JP3985876B2 - Multi-layer coated cemented carbide - Google Patents

Multi-layer coated cemented carbide Download PDF

Info

Publication number
JP3985876B2
JP3985876B2 JP03558997A JP3558997A JP3985876B2 JP 3985876 B2 JP3985876 B2 JP 3985876B2 JP 03558997 A JP03558997 A JP 03558997A JP 3558997 A JP3558997 A JP 3558997A JP 3985876 B2 JP3985876 B2 JP 3985876B2
Authority
JP
Japan
Prior art keywords
layer
cemented carbide
carbide
tic
carbonitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03558997A
Other languages
Japanese (ja)
Other versions
JPH10219451A (en
Inventor
順彦 島
広志 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP03558997A priority Critical patent/JP3985876B2/en
Publication of JPH10219451A publication Critical patent/JPH10219451A/en
Application granted granted Critical
Publication of JP3985876B2 publication Critical patent/JP3985876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【産業上の利用分野】
本発明は硬質被覆層が母材超硬合金との密着性に優れ重断続切削において安定した切削が可能であるとともに、各硬質層間の層間密着性にも優れ層間剥離が発生せず、さらに優れた切削性能を発揮する多層被覆超硬合金製切削工具に関する。
【0002】
【従来の技術】
従来、TiN、TiCN、TiC、Al等の硬質皮膜を多層に被覆した被覆超硬合金工具は広く用いられている。多層化することにより、それぞれの皮膜の長所を取り入れる事が可能であるが、反面必然的に界面の数は増加する。一般にこれらの層間の密着性は強いものではなくしばしば層間剥離が発生しこの剥離が工具寿命の低下をもたらす。最近層間の密着性を改善するいくつかの提案(例えば、特開平08−001410号公報)もなされているがいまだ満足のいくものではない。また、切削の高率化のため切削送りが増加する傾向にあり、かかる場合、従来の提案では層間剥離も発生するが、さらに母材と多層膜界面での剥離も発生し工具寿命は短い結果であるのが現状である。
【0003】
また、柱状結晶を有するTiCN皮膜は耐摩耗性に優れるとともに靱性にも優れ最近頻繁に用いられている。(例として、特開平5−269606号公報、特開平08−1410号公報)
一方、TiCなどの皮膜の結晶形態は粒子状であり、例えば、柱状結晶のTiCNの上に粒状結晶のTiCを積層した場合その界面で結晶構造の不連続性が発生しさらに層間密着性が劣化する結果となる。また皮膜の中でもAlは酸化物のため、特にTiCやTiNなどの炭化物、窒化物等の他成分皮膜との密着性は悪く従来これを改善すべく下地層とエピタキシャルの関係を保ち成膜する提案(特公平7−88582号公報)や炭化物、窒化物と酸化物の中間的性質を有するTiの炭酸化物、窒酸化物、炭窒酸化物を下地に用いる提案(特公昭55−47110号公報、特公昭62−4224号公報)もなされている。しかし、今だ満足のいく密着性は得られるに至っていない。
【0004】
【発明が解決しようとする課題】
本発明は上述の各層間並びに母材と皮膜の密着性における問題点の解決を目的とし、これに対し各硬質層間の密着性、とりわけ、柱状結晶を有するTiCN層を多層の中の一つの層として用いた場合に発生する結晶形態の不連続性に起因する密着性の劣化の防止、並びに、Al酸化物層の密着性の密着性を著しく改善するものである。さらに、母材超硬合金と多層皮膜の密着性も合わせ改善するものである。
【0005】
【課題を解決するための手段】
本発明者らは、上述の観点からまず一般的に用いられるTiN−柱状TiCN−粒子状TiCの3層構造の多層皮膜を作製し層間剥離現象を調査した。TiCは一般的条件で成膜すると一番安定である(200)面に最強のピークを有する粒子状の皮膜が成膜される。これは通常粉末のTiCをX線回折した場合に得られ、ASTMカードに記載されているものに等しいパターンである。(111)面と(220)面の強度は成膜条件により多少の変化は認められるが、(200)>(111)、(220)であることには変わりはない。これらの切削試験結果によれば、この場合TiCN層(柱状結晶)とTiC層(粒子状結晶)の間でのみ剥離が多発し、前述のように結晶形態の不連続性が存在すると、密着性が著しく低下すること、が確認された。
【0006】
本発明者らは、柱状結晶を有するTiCN状の上に成膜するTiCの成膜条件を鋭意検討した結果、成膜速度を著しく低くした条件下、例えば、反応ガス濃度を著しく低くした条件下で成膜された場合、下地TiCNの結晶形態にエピタキシャルに成膜する傾向が発生するという驚くべき事実を確認した。この場合TiCの結晶形態は一番安定である(200)面に最強ピークを有するパターンから逸脱し、エピタキシャル成膜の発生頻度を支配するTiCの成膜速度の変化に対し種種の配向パターンを有する結果となる。また、この配向パターンを成膜速度により制御することが可能であるという新しい知見も得られた。すなわち、本願の第1の発明は、Tiの窒化物、炭窒化物、炭化物、Alの酸化物の内の少なくとも2種以上を被覆した多層被覆超硬合金において、該被覆層が母材超硬合金側より、第1層がTiの炭化物もしくは窒化物もしくは炭窒化物、第2層が柱状結晶を有するTiの炭窒化物、第3層がTiの炭化物で、X線回折におけるピークの高さが(111)面、(200)面、(220)面において(200)面のピーク高さが最小で、且つ、該第3層の表面粗さをRmax2.0μm以上に設け、第4層がκ型結晶構造を有するAlの酸化物であることを特徴とする多層被覆超硬合金である。本願の第2の発明は、第1の発明のX線回折における最強のピークを有する結晶面がその下地層である第2層のTiの炭窒化物のX線回折における最強のピークを有する結晶面と一致させた多層被覆超硬合金である。
【0007】
【作用】
反応ガス濃度を非常に低くすると80%以上のTiCは下地柱状TiCNにエピタキシャルに成膜し、驚くべきことに同じく柱状結晶形態を呈する結果となる。その結果、X線回折における下地TiCNの最強ピーク面とTiCの最強ピークは一致する。この場合のTiCNとTiC層間の密着力は最も強いことは、結晶構造に不連続性がないことから容易に理解されるところである。反応ガス濃度の多少の増加に伴い、TiCはエピタキシャルに成膜する頻度は低下し、次に(111)面もしくは、(220)面に配向する傾向を有するようになる。この場合もTiCは柱状結晶形態を有する傾向にあるため、TiCNとこのTiC層間の密着性は通常の(200)面に配向した粒子状結晶を有するTiCの場合に較べ著しく良好な結果となることはいうまでもない。
【0008】
また、反応ガス濃度の調整以外では、例えば、成膜温度を非常に低くすることによっても同様に成膜速度を抑え、同様のTiC皮膜を成膜することが可能である。TiCとκ型Alの密着性においてはTiNおよびTiCNとκ型Alの密着性よりは優れるものの、通常のTiCとの密着性はたとえエピタキシャルの関係が層間にあったとしても十分なものではない。その理由は、通常の(200)面に配向したTiCつまり(200)面に最強のピークを有するTiCにおいては、前述のように、結晶形態は粒子状であり結晶は粒子状に成長する。この場合、結晶粒の大きさはせいぜい0.5μから1.2μであり従ってTiC表面の面粗さは最大でも1.2S程度の極めて平坦なものである。この様な平坦な界面においてはアンカー効果が全くなく結果TiCとAlの密着力は十分なものではない。特に炭化物と酸化物といった全く異種の層間においては、アンカー効果は密着性に対し極めて重要な因子である。この問題を解決すべくTiCとAlの間に中間的性質を有するTiCOやTiCNOを介在させる提案もなされてはいるが、アンカー効果がないことは同様であり密着性を十分に改善するには至っていない。
【000
一方、(111)面もしくは(220)面に配向したTiCは下地TiCNの柱状結晶成長をそのまま引継、柱状に連続成長するため表面粗さは2.0S以上にもなる。従って、Al層に対し十分なアンカー効果を発揮し密着性は格段に改善される結果となる。特に下地層と全く同じ配向を有する場合、つまり下地TiCNの最強ピークとTiCの最強ピークが一致する場合に表面粗さは最大となり密着性は最大のものとなる。これらTiCとAlの間に中間的性質を有するTiCOやTiCNOを介在させると密着性は更に改善されることは言うまでもない。
【0010
母材超硬合金と多層皮膜との密着性においてはTiCを第1層とすることが最も好ましい。これは、母材のWCに対してはTiCが最も密着性に優れることによる。この場合は母材成分のCoが皮膜中に拡散し第2層の柱状結晶を有するTiCN皮膜の特性を多少劣化させる場合もあるため、第1層のTiCと第2層のTiCNとの間にこの拡散を抑制するため、TiNを介在させるとより良い結果となる。また第1層はTiCの代わりにTiNであっても母材との密着性は十分である。また、必要に応じ最外層はTiN層とすることにより装飾的意味あいを持たせても良い。以下、実施例に基ずき本発明多層被覆超硬合金を説明する。
【0011
【実施例】
母材の超硬合金は7.5wt%Co−2.5wt%TiC−0.5wt%TiN−3.0wt%TaC−残WC組成に統一し、WC原料は2.8μの市販原料を用いた。この場合母材表面部にはCoに富化した10μの厚さのWC−Coよりなる、強靱表面層が形成される。また母材の硬さはHRAにおいて90.0に統一した。ISO、CNMG120408なるインサートを製作し、表1に示される各コーティング条件にて各種皮膜を成膜した。尚、本発明多層被覆超硬合金並びに比較被覆超硬合金のコーティング条件については、各表の中に表1中のcoat条件番号を記し、圧力は70〜80Torrとした。またj条件のAlは100%κ型結晶構造を有し、k条件においては60%がκ型結晶構造を有するものである。
【0012
【表1】

Figure 0003985876
【0013】表2に示す本発明多層被覆超硬合金と比較被覆合金を試作し以下の切削条件にて切削評価を行った。本切削条件下においては、断続的に衝撃が加わるため、母材と皮膜の界面もしくは第2層のTiCNと第3層のTiC界面で剥離が発生する。切削後、切削に関与する切れ刃部分の面積と剥離部分の面積の比により剥離率を求めた。切削は10コーナーにおいて切削を行った。本発明例および比較例の詳細と剥離率の測定結果を表2に併記する。尚、表2中()で示す面は最大ピークを有する面を、[]で示す面は最小ピークを有する面を示す。
切削条件 切削速度 200m/min
送り 0.4mm/rev
切り込み 2mm
被削材 S53C 4つ溝
乾式・湿式 wet切削
衝撃回数 2000回
尚、膜厚は第1層は0.5μ、第2層TiCNは5μ、第3層のTiCは4μ、第4層のAlは2μとし、必要に応じ間に介在させるTiN、TiCO等の層は0.5μとした。また、表2のTiCN、TiCに記載された結晶面は前述の通りである。
【0014
【表2】
Figure 0003985876
【0015
表2に示される通り本発明多層被覆超硬合金は密着性に優れ取り分け柱状結晶のTiCNとTiC層間の密着性に優れることが明らかである。
【0016
表2に示した本発明例と比較例を用い、以下の切削条件にて切削試験を実施した。本切削条件はAlの密着性が十分でないと、Alと下地の間で剥離が発生する条件である。
切削条件 切削速度 300m/min
送り 0.3mm/rev
切り込み 2.0mm
被削材 FC250
乾式・湿式 wet
10分切削後、実施例1と同様に剥離を観察し剥離率を算出した。その結果を表3に示す。
【0017
【表3】
Figure 0003985876
【0018】表3より、本発明多層被覆超硬合金は特にAlの密着性が優れることが認められる。
【0019
表1に示すコーティング条件を用い、表4に示す本発明例と比較例を製作した。この場合膜厚は第1層は1.0μ、第2層は7.0μ、第3層は2.5μ、第4層は3.5μ、とし、間に介在させるTiN、TiCO等は0.5μとした。以下に示す切削条件にて、20分間切削試験を行い境界部の摩耗量を切削開始5分後および20分後において測定した。
切削条件 切削速度 250m/min
送り 0.35mm/rev
切り込み 2.0mm
被削材 S53C 黒皮材
乾式・湿式 Dry
この切削条件においては、境界摩耗はまずAlの密着性が十分でないとその剥離が初期に発生し初期より酸化により境界摩耗が発生する。次いで、境界部分は黒皮の切削による衝撃により皮膜の層間剥離あるいは母材と皮膜間の剥離が発生する。剥離が発生することにより、境界部の摩耗が著しく発生する。表4に測定した境界摩耗量を併記する。尚、表中、( )、[ ]で示される面は表2と同様の意味である。
【0020
【表4】
Figure 0003985876
【0021
表4の結果から明らかなように本発明多層被覆超硬合金は各皮膜の層間ならびに母材との密着性に優れ極めて境界摩耗量が少なく長寿命であることが認められる。
【0022
【発明の効果】
以上の結果からも明らかなように、本発明による多層被覆超硬合金は、各被覆層間特に、柱状結晶構造を有するTiCNとその上地層であるTiC、並びにTiCとAlの密着性に著しく優れ送り量の高い重断続切削、温度衝撃の高い高速切削において、皮膜に剥離が発生する確率が低く、安定した切削並びに長寿命を実現するものである。[0001]
[Industrial application fields]
In the present invention, the hard coating layer has excellent adhesion with the base cemented carbide, and stable cutting is possible in heavy interrupted cutting. Further, the hard coating layer is excellent in interlayer adhesion between hard layers, and delamination does not occur. The present invention relates to a multilayer coated cemented carbide cutting tool that exhibits excellent cutting performance.
[0002]
[Prior art]
Conventionally, a coated cemented carbide tool in which hard coatings such as TiN, TiCN, TiC, and Al 2 O 3 are coated in multiple layers has been widely used. By making it multilayer, it is possible to incorporate the advantages of each film, but the number of interfaces inevitably increases. In general, the adhesion between these layers is not strong, and delamination often occurs, and this delamination results in a reduction in tool life. Some proposals (for example, JP-A-08-001410) for improving the adhesion between the layers have been made recently, but they are still not satisfactory. In addition, the cutting feed tends to increase due to the higher cutting rate. In such a case, the conventional proposal also causes delamination, but also causes delamination at the interface between the base material and the multilayer film, resulting in a short tool life. This is the current situation.
[0003]
Further, TiCN films having columnar crystals are excellent in wear resistance and toughness, and have been frequently used recently. (For example, Japanese Patent Laid-Open Nos. 5-269606 and 08-1410)
On the other hand, the crystal form of the film such as TiC is in the form of particles. For example, when a granular crystal of TiC is laminated on a columnar crystal of TiCN, discontinuity of the crystal structure occurs at the interface, and the interlayer adhesion deteriorates. Result. In addition, Al 2 O 3 is an oxide among the films, and in particular, adhesion to other component films such as carbides and nitrides such as TiC and TiN is poor, and in order to improve this, the relationship between the underlying layer and the epitaxial layer is maintained. A proposal for forming a film (Japanese Patent Publication No. 7-88582) and a proposal using Ti carbonate, nitride oxide, or carbonitride having an intermediate property between carbide, nitride and oxide (Japanese Patent Publication No. 55-47110) And Japanese Patent Publication No. 62-4224). However, satisfactory adhesion has not yet been achieved.
[0004]
[Problems to be solved by the invention]
The object of the present invention is to solve the problems in the adhesion between each of the above-mentioned layers and between the base material and the film. On the other hand, the adhesion between each of the hard layers, in particular, a TiCN layer having columnar crystals is formed as one layer in the multilayer. As a result, the deterioration of the adhesion due to the discontinuity of the crystal form generated when used as a catalyst, and the adhesion of the Al 2 O 3 oxide layer are remarkably improved. Furthermore, the adhesion between the base cemented carbide and the multilayer coating is also improved.
[0005]
[Means for Solving the Problems]
From the above viewpoint, the present inventors first prepared a multilayer film having a three-layer structure of TiN-columnar TiCN-particulate TiC that is generally used, and investigated the delamination phenomenon. When TiC is formed under general conditions, a particulate film having the strongest peak on the (200) plane is formed. This is usually obtained when X-ray diffraction of powdered TiC is a pattern equivalent to that described on the ASTM card. Although the intensity of the (111) plane and the (220) plane varies slightly depending on the film forming conditions, it does not change that (200)> (111), (220). According to the results of these cutting tests, in this case, peeling occurs frequently only between the TiCN layer (columnar crystals) and the TiC layer (particulate crystals), and if there is a discontinuity in crystal form as described above, It was confirmed that the remarkably decreased.
[0006]
As a result of intensive studies on the film formation conditions of TiC formed on the TiCN structure having columnar crystals, the present inventors have found that the film formation rate is extremely low, for example, the reaction gas concentration is extremely low. It was confirmed by the surprising fact that the film formed epitaxially tends to be formed epitaxially in the crystal form of the underlying TiCN. In this case, the crystal form of TiC deviates from the pattern having the strongest peak on the (200) plane, and results in having various orientation patterns with respect to changes in the deposition rate of TiC that govern the frequency of epitaxial deposition. It becomes. Moreover, the new knowledge that this orientation pattern can be controlled by the film formation rate was also obtained. That is, the first invention of the present application is a multilayer coated cemented carbide coated with at least two of Ti nitride, carbonitride, carbide, and Al oxide, wherein the coating layer is made of a cemented carbide. From the alloy side, the first layer is Ti carbide or nitride or carbonitride, the second layer is Ti carbonitride with columnar crystals, the third layer is Ti carbide, and the peak height in X-ray diffraction In the (111) plane, (200) plane, and (220) plane, the peak height of the (200) plane is minimum, and the surface roughness of the third layer is set to Rmax 2.0 μm or more. A multilayer coated cemented carbide characterized by being an oxide of Al having a κ-type crystal structure. The second invention of the present application is a crystal in which the crystal plane having the strongest peak in the X-ray diffraction of the first invention has the strongest peak in the X-ray diffraction of Ti carbonitride of the second layer which is the underlayer. It is a multi-layer coated cemented carbide matched to the surface.
[0007]
[Action]
If the reaction gas concentration is very low, 80% or more of TiC is epitaxially deposited on the underlying columnar TiCN, surprisingly resulting in the same columnar crystal morphology. As a result, the strongest peak surface of the underlying TiCN and the strongest peak of TiC coincide with each other in X-ray diffraction. In this case, the strongest adhesion between the TiCN layer and the TiC layer is easily understood from the fact that there is no discontinuity in the crystal structure. With a slight increase in the reaction gas concentration, the frequency of TiC epitaxial deposition decreases, and then tends to be oriented in the (111) plane or the (220) plane. In this case as well, TiC tends to have a columnar crystal form, so that the adhesion between TiCN and this TiC layer is significantly better than that of TiC having particulate crystals oriented in the normal (200) plane. Needless to say.
[0008]
In addition to the adjustment of the reaction gas concentration, for example, it is possible to form the same TiC film by suppressing the film formation rate by making the film formation temperature very low. Although the adhesion between TiC and κ-type Al 2 O 3 is superior to that between TiN and TiCN and κ-type Al 2 O 3 , the adhesion with ordinary TiC is sufficient even if there is an epitaxial relationship between the layers. Not something. The reason is that, as described above, in TiC oriented in the normal (200) plane, that is, TiC having the strongest peak in the (200) plane, the crystal form is grainy and the crystal grows in grainy form. In this case, the size of the crystal grains is at most 0.5 μ to 1.2 μ, and therefore the surface roughness of the TiC surface is extremely flat at about 1.2 S at the maximum. At such a flat interface, there is no anchor effect, and as a result, the adhesion between TiC and Al 2 O 3 is not sufficient. Especially in completely different layers such as carbide and oxide, the anchor effect is a very important factor for adhesion. In order to solve this problem, proposals have been made to interpose TiCO or TiCNO having intermediate properties between TiC and Al 2 O 3 , but it is the same that there is no anchor effect, and the adhesion is sufficiently improved. It has not reached.
[000 9 ]
On the other hand, TiC oriented in the (111) plane or the (220) plane takes over the columnar crystal growth of the underlying TiCN as it is and continuously grows in a columnar shape, so that the surface roughness becomes 2.0 S or more. Therefore, a sufficient anchor effect is exhibited with respect to the Al 2 O 3 layer, and the adhesiveness is remarkably improved. In particular, when the base layer has exactly the same orientation, that is, when the strongest peak of the base TiCN coincides with the strongest peak of TiC, the surface roughness is maximum and the adhesion is maximum. Needless to say, when TiCO or TiCNO having an intermediate property is interposed between these TiC and Al 2 O 3, the adhesion is further improved.
[00 10 ]
In terms of adhesion between the base metal cemented carbide and the multilayer coating, it is most preferable to use TiC as the first layer. This is because TiC has the best adhesion to WC as a base material. In this case, the characteristics of the TiCN film having the columnar crystals of the second layer may be slightly deteriorated due to diffusion of the base material component Co into the film, and therefore, between the TiC of the first layer and the TiCN of the second layer. In order to suppress this diffusion, better results are obtained when TiN is interposed. Further, even if the first layer is TiN instead of TiC, the adhesion with the base material is sufficient. If necessary, the outermost layer may be a TiN layer to give a decorative meaning. Hereinafter, the multilayer coated cemented carbide of the present invention will be described based on examples.
[00 11 ]
【Example】
The base cemented carbide was unified to 7.5 wt% Co-2.5 wt% TiC-0.5 wt% TiN-3.0 wt% TaC-residual WC composition, and the WC raw material was a commercially available raw material of 2.8 μm. . In this case, a tough surface layer made of WC—Co having a thickness of 10 μm enriched with Co is formed on the surface of the base material. The hardness of the base material was unified to 90.0 in HRA. ISO and CNMG120408 inserts were produced, and various films were formed under the coating conditions shown in Table 1. In addition, about the coating conditions of this invention multilayer coated cemented carbide and comparative coated cemented carbide, the coat condition number in Table 1 was described in each table | surface, and the pressure was 70-80 Torr. In addition, Al 2 O 3 in the j condition has a 100% κ-type crystal structure, and 60% has a κ-type crystal structure in the k condition.
[00 12 ]
[Table 1]
Figure 0003985876
[00 13] was cutting evaluated by the present invention a multilayer coated cemented carbide as prototype comparison coating alloy following cutting conditions shown in Table 2. Under this cutting condition, since impact is applied intermittently, peeling occurs at the interface between the base material and the film or at the interface between the second layer TiCN and the third layer TiC. After cutting, the peeling rate was determined by the ratio of the area of the cutting edge part involved in cutting and the area of the peeling part. Cutting was performed at 10 corners. The details of the examples of the present invention and comparative examples and the measurement results of the peeling rate are shown in Table 2. In Table 2, the surface indicated by () indicates the surface having the maximum peak, and the surface indicated by [] indicates the surface having the minimum peak.
Cutting conditions Cutting speed 200m / min
Feed 0.4mm / rev
Notch 2mm
Work Material S53C 4 Grooves
Dry / wet wet cutting
The number of impacts is 2000 times. The film thickness is 0.5 μ for the first layer, 5 μ for the second layer TiCN, 4 μ for the third layer TiC, and 2 μ for the Al 2 O 3 for the fourth layer. The layer of TiN, TiCO, etc. to be made was 0.5 μm. The crystal planes described in TiCN and TiC in Table 2 are as described above.
[00 14 ]
[Table 2]
Figure 0003985876
[00 15 ]
As shown in Table 2, it is clear that the multilayer coated cemented carbide of the present invention is excellent in adhesion and particularly excellent in adhesion between columnar crystal TiCN and TiC layers.
[00 16 ]
Using the present invention examples and comparative examples shown in Table 2, cutting tests were performed under the following cutting conditions. This cutting conditions when the adhesion of Al 2 O 3 is not sufficient, the condition is peeling occurs between the Al 2 O 3 and the base.
Cutting conditions Cutting speed 300m / min
Feed 0.3mm / rev
Notch 2.0mm
Work material FC250
Dry / wet wet
After cutting for 10 minutes, peeling was observed in the same manner as in Example 1 to calculate the peeling rate. The results are shown in Table 3.
[00 17 ]
[Table 3]
Figure 0003985876
From [00 18] Table 3, the present invention multilayer coated cemented carbide is observed to be particularly adhesion of Al 2 O 3 is excellent.
[00 19 ]
Using the coating conditions shown in Table 1, inventive examples and comparative examples shown in Table 4 were produced. In this case, the film thickness is 1.0 μm for the first layer, 7.0 μm for the second layer, 2.5 μm for the third layer, and 3.5 μm for the fourth layer. The thickness was 5μ. Under the cutting conditions shown below, a cutting test was performed for 20 minutes, and the amount of wear at the boundary was measured 5 minutes and 20 minutes after the start of cutting.
Cutting conditions Cutting speed 250m / min
Feed 0.35mm / rev
Notch 2.0mm
Work material S53C Black skin material
Dry / Wet Dry
Under these cutting conditions, boundary wear first occurs when the adhesion of Al 2 O 3 is not sufficient, and the peeling occurs at an early stage, and boundary wear occurs due to oxidation from the beginning. Next, at the boundary portion, delamination of the film or delamination between the base material and the film occurs due to the impact of cutting the black skin. Due to the occurrence of peeling, the wear of the boundary portion is remarkably generated. Table 4 shows the measured amount of boundary wear. In the table, the surfaces indicated by () and [] have the same meaning as in Table 2.
[00 20 ]
[Table 4]
Figure 0003985876
[00 21 ]
As is apparent from the results in Table 4, it can be seen that the multilayer coated cemented carbide of the present invention is excellent in adhesion between the layers of the respective coatings and the base metal and has a very small amount of boundary wear and a long life.
[00 22 ]
【The invention's effect】
As can be seen from the above results, the multilayer coated cemented carbide according to the present invention has a good adhesion between each coated layer, in particular, TiCN having a columnar crystal structure, TiC as the upper layer, and TiC and Al 2 O 3. In heavy interrupted cutting with extremely high feed rate and high speed cutting with high temperature impact, the probability of delamination on the coating is low, and stable cutting and long life are realized.

Claims (5)

Tiの窒化物、炭窒化物、炭化物、Alの酸化物の内の少なくとも2種以上を被覆した多層被覆超硬合金において、該被覆層が母材超硬合金側より、第1層がTiの炭化物もしくは窒化物もしくは炭窒化物、第2層が柱状結晶を有するTiの炭窒化物、第3層がTiの炭化物で、X線回折におけるピークの高さが(111)面、(200)面、(220)面において(200)面のピーク高さが最小で、且つ、該第3層の表面粗さをRmax2.0μm以上に設け、第4層がκ型結晶構造を有するAlの酸化物であることを特徴とする多層被覆超硬合金。In a multilayer coated cemented carbide coated with at least two of Ti nitride, carbonitride, carbide, and Al oxide, the coating layer is from the base cemented carbide side, and the first layer is Ti. Carbide or nitride or carbonitride, second layer is Ti carbonitride having columnar crystals, third layer is Ti carbide, peak height in X-ray diffraction is (111) plane, (200) plane , The (200) plane has a minimum peak height in the (220) plane, and the third layer has a surface roughness of Rmax 2.0 μm or more, and the fourth layer has an κ-type crystal structure. A multilayer coated cemented carbide characterized in that Tiの窒化物、炭窒化物、炭化物、Alの酸化物の内の少なくとも2種以上を被覆した多層被覆超硬合金において、該被覆層が母材超硬合金側より、第1層がTiの炭化物もしくは窒化物もしくは炭窒化物、第2層が柱状結晶を有するTiの炭窒化物、第3層がTiの炭化物で、X線回折における最強のピークを有する結晶面がその下地層である第2層のTiの炭窒化物のX線回折における最強のピークを有する結晶面と一致し、且つ、該第3層の表面粗さをRmax2.0μm以上に設け、第4層がκ型結晶構造を有するAlの酸化物であることを特徴とする多層被覆超硬合金。In a multilayer coated cemented carbide coated with at least two of Ti nitride, carbonitride, carbide, and Al oxide, the coating layer is from the base cemented carbide side, and the first layer is Ti. The carbide or nitride or carbonitride, the second layer is Ti carbonitride having columnar crystals, the third layer is Ti carbide, and the crystal plane having the strongest peak in X-ray diffraction is the underlayer. It coincides with the crystal plane having the strongest peak in the X-ray diffraction of the two-layer Ti carbonitride, and the surface roughness of the third layer is set to Rmax 2.0 μm or more, and the fourth layer has a κ-type crystal structure. A multilayer coated cemented carbide characterized by being an oxide of Al having the following: 請求項1又は2に記載された多層被覆超硬合金において、第3層と第4層の間にTiの炭酸化物もしくは炭窒酸化物を介在させたことを特徴とする多層被覆超硬合金。  The multilayer coated cemented carbide according to claim 1 or 2, wherein a Ti carbonate or carbonitride is interposed between the third layer and the fourth layer. 請求項1乃至3何れかに記載された多層被覆超硬合金において、該第1層がTiの炭化物である場合、該第1層のTiの炭化物と第2層のTiの炭窒化物の間にTiの窒化物を介在させたことを特徴とする多層被覆超硬合金。  4. The multilayer coated cemented carbide according to claim 1, wherein when the first layer is a carbide of Ti, between the Ti carbide of the first layer and the Ti carbonitride of the second layer. A multilayer coated cemented carbide characterized by interposing Ti nitride. 請求項1乃至4何れかに記載された多層被覆超硬合金において、最外層をTiの窒化物にしたことを特徴とする多層被覆超硬合金。  5. The multilayer coated cemented carbide according to claim 1, wherein the outermost layer is Ti nitride.
JP03558997A 1997-02-04 1997-02-04 Multi-layer coated cemented carbide Expired - Lifetime JP3985876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03558997A JP3985876B2 (en) 1997-02-04 1997-02-04 Multi-layer coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03558997A JP3985876B2 (en) 1997-02-04 1997-02-04 Multi-layer coated cemented carbide

Publications (2)

Publication Number Publication Date
JPH10219451A JPH10219451A (en) 1998-08-18
JP3985876B2 true JP3985876B2 (en) 2007-10-03

Family

ID=12445984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03558997A Expired - Lifetime JP3985876B2 (en) 1997-02-04 1997-02-04 Multi-layer coated cemented carbide

Country Status (1)

Country Link
JP (1) JP3985876B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537513A (en) * 1976-07-10 1978-01-24 Mitsubishi Metal Corp Covered hard alloy product
JP2556116B2 (en) * 1988-11-07 1996-11-20 三菱マテリアル株式会社 Surface-coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance
JP2964669B2 (en) * 1991-03-08 1999-10-18 住友電気工業株式会社 Boron nitride coated hard material
JPH05209276A (en) * 1991-06-24 1993-08-20 Idemitsu Petrochem Co Ltd Manufacture of diamond coated member
JP3269305B2 (en) * 1994-12-28 2002-03-25 三菱マテリアル株式会社 Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
JPH08290307A (en) * 1995-04-21 1996-11-05 Mitsubishi Materials Corp Composite hard layer surface coating cutting tool
JPH08318407A (en) * 1995-05-19 1996-12-03 Sumitomo Electric Ind Ltd Covering cutting tool

Also Published As

Publication number Publication date
JPH10219451A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
EP0727509B1 (en) Multilayered alumina coated cemented carbide body
US6183846B1 (en) Coated hard metal material
JP2004223711A (en) Cutting tool insert
JP2001521991A (en) Cemented carbide body with high wear resistance and good toughness behavior
JP3109306B2 (en) Surface-coated cermet cutting tool with improved wear resistance of hard coating layer
IL139866A (en) Coated cemented carbide cutting tool insert
CN102883841A (en) Surface-coated cutting tool
JPH11256336A (en) Titanium carbonitride-coated tool
JP3985876B2 (en) Multi-layer coated cemented carbide
JPH11347806A (en) Surface coated tungsten carbide based hard metal cutting tip preventing generation of layer peeling in hard coated layer
JP3971479B2 (en) Multi-layer coated cemented carbide
JP4114741B2 (en) Titanium chromium compound coating tool
JP2982476B2 (en) Surface coated cutting tool with excellent adhesion of hard coating layer
JP2556088B2 (en) Surface coated tungsten carbide based cemented carbide cutting tip
JP3414102B2 (en) Hard layer laminated coated cutting tool
JP2970017B2 (en) Surface-coated tungsten carbide-based cemented carbide cutting inserts with a hard coating layer without interlayer bonding surfaces
JP3781006B2 (en) Aluminum oxide coated tools
JP3016702B2 (en) Coated hard alloy
JPH1158104A (en) Cutting tool made of surface-coated cemented carbide excellent in chip resistance
JP3818961B2 (en) Aluminum oxide coated tools
KR101560507B1 (en) Coated Layer for Cutting Tools
JPH11188507A (en) Multi-coated super hard alloy tool
JP2000218409A (en) Surface coated cemented carbide cutting tool having hard coated layer of good defect resistance
JPH0890311A (en) Composite head layer surface coat cutting tool
JPH08300203A (en) Cutting tool coated with composite hard layer surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term