JP3985323B2 - Sealed non-aqueous electrolyte secondary battery - Google Patents

Sealed non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3985323B2
JP3985323B2 JP02574298A JP2574298A JP3985323B2 JP 3985323 B2 JP3985323 B2 JP 3985323B2 JP 02574298 A JP02574298 A JP 02574298A JP 2574298 A JP2574298 A JP 2574298A JP 3985323 B2 JP3985323 B2 JP 3985323B2
Authority
JP
Japan
Prior art keywords
lithium
battery
methane gas
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02574298A
Other languages
Japanese (ja)
Other versions
JPH11224690A (en
Inventor
憲樹 村岡
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP02574298A priority Critical patent/JP3985323B2/en
Publication of JPH11224690A publication Critical patent/JPH11224690A/en
Application granted granted Critical
Publication of JP3985323B2 publication Critical patent/JP3985323B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は非水電解液二次電池の、とくにその低温における電解液の状態を改良して電池の低温時の高率放電特性を向上させるものである。
【0002】
【従来の技術】
近年、高電圧、高エネルギー密度を有する非水電解液二次電池は、各種電子機器の駆動用電源として注目され始めた。
【0003】
この種の電池においては、電解液に非水電解液が使われるため、水溶液系電解液に比べ電導度が低く、高率放電特性などに問題があった。そこで1,2−ジメトキシエタンなど低粘性溶媒を用いる試みなどがなされてきた。
【0004】
【発明が解決しようとする課題】
しかしながらこれらの低粘性の溶媒を用いても、特に低温における高率放電特性は依然として十分とは言えなかった。
【0005】
本発明は、以上の問題を鑑みなされたものであって、その目的とするところは、低温における高率放電特性に優れた密閉型の非水電解液二次電池を提供するものである。
【0006】
【発明の実施の形態】
上記課題を解決するために、本発明の密閉型非水電解液二次電池は一般式LixMyNi1-yO2(x:1.10≧x≧0.5、MはFe、V、Cu、Mg、Co、 Mn、Cr、Alのいずれか1種類以上、y:1≧y≧0)であらわされるリチウム含有複合酸化物を主材料とする正極と、リチウムを吸蔵、放出し得る炭素材料、もしくは金属酸化物、リチウム合金、リチウム金属、リチウム化合物、導電性ポリマーからなる群より選ばれる少なくとも一つを主材料とする負極と、非水溶媒を用いた電解液とを備え、前記電池内の空隙部分がメタンガス又はメタンガスを含む混合気体で満たされており、前記混合気体にはメタンガスが5体積%以上含まれるものである。
【0007】
この構成により従来よりも低温時の電池の高率放電特性が向上した。
この理由は明らかではないが、電池内の空隙にメタンガスが存在することにより、その一部が電解液に溶解し、有機溶媒の凝固点が下がるとともに、凝固点以上の温度領域での粘度が低下したためと推定される。
【0008】
また、正極の主材料としては一般式LixMyNi1-yO2(x:1.10≧x≧0.5、MはFe、V、Cu、Mg、Co、 Mn、Cr、Alのいずれか1種類以上、y:1≧y≧0)で表されるリチウム含有複合酸化物があげられるが、好ましくは一般式LixMyNi1-yO2(x:1.10≧x≧0.50、MはCo、 Mnのいずれか1種類以上、y:1≧y≧0)で表されるリチウム含有複合酸化物である。
【0009】
負極の主材料としてはリチウムを吸蔵、放出し得る炭素材料、もしくは金属酸化物、リチウム合金、リチウム金属、リチウム化合物、導電性ポリマーが挙げられるが、好ましくはリチウムを吸蔵、放出し得る炭素材料であり、より好ましくは人造黒鉛である。
【0010】
正極および負極の合剤には導電剤や結着剤を添加するが、本発明で用いられる導電剤としては、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維や、銅、ニッケル、アルミニウムなどの金属粉が好ましく、結着剤としては、スチレンーブタジエンゴム、ポリフッ化ビニリデン、ポリ四フッ化エチレン、四フッ化エチレンー六フッ化プロピレン共重合体、アクリロニトリルーブタジエンゴムが好ましい。
【0011】
本発明に用いられる電解液の溶媒としては、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート類、、1,2ージメトキシエタン、2−メチルテトラヒドロフランなどのエーテル類、プロピオン酸メチル、酢酸エチルなどの脂肪族カルボン酸エステル類のいずれか一種または二種以上を混合したものが好ましい。特に環状カーボネートと鎖状カーボネートの混合系が好ましい。また電解液の電解質としては、LiClO4、LiBF6、LiPF6、LiAsF6、LiSbF6、LiCF3SO3などのリチウム塩が使用できるが、LiPF6が好ましい。
【0012】
セパレータとしては、大きなイオン透過性をもち、一定の機械的強度をもち、絶縁性の微多孔膜が用いられる。耐有機溶剤性と疎水性から、ポリプロピレンなどのオレフィン系ポリマーから作られたシートや不織布が用いられる。セパレータの孔径としては0.01〜10μmが好ましい。セパレータの厚みとしては、5〜50μmが好ましい。
【0013】
【実施例】
本実施例で用いた非水電解液二次電池の作製方法を以下に説明する。
【0014】
正極板は以下のようにして作製した。
水酸化ニッケル、水酸化コバルト及び水酸化リチウムの各粉末を、Ni,Co及びLiの原子数の比が0.8:0.2:1.0となるように秤量し、ボールミルで十分に混合する。この混合物をアルミナ製のるつぼに入れ、乾燥空気中において750℃で10時間、熱処理を行った後、自然冷却し、粉砕、分級を行い、一般式LiNi0.8Co0.2O2で表されるリチウム含有コバルト−ニッケル酸化物を作製してこれを正極活物質とした。
【0015】
上記のようにして得られた正極活物質100重量部に導電剤として平均粒径4μmの人造黒鉛粉末4重量部と結着剤としてポリフッ化ビニリデン4重量部のN-メチルピロリドン溶液を加えて混練し、ペースト状にする。次いで、このペーストを厚さ0.02mmのアルミ箔の両面に塗布し、80℃で乾燥した後、圧延して正極シートを得た。この正極シートを、長さ380mm、幅37mmに裁断して正極板とした。厚さは0.14mmである。なお、正極板の作製に当たっては、混練以降の一連の工程は乾燥空気中で行った。
【0016】
負極板は以下のようにして作製した。
負極には、平均粒径6.0μmのリチウムを吸蔵,放出可能な人造黒鉛を用いた。この天然黒鉛100重量部に結着剤としてスチレンーブタジエンゴム3重量部の水溶液を加えて混練し、ペースト状にした。このペーストを厚さ0.025mmの銅箔の両面に塗布し、80℃で乾燥した後、圧延して負極シートを得た。この負極シートを、長さ420mm、幅39mmに裁断して負極板とした。厚さは0.2mmであった。
【0017】
極板群は上記正,負極板を用いて以下のようにして作製した。
正極板にアルミニウム製の正極リード、負極板にニッケル製の負極リードをそれぞれ取り付け、この正,負極板を厚さ0.025mm、幅45mm、長さ1000mmのポリエチレン樹脂製セパレータを介して重ね合わせて、長さ方向に渦巻状に巻回した極板群を得た。
【0018】
図1に円筒形電池の縦断面図を示す。
上記の方法で得た極板群1を、内側表面に耐有機電解液処理を施されたステンレス鋼製の直径17mm、高さ50mmの電池ケース2に収納し、その際に極板群1の上下部に絶縁リング3を挿入した。正極から引き出されたリード6を封口板4に、負極から引き出された負極リード7はケース2の底部にそれぞれ溶接した。
【0019】
これにECとEMCとを20:80の体積比で混合した溶媒に電解質として1モル/リットルのLiPF6を溶解した電解液を注入し、電池ケース2の開口部に封口板4を嵌合して電池ケース2を封口した。なお各工程は乾燥空気雰囲気で行った。
【0020】
上記電池を4.0Vまで充電したものを電池1とし、同様の構成の電池を同じく充電後45℃の環境に1時間放置したものを電池2とし、2時間放置を電池3とし、5時間放置を電池4とし、10時間放置を電池5とし、20時間放置を電池6とし、100時間放置を電池7とする。
【0021】
これらの電池を−20℃の環境下で、600mAで4..2V間で充電した後20分休止し、その後1000mAで3Vまで放電したときの放電容量を(表1)に示す。またこれらの電池を分解し電池内のガスの組成分析行ったので、メタンガスの含まれる量を体積%で(表1)に示す。
【0022】
【表1】

Figure 0003985323
【0023】
(表1)の結果から明らかなように、電池1のようにメタンガスを全く含まない場合は放電容量が少ないが、電池2,3のように1%のメタンガスが存在するだけで放電特性は大きく改善される。また、電池5,6,7はメタンガスの存在量が5%以上になると放電特性は一層改善される。以上のことから分かるように、電池内の空隙にメタンガスが含まれることにより、低温における高率放電特性に優れた密閉型の非水電解液二次電池を得ることができた。
【0024】
また充電条件や保管条件によらず電池内の空隙にメタンガスが存在すれば、同様の効果が得られた。
【0025】
なお本実施例では密閉型電池を封口後、充電状態で高温状態に放置することによりメタンガスを発生させ、低温における高率放電特性を改善したが、電池を製造する段階でメタンガスを封入させたり、メタンガスを発生しやすい負極材料を用いることなど他の手法によっても同様の効果が得られ、電池内の空隙をメタンガスもしくはメタンガスを含む混合気体で満たす方法には依存しないことがわかった。
【0026】
また本実施例では各工程を乾燥空気雰囲気で行ったが、窒素、炭酸ガス等の不活性ガス雰囲気で行っても同様の効果が得られた。つまり電池内の混合気体にメタンガスが含まれていれば、混合気体の他の成分の種類には依存しないことがわかった。
【0027】
本実施例では、電解液としてECとEMCとを20:80の体積比で混合した溶媒に電解質として1モル/リットルのLiPF6を溶解したものを用いたが、電解液の溶媒としてプロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類、、1,2ージメトキシエタン、2−メチルテトラヒドロフランなどのエーテル類、プロピオン酸メチル、酢酸エチルなどの脂肪族カルボン酸の一種または二種以上を混合したものを用い、電解液の電解質としてLiClO4、LiBF6、 LiAsF6、LiSbF6、LiCF3SO3などのリチウム塩を用いた物でも同様の効果が得られた。
【0028】
本実施例では負極活物質として人造黒鉛を用いたが、コークス類、炭素繊維類、人造黒鉛もしくは金属酸化物、リチウム合金、リチウム金属、リチウム化合物、導電性ポリマーなどリチウムを吸蔵、放出しうるものを用いた場合でも、ほぼ同様な効果が得られた。
【0029】
本実施例では正極活物質としてLiNi0.8Co0.22を用いたが、一般式LixMyNi1-yO2(x:1.10≧x≧0.5、MはFe、V、Cu、Mg、Co、 Mn、Cr、Alのいずれか1種類以上、y:1≧y≧0)であらわされるリチウム含有複合酸化物を用いても同様の結果が得られた。
【0030】
【発明の効果】
以上のように、本発明では電池内の空隙部分はメタンガスで満たされるかあるいはメタンガスが含まれるので、メタンガスの一部が電解液に溶解し、溶媒の凝固点を下げたり粘度が低下する結果、電池の低温での高率放電特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の密閉型非水電解液二次電池の縦断面図
【符号の説明】
1 電極群
2 電池ケース
3 絶縁リング
4 封口板
5 絶縁パッキング
6 正極リード
7 負極リード[0001]
BACKGROUND OF THE INVENTION
The present invention improves the high-rate discharge characteristics of a non-aqueous electrolyte secondary battery, particularly at a low temperature, by improving the state of the electrolyte at a low temperature.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries having high voltage and high energy density have begun to attract attention as driving power sources for various electronic devices.
[0003]
In this type of battery, since a non-aqueous electrolyte is used as the electrolyte, the conductivity is lower than that of the aqueous electrolyte, and there is a problem in high rate discharge characteristics. Thus, attempts have been made to use low viscosity solvents such as 1,2-dimethoxyethane.
[0004]
[Problems to be solved by the invention]
However, even when these low-viscosity solvents are used, the high rate discharge characteristics, particularly at low temperatures, are still not sufficient.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a sealed nonaqueous electrolyte secondary battery having excellent high-rate discharge characteristics at low temperatures.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above problems, sealed nonaqueous electrolyte secondary battery of the present invention have the general formula Li x M y Ni 1-y O 2 (x: 1.10 ≧ x ≧ 0.5, M is Fe, V, Cu, A positive electrode mainly composed of a lithium-containing composite oxide represented by one or more of Mg, Co, Mn, Cr, and Al, y: 1 ≧ y ≧ 0), and a carbon material capable of inserting and extracting lithium, Or a negative electrode mainly composed of at least one selected from the group consisting of metal oxide, lithium alloy, lithium metal, lithium compound, and conductive polymer, and an electrolyte using a non-aqueous solvent, The void portion is filled with methane gas or a mixed gas containing methane gas, and the mixed gas contains 5% by volume or more of methane gas.
[0007]
This configuration improved the high rate discharge characteristics of the battery at a lower temperature than in the past.
The reason for this is not clear, but due to the presence of methane gas in the voids in the battery, part of it dissolves in the electrolyte, lowering the freezing point of the organic solvent and lowering the viscosity in the temperature region above the freezing point. Presumed.
[0008]
As the main material of the positive electrode formula Li x M y Ni 1-y O 2 (x: 1.10 ≧ x ≧ 0.5, one M is Fe, V, Cu, Mg, Co, Mn, Cr, of Al 1 There are lithium-containing composite oxides represented by y = 1 ≧ y ≧ 0), preferably a general formula Li x M y Ni 1-y O 2 (x: 1.10 ≧ x ≧ 0.50, where M is It is a lithium-containing composite oxide represented by one or more of Co and Mn, y: 1 ≧ y ≧ 0).
[0009]
The main material of the negative electrode is a carbon material that can occlude and release lithium, or a metal oxide, a lithium alloy, lithium metal, a lithium compound, and a conductive polymer, preferably a carbon material that can occlude and release lithium. Yes, more preferably artificial graphite.
[0010]
A conductive agent and a binder are added to the mixture of the positive electrode and the negative electrode. Examples of the conductive agent used in the present invention include natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, carbon fiber, and copper. Metal powders such as nickel and aluminum are preferable, and as the binder, styrene-butadiene rubber, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, and acrylonitrile-butadiene rubber are preferable. .
[0011]
Examples of the solvent for the electrolytic solution used in the present invention include chain carbonates such as ethyl methyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate, and ethers such as 1,2-dimethoxyethane and 2-methyltetrahydrofuran. A mixture of any one or two or more of aliphatic carboxylic acid esters such as methyl propionate and ethyl acetate is preferable. In particular, a mixed system of a cyclic carbonate and a chain carbonate is preferable. As the electrolyte of the electrolytic solution, LiClO 4, LiBF 6, but LiPF 6, LiAsF 6, LiSbF 6 , LiCF 3 SO 3 and lithium salts can be used in, LiPF 6 is preferred.
[0012]
As the separator, an insulating microporous film having a large ion permeability and a constant mechanical strength is used. Sheets and nonwoven fabrics made of olefin polymers such as polypropylene are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator is preferably 0.01 to 10 μm. The thickness of the separator is preferably 5 to 50 μm.
[0013]
【Example】
A method for manufacturing the non-aqueous electrolyte secondary battery used in this example will be described below.
[0014]
The positive electrode plate was produced as follows.
Each powder of nickel hydroxide, cobalt hydroxide, and lithium hydroxide is weighed so that the ratio of the number of Ni, Co, and Li atoms is 0.8: 0.2: 1.0, and thoroughly mixed with a ball mill. This mixture is put in an alumina crucible, heat-treated in dry air at 750 ° C. for 10 hours, then naturally cooled, pulverized and classified, and contains lithium represented by the general formula LiNi 0.8 Co 0.2 O 2 A cobalt-nickel oxide was produced and used as a positive electrode active material.
[0015]
To 100 parts by weight of the positive electrode active material obtained as described above, an N-methylpyrrolidone solution containing 4 parts by weight of artificial graphite powder having an average particle diameter of 4 μm as a conductive agent and 4 parts by weight of polyvinylidene fluoride as a binder is added and kneaded. And paste it. Next, this paste was applied on both sides of an aluminum foil having a thickness of 0.02 mm, dried at 80 ° C., and then rolled to obtain a positive electrode sheet. This positive electrode sheet was cut into a length of 380 mm and a width of 37 mm to obtain a positive electrode plate. The thickness is 0.14mm. In preparing the positive electrode plate, a series of steps after the kneading was performed in dry air.
[0016]
The negative electrode plate was produced as follows.
For the negative electrode, artificial graphite capable of occluding and releasing lithium with an average particle size of 6.0 μm was used. An aqueous solution of 3 parts by weight of styrene-butadiene rubber as a binder was added to 100 parts by weight of natural graphite and kneaded to obtain a paste. This paste was applied to both sides of a 0.025 mm thick copper foil, dried at 80 ° C., and then rolled to obtain a negative electrode sheet. This negative electrode sheet was cut into a length of 420 mm and a width of 39 mm to obtain a negative electrode plate. The thickness was 0.2 mm.
[0017]
The electrode plate group was produced using the positive and negative electrode plates as follows.
A positive electrode lead made of aluminum is attached to the positive electrode plate, and a negative electrode lead made of nickel is attached to the negative electrode plate. The positive and negative electrode plates are overlapped with a separator made of polyethylene resin having a thickness of 0.025 mm, a width of 45 mm, and a length of 1000 mm. An electrode plate group wound in a spiral shape in the length direction was obtained.
[0018]
FIG. 1 shows a longitudinal sectional view of a cylindrical battery.
The electrode plate group 1 obtained by the above method is stored in a battery case 2 made of stainless steel whose inner surface is treated with an organic electrolyte solution and having a diameter of 17 mm and a height of 50 mm. Insulating rings 3 were inserted into the upper and lower parts. The lead 6 drawn from the positive electrode was welded to the sealing plate 4, and the negative electrode lead 7 drawn from the negative electrode was welded to the bottom of the case 2.
[0019]
An electrolyte solution in which 1 mol / liter LiPF 6 was dissolved as an electrolyte was injected into a solvent in which EC and EMC were mixed at a volume ratio of 20:80, and a sealing plate 4 was fitted into the opening of the battery case 2. Battery case 2 was sealed. Each step was performed in a dry air atmosphere.
[0020]
The above battery charged to 4.0 V is referred to as battery 1, a battery of the same configuration is also charged and left in an environment of 45 ° C. for 1 hour as battery 2, left for 2 hours as battery 3, and left for 5 hours. Battery 4 is left as battery 5 for 10 hours, battery 6 is left as it is for 20 hours, and battery 7 is left as it is for 100 hours.
[0021]
Table 1 shows the discharge capacities when these batteries were charged at a current of -20 ° C between 4.2.2V and rested for 20 minutes and then discharged at 1000mA to 3V. Moreover, since these batteries were disassembled and the composition analysis of the gas in the batteries was performed, the amount of methane gas contained in volume% is shown in (Table 1).
[0022]
[Table 1]
Figure 0003985323
[0023]
As is clear from the results of (Table 1), the discharge capacity is small when battery 1 does not contain methane gas at all, but the discharge characteristics are large only by the presence of 1% methane gas as batteries 2 and 3. Improved. Further, the discharge characteristics of the batteries 5, 6 and 7 are further improved when the amount of methane gas is 5% or more. As can be seen from the above, a sealed nonaqueous electrolyte secondary battery excellent in high-rate discharge characteristics at low temperatures could be obtained by containing methane gas in the voids in the battery.
[0024]
Similar effects were obtained if methane gas was present in the voids in the battery regardless of the charging conditions and storage conditions.
[0025]
In this example, after sealing the sealed battery, methane gas was generated by leaving it in a high temperature state in a charged state, and the high rate discharge characteristics at low temperature were improved, but methane gas was sealed at the stage of manufacturing the battery, The same effect was obtained by other methods such as using a negative electrode material that easily generates methane gas, and it was found that it does not depend on the method of filling the voids in the battery with methane gas or a mixed gas containing methane gas.
[0026]
In this example, each step was performed in a dry air atmosphere, but the same effect was obtained even when performed in an inert gas atmosphere such as nitrogen or carbon dioxide. That is, it has been found that if methane gas is contained in the gas mixture in the battery, it does not depend on the type of other components of the gas mixture.
[0027]
In this example, an electrolyte solution in which EC and EMC were mixed in a volume ratio of 20:80 was dissolved in 1 mol / liter LiPF 6 as an electrolyte, but propylene carbonate, A mixture of carbonates such as dimethyl carbonate and diethyl carbonate, ethers such as 1,2-dimethoxyethane and 2-methyltetrahydrofuran, and one or more of aliphatic carboxylic acids such as methyl propionate and ethyl acetate used, LiClO 4, LiBF 6, LiAsF 6, LiSbF 6, LiCF 3 SO 3 similar effect also those using a lithium salt such as are obtained as the electrolyte of the electrolytic solution.
[0028]
In this example, artificial graphite was used as the negative electrode active material. However, coke, carbon fiber, artificial graphite or metal oxide, lithium alloy, lithium metal, lithium compound, conductive polymer, etc. that can occlude and release lithium. Even when using, almost the same effect was obtained.
[0029]
Was used LiNi 0.8 Co 0.2 O 2 as the positive electrode active material in the present embodiment, the general formula Li x M y Ni 1-y O 2 (x: 1.10 ≧ x ≧ 0.5, M is Fe, V, Cu, Mg, Similar results were obtained even when a lithium-containing composite oxide represented by one or more of Co, Mn, Cr, and Al, y: 1 ≧ y ≧ 0) was used.
[0030]
【The invention's effect】
As described above, in the present invention, the void portion in the battery is filled with methane gas or contains methane gas, so that part of the methane gas is dissolved in the electrolytic solution, resulting in lowering the freezing point of the solvent and lowering the viscosity. The high rate discharge characteristics at a low temperature can be improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a sealed nonaqueous electrolyte secondary battery of the present invention.
DESCRIPTION OF SYMBOLS 1 Electrode group 2 Battery case 3 Insulation ring 4 Sealing plate 5 Insulation packing 6 Positive electrode lead 7 Negative electrode lead

Claims (2)

一般式LixMyNi1-yO2(x:1.10≧x≧0.5、MはFe、V、Cu、Mg、Co、 Mn、Cr、Alのいずれか1種類以上、y:1≧y≧0)であらわされるリチウム含有複合酸化物からなる正極と、リチウムを吸蔵、放出し得る炭素材料、もしくは金属酸化物、リチウム合金、リチウム金属、リチウム化合物、導電性ポリマーからなる群より選ばれる少なくとも一つからなる負極と、有機溶媒を用いた電解液とを備え、前記電池内の空隙部分はメタンガスで満たされるか、又はメタンガスを含む密閉型非水電解液二次電池。General formula Li x M y Ni 1-y O 2 (x: 1.10 ≧ x ≧ 0.5, M is one or more of Fe, V, Cu, Mg, Co, Mn, Cr, Al, y: 1 ≧ y A positive electrode comprising a lithium-containing composite oxide represented by ≧ 0) and a carbon material capable of occluding and releasing lithium, or at least selected from the group consisting of metal oxides, lithium alloys, lithium metals, lithium compounds, and conductive polymers A sealed nonaqueous electrolyte secondary battery comprising a single negative electrode and an electrolytic solution using an organic solvent, wherein a void in the battery is filled with methane gas or contains methane gas. 前記混合気体がメタンガスを5体積%以上含む請求項1記載の密閉型非水電解液二次電池。2. The sealed nonaqueous electrolyte secondary battery according to claim 1, wherein the mixed gas contains 5% by volume or more of methane gas.
JP02574298A 1998-02-06 1998-02-06 Sealed non-aqueous electrolyte secondary battery Expired - Lifetime JP3985323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02574298A JP3985323B2 (en) 1998-02-06 1998-02-06 Sealed non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02574298A JP3985323B2 (en) 1998-02-06 1998-02-06 Sealed non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH11224690A JPH11224690A (en) 1999-08-17
JP3985323B2 true JP3985323B2 (en) 2007-10-03

Family

ID=12174287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02574298A Expired - Lifetime JP3985323B2 (en) 1998-02-06 1998-02-06 Sealed non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3985323B2 (en)

Also Published As

Publication number Publication date
JPH11224690A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
US6511776B1 (en) Polymer electrolyte battery and polymer electrolyte
JP5247196B2 (en) Nonaqueous electrolyte secondary battery
JP2007200862A (en) Nonaqueous electrolyte secondary battery
JP2008147153A (en) Lithium secondary battery
JP2010062113A (en) Lithium ion secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
WO2005099022A1 (en) Nonaqueous electrolyte secondary battery
JP2008311211A (en) Nonaqueous electrolyte secondary battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3244389B2 (en) Lithium secondary battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
JP6522661B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4441935B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and battery using the same
JP2004319133A (en) Nonaqueous electrolyte secondary battery
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP3670880B2 (en) Lithium secondary battery
JP2004220961A (en) Lithium secondary battery
JP4036717B2 (en) Nonaqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2000277111A (en) Lithium secondary battery
JP3619702B2 (en) Lithium secondary battery
JP3985323B2 (en) Sealed non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040625

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040713

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140720

Year of fee payment: 7

EXPY Cancellation because of completion of term