JP3984835B2 - Contact charging member and contact charging device - Google Patents

Contact charging member and contact charging device Download PDF

Info

Publication number
JP3984835B2
JP3984835B2 JP2002005720A JP2002005720A JP3984835B2 JP 3984835 B2 JP3984835 B2 JP 3984835B2 JP 2002005720 A JP2002005720 A JP 2002005720A JP 2002005720 A JP2002005720 A JP 2002005720A JP 3984835 B2 JP3984835 B2 JP 3984835B2
Authority
JP
Japan
Prior art keywords
charging member
contact
surface layer
conductive
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002005720A
Other languages
Japanese (ja)
Other versions
JP2003207985A5 (en
JP2003207985A (en
Inventor
弘行 長田
誠司 都留
宏 井上
直喜 笛井
智士 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002005720A priority Critical patent/JP3984835B2/en
Publication of JP2003207985A publication Critical patent/JP2003207985A/en
Publication of JP2003207985A5 publication Critical patent/JP2003207985A5/ja
Application granted granted Critical
Publication of JP3984835B2 publication Critical patent/JP3984835B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に電子写真画像形成装置に用いられる接触式帯電部材及び接触式帯電装置に関する。
【0002】
【従来の技術】
電子写真複写機もしくは電子写真プリンタ、静電記録装置等の電子写真画像形成装置は、像担持体を帯電させる一次帯電手段、像担持体上の現像剤を被印刷物上に引き寄せる転写手段等というような、被帯電体を均一に帯電する手段を含んでいる。その際用いられる帯電法として、従来のコロナ帯電法よりもオゾン発生量が大幅に少ない接触式帯電法の検討が行われ、最近では一部において実用化されている。
【0003】
接触式帯電法とは、電圧を印加した帯電部材を被帯電体に当接させて被帯電体を帯電させるものであるが、当接部近傍の微小間隙で生じる放電現象を利用して被帯電体を帯電させる場合が一般的である。接触式帯電法に関する技術は多数提案されている(特開昭57−178267号公報、特開昭56−104351号公報、特開昭58−40566号公報、特開昭58−139156号公報、特開昭58−150975号公報等)。
【0004】
また、帯電部材は被帯電体を所定の電位に保持させる機能がその本来の目的であり、そのためには、特に表面層の適正な設計が重要である。例えば、特開平06−248174号公報では、ポリエーテルポリオールまたはポリエステルポリオールを含むポリオールとポリイソシアネートからなり、導電材を含有する高分子組成物において、該導電材がアルカリ金属塩からなり、また該高分子組成物のOH/NCO比が0.7以上1未満であることを特徴とする高分子組成物からなる層が芯金表面に形成されたロールが開示されている。該構成により電気抵抗のバラツキがなく、導電材としてのアルカリ金属塩の析出が見られないポリウレタン高分子組成物であるという特徴を有している。
【0005】
しかし、接触帯電法、帯電部材について多数の提案がなされているものの、従来の帯電部材を被帯電体に当接させて、電圧、特に直流電圧を印加して被帯電体を帯電させる場合、帯電の不均一性による筋状画像を発生し易い、また、直接電圧を印加することによる感光体の放電絶縁破壊により、ピンホールが発生し、例えば円筒状感光体の場合軸方向全体の電流がそのピンホールに流れるため軸方向全体が帯電されなくなることがある等の欠点は、未だ解決されていない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記のような欠点を解決し、帯電均一性に優れ、かつ感光体の放電絶縁破壊による画像欠陥等の発生のない接触式帯電部材、及びそれを用いた接触式帯電装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等が帯電部材の上記問題点(帯電均一性、リーク性)について鋭意検討した結果、(1)体積固有抵抗値の低い結着樹脂に必要最小限の導電材を分散させ抵抗調整した材料で表面層を構成することにより、上記2つの問題点を同時に解消できる、(2)結着樹脂中に水酸基を有する材料の体積固有抵抗値は、水酸基の絶対量と良好な相関関係があり、特にポリウレタン樹脂は、原料であるポリオール化合物とイソシアネート化合物の比率を適宜調整することで、比較的自由に水酸基量をコントロールできることから好適な材料である、ことを見出し本発明に至った。
【0008】
即ち、本発明は以下の通りである。
(1)導電性基体と、該導電性基体上に設けられた導電性弾性層と、ポリウレタン樹脂及び該ポリウレタン樹脂100質量部に対して30〜(20000/301)質量部の導電材を含有する体積固有抵抗値が4×10 12 〜6×10 12 Ωcmである表面層と、を有する接触式帯電部材であって、該ポリウレタン樹脂は、水酸基(OH)とイソシアネート基(NCO)のモル比が0.3≦NCO/OH<1.0であるポリウレタン原料から得られたポリウレタン樹脂であり、該ポリウレタン樹脂の水酸基価は、5KOHmg/g以上100KOHmg/g以下である接触式帯電部材。
(2)前記導電材が金属酸化物、カーボンブラック又は球体状炭素材料である(1)に記載の接触式帯電部材。
(3)前記導電材が酸化スズである(1)に記載の接触式帯電部材。
(4)前記表面層の体積固有抵抗値が前記導電性弾性層の体積固有抵抗値よりも大きい(1)〜(3)のいずれかに記載の接触式帯電部材。
(5)帯電部材を有し、被帯電体に当接させた該帯電部材に電圧を印加することにより該被帯電体を帯電させる接触帯電装置において、該帯電部材が(1)〜(4)のいずれかに記載の接触式帯電部材であることを特徴とする接触式帯電装置。
(6)前記電圧が直流電圧のみである(5)に記載の接触式帯電装置。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0010】
本発明の帯電部材は、導電性基体と、該導電性基体上に設けられた導電性弾性層と、ポリウレタン樹脂を含有する表面層とを有し、前記表面層のポリウレタン樹脂は、ポリウレタン原料の水酸基(OH)とイソシアネート基(NCO)のモル比が0.3≦NCO/OH<1.0であり、水酸基価が5KOHmg/g以上100KOHmg/g以下である接触式帯電部材である。
【0011】
本発明の接触式帯電部材の一つの実施の形態を図2に示す。
【0012】
本発明の接触式帯電部材は、電圧が印加される導電性基体である芯金2a、弾力性を付与する導電性弾性層2b、被帯電体と接触する被覆層である表面層2dからなり、必要に応じて帯電部材の抵抗を制御する抵抗制御層2cが導電性弾性層2bの外側に設けられても良い。
【0013】
図2に示す本発明で使用する導電性基体である芯金2aは、ステンレス製の円柱である。導電性基体を構成する材料として他にも、例えば鉄、アルミニウム、チタン、銅及びニッケルなどの金属やこれらの金属を含むステンレス、ジュラルミン、真鍮及び青銅などの合金、更にカーボンブラックや炭素繊維をプラスチックで固めた複合材料などの、剛直で導電性を示す公知の材料を使用することもできる。また、形状としては円柱形状の他に、中心部分を空洞とした円筒形状とすることも出来る。
本発明では、まず上記導電性基体2aの外周に導電性弾性層2bを成形する。
【0014】
導電性弾性層は、アルミニウム、パラジウム、鉄、銅等の金属系の粉体や繊維;ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子粉体;カーボンブラック;酸化チタン、酸化スズ、酸化亜鉛等の金属酸化物、硫化銅、硫化亜鉛などの金属化合物粉、または適当な粒子の表面を酸化スズ、酸化アンチモン、酸化インジウム、酸化モリブテン、亜鉛、アルミニウム、金、銀、銅、クロム、コバルト、鉄、鉛、白金、ロジウムを電解処理、スプレー塗工、混合振とうにより付着させた粉体、アセチレンブラック、ケッチェンブラック等の導電材を分散させて導電性処理したゴムや絶縁性樹脂からなる層が挙げられる。あるいは、ゴムや絶縁性樹脂の表面を金属や他の導電性物質によってラミネート又はコートしたものなどを用いることができる。
【0015】
導電性弾性層に用いられるゴムとしては、EPM(エチレン・プロピレンゴム)、EPDM(エチレン・プロピレンゴム)、ノルボーネンゴム、NBR(ニトリルゴム)、クロロプレンゴム、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン−ブタジエンゴム、クロロスルフォン化ポリエチレン、ヒドリンゴム、ウレタンゴム、シリコーンゴム等が挙げられ、絶縁性樹脂としては、ポリカーボネート、ポリエステル等が挙げられる。
【0016】
導電性弾性層は、体積固有抵抗値101〜1011Ωcmが好ましく、特には102〜1010Ωcmの範囲が好ましい。体積固有抵抗値は上記ゴムや絶縁性樹脂に加えるカーボンブラック、導電性金属酸化物、金属粉や導電性高分子粉体等の導電材の量を調整すれば良い。その配合量はゴムや絶縁性樹脂100質量部に対し、0.5〜300質量部であり、好ましくは3〜100質量部である。
【0017】
導電性弾性層の膜厚は0.5〜10mm、特に1〜6mmの範囲が好ましい。
【0018】
導電性弾性層の膜厚を上記範囲とするには、導電性弾性層を成形する際に、例えば射出成形で膜厚をコントロールする場合には、加硫時、加硫後の弾性層材料の熱変形を考慮して金型を設計(寸法、形状)する、押し出し成形後、研磨にて膜厚をコントロールする場合には、研磨機の研磨条件を適正化する等の方法がある。
【0019】
導電性弾性層の成形方法としては、上記の導電性弾性層の原料を混合して、例えば、押し出し成形や射出成形、圧縮成形等の公知の方法が挙げられる。また、導電性弾性層は、導電性基体の上に直接導電性弾性層を成形して作製してもよいし、チューブ形状に成形したものを導電性基体に被覆させてもよい。なお、導電性弾性層の作製後に表面を研磨して形状を整えてもよい。
【0020】
導電性弾性層が完成した後に、その被覆層としてポリウレタン樹脂を含有する表面層を設ける。
【0021】
表面層のポリウレタン樹脂の重合体原料としては以下に示すようなポリオール化合物並びにイソシアネート化合物がある。
【0022】
ポリオール化合物としては、一例を挙げると、フタル酸、アジピン酸等の二塩基酸、TMP、エチレングリコール、ヘキサンジオール、ネオペンチルグリコール等のアルコール類を原料として用いたオイルフリーポリエステルポリオール;大豆油、ひまし油、ヤシ油等のポリエステルポリオール;プロピレンオキサイド、エチレンオキサイド等のアルキレンオキサイドを原料として用いたポリエーテルポリオール;アクリル酸エステル、メタクリル酸エステル、ヒドロキシエチルメタクリレート(HEMA)、スチレン、アクリル酸等の共重合体であるアクリルポリオール;ポリマー鎖にOH基を導入した有機フッ素化合物であるフッ素ポリオール;エポキシ基を有するエポキシポリオール;THFの重合によるポリテトラメチレングリコール;ポリカーボネートポリオール;ブタジエンを原料とするポリブタジエンポリオール等の末端水酸基を有する化合物及びそれらの混合物などが挙げられる。
【0023】
イソシアネート化合物としては、トリレンジイソシアネート、メタキシリレンジイソシアネート、ジフェニルメタンイソシアネート、ポリメチレンポリフェニルイソシアネートなどの芳香族イソシアネート化合物、上記イソシアネートの水添加、ヘキサメチレンジイソシアネートなどの脂肪族イソシアネート化合物、およびこれらのイソシアネート化合物のイソシアネート基をフェノール、ケトキシム、芳香族第2級アミン、第3級アルコール、アミド、ラクタム、複素環化合物、亜硫酸塩などでブロックしたブロックイソシアネート化合物などが挙げられる。
【0024】
上記、ポリオール化合物とイソシアネート化合物は、ベンゼン、トルエン、ニトロベンゼン、ジブチルエーテル、メチルエチルケトン、ジオキサン、アセトニトリル等の溶剤で溶解できるので、成形の際に、下層である導電性弾性層をおかすことのない塗工法をとることが可能である。
【0025】
また、ポリウレタン、エラストマーをN−メチルピロリドン、ジメチルアセトアミド、DMF、ピリジン、ベンジルアルコール等で溶解し再び成形することも可能である。
【0026】
重合体の生成を促進する触媒として、ナフテン酸マグネシウム、ナフテン酸コバルトなどのナフテン酸塩類、ジブチルスズジラウレート、ジメチルスズジラウレートなどの有機スズ化合物、N−メチルモルホリン、N,N,N',N'−テトラメチルポリメチレンジアミンなどのアミン化合物などを添加しても良い。触媒の添加量は重合体に対し、0.001〜5質量%の範囲が好ましい。
【0027】
本発明の表面層に用いられるポリウレタン樹脂は、上記ポリウレタン重合原料の水酸基(OH)とイソシアネート基(NCO)のモル比が0.3≦NCO/OH<1.0である。好ましくはNCO/OHが0.4〜0.99である。NCO/OHが、0.3より小さい場合、架橋度が小さいことにより、材料強度が不足するため、このような材料で表面層を形成すると、使用途中で表面層のひび割れ等が起こり帯電不良起因の画像不良を発生する傾向がある。NCO/OHが、1.0以上の場合、ポリウレタン樹脂中の水酸基が少なくポリウレタン樹脂自体の体積固有抵抗値を所望の値に調整しにくい。
【0028】
また、本発明のポリウレタン樹脂の水酸基価は5KOHmg/g以上100KOHmg/g以下であり、好ましくは10KOHmg/g以上50KOHmg/g以下である。
【0029】
水酸基価が5KOHmg/gより低い場合、ポリウレタン樹脂自体の体積固有抵抗値が高くなり、上述の望ましい表面層の抵抗範囲に制御するには、多量の導電材を添加、分散させる必要がある。本発明者等の検討によれば、このような材料は、ある電圧のもとで抵抗を合わせ込んでも抵抗の電圧依存性が大きく、高電圧印加の元では極度に抵抗が低下する傾向がある。帯電均一性を良化させるには、低電圧印加の元での表面層の抵抗を下げる必要があるが、上記の理由でリーク性が悪化する。逆に高電圧印加時の抵抗を上げるとリーク性は良いものの、帯電均一性が悪化するため、帯電均一性とリーク性を両立させることができない。また、多量の導電材を添加、分散させると、表面層のミクロ的な抵抗ムラが大きくなり、帯電均一性が悪化する傾向がある。
【0030】
水酸基価が100KOHmg/gより高い場合、ポリウレタン樹脂自体の体積固有抵抗値が下がり、少量の導電材の添加、分散で抵抗調整できるため、帯電均一性が良く(表面層の抵抗低)、リーク性が良い表面層を得られるが、材料のタック性(特に高温高湿下)が大きくなるため、このような材料で表面層を形成すると、使用途中で、現像剤、紙粉等が付着し、帯電不良起因の画像不良を発生する傾向がある。
【0031】
ポリウレタンの水酸基価を50KOHmg/g以上、100KOHmg/g以下とするには、原料であるポリオール化合物とイソシアネート化合物の比率を適宜調整すれば良い。
【0032】
表面層に含有される導電材としては、酸化チタン、酸化スズ、酸化亜鉛等の金属酸化物からなる導電材、カーボンブラック、球体状炭素材料からなる導電材等があり、単独または2種類以上組み合わせて使用してもよい。
【0033】
表面層の樹脂に加えるこれらの導電材の配合量は、表面層の樹脂の体積固有抵抗値が10〜1014Ωcmになるように決めることが好ましい。また、特願昭62−230334号公報に示されるように表面層の体積固有抵抗値は表面層に接する下層の体積固有抵抗値より大きいことが好ましい。本発明において「表面層に接する下層」とは、主に導電性弾性層である。具体的には、表面層の体積固有抵抗値が10〜1014Ωcmで、導電性弾性層の体積固有抵抗値が10〜1011Ωcmであることが好ましい。
【0034】
表面層に用いる導電材の具体的な含有量としては、ポリウレタン樹脂100質量部に対して30〜200質量部が好ましい。表面層の体積固有抵抗値が導電性弾性層の体積固有抵抗値より小さいと高電圧印加の元で帯電部材の抵抗が低下しやすく、リーク性が不良となる。
【0035】
体積固有抵抗値は、抵抗値測定機(商品名:ハイレスタUP、J−Box、三菱化学(株)製)を用い、導電性弾性層及び表面層材料のシートサンプルにて測定する。測定は、直流電圧100Vで30秒印加の条件で行う。
表面層の膜厚は1〜500μm、特に2〜200μmの範囲が好ましい。
【0036】
表面層の膜厚を上記範囲とするには、表面層を成形する際に、成形法に応じ、表面層形成用の樹脂塗料の固形分、粘度等を適正な範囲に調整することで制御する。膜厚の測定は、以下の方法により行う。
1)帯電部材の9個所(ローラ形状の場合、両端部から10mm位置、と中央部の3位置で、周方向3個所(任意の場所を起点に120°刻み))から、ナイフで試料を切り出す。
2)光学顕微鏡で各試料の断面を観察し(400倍程度)、表面層の膜厚を求める。9点の算術平均をもって表面層膜厚とする。
【0037】
表面層の成形方法としては、上記の表面層を構成する材料を、サンドミル、ペイントシェーカー、ダイノミル、パールミル等のビーズを利用した従来公知の分散装置を用いて公知の方法により分散させ、得られた表面層形成用の樹脂塗料を、ディッピング法やスプレーコート法により、帯電部材の表面、本発明においては導電性弾性層の上に塗工する。
【0038】
抵抗制御層2cは、帯電部材の部分的な抵抗ムラを無くし、抵抗の均一性を向上させる目的で、弾性層と表面層の間に必要に応じて設けても良い。
【0039】
帯電部材の形状としてはローラ、ブラシ、ブレード、ベルトなどいずれの形状をとってもよく電子写真装置の仕様、形態にあわせて選択可能である。これらの中でもローラ形状が好ましい。
【0040】
<2>本発明の接触式帯電装置
本発明の接触式帯電部材を用いた接触式帯電装置を組込んだ画像形成装置(複写機)の概略構成図を図1に示す。
【0041】
本発明の接触式帯電部材2は、電源3より直流電圧あるいは直流電圧と交流電圧の重畳電圧等の振動電圧が導電性基体に印加される。
【0042】
本発明の接触式帯電装置は、帯電部材に本発明の接触式帯電部材を用いることにより、上述のような(1)低電圧から高電圧に渡り帯電部材の抵抗が安定している、即ち、抵抗の電圧依存性が小さい。(2)少量の導電材添加で表面層抵抗を安定して制御できるため、表面層のミクロ的な抵抗ムラが小さいなどの帯電部材自体の効果をもたらすので、帯電部材を用いた帯電装置は、「帯電均一性に優れ、感光体の放電絶縁破壊による画像欠陥等の発生がない」ものを構成することが可能となる。その導電性基体への印加電圧は直流電圧、もしくは交流電圧と直流電圧の重畳電圧などの振動電圧のいずれであってもよく、いずれの場合も本発明の優れた効果を発揮することができる。特に交流電源を廃した直流電圧のみの場合その効果が顕著である。
【0043】
従来の帯電部材では、直流電圧のみを印加して感光体を帯電処理する場合、表面層のミクロ的な抵抗ムラに起因し、帯電不均一性を生じ易い、交流電圧を重畳する場合に比べてリークし易いという問題があったが、本発明の帯電部材を用いることで、感光体表面の均一帯電性、耐リーク性が著しく向上するため、直流電圧のみでの帯電処理が可能となった。なお、直流電圧としては、800〜2000Vが好ましい。
【0044】
本発明の接触式帯電部材2は、導電性基体である芯金2aに、電源3より直流電圧あるいは直流電圧と交流電圧の重畳電圧等の振動電圧が印加される。
【0045】
前記接触式帯電部材2は、図示しない押圧手段により所定の当接力をもって被帯電体である感光体1に当接している。当接力は、片側100〜800g荷重、両側200〜1600g荷重の当接力であることが好ましい。
【0046】
図1の画像形成装置において、接触式帯電部材2と感光体1はそれぞれ矢印の方向に回転し、電源3により印加される電圧により接触式帯電部材2が当接する感光体の感光層1bが帯電され、露光手段4により静電潜像が形成され、現像手段5により該静電潜像が現像されて、感光層1b上にトナー画像が形成され、転写手段6において被印刷物7上に転写され、永久画像が形成される。転写されなかった転写残トナーは、クリーニング手段8で回収される。
【0047】
【実施例】
以下に、本発明の接触式帯電部材及び接触式帯電装置を実施例を用いて詳細に説明する。
【0048】
【実施例1】
(1)導電性弾性層の作成
シリコーンゴム100質量部、酸化亜鉛5質量部、導電性カーボンブラック7質量部及び工業用パラフィン20質量部を密閉型ミキサーを用いて充分混合、混練した後、オープンロールにてジクミルパーオキサイド2質量部を添加し、導電性弾性層用コンパウンドを調製した。この導電性弾性層用コンパウンドを、直径6mmのステンレス製芯金上に150℃で15分間加熱加硫させ、厚さ3mmの導電性弾性層を有するシリコーンゴムローラを作成した。
【0049】
同時に、加硫シート(2mm厚)を作製し、三菱化学製ハイレスタUPを用いて体積固有抵抗値を測定(23℃/60%、100V印加、30秒)したところ、2×107Ωcmであった。
【0050】
(2)表面層の作成ラクトン変性アクリルポリオール(水酸基価90KOHmg/g)71質量部、メチルエチルケトン129質量部、導電性酸化スズ50質量部を小型のビーズミルを用いて分散させた後、ヘキサメチレンジイソシアネート14.3質量部を添加、溶解し表面層形成用樹脂塗料を調製した。(NCO/OH=0.70)
上記表面層形成用樹脂塗料を前記シリコーンゴムローラの上に浸漬塗布し、150℃で1時間乾燥することにより厚さ20μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、27.3KOHmg/gであった。同時に、40μm厚のフィルムを作製し、三菱化学製ハイレスタUPを用いて体積固有抵抗値を測定(100V印加、30秒)したところ、5×1012Ωcmであった。
【0051】
(3)帯電部材の評価
上記帯電部材をレーザビームプリンタ(レーザジェット4siヒューレットパッカード製)に用いられるカートリッジの一次帯電器位置に取り付け、直流電圧−1160Vのバイアスを印加し23℃/60%の環境下で初期画像評価、リーク試験および8000枚の耐久試験を行った。結果を表1に示す。
【0052】
<1>画像均一性
1ドット2スペースの横ハーフトーン画像に現れる横筋を評価した。評価基準は以下の通りである。
〇:横筋なし
△:横筋少数
×:横筋多数
【0053】
<2>耐久性
▲1▼表面層の汚れ
耐久後、1ドット2スペースの横ハーフトーン画像に現れる濃度ムラを評価した。評価基準は以下の通りである。
〇:濃度ムラ良好
△:わずかな濃度ムラ
×:著しい濃度ムラ
▲2▼表面層のクラック
耐久後の帯電ローラ表面を光学顕微鏡で観察し、クラックの程度を下記の基準に基づいて評価した。
〇:軽微なクラックしか観察されない
△:部分的にクラックが観察される
×:著しいクラックが観察される
【0054】
<3>ピンホールリーク試験
ピンホールを開けた感光ドラムを用いて、1ドット2スペースの横ハーフトーン画像に現れるピンホール起因の横抜け(横黒筋)を評価した(直流電圧−1160V)。評価基準は以下の通りである。
○:横抜けなし
△:わずかに横抜け
×:著しい横抜け
【0055】
【表1】

Figure 0003984835
【0056】
【実施例2】
(1)導電性弾性層の作成
実施例1と同様に行った。
(2)表面層の作成
導電性酸化スズの量を55質量部、へキサメチレンジイソシアネートの量を17.8質量部とした以外は実施例1と同様にして表面層形成用樹脂塗料を調製した。(NCO/OH=0.87)
得られた表面層形成用樹脂塗料を用いて実施例1と同様にして、厚さ21μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、11.7KOHmg/gであった。
【0057】
同時に、40μm厚のフィルムを作製し、体積固有抵抗値を測定したところ、6×1012Ωcmであった。
(3)帯電部材の評価
上記帯電部材を、実施例1と同じ条件で初期画像評価、耐久試験、リーク試験を行った。結果を表1に示す。
【0058】
【実施例3】
(1)導電性弾性層の作成
実施例1と同様に行った。
(2)表面層の作成
導電性酸化スズの量を45質量部、ヘキサメチレンジイソシアネートの量を8.9質量部とした以外は実施例1と同様にして表面層形成用樹脂塗料を調製した。(NCO/OH=0.44)得られた表面層形成用樹脂塗料を用いて実施例1と同様にして、厚さ19μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、50.8KOHmg/gであった。同時に、40μm厚のフィルムを作製し、体積固有抵抗値を測定したところ、4×1012Ωcmであった。
【0059】
(3)帯電部材の評価
上記帯電部材を、実施例1と同じ条件で初期画像評価、耐久試験、リーク試験を行った。結果を表1に示す。
【0060】
【実施例4】
(1)導電性弾性層の作成
実施例1と同様に行った。
(2)表面層の作成
導電性酸化スズの量を60質量部、ヘキサメチレンジイソシアネートの量を19.3質量部とした以外は実施例1と同様にして表面層形成用樹脂塗料を調製した。(NCO/OH=0.94)
得られた表面層用塗料を用いて実施例1と同様にして、厚さ22μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、5.42KOHmg/gであった。同時に、40μm厚のフィルムを作製し、体積固有抵抗値を測定したところ、5.5×1012Ωcmであった。
(3)帯電部材の評価上記帯電部材を、実施例1と同じ条件で初期画像評価、耐久試験、リーク試験を行った。結果を表1に示す。
【0061】
【実施例5】
(1)導電性弾性層の作成
実施例1と同様に行った。
(2)表面層の作成
ポリエステルポリオール(水酸基価150KOHmg/g)71質量部、メチルエチルケトン129質量部、導電性酸化スズ40質量部を小型のビーズミルを用いて分散させた後、へキサメチレンジイソシアネート11.4質量部を添加、溶解し表面層形成用樹脂塗料を調製した。(NCO/OH=0.33)
得られた表面層形成用樹脂塗料を用いて実施例1と同様にして、厚さ20μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、99.9KOHmg/gであった。同時に、40μm厚のフィルムを作製し、体積固有抵抗値を測定したところ、4.5×1012Ωcmであった。
【0062】
(3)帯電部材の評価
上記帯電部材を、実施例1と同じ条件で初期画像評価、耐久試験、リーク試験を行った。結果を表1に示す。
【0063】
【比較例1】
(1)導電性弾性層の作成
実施例1と同様に行った。
(2)表面層の作成
導電性酸化スズの量を70質量部、へキサメチレンジイソシアネートの量を20質量部とした以外は実施例1と同様にして表面層形成用樹脂塗料を調製した。(NCO/OH=0.97)
得られた表面層形成用樹脂塗料を用いて実施例1と同様にして、厚さ18μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、2.30KOHmg/gであった。同時に、40μm厚のフィルムを作製し、体積固有抵抗値を測定したところ、6.0×1012Ωcmであった。
【0064】
(3)帯電部材の評価
上記帯電部材を、実施例1と同じ条件で初期画像評価、耐久試験、リーク試験を行った。結果を表1に示す。
【0065】
【比較例2】
(1)導電性弾性層の作成
実施例1と同様に行った。
(2)表面層の作成
導電性酸化スズの量を50質量部とした以外は比較例1と同様にして表面層形成用樹脂塗料を調製した。(NCO/OH=0.97)得られた表面層形成用樹脂塗料を用いて実施例1と同様にして、厚さ18μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、2.30KOHmg/gであった。同時に、40μm厚のフイルムを作製し、体積固有抵抗値を測定したところ、2.0×1014Ωcmであった。
【0066】
(3)帯電部材の評価
上記帯電部材を、実施例1と同じ条件で初期画像評価、耐久試験、リーク試験を行った。結果を表1に示す。
【0067】
【比較例3】
(1)導電性弾性層の作成
実施例1と同様に行った。
(2)表面層の作成
ポリエステルポリオール(水酸基価225KOHmg/g)71質量部、メチルエチルケトン129質量部、導電性酸化スズ30質量部を小型のビーズミルを用いて分散させた後、ヘキサメチレンジイソシアネート21.4質量部を添加、溶解し表面層形成用樹脂塗料を調製した。(NCO/OH=0.42)得られた表面層形成用樹脂塗料を用いて実施例1と同様にして、厚さ22μmの表面層を有する帯電部材を得た。ポリウレタン樹脂中の水酸基価は、131KOHmg/gであった。同時に、40μm厚のフィルムを作製し、体積固有抵抗値を測定したところ、0.9×1012Ωcmであった。
【0068】
(3)帯電部材の評価
上記帯電部材を、実施例1と同じ条件で初期画像評価、耐久試験、リーク試験を行った。結果を表1に示す。
【0069】
【発明の効果】
本発明により、帯電均一性に優れ、かつ感光体の放電絶縁破壊による画像欠陥等の発生のない接触式帯電部材、及びそれを用いた接触式帯電装置を提供することが出来る。
【図面の簡単な説明】
【図1】 本発明の接触式帯電装置を用いた画像形成装置の一例を示す概略構成図である。
【図2】 本発明の接触式帯電部材の一例を示す断面図である。
【符号の説明】
1 感光体(被帯電体)
1a 導電性基体
1b 感光層
2 接触式帯電部材
2a 導電性基体
2b 導電性弾性層
2c 抵抗制御層
2d 表面層
3 電源
4 露光手段
5 現像手段
6 転写手段
7 被印刷物
8 クリーニング手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a contact charging member and a contact charging device mainly used in an electrophotographic image forming apparatus.
[0002]
[Prior art]
An electrophotographic image forming apparatus such as an electrophotographic copying machine, an electrophotographic printer, or an electrostatic recording apparatus has a primary charging unit for charging an image carrier, a transfer unit for attracting a developer on the image carrier onto a printing material, and the like. And a means for uniformly charging the member to be charged. As a charging method used at that time, a contact charging method in which the amount of ozone generated is much smaller than that of the conventional corona charging method has been studied, and recently, a part of the charging method has been put into practical use.
[0003]
In the contact charging method, a charged member to which a voltage is applied is brought into contact with the member to be charged to charge the member to be charged. It is common to charge the body. Many techniques related to the contact charging method have been proposed (Japanese Patent Laid-Open Nos. 57-178267, 56-104351, 58-40566, 58-139156, (Kaisho 58-150975).
[0004]
Further, the original purpose of the charging member is to hold the member to be charged at a predetermined potential, and for this purpose, an appropriate design of the surface layer is particularly important. For example, in Japanese Patent Application Laid-Open No. 06-248174, a polymer composition comprising a polyol containing polyether polyol or polyester polyol and polyisocyanate, and containing a conductive material, the conductive material comprises an alkali metal salt, and A roll is disclosed in which a layer made of a polymer composition is formed on the surface of a metal core, wherein the molecular composition has an OH / NCO ratio of 0.7 or more and less than 1. With this configuration, there is a feature that the polyurethane polymer composition has no variation in electric resistance and no precipitation of alkali metal salt as a conductive material.
[0005]
However, although many proposals have been made regarding the contact charging method and charging member, when a charged member is charged by applying a voltage, particularly a DC voltage, by contacting a conventional charging member to the charged member, It is easy to generate streak images due to non-uniformity of the image, and pinholes are generated due to discharge breakdown of the photoconductor due to direct application of voltage. For example, in the case of a cylindrical photoconductor, the current in the entire axial direction is The drawbacks such as the fact that the entire axial direction may not be charged due to the flow through the pinhole have not yet been solved.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks, to have excellent charging uniformity and to prevent occurrence of image defects due to discharge dielectric breakdown of a photoreceptor, and a contact charging device using the same. Is to provide.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on the above problems of the charging member (charging uniformity, leakage property), the present inventors, etc., (1) The resistance was adjusted by dispersing the minimum necessary conductive material in the binder resin having a low volume resistivity. By constituting the surface layer with the material, the above two problems can be solved simultaneously. (2) The volume resistivity of the material having a hydroxyl group in the binder resin has a good correlation with the absolute amount of the hydroxyl group. In particular, the present inventors have found that a polyurethane resin is a suitable material because the amount of hydroxyl group can be controlled relatively freely by appropriately adjusting the ratio of a polyol compound and an isocyanate compound as raw materials.
[0008]
That is, the present invention is as follows.
(1) A conductive substrate, a conductive elastic layer provided on the conductive substrate, a polyurethane resin and 30 to (20000/301) parts by mass of a conductive material with respect to 100 parts by mass of the polyurethane resin. Volume resistivity value is4x10 12 ~ 6 × 10 12 And a polyurethane resin in which the molar ratio of hydroxyl group (OH) to isocyanate group (NCO) is 0.3 ≦ NCO / OH <1.0. A contact-type charging member, which is a polyurethane resin obtained from a raw material and has a hydroxyl value of 5 KOHmg / g or more and 100 KOHmg / g or less.
(2) The contact-type charging member according to (1), wherein the conductive material is a metal oxide, carbon black, or a spherical carbon material.
(3) The contact charging member according to (1), wherein the conductive material is tin oxide.
(4) The contact-type charging member according to any one of (1) to (3), wherein the volume resistivity value of the surface layer is larger than the volume resistivity value of the conductive elastic layer.
(5) In a contact charging device having a charging member and charging the charged member by applying a voltage to the charging member brought into contact with the charged member, the charging member comprises (1) to (4) A contact-type charging device according to any one of the above, characterized in that it is a contact-type charging member.
(6) The contact charging device according to (5), wherein the voltage is only a DC voltage.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0010]
The charging member of the present invention has a conductive substrate, a conductive elastic layer provided on the conductive substrate, and a surface layer containing a polyurethane resin. The polyurethane resin of the surface layer is made of a polyurethane raw material. The contact type charging member has a molar ratio of hydroxyl group (OH) to isocyanate group (NCO) of 0.3 ≦ NCO / OH <1.0, and a hydroxyl value of 5 KOHmg / g or more and 100 KOHmg / g or less.
[0011]
One embodiment of the contact-type charging member of the present invention is shown in FIG.
[0012]
The contact-type charging member of the present invention comprises a cored bar 2a that is a conductive substrate to which a voltage is applied, a conductive elastic layer 2b that imparts elasticity, and a surface layer 2d that is a coating layer that comes into contact with the object to be charged. If necessary, a resistance control layer 2c for controlling the resistance of the charging member may be provided outside the conductive elastic layer 2b.
[0013]
A cored bar 2a, which is a conductive substrate used in the present invention shown in FIG. 2, is a stainless steel cylinder. Other materials that constitute the conductive substrate include, for example, metals such as iron, aluminum, titanium, copper and nickel, alloys such as stainless steel, duralumin, brass and bronze containing these metals, and carbon black and carbon fibers. It is also possible to use a known material that is rigid and exhibits electrical conductivity, such as a composite material hardened in (1). Moreover, as a shape, it can also be set as the cylindrical shape which made the center part the cavity other than a column shape.
In the present invention, first, the conductive elastic layer 2b is formed on the outer periphery of the conductive substrate 2a.
[0014]
Conductive elastic layer is made of metal powder or fiber such as aluminum, palladium, iron or copper; conductive polymer powder such as polyacetylene, polypyrrole or polythiophene; carbon black; titanium oxide, tin oxide or zinc oxide. Metal oxide powder such as metal oxide, copper sulfide and zinc sulfide, or the surface of appropriate particles tin oxide, antimony oxide, indium oxide, molybdenum oxide, zinc, aluminum, gold, silver, copper, chromium, cobalt, iron, A layer made of conductive resin such as powder, acetylene black, ketjen black and other conductive materials dispersed by electrolytic treatment, spray coating, mixed shaking of lead, platinum, rhodium, etc. Can be mentioned. Alternatively, a material obtained by laminating or coating the surface of rubber or insulating resin with a metal or another conductive material can be used.
[0015]
Rubbers used for the conductive elastic layer include EPM (ethylene / propylene rubber), EPDM (ethylene / propylene rubber), norbornene rubber, NBR (nitrile rubber), chloroprene rubber, natural rubber, isoprene rubber, butadiene rubber, styrene. -Butadiene rubber, chlorosulfonated polyethylene, hydrin rubber, urethane rubber, silicone rubber and the like can be mentioned, and examples of the insulating resin include polycarbonate and polyester.
[0016]
The conductive elastic layer has a volume resistivity of 101-1011Ωcm is preferred, especially 102-10TenA range of Ωcm is preferred. The volume specific resistance value may be adjusted by adjusting the amount of conductive material such as carbon black, conductive metal oxide, metal powder, or conductive polymer powder added to the rubber or insulating resin. The compounding quantity is 0.5-300 mass parts with respect to 100 mass parts of rubber | gum or insulating resin, Preferably it is 3-100 mass parts.
[0017]
The film thickness of the conductive elastic layer is preferably in the range of 0.5 to 10 mm, particularly 1 to 6 mm.
[0018]
In order to set the film thickness of the conductive elastic layer within the above range, when the conductive elastic layer is formed, for example, when the film thickness is controlled by injection molding, the elastic layer material after vulcanization is used at the time of vulcanization. There are methods such as designing a mold in consideration of thermal deformation (dimensions and shape), and controlling the film thickness by polishing after extrusion, and optimizing the polishing conditions of the polishing machine.
[0019]
Examples of the method for forming the conductive elastic layer include known methods such as extrusion molding, injection molding, and compression molding by mixing the raw materials for the conductive elastic layer. The conductive elastic layer may be produced by directly forming a conductive elastic layer on a conductive substrate, or may be formed by forming a tube shape on a conductive substrate. Note that the surface may be polished and the shape may be adjusted after the production of the conductive elastic layer.
[0020]
After the conductive elastic layer is completed, a surface layer containing a polyurethane resin is provided as the covering layer.
[0021]
Examples of the polymer raw material for the polyurethane resin of the surface layer include the following polyol compounds and isocyanate compounds.
[0022]
Examples of polyol compounds include oil-free polyester polyols using dibasic acids such as phthalic acid and adipic acid, and alcohols such as TMP, ethylene glycol, hexanediol, and neopentyl glycol as raw materials; soybean oil, castor oil Polyester polyols such as coconut oil; polyether polyols using alkylene oxides such as propylene oxide and ethylene oxide as raw materials; copolymers of acrylic acid ester, methacrylic acid ester, hydroxyethyl methacrylate (HEMA), styrene, acrylic acid, etc. Acrylic polyol, which is a fluorine polyol, which is an organic fluorine compound in which an OH group is introduced into a polymer chain, an epoxy polyol having an epoxy group, polytetramethylene glycol by polymerization of THF ; Polycarbonate polyol; and compounds and mixtures thereof having a terminal hydroxyl group such as polybutadiene polyols butadiene as a raw material can be cited.
[0023]
As isocyanate compounds, aromatic isocyanate compounds such as tolylene diisocyanate, metaxylylene diisocyanate, diphenylmethane isocyanate, polymethylene polyphenyl isocyanate, water addition of the above isocyanates, aliphatic isocyanate compounds such as hexamethylene diisocyanate, and these isocyanate compounds And blocked isocyanate compounds in which the isocyanate group is blocked with phenol, ketoxime, aromatic secondary amine, tertiary alcohol, amide, lactam, heterocyclic compound, sulfite or the like.
[0024]
The above-mentioned polyol compound and isocyanate compound can be dissolved in a solvent such as benzene, toluene, nitrobenzene, dibutyl ether, methyl ethyl ketone, dioxane, acetonitrile, etc., so that a coating method that does not disturb the conductive elastic layer that is the lower layer during molding It is possible to take
[0025]
In addition, polyurethane and elastomer can be dissolved in N-methylpyrrolidone, dimethylacetamide, DMF, pyridine, benzyl alcohol, etc. and molded again.
[0026]
As a catalyst for promoting the formation of a polymer, naphthenic acid salts such as magnesium naphthenate and cobalt naphthenate, organotin compounds such as dibutyltin dilaurate and dimethyltin dilaurate, N-methylmorpholine, N, N, N ′, N′— An amine compound such as tetramethylpolymethylenediamine may be added. The addition amount of the catalyst is preferably in the range of 0.001 to 5% by mass with respect to the polymer.
[0027]
The polyurethane resin used for the surface layer of the present invention has a molar ratio of hydroxyl group (OH) to isocyanate group (NCO) of the polyurethane polymerization raw material of 0.3 ≦ NCO / OH <1.0. NCO / OH is preferably 0.4 to 0.99. When NCO / OH is less than 0.3, the strength of the material is insufficient due to the low degree of cross-linking. Therefore, if a surface layer is formed with such a material, the surface layer will crack during use, resulting in poor charging. Tend to cause image defects. When NCO / OH is 1.0 or more, there are few hydroxyl groups in a polyurethane resin, and it is difficult to adjust the volume specific resistance value of polyurethane resin itself to a desired value.
[0028]
The hydroxyl value of the polyurethane resin of the present invention is 5 KOHmg / g or more and 100 KOHmg / g or less, preferably 10 KOHmg / g or more and 50 KOHmg / g or less.
[0029]
When the hydroxyl value is lower than 5 KOHmg / g, the volume resistivity value of the polyurethane resin itself becomes high, and it is necessary to add and disperse a large amount of conductive material in order to control the resistance range of the desired surface layer. According to the study by the present inventors, such a material has a large voltage dependency even when the resistance is combined under a certain voltage, and the resistance tends to extremely decrease under the application of a high voltage. . In order to improve the charging uniformity, it is necessary to reduce the resistance of the surface layer under the application of a low voltage, but the leakage property deteriorates for the above reason. On the contrary, if the resistance at the time of applying a high voltage is increased, the leakage property is good, but the charging uniformity is deteriorated, so that the charging uniformity and the leakage property cannot be made compatible. In addition, when a large amount of conductive material is added and dispersed, micro resistance unevenness of the surface layer increases, and the charging uniformity tends to deteriorate.
[0030]
When the hydroxyl value is higher than 100 KOHmg / g, the volume resistivity of the polyurethane resin itself decreases, and the resistance can be adjusted by adding and dispersing a small amount of conductive material. Although a good surface layer can be obtained, the tackiness of the material (especially under high temperature and high humidity) is increased. Therefore, when a surface layer is formed with such a material, a developer, paper powder, etc. are attached during use. There is a tendency to generate image defects due to charging defects.
[0031]
In order to set the hydroxyl value of the polyurethane to 50 KOHmg / g or more and 100 KOHmg / g or less, the ratio of the polyol compound and the isocyanate compound as raw materials may be adjusted as appropriate.
[0032]
Conductive materials contained in the surface layer include conductive materials made of metal oxides such as titanium oxide, tin oxide and zinc oxide, conductive materials made of carbon black, spherical carbon materials, etc., alone or in combination of two or more. May be used.
[0033]
  Surface layerThe amount of these conductive materials added to the resin is such that the volume resistivity of the surface layer resin is 106-1014It is preferable to determine to be Ωcm. Further, as shown in Japanese Patent Application No. 62-230334, the volume resistivity of the surface layer is preferably larger than the volume resistivity of the lower layer in contact with the surface layer. In the present invention, the “lower layer in contact with the surface layer” is mainly a conductive elastic layer. Specifically, the volume resistivity of the surface layer is 106-1014The volume resistivity of the conductive elastic layer is 10 Ωcm.1-1011It is preferably Ωcm.
[0034]
  As specific content of the electrically conductive material used for a surface layer, 30-200 mass parts is preferable with respect to 100 mass parts of polyurethane resins.Surface layerIf the volume specific resistance value is smaller than the volume specific resistance value of the conductive elastic layer, the resistance of the charging member is likely to decrease under application of a high voltage, resulting in poor leakage.
[0035]
The volume specific resistance value is measured using a resistance value measuring machine (trade name: Hiresta UP, J-Box, manufactured by Mitsubishi Chemical Corporation) with a sheet sample of a conductive elastic layer and a surface layer material. The measurement is performed under the condition of applying a DC voltage of 100 V for 30 seconds.
The film thickness of the surface layer is preferably 1 to 500 μm, particularly preferably 2 to 200 μm.
[0036]
  Surface layerTo make the film thickness within the above range,Surface layerIn molding, the solid content, viscosity and the like of the resin coating for forming the surface layer are controlled by adjusting to an appropriate range according to the molding method. The film thickness is measured by the following method.
1) A sample is cut out with a knife from nine places on the charging member (in the case of a roller shape, 10 mm from both ends and three positions in the center and three places in the circumferential direction (starting at 120 ° starting from an arbitrary place)). .
2) The cross section of each sample is observed with an optical microscope (about 400 times), and the film thickness of the surface layer is obtained. The arithmetic average of 9 points is used as the surface layer thickness.
[0037]
As a method for forming the surface layer, the material constituting the surface layer was dispersed by a known method using a conventionally known dispersion apparatus using beads such as a sand mill, paint shaker, dyno mill, pearl mill, and the like. The resin coating for forming the surface layer is applied on the surface of the charging member, in the present invention, on the conductive elastic layer by dipping or spray coating.
[0038]
The resistance control layer 2c may be provided as necessary between the elastic layer and the surface layer in order to eliminate partial resistance unevenness of the charging member and improve resistance uniformity.
[0039]
The shape of the charging member may be any shape such as a roller, a brush, a blade, or a belt, and can be selected according to the specifications and form of the electrophotographic apparatus. Among these, a roller shape is preferable.
[0040]
<2> Contact type charging device of the present invention
FIG. 1 shows a schematic configuration diagram of an image forming apparatus (copier) incorporating a contact charging device using the contact charging member of the present invention.
[0041]
In the contact charging member 2 of the present invention, a vibration voltage such as a DC voltage or a superimposed voltage of a DC voltage and an AC voltage is applied from a power source 3 to a conductive substrate.
[0042]
  In the contact charging device of the present invention, by using the contact charging member of the present invention as the charging member, (1) the resistance of the charging member is stable from low voltage to high voltage as described above. The voltage dependency of the resistance is small. (2) With a small amount of conductive material addedSurface layerBecause the resistance can be controlled stably,Surface layerThe effect of the charging member itself, such as microscopic resistance unevenness, is small. Therefore, the charging device using the charging member is “excellent in charging uniformity and does not cause image defects due to discharge dielectric breakdown of the photoreceptor”. Things can be configured. The voltage applied to the conductive substrate may be either a DC voltage or an oscillating voltage such as a superimposed voltage of an AC voltage and a DC voltage. In any case, the excellent effects of the present invention can be exhibited. In particular, the effect is remarkable when only the DC voltage is used without the AC power supply.
[0043]
In the conventional charging member, when only the DC voltage is applied and the photosensitive member is charged, the charging unevenness is likely to occur due to micro resistance unevenness of the surface layer, compared with the case where the AC voltage is superimposed. Although there is a problem that leakage easily occurs, the use of the charging member of the present invention significantly improves the uniform charging property and leakage resistance of the surface of the photosensitive member, so that the charging process can be performed only with a DC voltage. In addition, as DC voltage, 800-2000V is preferable.
[0044]
In the contact charging member 2 of the present invention, a oscillating voltage such as a DC voltage or a superimposed voltage of a DC voltage and an AC voltage is applied from a power source 3 to a cored bar 2a which is a conductive substrate.
[0045]
The contact-type charging member 2 is in contact with the photoreceptor 1 as a member to be charged with a predetermined contact force by a pressing means (not shown). The contact force is preferably a contact force of 100 to 800 g load on one side and 200 to 1600 g load on both sides.
[0046]
In the image forming apparatus of FIG. 1, the contact charging member 2 and the photosensitive member 1 rotate in the directions of the arrows, respectively, and the photosensitive layer 1 b of the photosensitive member with which the contact charging member 2 contacts is charged by the voltage applied by the power source 3 Then, an electrostatic latent image is formed by the exposure unit 4, the electrostatic latent image is developed by the developing unit 5, a toner image is formed on the photosensitive layer 1 b, and is transferred onto the substrate 7 by the transfer unit 6. A permanent image is formed. The transfer residual toner that has not been transferred is collected by the cleaning means 8.
[0047]
【Example】
Hereinafter, the contact charging member and the contact charging device of the present invention will be described in detail with reference to examples.
[0048]
[Example 1]
(1) Preparation of conductive elastic layer
100 parts by mass of silicone rubber, 5 parts by mass of zinc oxide, 7 parts by mass of conductive carbon black, and 20 parts by mass of industrial paraffin were sufficiently mixed and kneaded using a closed mixer, and then 2 parts of dicumyl peroxide by an open roll. Part was added to prepare a compound for a conductive elastic layer. This compound for conductive elastic layer was heated and vulcanized at 150 ° C. for 15 minutes on a stainless steel core having a diameter of 6 mm to produce a silicone rubber roller having a conductive elastic layer having a thickness of 3 mm.
[0049]
At the same time, a vulcanized sheet (2 mm thick) was prepared, and the volume resistivity value was measured using a Hiresta UP manufactured by Mitsubishi Chemical (23 ° C./60%, 100 V applied, 30 seconds).7It was Ωcm.
[0050]
  (2) Preparation of surface layer Lactone modified acrylic polyol (Hydroxyl group90 KOHmg / g) 71 parts by mass, methyl ethyl ketone 129 parts by mass, conductive oxidationTinAfter dispersing 50 parts by mass using a small bead mill, 14.3 parts by mass of hexamethylene diisocyanate was added and dissolved to prepare a resin coating for forming a surface layer. (NCO / OH = 0.70)
The surface layer-forming resin paint was dip-coated on the silicone rubber roller and dried at 150 ° C. for 1 hour to obtain a charging member having a surface layer with a thickness of 20 μm. In polyurethane resinHydroxyl groupThe value was 27.3 KOH mg / g. At the same time, a film having a thickness of 40 μm was prepared, and the volume resistivity value was measured using a Hiresta UP manufactured by Mitsubishi Chemical (100 V applied, 30 seconds).12It was Ωcm.
[0051]
(3) Evaluation of charging member
The charging member is attached to a primary charger position of a cartridge used in a laser beam printer (Laser Jet 4si Hewlett Packard), a bias of DC voltage −1160V is applied, and initial image evaluation and leakage are performed in an environment of 23 ° C./60%. A test and an endurance test of 8,000 sheets were performed. The results are shown in Table 1.
[0052]
<1> Image uniformity
The horizontal streaks appearing in the horizontal halftone image with 1 dot and 2 spaces were evaluated. The evaluation criteria are as follows.
Y: No horizontal stripe
△: Horizontal stripes
×: Many transverse muscles
[0053]
<2> Durability
(1) Surface layer dirt
After endurance, density unevenness appearing in a horizontal halftone image of 1 dot and 2 spaces was evaluated. The evaluation criteria are as follows.
○: Good density unevenness
Δ: Slight density unevenness
×: Remarkable density unevenness
(2) Surface layer crack
The surface of the charging roller after durability was observed with an optical microscope, and the degree of cracking was evaluated based on the following criteria.
◯: Only minor cracks are observed
Δ: Cracks are partially observed
X: Remarkable cracks are observed
[0054]
<3> Pinhole leak test
Using a photosensitive drum having a pinhole, a horizontal hole (horizontal black streak) caused by a pinhole appearing in a horizontal halftone image of one dot and two spaces was evaluated (DC voltage −1160 V). The evaluation criteria are as follows.
○: No through hole
Δ: Slightly through
×: Significant side-through
[0055]
[Table 1]
Figure 0003984835
[0056]
[Example 2]
(1) Preparation of conductive elastic layer
  The same operation as in Example 1 was performed.
(2) Creation of surface layer
  Conductive oxidationTinThe surface layer-forming resin coating was prepared in the same manner as in Example 1 except that the amount of hexamethylene diisocyanate was 17.8 parts by weight. (NCO / OH = 0.87)
A charging member having a surface layer with a thickness of 21 μm was obtained in the same manner as in Example 1 by using the obtained resin coating for forming a surface layer. In polyurethane resinHydroxyl groupThe value was 11.7 KOH mg / g.
[0057]
At the same time, a film having a thickness of 40 μm was prepared and the volume resistivity was measured.12It was Ωcm.
(3) Evaluation of charging member
The charging member was subjected to initial image evaluation, durability test, and leak test under the same conditions as in Example 1. The results are shown in Table 1.
[0058]
[Example 3]
(1) Preparation of conductive elastic layer
  The same operation as in Example 1 was performed.
(2) Creation of surface layer
  Conductive oxidationTinA surface layer-forming resin coating was prepared in the same manner as in Example 1 except that the amount of was changed to 45 parts by mass and the amount of hexamethylene diisocyanate was changed to 8.9 parts by mass. (NCO / OH = 0.44) A charging member having a surface layer having a thickness of 19 μm was obtained in the same manner as in Example 1 using the obtained resin coating for forming a surface layer. In polyurethane resinHydroxyl groupThe value was 50.8 KOH mg / g. At the same time, a film having a thickness of 40 μm was prepared, and the volume resistivity was measured.12It was Ωcm.
[0059]
(3) Evaluation of charging member
The charging member was subjected to initial image evaluation, durability test, and leak test under the same conditions as in Example 1. The results are shown in Table 1.
[0060]
[Example 4]
(1) Preparation of conductive elastic layer
  The same operation as in Example 1 was performed.
(2) Creation of surface layer
  Conductive oxidationTinThe surface layer-forming resin paint was prepared in the same manner as in Example 1 except that the amount of the styrene was 60 parts by mass and the amount of hexamethylene diisocyanate was 19.3 parts by mass. (NCO / OH = 0.94)
Using the obtained surface layer coating material, a charging member having a surface layer with a thickness of 22 μm was obtained in the same manner as in Example 1. In polyurethane resinHydroxyl groupThe value was 5.42 KOH mg / g. At the same time, a film having a thickness of 40 μm was prepared and its volume resistivity was measured to be 5.5 × 10.12It was Ωcm.
(3) Evaluation of Charging Member The charging member was subjected to initial image evaluation, durability test, and leak test under the same conditions as in Example 1. The results are shown in Table 1.
[0061]
[Example 5]
(1) Preparation of conductive elastic layer
  The same operation as in Example 1 was performed.
(2) Creation of surface layer
  Polyester polyol (Hydroxyl group150 KOHmg / g) 71 parts by mass, methyl ethyl ketone 129 parts by mass, conductive oxidationTinAfter 40 parts by mass was dispersed using a small bead mill, 11.4 parts by mass of hexamethylene diisocyanate was added and dissolved to prepare a resin coating for forming a surface layer. (NCO / OH = 0.33)
A charging member having a surface layer with a thickness of 20 μm was obtained in the same manner as in Example 1 using the obtained resin coating for forming a surface layer. In polyurethane resinHydroxyl groupThe value was 99.9 KOH mg / g. At the same time, a film having a thickness of 40 μm was prepared and the volume resistivity value was measured.12It was Ωcm.
[0062]
(3) Evaluation of charging member
The charging member was subjected to initial image evaluation, durability test, and leak test under the same conditions as in Example 1. The results are shown in Table 1.
[0063]
[Comparative Example 1]
(1) Preparation of conductive elastic layer
  The same operation as in Example 1 was performed.
(2) Creation of surface layer
  Conductive oxidationTinA surface layer-forming resin coating was prepared in the same manner as in Example 1 except that the amount of hexamethylene diisocyanate was 20 parts by mass. (NCO / OH = 0.97)
A charging member having a surface layer with a thickness of 18 μm was obtained in the same manner as in Example 1 by using the obtained resin coating for forming a surface layer. In polyurethane resinHydroxyl groupThe value was 2.30 KOH mg / g. At the same time, a film having a thickness of 40 μm was prepared, and the volume resistivity value was measured.12It was Ωcm.
[0064]
(3) Evaluation of charging member
The charging member was subjected to initial image evaluation, durability test, and leak test under the same conditions as in Example 1. The results are shown in Table 1.
[0065]
[Comparative Example 2]
(1) Preparation of conductive elastic layer
  The same operation as in Example 1 was performed.
(2) Creation of surface layer
  Conductive oxidationTinA surface layer-forming resin paint was prepared in the same manner as in Comparative Example 1 except that the amount of was changed to 50 parts by mass. (NCO / OH = 0.97) A charging member having a surface layer with a thickness of 18 μm was obtained in the same manner as in Example 1 using the obtained resin coating for forming a surface layer. In polyurethane resinHydroxyl groupThe value was 2.30 KOH mg / g. At the same time, a film having a thickness of 40 μm was prepared and the volume resistivity was measured.14It was Ωcm.
[0066]
(3) Evaluation of charging member
The charging member was subjected to initial image evaluation, durability test, and leak test under the same conditions as in Example 1. The results are shown in Table 1.
[0067]
[Comparative Example 3]
(1) Preparation of conductive elastic layer
  The same operation as in Example 1 was performed.
(2) Creation of surface layer
  Polyester polyol (Hydroxyl groupValency: 225 KOHmg / g) 71 parts by mass, methyl ethyl ketone 129 parts by mass, conductive oxidationTinAfter 30 parts by mass was dispersed using a small bead mill, 21.4 parts by mass of hexamethylene diisocyanate was added and dissolved to prepare a resin coating for forming a surface layer. (NCO / OH = 0.42) A charging member having a surface layer having a thickness of 22 μm was obtained in the same manner as in Example 1 using the obtained resin coating for forming a surface layer. In polyurethane resinHydroxyl groupThe value was 131 KOH mg / g. At the same time, a film having a thickness of 40 μm was prepared and the volume resistivity value was measured.12It was Ωcm.
[0068]
(3) Evaluation of charging member
The charging member was subjected to initial image evaluation, durability test, and leak test under the same conditions as in Example 1. The results are shown in Table 1.
[0069]
【The invention's effect】
According to the present invention, it is possible to provide a contact-type charging member that is excellent in charging uniformity and does not cause image defects due to discharge dielectric breakdown of the photoreceptor, and a contact-type charging device using the contact-type charging member.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram illustrating an example of an image forming apparatus using a contact charging device of the present invention.
FIG. 2 is a cross-sectional view showing an example of a contact charging member of the present invention.
[Explanation of symbols]
1 Photoconductor (Subject to be charged)
1a Conductive substrate
1b Photosensitive layer
2 Contact-type charging member
2a Conductive substrate
2b Conductive elastic layer
2c Resistance control layer
2d surface layer
3 Power supply
4 Exposure means
5 Development means
6 Transfer means
7 Substrate
8 Cleaning means

Claims (6)

導電性基体と、該導電性基体上に設けられた導電性弾性層と、ポリウレタン樹脂及び該ポリウレタン樹脂100質量部に対して30〜(20000/301)質量部の導電材を含有する体積固有抵抗値が4×10 12 〜6×10 12 Ωcmである表面層と、を有する接触式帯電部材であって、
該ポリウレタン樹脂は、水酸基(OH)とイソシアネート基(NCO)のモル比が0.3≦NCO/OH<1.0であるポリウレタン原料から得られたポリウレタン樹脂であり、該ポリウレタン樹脂の水酸基価は、5KOHmg/g以上100KOHmg/g以下である接触式帯電部材。
Volume specific resistance containing a conductive substrate, a conductive elastic layer provided on the conductive substrate, a polyurethane resin and 30 to (20,000 / 301) parts by mass of a conductive material with respect to 100 parts by mass of the polyurethane resin A contact-type charging member having a surface layer having a value of 4 × 10 12 to 6 × 10 12 Ωcm,
The polyurethane resin is a polyurethane resin obtained from a polyurethane raw material in which the molar ratio of hydroxyl group (OH) to isocyanate group (NCO) is 0.3 ≦ NCO / OH <1.0. The hydroxyl value of the polyurethane resin is A contact-type charging member that is 5 KOHmg / g or more and 100 KOHmg / g or less.
記導電材が金属酸化物、カーボンブラック又は球体状炭素材料である請求項1記載の接触式帯電部材。Before Kishirube material is a metal oxide, the contact type charging member according to claim 1 Ru carbon black or spherical carbon material der. 前記導電材が酸化スズである請求項1に記載の接触式帯電部材。Contact charging member according to claim 1 wherein the conductive material is Ru tin der oxide. 前記表面層の体積固有抵抗値が前記導電性弾性層の体積固有抵抗値よりも大きい請求項1〜3のいずれかに記載の接触式帯電部材。The contact-type charging member according to claim 1, wherein a volume resistivity value of the surface layer is larger than a volume resistivity value of the conductive elastic layer. 帯電部材を有し、被帯電体に当接させた該帯電部材に電圧を印加することにより該被帯電体を帯電させる接触帯電装置において、In a contact charging device that has a charging member and charges the charged member by applying a voltage to the charging member that is in contact with the charged member.
該帯電部材が請求項1〜4のいずれかに記載の接触式帯電部材であることを特徴とする接触式帯電装置。A contact-type charging device, wherein the charging member is the contact-type charging member according to claim 1.
前記電圧が直流電圧のみである請求項5に記載の接触式帯電装置 The contact charging device according to claim 5, wherein the voltage is only a DC voltage .
JP2002005720A 2002-01-15 2002-01-15 Contact charging member and contact charging device Expired - Fee Related JP3984835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002005720A JP3984835B2 (en) 2002-01-15 2002-01-15 Contact charging member and contact charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002005720A JP3984835B2 (en) 2002-01-15 2002-01-15 Contact charging member and contact charging device

Publications (3)

Publication Number Publication Date
JP2003207985A JP2003207985A (en) 2003-07-25
JP2003207985A5 JP2003207985A5 (en) 2005-05-19
JP3984835B2 true JP3984835B2 (en) 2007-10-03

Family

ID=27644684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002005720A Expired - Fee Related JP3984835B2 (en) 2002-01-15 2002-01-15 Contact charging member and contact charging device

Country Status (1)

Country Link
JP (1) JP3984835B2 (en)

Also Published As

Publication number Publication date
JP2003207985A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP6602173B2 (en) Electrophotographic conductive member, process cartridge, and electrophotographic image forming apparatus
JP2019191580A (en) Developing roller, process cartridge, and image forming apparatus
JP4745793B2 (en) Elastic roller, developing device and image forming apparatus
US6390961B1 (en) Semiconductive silicone rubber roller
JP4313988B2 (en) Developing roller manufacturing method
JP5025983B2 (en) Developing roller and image forming apparatus having the same
CN112241114B (en) Charging device, process cartridge, image forming apparatus, and assembly
JP5792532B2 (en) Developing roller
JP2001099138A (en) Conductive roller, process cartridge, and image forming device
JP5204953B2 (en) Developing roller and image forming apparatus having the same
JP5970903B2 (en) Charging device, image forming apparatus, and process cartridge
JP3984835B2 (en) Contact charging member and contact charging device
JP6055045B2 (en) Developing roller
JP5942486B2 (en) Roll member, charging device, image forming apparatus, and process cartridge
JP4966581B2 (en) Developing roller and image forming apparatus having the same
JP4208765B2 (en) Developing roller, process cartridge, and image forming apparatus
JP3862569B2 (en) Charging member, image forming apparatus, and process cartridge
JP2007108320A (en) Developing roller, method for producing the same, process cartridge and image forming apparatus
JP4194533B2 (en) Developing roller and image forming apparatus using the same
JPH1145015A (en) Intermediate transfer member
JP3440279B2 (en) Charging member and charging device
JP2003207992A (en) Electrostatic charging member, image forming device using the same and process cartridge
JP4204709B2 (en) Developer carrying member and image forming apparatus
JP2004212865A (en) Semiconductive roll and image forming apparatus
JP2003207993A (en) Charging member, image forming device, electrostatic charging method and process cartridge

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees