン二次電池用セパレータのマクミラン数は膜抵抗を示す一つの尺度であり、セパレータに電解液を含浸させたときの抵抗率を電解液のみのときの抵抗率で割ることで求められる。セパレータに電解液を含浸させたときの抵抗率は通常の交流インピーダンス法により求めることができる。また、電解液のみの抵抗率は伝導度計により求めた伝導度の逆数として得ることができる。このとき用いる電解液は特に限定しないが、リチウム二イオン次電池に用いられるものが好ましい。
【0017】
本発明のリチウムイオン二次電池用セパレータの膜厚は5〜40μmの範囲である。膜厚が厚すぎると電池の内部インピーダンスが増加するだけでなくセパレータの占有する体積が大きくなり電池の容量的にも有利でない。また、膜厚が薄すぎると機械的強度が不足し電池の内部短絡等が問題になる。
本発明のリチウムイオン二次電池用セパレータの空孔率は30〜50%の範囲である。空孔率が低いとイオンの透過性が悪くなり十分な電池特性が得られない。また、空孔率が高すぎると機械的強度が不足する。
【0018】
本発明のリチウムイオン二次電池用セパレータは、正極及び負極の間にセパレータを設けてリチウムイオン二次電池を構成する場合に、セパレータを通じて例えば正極側から負極側へとセパレータ膜の片面から他方の面を貫く曲路率が1の複数の貫通孔を有することが特徴である。ここで曲路率が1の貫通孔とは、セパレータの片面からこの貫通孔を通り他方の面へ達する最短距離が膜厚に等しいような貫通孔を指す。このような貫通孔は透過型光学顕微鏡によって光が透過する部分として観察可能である。
【0019】
通常のリチウムイオン二次電池用セパレータとしてポリオレフィン微多孔膜が実用化しているが、このポリオレフィン微多孔膜には曲路率が高い貫通孔は存在するが、このような曲路率が1の貫通孔は無く、この点が従来のリチウムイオン二次電池用のセパレータと本発明の大きな違いである。
該貫通孔おのおのの開孔面積は1〜100μm2の範囲である。該貫通孔の開孔面積が100μm2を越えると電池を製造した際に内部短絡を起こす確率が高くなり好ましくない。また、該貫通孔の開孔面積が1μm2未満であると過充電を保護する機能が十分得られない。この過充電保護機能は、微細な金属リチウムの析出しこれが正極界面に到達することで達成されるが、これは電流が流れやすく金属リチウムの析出に対する物理的抵抗の少ない部分に選択的に金属リチウムが析出ことによって可能となる。開孔面積1μm2未満の貫通孔はこのような選択的に金属リチウムが析出する部位としては小さすぎる。
【0020】
該貫通孔の開孔総面積はセパレータの表面面積のうちの0.1〜10%の範囲である。該貫通孔の開孔総面積が10%を越えるとセパレータに隙間が空きすぎて電池の内部短絡を起こし好ましくない。また、0.1%未満であると選択的に金属リチウムが析出する部位が少なすぎて十分に過充電を保護できない。
上記の該貫通孔おのおのの開孔面積及び該貫通孔の開孔総面積の割合は、セパレータを光学顕微鏡及び電子顕微鏡等で観察しこの画像から計算することができる。
本発明のセパレータは上記のような特徴を有していればよく、その形態はいろいろ考えられる。以下に例を挙げるがこれに限定されるものではない。
【0021】
例えば、通常のリチウムイオン二次電池に用いられているポリオレフィン微多孔膜(例えばセルガードTM2400:Celgard社製)に本発明の貫通孔を空けたような形態が考えられる。ただし、緻密膜に上記で規定したように該貫通孔を空けたような形態は十分なマクミラン数を得ることが困難となるが、仮に十分なマクミラン数を得ることができたにしても短絡の問題や充電放電の偏りが著しくなり電池の寿命、負荷特性といった観点から好ましくない。例えば、特開平11−250890号公報に記載してあるようなセパレータは十分な電池特性が得られていない。
【0022】
微多孔膜に貫通孔を空ける方法はさまざまである。例えば、針のようなもので物理的に穴を空けるといった方法や電子線を用いるといった方法などがある。
また、繊維を二次元状に絡み合わせたような形態も考えられる。このような形態においては、適当に繊維を絡み合わせた二次元シートを本発明の特徴が得られるようにプレス等の方法で加工することも可能である。
【0023】
先に述べたような過充電保護機能は本発明で規定される特徴が重要であってセパレータを構成する材質とは関係がないので、本発明のリチウム二次電池用セパレータにおいてこれを構成する素材は特に限定されない。例えば、ポリエチレン、ポリプロピレンに代表されるポリオレフィン系素材、ポリアミド、ポリエステル、ポリテトラフロロエチレン、ポリフェニレンスルフィド、ポリ塩化ビニル、ポリイミド、ポリスルホン等が挙げられる。ただし、耐酸化性及び耐還元性、成形性を考えたときポリオレフィン系の材料が好適と考えられる。
【0024】
本発明のリチウムイオン二次電池は、負極にリチウムをドープ・脱ドープ可能な炭素系材料を、正極にリチウム含有遷移金属酸化物を用い、先に説明した本発明のリチウムイオン二次電池用セパレータを用いることを特徴としている。
本発明のリチウムイオン二次電池に用いる電極は、リチウムイオンをドープ・脱ドープする活物質、この活物質を結着させ電解液に膨潤するバインダーポリマー、電子電導性向上のための導電助剤、集電体で構成される。該電極はゲル化し電解液を保持できる構造になっていても構わない。
【0025】
正極活物質としては、種々のリチウム含有遷移金属酸化物を挙げることができるが、特にこれに限定されるものではなく、いわゆる4V級リチウム二次電池に用いる活物質であれば構わない。リチウム含有遷移金属酸化物の例としてLiCoO2などのリチウム含有コバルト酸化物、LiNiO2などのリチウム含有ニッケル酸化物、LiMn24などのリチウム含有マンガン酸化物などを挙げることができる。
負極活物質にはリチウムイオンを吸蔵放出する炭素材料が用いられる。炭素材料としては、ポリアクリロニトリル、フェノール樹脂、フェノールノボラック樹脂、セルロースなどの有機高分子化合物を焼結したもの、人造黒鉛や天然黒鉛を挙げることができる。
【0026】
活物質を結着させ電解液に膨潤するバインダーポリマーとしてはポリフッ化ビニリデン(PVdF)、PVdFとヘキサフルオロプロピレン(HFP)やパーフロロメチルビニルエーテル(PFMV)及びテトラフロロエチレンとの共重合体などのPVdF共重合体樹脂、ポリテトラフロロエチレン、フッ素ゴムなどのフッ素系樹脂や、スチレン−ブタジエン共重合体、スチレン−アクリロニトリル共重合体などの炭化水素ポリマーや、カルボキシメチルセルロース、ポリイミド樹脂などを用いることができるが、これに限定されるものではない。また、これらは単独でも2種類以上を混合して用いても構わない。
【0027】
集電体としては、正極に用いるものは酸化安定性の優れた材料、負極に用いるものは還元安定性に優れた材料で作られた箔またはメッシュが好適に用いられる。具体的には正極にはアルミニウム、ステンレススチール、ニッケル、炭素などを、負極には金属銅、ステンレススチール、ニッケル、炭素などを挙げることができる。特に、正極にはアルミニウム箔またはメッシュ、負極には銅箔またはメッシュが好適に用いられる。
【0028】
導電助剤としては人造黒鉛、カーボンブラック(アセチレンブラック)、ニッケル粉末などが好適に用いられる。負極においては、この導電助剤を含まなくても構わない。
本発明のリチウムイオン二次電池には極性有機溶媒に電解質としてリチウム塩を溶解した電解液が好適に用いられる。
【0029】
使用する有機溶媒はリチウムイオン二次電池に一般に用いられている炭素数10以下の極性有機溶媒であれば特に限定はしない。例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、γ−ブチロラクトン(γ−BL)、スルフォラン、アセトニトリル等を挙げることができる。これらの極性有機溶媒は単独で用いても、2種類以上混合して用いてもよい。特に、PC、EC、γ−BL、DMC、DEC、MEC及びDMEから選ばれる少なくとも1種類以上の有機溶媒が好適に用いられる。
【0030】
前記の有機溶媒に溶解するリチウム塩としては、例えば過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウ四フッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフロロスルホン酸リチウム(LiCF3SO3)、リチウムパーフロロメチルスルホニルイミド[LiN(CF3SO22]及びリチウムパーフロロエチルスルホニルイミド[LiN(C25SO22]等が挙げられる。また、これらは混合して用いても構わない。溶解するリチウム塩の濃度としては、0.2〜2Mの範囲が好適に用いられる。
【0031】
【実施例】
以下、本発明を実施例、比較例により具体的に説明する。
【0032】
[実施例1]
<セパレータの作製>
膜厚25μmのセルガードTM2400(Celgard社製)に直径2μmの針で、貫通孔の開孔総面積がセパレータの表面面積の1%になるように曲路率1の貫通孔を空けた。このセパレータの空孔率は38.6%であり、マクミラン数は6.7であった。
【0033】
このセパレータを直径19mmの円形に打ち抜き、直径19mmで円形の銅電極とリチウム電極間に挟み、1M LiBF4を溶解したPC/EC(1/1重量比)電解液を含浸させてセルを作製し、電流密度2mA/cm2で銅電極にリチウム金属を析出させセルにインピーダンスを交流法により測定した結果、周波数1Hzにおけるセルのインピーダンスは1時間以内に50Ω・m以下になった。
【0034】
<電池の作製>
コバルト酸リチウム粉末89.5重量部とカーボンブラック4.5重量部とポリフッ化ビニリデン(PVdF)の乾燥重量が6重量部になるように5.1重量%のPVdFのN−メチルピロリドン(NMP)溶液を用い、正極材ペーストを作製した。得られたペーストを厚さ20μmのアルミ箔上に塗布乾燥後プレスし、厚さ120μmの正極を作製した。
炭素質負極材としてメゾフェーズカーボンマイクロビーズ(MCMB6−28)粉末87重量部とカーボンブラック3重量部とPVdFの乾燥重量が10重量部になるように、5.8重量%のPVdFのNMP溶液を用い、負極材ペーストを作製した。得られたペーストを厚さ18μmの銅箔上に塗布乾燥後プレスし、厚さ125μmの負極を作製した。
【0035】
正極、負極を直径15mmに、作製したセパレータを直径18mmに打ち抜いた。これらを用いてボタン型電池(CR2032)を作製した。電解液としては1M LiBF4 EC/DEC(1/1重量比)(キシダ化学製)を用いた。
この電池を電流密度0.56mA/cm2、4.2V定電流、定電圧充電、0.56mA/cm2、2.75Vカットオフ定電流放電をおこなったところ5.0mAhの容量が得られた。
<過充電評価>
この電池を電流密度2.8mA/cm2で定電流充電したところ、充電電気量が5.3mAhを超えたところから電池電圧が4.4V付近で振動し続け、この状態が15mAh以上維持された。
その後の開回路電圧は4.31Vを示し、5.4mAhの放電が可能であった。
【0036】
[比較例1]
<セパレータの作製>
膜厚25μmのセルガードTM2400(Celgard社製)に直径30μmの針で、貫通孔の開孔総面積がセパレータの表面面積の10%になるように曲路率1の貫通孔を空けた。このセパレータの空孔率は44.2%であり、マクミラン数は6.8であった。
【0037】
このセパレータを直径19mmの円形に打ち抜き、直径19mmで円形の銅電極とリチウム電極間に挟み、1M LiBF4を溶解したPC/EC(1/1重量比)電解液を含浸させてセルを作製し、電流密度2mA/cm2で銅電極にリチウム金属を析出させセルにインピーダンスを交流法により測定した結果、周波数1Hzにおけるセルのインピーダンスは1時間以内に50Ω・m以下になった。
<電池の作製>
実施例1と同様に作製したセパレータを用いてボタン電池を作製したが、電池は内部短絡しており充放電不能であった。
【0038】
[比較例2]
<セパレータの作製>
膜厚25μmのセルガードTM2400(Celgard社製)に直径0.4μmの針で、貫通孔の開孔総面積がセパレータの表面面積の5%になるように曲路率1の貫通孔を空けた。このセパレータの空孔率は41.1%であり、マクミラン数は6.5であった。
このセパレータを直径19mmの円形に打ち抜き、直径19mmで円形の銅電極とリチウム電極間に挟み、1M LiBF4を溶解したPC/EC(1/1重量比)電解液を含浸させてセルを作製し、電流密度2mA/cm2で銅電極にリチウム金属を析出させセルにインピーダンスを交流法により測定した結果、周波数1Hzにおけるセルのインピーダンスは1時間以内に50Ω・m以下にならなかった。
【0039】
<電池の作製>
実施例1と同様に作製したセパレータを用いてボタン電池を作製した。実施例1と同様に充放電したところ5.1mAhの容量が得られた。
<過充電評価>
作製した電池を電流密度2.8mA/cm2で定電流充電したところ電池電圧は上昇し続け、5V以上に達した。その後、この電池は放電不能であった。
【0040】
[比較例3]
<セパレータの作製>
膜厚25μmのセルガードTM2400(Celgard社製)に直径10μmの針で、貫通孔の開孔総面積がセパレータの表面面積の50%になるように曲路率1の貫通孔を空けた。このセパレータの空孔率は69.0%であり、マクミラン数は4.0であった。
【0041】
このセパレータを直径19mmの円形に打ち抜き、直径19mmで円形の銅電極とリチウム電極間に挟み、1M LiBF4を溶解したPC/EC(1/1重量比)電解液を含浸させてセルを作製し、電流密度2mA/cm2で銅電極にリチウム金属を析出させセルにインピーダンスを交流法により測定した結果、周波数1Hzにおけるセルのインピーダンスは1時間以内に50Ω・m以下になった。
<電池の作製>
実施例1と同様に作製したセパレータを用いてボタン電池を作製したが、内部短絡しており充放電不能であった。
【0042】
[比較例4]
<セパレータの作製>
膜厚25μmのセルガードTM2400(Celgard社製)に直径1.5μmの針で、貫通孔の開孔総面積がセパレータの表面面積の0.01%になるように曲路率1の貫通孔を空けた。このセパレータの空孔率は38%であり、マクミラン数は6.8であった。
このセパレータを直径19mmの円形に打ち抜き、直径19mmで円形の銅電極とリチウム電極間に挟み、1M LiBF4を溶解したPC/EC(1/1重量比)電解液を含浸させてセルを作製し、電流密度2mA/cm2で銅電極にリチウム金属を析出させセルにインピーダンスを交流法により測定した結果、周波数1Hzにおけるセルのインピーダンスは1時間以内に50Ω・m以下にならなかった。
【0043】
<電池の作製>
実施例1と同様に作製したセパレータを用いてボタン電池を作製した。この電池を実施例1と同様に充放電した結果、5.1mAhの容量が得られた。
<過充電評価>
この電池を電流密度2.8mAh/cm2で定電流充電したところ電池電圧は上昇し続け、5V以上になった。その後、この電池は放電不能であった。
【0044】
[比較例5]
<セパレータの作製>
溶融押し出し法により膜厚25μmのポリプロピレンフィルムを作製した。このフィルムに直径10μmの針で、貫通孔の開孔総面積がセパレータの表面面積の9%になるように曲路率1の貫通孔を空けた。このセパレータの空孔率は9%であり、マクミラン数は12であった。
【0045】
このセパレータを直径19mmの円形に打ち抜き、直径19mmで円形の銅電極とリチウム電極間に挟み、1M LiBF4を溶解したPC/EC(1/1重量比)電解液を含浸させてセルを作製し、電流密度2mA/cm2で銅電極にリチウム金属を析出させセルにインピーダンスを交流法により測定した結果、周波数1Hzにおけるセルのインピーダンスは1時間以内に50Ω・m以下になった。
<電池の作製>
実施例1と同様に作製したセパレータを用いてボタン電池を作製した。この電池を実施例1と同様に充放電した結果、実施例1の電池の70%の容量しか得られなかった。
【0046】
【発明の効果】
以上、詳述してきたように、本発明のセパレータを用いることで電池の特性を損なうことなく過充電特性の優れた安全性の高いリチウム二次電池が提供できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium ion secondary battery that obtains an electromotive force when lithium ions enter and exit, and a separator used therefor. In particular, the present invention relates to an overcharge prevention technique for the purpose of improving safety.
[0002]
[Prior art]
With the recent spread of small portable devices typified by mobile phones and notebook computers, the demand for secondary batteries having high energy density is very high. A secondary battery having a high energy density can reduce the size and weight of these portable devices, and can be used for a long time with a single charge.
[0003]
From the viewpoint of increasing the capacity of the secondary battery, metallic lithium or a metal mainly composed of this has attracted attention as a negative electrode material. Theoretically, metallic lithium has the highest energy density as a negative electrode material. However, when charging / discharging is repeated, the negative electrode surface becomes rough, so that current concentration occurs and dendrites are gradually generated. There is a problem that sufficient cycle characteristics cannot be obtained due to an internal short circuit caused by this dendrite, and it has not been put into practical use. In addition, metallic lithium is a very active metal, and there are concerns about safety issues.
[0004]
These problems are solved by using a carbon material that is doped / undoped with lithium for the negative electrode. This is a so-called lithium ion secondary battery. Although these carbon materials are inferior in capacity to metallic lithium, the potential for doping and undoping lithium is very close to the oxidation-reduction potential of lithium, and a high electromotive force can be obtained. Higher energy density than secondary batteries. Further, since lithium is doped in the carbon material, dendrite is not generated with charge and discharge as in the case of using metallic lithium for the negative electrode, so that sufficient cycle characteristics can be obtained.
[0005]
A 4V class lithium ion secondary battery using a lithium-containing transition metal typified by lithium cobaltate as a positive electrode has been widely put into practical use because it has a very high energy density, but an organic solvent is used as an electrolyte. Therefore, careful attention is paid to ensuring safety because misuse causes ignition and the like.
[0006]
In particular, lithium ion secondary batteries are dangerous when overcharged. When a lithium ion secondary battery is overcharged, the electrolyte solution decomposes at the positive electrode interface, and the battery temperature rises due to this reaction heat. When the temperature rises, the electrolyte solution decomposes at the negative electrode interface, and the battery temperature further rises. Thus, when the battery temperature rises, the self-decomposition reaction of the electrolytic solution occurs explosively. This is a so-called runaway reaction. When a runaway reaction occurs, the battery temperature rises rapidly, and gas is generated due to decomposition of the electrolytic solution, so that the battery internal pressure also rises rapidly. At this time, the battery ignites, ruptures and explodes.
[0007]
Thus, prevention of overcharge is very important in securing the safety of the lithium ion secondary battery. In the lithium ion battery currently on the market, an electronic circuit (protection circuit) is mounted on the battery pack to prevent overcharging. In addition, assuming that this protection circuit is broken, safety devices such as a separator thermal fuse function, a safety valve, and a PTC element are also installed. However, these secondary safety devices suppress the ignition of the battery when overcharged and do not prevent overcharge itself.
[0008]
The overcharge prevention technology by the protection circuit has a problem of high cost. In the case of a single cell, about one third of the battery pack is the cost of the protection circuit. In addition, the structure becomes complicated as the unit cell is changed to the assembled cell, and this is one factor that a large-sized lithium ion secondary battery such as an electric vehicle has not been put into practical use. Moreover, since it is a control by an electronic circuit, there is a problem that it is broken, and it cannot necessarily be said to be safe. The secondary safety device as described above is installed assuming that it is broken. However, since these safety devices do not prevent overcharging itself, they cannot be said to be safe. For example, when the separator melts down, its function is lost. During this time, the battery temperature only needs to drop, but if not, it is assumed that it will explode.
[0009]
As an overcharge prevention technique different from the technique using an electronic circuit, there is a technique using a chemical reaction using an additive. These additives are added to various places in the battery such as an electrolyte and an electrode. Additives such as those that operate before the safety valve is overcharged by generating gas when the additive reacts, or technologies that increase the internal impedance of the battery and prevent overcharge by polymerizing the additive to form a film There are various effects. In addition, there are various driving forces that induce the reaction caused by the additive, such as heat and electricity (electrolysis).
[0010]
Examples of adding the above-described additives include those in which redox shuttles proposed in JP-A-6-338347 and JP-A-7-302614 are added. This is because a chemical species having a redox potential of 4.0 to 4.5 V is added to the electrolytic solution, and overcharge current is consumed by an oxidation-reduction reaction between the positive and negative electrodes of this chemical species to prevent overcharging. It is a technology. However, considering the electrode reaction rate of the redox species and the diffusion in the electrolyte, it is necessary to add a large amount in order to consume the overcharge current in the rapid charge of 1C or more. Such a large amount of addition causes a decrease in battery characteristics, which is not preferable. In addition, there is a problem in that it cannot be added as much as 1 C of current is consumed due to solubility problems. Under such circumstances, the addition of an oxidation-reduction reagent called a redox shuttle has not been adopted.
[0011]
In addition, in the case of high-rate charging in terms of kinetics, it is difficult to ensure safety, and a runaway reaction may occur before overcharge is sufficiently protected. In addition, overcharge prevention means using additives are difficult to control and are not employed at present, such as adding a large amount of additives in an attempt to sufficiently protect overcharge tends to lead to deterioration of battery characteristics.
[0012]
[Problems to be solved by the invention]
Overcharging is a very dangerous state in a lithium ion secondary battery, and the only way to protect the battery from overcharging is to control the electronic circuit. However, the method of controlling by an electronic circuit is expensive and the structure is complicated in the assembled cell. In addition, the electronic circuit may be broken, and overcharge cannot be reliably protected.
[0013]
In addition to electronic circuits, secondary safety devices such as safety valves are also mounted on lithium-ion secondary batteries, but they are designed to prevent over-ignition of the battery when this safety device is overcharged. It does not prevent charging itself. Rather, for example, a state where the safety valve is open is dangerous, and it is difficult to say that the battery is intrinsically safe.
[0014]
That is, an object of the present invention is to provide a lithium ion secondary battery separator that is intrinsically safe against overcharging, and a lithium ion secondary battery using the same.
Furthermore, the objective of this invention is providing the separator for lithium ion secondary batteries which protects an overcharge reliably at lower cost, and a lithium ion secondary battery using the same.
[0015]
[Means for Solving the Problems]
The present inventors have found that such a problem can be solved when a film having specific physical properties is used as a separator for a lithium ion secondary battery, and have reached the present invention.
That is, the present invention has a through-hole having a Macmillan number of 2 to 10, a film thickness of 5 to 40 μm, a porosity of 30 to 50%, an opening area of 1 to 100 μm 2 and a curvature of 1. A separator for a lithium ion secondary battery in which the total opening area of the through-holes is 0.1 to 10% of the surface area, and a carbon-based material capable of doping and dedoping lithium in the negative electrode, and containing lithium in the positive electrode In a lithium secondary battery using a transition metal oxide, the separator is used.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the separator for lithium ion secondary batteries and the lithium ion secondary battery of the present invention will be described in detail.
The Macmillan number of the separator for lithium ion secondary batteries of the present invention is a measure of membrane resistance, and is obtained by dividing the resistivity when the separator is impregnated with the electrolyte by the resistivity when only the electrolyte is used. It is done. The resistivity when the separator is impregnated with the electrolytic solution can be obtained by a normal AC impedance method. In addition, the resistivity of the electrolytic solution alone can be obtained as the reciprocal of the conductivity obtained by a conductivity meter. Although the electrolyte solution used at this time is not specifically limited, What is used for a lithium secondary ion battery is preferable.
[0017]
The film thickness of the lithium ion secondary battery separator of the present invention is in the range of 5 to 40 μm. If the film thickness is too thick, not only the internal impedance of the battery increases but also the volume occupied by the separator increases, which is not advantageous in terms of battery capacity. On the other hand, if the film thickness is too thin, the mechanical strength is insufficient, causing problems such as internal short circuit of the battery.
The porosity of the lithium ion secondary battery separator of the present invention is in the range of 30 to 50%. If the porosity is low, the ion permeability is poor and sufficient battery characteristics cannot be obtained. Moreover, when the porosity is too high, the mechanical strength is insufficient.
[0018]
When the separator for a lithium ion secondary battery of the present invention is provided with a separator between a positive electrode and a negative electrode to form a lithium ion secondary battery, the separator film, for example, from the positive electrode side to the negative electrode side is passed through the separator. It is characterized by having a plurality of through holes having a curvature rate of 1 through the surface. Here, the through-hole having a curvature of 1 refers to a through-hole whose shortest distance from one side of the separator to the other side through the through-hole is equal to the film thickness. Such a through-hole can be observed as a portion through which light is transmitted by a transmission optical microscope.
[0019]
Polyolefin microporous membranes have been put to practical use as ordinary lithium ion secondary battery separators, but there are through holes with a high curvature in this polyolefin microporous membrane. There is no hole, and this is a significant difference between the separator for a conventional lithium ion secondary battery and the present invention.
The opening area of each through hole is in the range of 1 to 100 μm 2 . If the opening area of the through-hole exceeds 100 μm 2 , the probability of causing an internal short circuit when the battery is manufactured is not preferable. Further, if the opening area of the through hole is less than 1 μm 2 , the function of protecting overcharge cannot be obtained sufficiently. This overcharge protection function is achieved by depositing fine metal lithium and reaching the positive electrode interface. This is because metal lithium is selectively applied to the portion where current easily flows and physical resistance to metal lithium deposition is low. Is made possible by precipitation. A through-hole having an opening area of less than 1 μm 2 is too small as a site for selectively depositing metallic lithium.
[0020]
The total area of the through holes is 0.1 to 10% of the surface area of the separator. If the total area of the through-holes exceeds 10%, there is too much space in the separator, causing an internal short circuit of the battery. On the other hand, if it is less than 0.1%, there are too few sites where metal lithium is selectively deposited, so that overcharge cannot be sufficiently protected.
The opening area of each of the through holes and the ratio of the total opening area of the through holes can be calculated from this image by observing the separator with an optical microscope, an electron microscope, or the like.
The separator of this invention should just have the above characteristics, and the form can be considered variously. Although an example is given below, it is not limited to this.
[0021]
For example, a form in which the through hole of the present invention is formed in a polyolefin microporous film (for example, Celgard TM2400: manufactured by Celgard) used in a normal lithium ion secondary battery is conceivable. However, it is difficult to obtain a sufficient Macmillan number in the form in which the through-hole is opened in the dense film as defined above, but even if a sufficient Macmillan number can be obtained, a short circuit is not possible. Problems and bias of charge and discharge become remarkable, which is not preferable from the viewpoint of battery life and load characteristics. For example, a separator as described in JP-A-11-250890 does not provide sufficient battery characteristics.
[0022]
There are various methods for making a through-hole in a microporous membrane. For example, there are a method of physically making a hole with something like a needle and a method of using an electron beam.
Further, a form in which fibers are entangled two-dimensionally is also conceivable. In such a form, it is also possible to process a two-dimensional sheet in which fibers are appropriately entangled by a method such as pressing so that the features of the present invention can be obtained.
[0023]
Since the overcharge protection function as described above is important in the features defined in the present invention and is not related to the material constituting the separator, the material constituting the lithium secondary battery separator of the present invention Is not particularly limited. For example, polyolefin materials typified by polyethylene and polypropylene, polyamide, polyester, polytetrafluoroethylene, polyphenylene sulfide, polyvinyl chloride, polyimide, polysulfone and the like can be mentioned. However, when considering oxidation resistance, reduction resistance, and moldability, polyolefin-based materials are considered suitable.
[0024]
The lithium ion secondary battery of the present invention is a lithium ion secondary battery separator of the present invention described above, using a carbon-based material capable of doping and undoping lithium as a negative electrode and a lithium-containing transition metal oxide as a positive electrode. It is characterized by using.
The electrode used in the lithium ion secondary battery of the present invention includes an active material that is doped / undoped with lithium ions, a binder polymer that binds the active material and swells in the electrolyte, a conductive aid for improving electronic conductivity, Consists of a current collector. The electrode may be gelled and have a structure capable of holding the electrolytic solution.
[0025]
Examples of the positive electrode active material include various lithium-containing transition metal oxides, but are not particularly limited thereto, and any active material may be used as long as it is used for a so-called 4V class lithium secondary battery. Examples of lithium-containing transition metal oxides include lithium-containing cobalt oxides such as LiCoO 2 , lithium-containing nickel oxides such as LiNiO 2, and lithium-containing manganese oxides such as LiMn 2 O 4 .
A carbon material that absorbs and releases lithium ions is used as the negative electrode active material. Examples of the carbon material include polyacrylonitrile, phenol resin, phenol novolac resin, a sintered organic polymer compound such as cellulose, artificial graphite, and natural graphite.
[0026]
PVdF such as polyvinylidene fluoride (PVdF), PVdF and hexafluoropropylene (HFP), perfluoromethyl vinyl ether (PFMV), and a copolymer of tetrafluoroethylene as a binder polymer that binds the active material and swells in the electrolyte. Fluorocarbon resins such as copolymer resins, polytetrafluoroethylene, fluororubbers, hydrocarbon polymers such as styrene-butadiene copolymers and styrene-acrylonitrile copolymers, carboxymethylcellulose, polyimide resins, etc. can be used. However, the present invention is not limited to this. These may be used alone or in combination of two or more.
[0027]
As the current collector, a foil or mesh made of a material having excellent oxidation stability is suitably used for the positive electrode, and a foil or mesh made of a material having excellent reduction stability is suitably used for the negative electrode. Specifically, examples of the positive electrode include aluminum, stainless steel, nickel, and carbon, and examples of the negative electrode include metallic copper, stainless steel, nickel, and carbon. In particular, an aluminum foil or mesh is suitably used for the positive electrode, and a copper foil or mesh is suitably used for the negative electrode.
[0028]
As the conductive assistant, artificial graphite, carbon black (acetylene black), nickel powder and the like are preferably used. The negative electrode may not contain this conductive additive.
In the lithium ion secondary battery of the present invention, an electrolytic solution in which a lithium salt is dissolved as an electrolyte in a polar organic solvent is preferably used.
[0029]
The organic solvent to be used is not particularly limited as long as it is a polar organic solvent having 10 or less carbon atoms that is generally used in lithium ion secondary batteries. For example, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), 1 , 2-diethoxyethane (DEE), γ-butyrolactone (γ-BL), sulfolane, acetonitrile and the like. These polar organic solvents may be used alone or in combination of two or more. In particular, at least one organic solvent selected from PC, EC, γ-BL, DMC, DEC, MEC, and DME is preferably used.
[0030]
Examples of the lithium salt dissolved in the organic solvent include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), and lithium arsenic hexafluoride (LiAsF). 6 ), lithium trifluorosulfonate (LiCF 3 SO 3 ), lithium perfluoromethylsulfonylimide [LiN (CF3SO 2 ) 2 ], lithium perfluoroethylsulfonylimide [LiN (C 2 F 5 SO 2 ) 2 ] and the like Can be mentioned. These may be used in combination. The concentration of the dissolved lithium salt is preferably in the range of 0.2 to 2M.
[0031]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[0032]
[Example 1]
<Preparation of separator>
Through-holes with a curvature of 1 were drilled in a cell guard TM2400 (manufactured by Celgard) having a thickness of 25 μm with a needle having a diameter of 2 μm so that the total opening area of the through-holes was 1% of the surface area of the separator. This separator had a porosity of 38.6% and a Macmillan number of 6.7.
[0033]
This separator was punched into a circle having a diameter of 19 mm, sandwiched between a copper electrode and a lithium electrode having a diameter of 19 mm, and impregnated with a PC / EC (1/1 weight ratio) electrolyte solution in which 1M LiBF 4 was dissolved to produce a cell. As a result of depositing lithium metal on the copper electrode at a current density of 2 mA / cm 2 and measuring the impedance of the cell by the alternating current method, the impedance of the cell at a frequency of 1 Hz was 50 Ω · m or less within 1 hour.
[0034]
<Production of battery>
N-methylpyrrolidone (NMP) of 5.1% by weight PVdF so that the dry weight of the lithium cobaltate powder 89.5 parts by weight, carbon black 4.5 parts by weight and polyvinylidene fluoride (PVdF) 6 parts by weight. Using the solution, a positive electrode material paste was prepared. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to produce a positive electrode having a thickness of 120 μm.
As a carbonaceous negative electrode material, an NMP solution of 5.8 wt% PVdF was added so that 87 parts by weight of mesophase carbon microbead (MCMB6-28) powder, 3 parts by weight of carbon black, and 10 parts by weight of PVdF were dried. A negative electrode material paste was prepared. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to prepare a negative electrode having a thickness of 125 μm.
[0035]
The positive electrode and the negative electrode were punched to a diameter of 15 mm, and the produced separator was punched to a diameter of 18 mm. Using these, a button type battery (CR2032) was produced. As the electrolytic solution, 1M LiBF 4 EC / DEC (1/1 weight ratio) (manufactured by Kishida Chemical) was used.
When this battery was subjected to a current density of 0.56 mA / cm 2 , 4.2 V constant current, constant voltage charging, 0.56 mA / cm 2 , 2.75 V cut-off constant current discharge, a capacity of 5.0 mAh was obtained. .
<Overcharge evaluation>
When this battery was charged with a constant current at a current density of 2.8 mA / cm 2 , the battery voltage continued to vibrate in the vicinity of 4.4 V from the point where the amount of charged electricity exceeded 5.3 mAh, and this state was maintained at 15 mAh or more. .
The open circuit voltage thereafter was 4.31 V, and a discharge of 5.4 mAh was possible.
[0036]
[Comparative Example 1]
<Preparation of separator>
Through-holes with a curvature of 1 were drilled in a Celgard TM2400 with a film thickness of 25 μm (manufactured by Celgard) with a needle having a diameter of 30 μm so that the total opening area of the through-holes was 10% of the surface area of the separator. This separator had a porosity of 44.2% and a Macmillan number of 6.8.
[0037]
This separator was punched into a circle having a diameter of 19 mm, sandwiched between a copper electrode and a lithium electrode having a diameter of 19 mm, and impregnated with a PC / EC (1/1 weight ratio) electrolyte solution in which 1M LiBF 4 was dissolved to produce a cell. As a result of depositing lithium metal on the copper electrode at a current density of 2 mA / cm 2 and measuring the impedance of the cell by the alternating current method, the impedance of the cell at a frequency of 1 Hz was 50 Ω · m or less within 1 hour.
<Production of battery>
A button battery was produced using the separator produced in the same manner as in Example 1, but the battery was short-circuited internally and could not be charged / discharged.
[0038]
[Comparative Example 2]
<Preparation of separator>
Through-holes with a curvature of 1 were drilled in a Celgard TM2400 (made by Celgard) having a thickness of 25 μm with a needle having a diameter of 0.4 μm so that the total area of the through-holes was 5% of the surface area of the separator. This separator had a porosity of 41.1% and a Macmillan number of 6.5.
This separator was punched into a circle having a diameter of 19 mm, sandwiched between a copper electrode and a lithium electrode having a diameter of 19 mm, and impregnated with a PC / EC (1/1 weight ratio) electrolyte solution in which 1M LiBF 4 was dissolved to produce a cell. As a result of depositing lithium metal on the copper electrode at a current density of 2 mA / cm 2 and measuring the impedance of the cell by the alternating current method, the impedance of the cell at a frequency of 1 Hz did not become 50 Ω · m or less within 1 hour.
[0039]
<Production of battery>
A button battery was produced using the separator produced in the same manner as in Example 1. When charged and discharged in the same manner as in Example 1, a capacity of 5.1 mAh was obtained.
<Overcharge evaluation>
When the produced battery was charged with a constant current at a current density of 2.8 mA / cm 2 , the battery voltage continued to rise and reached 5 V or higher. Thereafter, the battery was not dischargeable.
[0040]
[Comparative Example 3]
<Preparation of separator>
Through-holes with a curvature of 1 were drilled in a Celgard TM2400 with a film thickness of 25 μm (Celgard) with a needle having a diameter of 10 μm so that the total opening area of the through-holes was 50% of the surface area of the separator. This separator had a porosity of 69.0% and a Macmillan number of 4.0.
[0041]
This separator was punched into a circle having a diameter of 19 mm, sandwiched between a copper electrode and a lithium electrode having a diameter of 19 mm, and impregnated with a PC / EC (1/1 weight ratio) electrolyte solution in which 1M LiBF 4 was dissolved to produce a cell. As a result of depositing lithium metal on the copper electrode at a current density of 2 mA / cm 2 and measuring the impedance of the cell by the alternating current method, the impedance of the cell at a frequency of 1 Hz was 50 Ω · m or less within 1 hour.
<Production of battery>
A button battery was produced using the separator produced in the same manner as in Example 1, but it was short-circuited internally and could not be charged / discharged.
[0042]
[Comparative Example 4]
<Preparation of separator>
Open a through hole with a curvature of 1 in a 25 μm cell guard TM2400 (manufactured by Celgard) with a 1.5 μm diameter needle so that the total area of the through holes is 0.01% of the surface area of the separator. It was. This separator had a porosity of 38% and a Macmillan number of 6.8.
This separator was punched into a circle having a diameter of 19 mm, sandwiched between a copper electrode and a lithium electrode having a diameter of 19 mm, and impregnated with a PC / EC (1/1 weight ratio) electrolyte solution in which 1M LiBF 4 was dissolved to produce a cell. As a result of depositing lithium metal on the copper electrode at a current density of 2 mA / cm 2 and measuring the impedance of the cell by the alternating current method, the impedance of the cell at a frequency of 1 Hz did not become 50 Ω · m or less within 1 hour.
[0043]
<Production of battery>
A button battery was produced using the separator produced in the same manner as in Example 1. As a result of charging and discharging this battery in the same manner as in Example 1, a capacity of 5.1 mAh was obtained.
<Overcharge evaluation>
When this battery was charged with a constant current at a current density of 2.8 mAh / cm 2 , the battery voltage continued to rise and became 5 V or higher. Thereafter, the battery was not dischargeable.
[0044]
[Comparative Example 5]
<Preparation of separator>
A polypropylene film having a film thickness of 25 μm was prepared by the melt extrusion method. A through hole having a curvature of 1 was formed in the film with a needle having a diameter of 10 μm so that the total area of the through holes was 9% of the surface area of the separator. This separator had a porosity of 9% and a Macmillan number of 12.
[0045]
This separator was punched into a circle having a diameter of 19 mm, sandwiched between a copper electrode and a lithium electrode having a diameter of 19 mm, and impregnated with a PC / EC (1/1 weight ratio) electrolyte solution in which 1M LiBF 4 was dissolved to produce a cell. As a result of depositing lithium metal on a copper electrode at a current density of 2 mA / cm 2 and measuring the impedance of the cell by an alternating current method, the impedance of the cell at a frequency of 1 Hz was 50 Ω · m or less within 1 hour.
<Production of battery>
A button battery was produced using the separator produced in the same manner as in Example 1. As a result of charging and discharging the battery in the same manner as in Example 1, only 70% of the capacity of the battery in Example 1 was obtained.
[0046]
【The invention's effect】
As described above in detail, by using the separator of the present invention, a lithium secondary battery having excellent overcharge characteristics and high safety can be provided without impairing battery characteristics.

Claims (2)

マクミラン数2〜10、膜厚5〜40μm、空孔率30〜50%であり、かつ開孔面積が1〜100μm2で曲路率が1の複数の貫通孔を有し、この貫通孔の開孔総面積が表面面積の0.1〜10%であることを特徴とするリチウムイオン二次電池用セパレータ。McMillan number 2-10, thickness 5 to 40 m, a porosity of 30-50%, and tortuosity opening area at 1 to 100 [mu] m 2 has a plurality of through holes of 1, of the through hole A separator for a lithium ion secondary battery, wherein the total area of the apertures is 0.1 to 10% of the surface area. 負極にリチウムをドープ・脱ドープ可能な炭素系材料を用い、正極にリチウム含有遷移金属酸化物を用いたリチウム二次電池において、請求項1記載のセパレータを用いることを特徴としたリチウムイオン二次電池。A lithium secondary battery using the separator according to claim 1 in a lithium secondary battery using a carbon-based material capable of doping and dedoping lithium for a negative electrode and a lithium-containing transition metal oxide for a positive electrode. battery.
JP2000310482A 2000-10-11 2000-10-11 Lithium ion secondary battery separator and lithium ion secondary battery Expired - Fee Related JP3986744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310482A JP3986744B2 (en) 2000-10-11 2000-10-11 Lithium ion secondary battery separator and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000310482A JP3986744B2 (en) 2000-10-11 2000-10-11 Lithium ion secondary battery separator and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2002117826A JP2002117826A (en) 2002-04-19
JP3986744B2 true JP3986744B2 (en) 2007-10-03

Family

ID=18790436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310482A Expired - Fee Related JP3986744B2 (en) 2000-10-11 2000-10-11 Lithium ion secondary battery separator and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP3986744B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705334B2 (en) * 2004-03-19 2011-06-22 株式会社巴川製紙所 Separator for electronic parts and method for manufacturing the same
US7170739B1 (en) * 2005-09-30 2007-01-30 E.I. Du Pont De Nemours And Company Electrochemical double layer capacitors including improved nanofiber separators

Also Published As

Publication number Publication date
JP2002117826A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
CN107634179B (en) Electrode having perforated current collector and lithium secondary battery comprising same
AU2009200223B2 (en) Non-aqueous secondary battery and separator used therefor
JP4920423B2 (en) Lithium ion secondary battery
JP4030312B2 (en) Lithium ion secondary battery, battery pack and charging method
JP4196373B2 (en) Nonaqueous electrolyte secondary battery
JP5303857B2 (en) Nonaqueous electrolyte battery and battery system
US8062789B2 (en) Lithium secondary battery
JP5171150B2 (en) Separator for lithium ion secondary battery
US20060019151A1 (en) Non-aqueous electrolyte battery
JP5420888B2 (en) battery
JP2008243482A (en) Nonaqueous electrolyte battery
EP2238643A2 (en) Pouch-type lithium secondary battery
JP6687223B2 (en) Lithium secondary battery
US20050277026A1 (en) Non-aqueous secondary battery and separator used therefor
JP2016062810A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same
KR101744120B1 (en) Pouch-typed Secondary Battery of Improved Safety of Nail Penetration Test
JP2004253380A (en) Lithium ion secondary battery and separator thereof
KR101900149B1 (en) Non-Aqueous Electrolyte Secondary Battery
JP4834284B2 (en) Nonaqueous electrolyte secondary battery
JP3986744B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP2014044826A (en) Method of manufacturing separator for secondary battery, separator for secondary battery, secondary battery, and battery pack
JP4220667B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP2004087228A (en) Lithium ion secondary battery
JP2002117827A (en) Separator for lithium ion secondary battery, and lithium ion secondary battery
JP2002124241A (en) Separator for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees