JP3984569B2 - Photonic crystal optical fiber - Google Patents

Photonic crystal optical fiber Download PDF

Info

Publication number
JP3984569B2
JP3984569B2 JP2003189724A JP2003189724A JP3984569B2 JP 3984569 B2 JP3984569 B2 JP 3984569B2 JP 2003189724 A JP2003189724 A JP 2003189724A JP 2003189724 A JP2003189724 A JP 2003189724A JP 3984569 B2 JP3984569 B2 JP 3984569B2
Authority
JP
Japan
Prior art keywords
pcf
optical fiber
refractive index
fiber
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189724A
Other languages
Japanese (ja)
Other versions
JP2005024846A (en
Inventor
芳宣 黒沢
兵 姚
和正 大薗
正男 立蔵
久典 中居
利雄 倉嶋
栄次 荒木
克美 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Cable Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Cable Ltd
Priority to JP2003189724A priority Critical patent/JP3984569B2/en
Priority to PCT/JP2004/009619 priority patent/WO2005003827A1/en
Priority to US10/551,949 priority patent/US7376315B2/en
Publication of JP2005024846A publication Critical patent/JP2005024846A/en
Application granted granted Critical
Publication of JP3984569B2 publication Critical patent/JP3984569B2/en
Priority to US12/073,412 priority patent/US8800323B2/en
Priority to US12/073,411 priority patent/US7658550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02347Longitudinal structures arranged to form a regular periodic lattice, e.g. triangular, square, honeycomb unit cell repeated throughout cladding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02295Microstructured optical fibre
    • G02B6/02314Plurality of longitudinal structures extending along optical fibre axis, e.g. holes
    • G02B6/02342Plurality of longitudinal structures extending along optical fibre axis, e.g. holes characterised by cladding features, i.e. light confining region
    • G02B6/02366Single ring of structures, e.g. "air clad"
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3803Adjustment or alignment devices for alignment prior to splicing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コアの周囲に複数の空孔を有する光ファイバに係り、特に、フォトニック結晶ファイバと、それよりもモードフィールド径が大きいシングルモードファイバ関するものである
【0002】
【従来の技術】
従来、一般的に使用されている光ファイバは光を閉じ込めるコアと、そのコアより屈折率が僅かに低いクラッドがコアの円周方向に覆設された2層構造により構成され、コア、クラッド共に石英系材料で形成される。その2層構造ファイバはコアの屈折率がクラッドの屈折率より高いため、その屈折率差によって光がコアの閉じ込められ、光ファイバ内を伝搬する。
【0003】
シングルモードファイバ同士の接続方法については、コネクタやメカニカルスプライスによる接続方法がある。コネクタ接続はそれぞれの光ファイバが各々の光コネクタに接着され、容易に着脱できる方法であり、メカニカルスプライスは、それに設けられたV字溝等において光ファイバの端面を突き合わせ、接続された両光ファイバを強固に保持するのが特徴である。通常のシングルモードファイバの接続技術は十分開発されている。
【0004】
最近ではフォトニック結晶光ファイバ(PCF:Photonic Crystal Fiber)が注目されつつある。
【0005】
PCFはクラッドにフォトニック結晶構造、即ち、屈折率の周期構造を有する光ファイバである。その周期構造を光の波長ないしはその数倍程度まで小さくし、結晶中に欠陥や局所的不均一性を導入することで、光を局在させることができる。
【0006】
このPCFの断面構造を図5によって説明する。
【0007】
PCF41はファイバ内の屈折率がすべて同じクラッド42のみ形成され、その中心から多数の円柱空孔43を六方格子状に配列し、その円柱空孔43の長さはファイバ41全長におよぶ。従来のコアに相当する光の閉じ込め機能を有する部材はファイバ41中心部である結晶欠陥部44に対応する。
【0008】
具体的には、クラッド径φ125μmの純粋石英ファイバで、クラッド42に径φ3μmの円柱空孔43が中央から周期的に六方格子状(4周期構造)に配置され、その中心は空孔が形成されておらず(結晶欠陥)、その部分が光を閉じ込めるコア44になる。
【0009】
光閉じ込め効果の大きいPCF41と現在長距離大容量通信に用いられるシングルモードファイバ(SMF:Single Mode Fiber )との接続技術は必要不可欠である。
【0010】
従来のPCF41とSMFの接続方法は、PCF41の接続端部を加熱して円柱空孔43を封止し、フェルールに装着する接続方法がある(例えば、特許文献1参照)。
【0011】
【特許文献1】
特開2002−243972号公報
【0012】
【発明が解決しようとする課題】
しかしながら、従来のPCF41の接続方法では、ファイバのコア44がクラッド42よりも屈折率が高い媒質で形成されたPCF41にしか適用できない。コア44とクラッド42の屈折率が等しくフォトニック結晶構造によって等価的にコアとクラッドに屈折率差を設けてコアに光を閉じ込める構造のファイバにおいては、ファイバの接続端部の円柱空孔43を融着によって封止してしまうためコア44が存在しなくなる。よって、円柱空孔43を封止した接続端部によって、PCF41とそれと接続するファイバのコア同士が距離を隔てて接続していることになり、接続損失が増大する問題がある。
【0013】
そこで、本発明の目的は、上記課題を解決し、複数の空孔を有するフォトニック結晶光ファイバであって、通常のシングルモード光ファイバと接続する際に、接続損失を低減することができるフォトニック結晶光ファイバを提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、コアと屈折率が1.458のクラッドとを互いに異なる屈折率の石英系材料で形成すると共に、コアの周囲のクラッドにファイバ軸心方向に沿って複数の空孔を有するフォトニック結晶光ファイバにおいて、接続端部近傍の空孔に含フッ素UV硬化型樹脂を充填し、その含フッ素UV硬化型樹脂の硬化後の屈折率を1.42とすることにより、モードフィールド径を上記接続端部に接続されるシングルモード光ファイバのモードフィールド径と等しくしたことを特徴とするフォトニック結晶光ファイバである。
【0020】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0021】
本発明に係るPCFの構造図を図1に示す。
【0022】
まず、本発明に係るPCF11は図5で説明したPCF41と同じであり、その詳細は省略するが、光ファイバはクラッドの周囲がUV樹脂からなる被覆層により被覆されているファイバ心線の状態で用いられ、フェルールやその他接続器との接続部分はその被覆層を剥がして使用する。
【0023】
図1に示すように、PCF11の接続端近傍12の空孔13には、屈折率が石英より低いUV硬化型樹脂14が、充填材として充填されている。UV硬化型樹脂14は使用前は常温液体であり、紫外線を照射させることで硬化する。本実施の形態で使用するUV硬化型樹脂は、硬化後の屈折率が1.42に調整されたエポキシ系の含フッ素UV硬化型樹脂14である。
【0024】
本実施形態のPCF11に充填するUV硬化型接着剤14の屈折率は1.42であり、PCF11を形成する石英ガラスの屈折率は1.458である。空孔13へ充填する材料の最適屈折率は、屈折率1.458より小さい事は必須であるが、PCF11の空孔径、空孔数、空孔間隔(密度)により異なるので条件が変わる毎に、選定が必要である。充填材料の屈折率が石英ガラスの屈折率より低くても最適屈折率に比べて大きい場合、小さい場合それぞれ次のような原因によって接続損失が大きくなる。
【0025】
充填材の屈折率が最適値より大きい場合、充填された空孔13とコア(石英)の比屈折率差が小さくなるので、中心コアへの光の閉じ込め効果が弱くなり、接続端近傍12でのモードフィールド径(MFD:Mode Field Diameter )が大きくなる。よって、PCF11とSMFにMFDの不具合が生じ、接続損失が大きくなってしまう。
【0026】
一方、充填材の屈折率が最適値より小さい場合、充填された空孔13とコアの比屈折率差は比較的大きくなるので、中心コアへの光の閉じ込め効果が強くなり、接続端近傍12でのMFDが小さくなる。よって接続先のSMFのMFDよりもPCF11のMFDが小さくなり、同様に、MFDの不具合による接続損失が大きくなる。
【0027】
したがって、円柱空孔13にUV硬化型樹脂14を充填した後、PCF11とSMFの各モードフィールド径が等しくなるように充填材の屈折率を選定する必要がある。
【0028】
次に、PCF11の作製手順を説明する。
【0029】
まずPCF11の被覆部15を数mm剥がし、端末部16をファイバカッターで切断面が垂直になるよう切断し、UV硬化型接着剤14を端面16に塗布する。端面16に塗布されたUV硬化型接着剤14は数秒ないし数分程度で毛細管現象により、円柱空孔13に浸透する。浸透している間、そのPCF11を保持する時間は接着剤14の粘度、表面張力と空孔径に大きく依存する。端面16を研磨等で削り込む場合は、その分を考慮して接着剤14の浸透長を確保する必要があり、PCF11の切断面をそのまま接続端面16とする場合で100μm以上あれば十分である。
【0030】
次に、端面16に付着している余剰接着剤14をガーゼ等で払拭して、PCF11側面から紫外線照射装置等でUV光を照射し、空孔13内に浸透したUV型硬化接着剤14を硬化させ、完成となる。
【0031】
次に、V溝接続器を用いてPCF11とシングルモードファイバ(SMF:Single Mode Fiber )21を接続する方法について説明する。
【0032】
図2(a)に示すように、V溝接続器20は両ファイバ11,21の端面を突き合わせる突き合わせV溝22と、その両端に各々のファイバ11,21を保持する被覆保持部23と、端面を突き合わせた両ファイバを上から押さえるための押さえ蓋24から構成される光ファイバ接続器である。
【0033】
まず、図2(b)に示すように、石英系SMF21の被覆部25を剥がし、端面26をファイバカッターで切断する。そのSMF21の端面26とPCF11の端面16をV字型溝22において突き合わせる。このとき、PCF11とSMF21は各々被覆保持部23で固定される。
【0034】
最後に、図2(c)に示すように、押さえ蓋24を突き合わせV字型溝22の上から押さえ、それにより、両ファイバ11,21が固定され、接続完了となる。
【0035】
本実施形態の作用について述べる。
【0036】
PCF11は、PCF11の接続端近傍12において、複数の微小な空孔13にクラッドより屈折率の低いUV硬化型接着剤14を充填させ、それを紫外線照射により硬化させることで空孔13を封止しているので、コアとクラッドが同じ屈折率で形成されたPCF11の接続端近傍12においてもフォトニック結晶構造が形成され、光をPCF11の中心に閉じ込めることが可能になる。
【0037】
よって、PCF11よりMFDの大きい光ファイバとの突き合わせ接続が可能になる。上記で説明したV溝接続器20でPCF11とSMF21を接続したときの接続損失は、0.55dBと低損失であった。
【0038】
また、PCF11の接続端近傍12の空孔13を封止した構造は、PCF端面16を研磨する際の研磨粉や水分、その他異物の侵入を防ぐことができる。
【0039】
他の実施形態として、本発明に係るのPCF11をFCコネクタ用フェルールに接続した場合について説明する。
【0040】
図3は、PCF11を接続したときのFCコネクタ用フェルール30の断面図である。
【0041】
図3に示すように、フェルール30は光コネクタを構成する要素部品であり、被覆部15を剥がしたPCF11を固定する固定部31と、PCF11の被覆部15を装着するファイバ保持部32からなる。単心光コネクタで利用する場合、FCコネクタ用フェルール30は円筒型をしている。PCF11は、フェルール30と接着剤で保持部31に固定され、さらにPCF11を装着したフェルール30は、光コネクタに接続され、FCコネクタの場合、ねじや押圧ばね等の締結部33により光コネクタに固定される。
【0042】
UV硬化型樹脂14が充填されたPCF11は、その接続端近傍12がフェルール30の固定部31に固定され、ファイバ心線15が保持部32で接着され、その後、接続部の端面16が研磨される。光コネクタに接続するフェルール30では、PCF11の接続端近傍12の空孔13が、UV硬化型樹脂14で充填されているため、研磨時にでる研磨粉や水分、その他異物の侵入がなく、それに伴う伝送損失の増加が抑えられ、また、ファイバ強度の疲労劣化が通常より速く進行するのを抑えられる。
【0043】
本発明に係るPCF11の接続端近傍12の空孔13に充填する充填材は、UV硬化型樹脂14に限定されるものではなく、ガラス等の光透過性物質にも適用できる。
【0044】
本発明に係るPCF11は、上記説明で述べたメカニカルスプライス等のV溝接続器20やFCコネクタ用フェルール30に限定されるものではなく、キャピラリー型接続器やその他市販のコネクタ類にも適用できる。
【0045】
また、本実施の形態で用いたコアとクラッドの屈折率が同じPCF11だけでなく、コアとクラッドの屈折率が異なるPCFや、図4にその断面構造を示す、ホーリー光ファイバ34でも適用できる。ホーリー光ファイバ34とは、コア35の周囲に複数の空孔36を有する光ファイバで、曲げや捻りへの耐性が強く、曲げによる伝送損失の増加が抑えられるため、径の小さいカールを形成する光ファイバカールコードに用いられるような光ファイバである。
【0046】
【発明の効果】
以上要するに本発明によれば、以下に示すごとく優れた効果を発揮するものである。
【0047】
(1)コア、クラッドの屈折率が等しくモードフィールド径が通常のシングルモードファイバよりはるかに小さいフォトニック結晶ファイバでも、低損失で通常のシングルモードファイバとの突き合わせ接続が可能になる。
【0048】
(2)光ファイバの強度劣化や伝送損失の増加を防止できる。
【図面の簡単な説明】
【図1】本発明の好適実施の形態を示す構造図である。
【図2】図2(a)は、V溝接続器の斜視図であり、図2(b)は、図1の光ファイバとシングルモードファイバとの接続の一工程を示す斜視図であり、図2(c)は、図1の光ファイバとシングルモードファイバをV溝接続器で接合した斜視図である。
【図3】図1の光ファイバを装着したFCコネクタ用フェルールの断面図である。
【図4】他の実施の形態として用いるホーリー光ファイバの断面図である。
【図5】本発明に係るフォトニック結晶光ファイバの断面図である。
【符号の説明】
11 フォトニック結晶光ファイバ
12 接続端近傍
13 空孔
14 UV硬化型樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber having a plurality of holes around the core, in particular, the photonic crystal fiber is that relates to the mode field diameter is large single mode fiber than [0002]
[Prior art]
Conventionally, an optical fiber generally used is composed of a core for confining light and a two-layer structure in which a clad whose refractive index is slightly lower than that of the core is covered in the circumferential direction of the core. It is made of quartz material. Since the refractive index of the core of the two-layer structure fiber is higher than the refractive index of the clad, the light is confined by the refractive index difference and propagates in the optical fiber.
[0003]
As for the connection method between the single mode fibers, there is a connection method using a connector or a mechanical splice. Connector connection is a method in which each optical fiber is bonded to each optical connector so that it can be easily attached and detached, and the mechanical splice is matched to the end face of the optical fiber at a V-shaped groove or the like provided in the optical fiber, and both optical fibers connected to each other It is the feature to hold firmly. Conventional single-mode fiber connection technology is well developed.
[0004]
Recently, attention has been paid to a photonic crystal fiber (PCF).
[0005]
PCF is an optical fiber having a photonic crystal structure, that is, a periodic structure of refractive index, in a clad. The light can be localized by reducing the periodic structure to the wavelength of light or several times the light and introducing defects or local inhomogeneities in the crystal.
[0006]
The cross-sectional structure of this PCF will be described with reference to FIG.
[0007]
In the PCF 41, only the clad 42 having the same refractive index in the fiber is formed, and a large number of cylindrical holes 43 are arranged in a hexagonal lattice from the center, and the length of the cylindrical holes 43 extends over the entire length of the fiber 41. A member having a light confinement function corresponding to a conventional core corresponds to the crystal defect portion 44 at the center of the fiber 41.
[0008]
Specifically, a pure silica fiber having a clad diameter of φ125 μm, cylindrical holes 43 having a diameter of φ3 μm are periodically arranged in the clad 42 from the center in a hexagonal lattice shape (four-period structure), and a hole is formed at the center. It is not (crystal defect), and that portion becomes the core 44 that confines light.
[0009]
A connection technique between the PCF 41 having a large optical confinement effect and a single mode fiber (SMF) currently used for long distance and large capacity communication is indispensable.
[0010]
As a conventional method for connecting the PCF 41 and the SMF, there is a connection method in which the connecting hole portion of the PCF 41 is heated to seal the cylindrical hole 43 and attached to the ferrule (for example, see Patent Document 1).
[0011]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-243972
[Problems to be solved by the invention]
However, the conventional connection method of the PCF 41 can be applied only to the PCF 41 in which the fiber core 44 is formed of a medium having a refractive index higher than that of the cladding 42. In a fiber having a structure in which the refractive index of the core 44 and the clad 42 are equal and a refractive index difference is equivalently provided between the core and the clad by the photonic crystal structure to confine light in the core, the cylindrical hole 43 at the connection end of the fiber is formed. Since the core 44 is sealed by fusion, the core 44 does not exist. Therefore, the PCF 41 and the fiber core connected to the PCF 41 are connected to each other at a distance by the connection end portion where the cylindrical hole 43 is sealed, and there is a problem that connection loss increases.
[0013]
Accordingly, an object of the present invention is a photonic crystal optical fiber that solves the above-described problems and has a plurality of holes, and can reduce connection loss when connected to a normal single mode optical fiber. It is to provide a nick crystal optical fiber.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the core and the clad having a refractive index of 1.458 are formed of quartz-based materials having different refractive indexes, and the clad around the core is formed in the fiber axial direction. In the photonic crystal optical fiber having a plurality of holes along the hole, the holes near the connection end are filled with a fluorine-containing UV curable resin, and the refractive index after curing of the fluorine-containing UV curable resin is set to 1. 42 is a photonic crystal optical fiber characterized in that the mode field diameter is made equal to the mode field diameter of the single mode optical fiber connected to the connection end .
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0021]
A structural diagram of a PCF according to the present invention is shown in FIG.
[0022]
First, the PCF 11 according to the present invention is the same as the PCF 41 described with reference to FIG. 5, and details thereof are omitted. However, the optical fiber is in the state of a fiber core wire in which the periphery of the cladding is coated with a coating layer made of UV resin. It is used, and the connection part with the ferrule or other connector is used with the covering layer peeled off.
[0023]
As shown in FIG. 1, the holes 13 near the connection end 12 of the PCF 11 are filled with a UV curable resin 14 having a refractive index lower than that of quartz as a filler. The UV curable resin 14 is a liquid at room temperature before use, and is cured by being irradiated with ultraviolet rays. The UV curable resin used in the present embodiment is an epoxy fluorine-containing UV curable resin 14 whose refractive index after curing is adjusted to 1.42.
[0024]
The refractive index of the UV curable adhesive 14 filled in the PCF 11 of the present embodiment is 1.42, and the refractive index of quartz glass forming the PCF 11 is 1.458. It is essential that the optimum refractive index of the material filled in the holes 13 is smaller than the refractive index of 1.458, but it varies depending on the hole diameter, the number of holes, and the hole interval (density) of the PCF 11, so that each time the conditions change. Selection is necessary. Even if the refractive index of the filling material is lower than the refractive index of quartz glass, it is larger than the optimum refractive index.
[0025]
When the refractive index of the filler is greater than the optimum value, the relative refractive index difference between the filled holes 13 and the core (quartz) is reduced, so that the light confinement effect on the central core is weakened, and in the vicinity of the connection end 12. The mode field diameter (MFD) increases. Therefore, the MFD defect occurs in the PCF 11 and the SMF, and the connection loss increases.
[0026]
On the other hand, when the refractive index of the filler is smaller than the optimum value, the relative refractive index difference between the filled holes 13 and the core becomes relatively large, so that the light confinement effect on the central core becomes strong, and the vicinity of the connection end 12 The MFD at becomes smaller. Therefore, the MFD of the PCF 11 is smaller than the MFD of the connection destination SMF, and similarly, the connection loss due to the failure of the MFD is increased.
[0027]
Therefore, after filling the cylindrical holes 13 with the UV curable resin 14, it is necessary to select the refractive index of the filler so that the mode field diameters of the PCF 11 and the SMF are equal.
[0028]
Next, a procedure for manufacturing the PCF 11 will be described.
[0029]
First, the coating part 15 of the PCF 11 is peeled off by several mm, the terminal part 16 is cut with a fiber cutter so that the cut surface is vertical, and the UV curable adhesive 14 is applied to the end face 16. The UV curable adhesive 14 applied to the end face 16 penetrates into the cylindrical holes 13 by capillary action in about several seconds to several minutes. While penetrating, the time for holding the PCF 11 greatly depends on the viscosity, surface tension and pore diameter of the adhesive 14. When cutting the end face 16 by polishing or the like, it is necessary to ensure the permeation length of the adhesive 14 in consideration of that amount, and when the cut face of the PCF 11 is used as it is as the connecting end face 16, it is sufficient if it is 100 μm or more. .
[0030]
Next, the excess adhesive 14 adhering to the end face 16 is wiped off with gauze or the like, UV light is irradiated from the side surface of the PCF 11 with an ultraviolet irradiation device or the like, and the UV-type cured adhesive 14 that has penetrated into the holes 13 is removed. Cured to complete.
[0031]
Next, a method for connecting the PCF 11 and a single mode fiber (SMF) 21 using a V-groove connector will be described.
[0032]
As shown in FIG. 2 (a), the V-groove connector 20 has an abutting V-groove 22 that abuts the end faces of both fibers 11, 21, and a covering holder 23 that holds the fibers 11, 21 at both ends thereof. It is an optical fiber connector composed of a pressing lid 24 for pressing both fibers whose end faces are butted together from above.
[0033]
First, as shown in FIG. 2B, the covering portion 25 of the quartz SMF 21 is peeled off, and the end face 26 is cut with a fiber cutter. The end face 26 of the SMF 21 and the end face 16 of the PCF 11 are abutted at the V-shaped groove 22. At this time, each of the PCF 11 and the SMF 21 is fixed by the covering holder 23.
[0034]
Finally, as shown in FIG. 2C, the pressing lid 24 is butted against the V-shaped groove 22 so that both fibers 11 and 21 are fixed and the connection is completed.
[0035]
The operation of this embodiment will be described.
[0036]
The PCF 11 seals the holes 13 by filling a plurality of minute holes 13 with a UV curable adhesive 14 having a refractive index lower than that of the clad in the vicinity 12 of the connection end of the PCF 11 and curing it by ultraviolet irradiation. Therefore, a photonic crystal structure is also formed near the connection end 12 of the PCF 11 in which the core and the clad are formed with the same refractive index, and it becomes possible to confine light at the center of the PCF 11.
[0037]
Therefore, a butt connection with an optical fiber having a larger MFD than the PCF 11 is possible. The connection loss when the PCF 11 and the SMF 21 were connected by the V-groove connector 20 described above was as low as 0.55 dB.
[0038]
Further, the structure in which the air holes 13 in the vicinity of the connection end 12 of the PCF 11 are sealed can prevent intrusion of polishing powder, moisture, and other foreign matters when the PCF end surface 16 is polished.
[0039]
As another embodiment, a case where the PCF 11 according to the present invention is connected to an FC connector ferrule will be described.
[0040]
FIG. 3 is a cross-sectional view of the FC connector ferrule 30 when the PCF 11 is connected.
[0041]
As shown in FIG. 3, the ferrule 30 is an element part constituting the optical connector, and includes a fixing portion 31 that fixes the PCF 11 from which the covering portion 15 has been peeled off, and a fiber holding portion 32 that attaches the covering portion 15 of the PCF 11. When used in a single-fiber optical connector, the FC connector ferrule 30 has a cylindrical shape. The PCF 11 is fixed to the holding portion 31 with the ferrule 30 and an adhesive, and the ferrule 30 fitted with the PCF 11 is connected to an optical connector. In the case of an FC connector, the PCF 11 is fixed to the optical connector by a fastening portion 33 such as a screw or a pressing spring. Is done.
[0042]
In the PCF 11 filled with the UV curable resin 14, the vicinity 12 of the connection end is fixed to the fixing portion 31 of the ferrule 30, the fiber core wire 15 is bonded by the holding portion 32, and then the end face 16 of the connection portion is polished. The In the ferrule 30 connected to the optical connector, since the holes 13 near the connection end 12 of the PCF 11 are filled with the UV curable resin 14, there is no intrusion of polishing powder, moisture, or other foreign matters that occur during polishing. An increase in transmission loss can be suppressed, and fatigue deterioration of fiber strength can be prevented from proceeding faster than usual.
[0043]
The filler that fills the holes 13 in the vicinity 12 of the connection end of the PCF 11 according to the present invention is not limited to the UV curable resin 14, and can also be applied to a light-transmitting substance such as glass.
[0044]
The PCF 11 according to the present invention is not limited to the V-groove connector 20 such as the mechanical splice described above and the FC connector ferrule 30, and can also be applied to a capillary connector and other commercially available connectors.
[0045]
Further, not only the PCF 11 having the same refractive index of the core and the clad used in the present embodiment, but also a PCF having a different refractive index of the core and the clad, and a holey optical fiber 34 whose sectional structure is shown in FIG. The holey optical fiber 34 is an optical fiber having a plurality of holes 36 around the core 35. The holey optical fiber 34 has high resistance to bending and twisting, and suppresses an increase in transmission loss due to bending, so that a curl with a small diameter is formed. An optical fiber such as that used in an optical fiber curl cord.
[0046]
【The invention's effect】
In short, according to the present invention, the following excellent effects are exhibited.
[0047]
(1) Even with a photonic crystal fiber in which the refractive indexes of the core and clad are equal and the mode field diameter is much smaller than that of a normal single mode fiber, a butt connection with a normal single mode fiber can be achieved with low loss.
[0048]
(2) It is possible to prevent optical fiber strength deterioration and transmission loss increase.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing a preferred embodiment of the present invention.
2 (a) is a perspective view of a V-groove connector, and FIG. 2 (b) is a perspective view showing one process of connecting the optical fiber and the single mode fiber of FIG. FIG. 2C is a perspective view in which the optical fiber and the single mode fiber of FIG. 1 are joined by a V-groove connector.
3 is a cross-sectional view of an FC connector ferrule to which the optical fiber of FIG. 1 is attached. FIG.
FIG. 4 is a cross-sectional view of a holey optical fiber used as another embodiment.
FIG. 5 is a cross-sectional view of a photonic crystal optical fiber according to the present invention.
[Explanation of symbols]
11 Photonic crystal optical fiber 12 Near connection end 13 Hole 14 UV curable resin

Claims (1)

コアと屈折率が1.458のクラッドとを互いに異なる屈折率の石英系材料で形成すると共に、コアの周囲のクラッドにファイバ軸心方向に沿って複数の空孔を有するフォトニック結晶光ファイバにおいて、接続端部近傍の空孔に含フッ素UV硬化型樹脂を充填し、その含フッ素UV硬化型樹脂の硬化後の屈折率を1.42とすることにより、モードフィールド径を上記接続端部に接続されるシングルモード光ファイバのモードフィールド径と等しくしたことを特徴とするフォトニック結晶光ファイバ。In a photonic crystal optical fiber in which a core and a clad having a refractive index of 1.458 are formed of quartz-based materials having different refractive indexes, and the clad around the core has a plurality of holes along the fiber axis direction The hole near the connection end is filled with a fluorine-containing UV curable resin, and the refractive index after curing of the fluorine-containing UV curable resin is set to 1.42, thereby setting the mode field diameter at the connection end. A photonic crystal optical fiber characterized by having a mode field diameter equal to that of a connected single mode optical fiber.
JP2003189724A 2003-07-01 2003-07-01 Photonic crystal optical fiber Expired - Fee Related JP3984569B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003189724A JP3984569B2 (en) 2003-07-01 2003-07-01 Photonic crystal optical fiber
PCT/JP2004/009619 WO2005003827A1 (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
US10/551,949 US7376315B2 (en) 2003-07-01 2004-06-30 Optical fiber, optical fiber connecting method, and optical connector
US12/073,412 US8800323B2 (en) 2003-07-01 2008-03-05 Method of sealing air holes in an optical fiber
US12/073,411 US7658550B2 (en) 2003-07-01 2008-03-05 Optical fiber, optical fiber connecting method, and optical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189724A JP3984569B2 (en) 2003-07-01 2003-07-01 Photonic crystal optical fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007086819A Division JP4242903B2 (en) 2007-03-29 2007-03-29 Photonic crystal optical fiber, optical fiber connection method and optical connector

Publications (2)

Publication Number Publication Date
JP2005024846A JP2005024846A (en) 2005-01-27
JP3984569B2 true JP3984569B2 (en) 2007-10-03

Family

ID=34187847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189724A Expired - Fee Related JP3984569B2 (en) 2003-07-01 2003-07-01 Photonic crystal optical fiber

Country Status (1)

Country Link
JP (1) JP3984569B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555760B2 (en) * 2005-09-22 2010-10-06 ナガセケムテックス株式会社 Filler composition and method for producing hole assist fiber using the same
JP4591964B2 (en) * 2005-10-14 2010-12-01 日本電信電話株式会社 Optical fiber connection method
JP2007316310A (en) * 2006-05-25 2007-12-06 Mitsubishi Cable Ind Ltd Optical fiber cord and its manufacturing method
JP2008287191A (en) * 2007-05-21 2008-11-27 Hitachi Cable Ltd Optical fiber, end face sealing method of optical fiber, connecting structure of optical fiber, and optical connector
JP4877067B2 (en) * 2007-05-22 2012-02-15 日立電線株式会社 Optical fiber, optical fiber connection structure and optical connector
JP2009002997A (en) * 2007-06-19 2009-01-08 Hitachi Cable Ltd Optical fiber, end face part structure of the same, and optical connector
JP4559458B2 (en) * 2007-09-06 2010-10-06 日本電信電話株式会社 Optical fiber manufacturing method
JP5478557B2 (en) * 2011-06-02 2014-04-23 日本電信電話株式会社 Optical transmission medium connection module and optical transmission medium

Also Published As

Publication number Publication date
JP2005024846A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US8800323B2 (en) Method of sealing air holes in an optical fiber
US7542645B1 (en) Airline optical fiber with reduced multipath interference and methods of forming same
US8064742B2 (en) Light input/output terminal module of the optical components and beam converting apparatus
US20030068150A1 (en) Termination of end-faces of air-clad and photonic-crystal fibers
JP4329269B2 (en) Optical fiber connection structure and optical fiber connection method
US7577330B2 (en) Connectorized nano-engineered optical fibers and methods of forming same
US5339372A (en) Low loss coupler
JP2011123398A (en) Optical fiber, method of manufacturing the same and method of machining end part of optical fiber
JP2002323625A (en) End face structure of optical fiber and optical fiber
JPH0534540A (en) Method for reinforcing optical fiber coupler
JP3984569B2 (en) Photonic crystal optical fiber
JP4877067B2 (en) Optical fiber, optical fiber connection structure and optical connector
JP4242903B2 (en) Photonic crystal optical fiber, optical fiber connection method and optical connector
JP2005024847A (en) Connector for optical fibers
JP3924265B2 (en) Optical fiber connector
JP2005300596A (en) Composite optical fiber, optical connector, and optical fiber with optical connector
JP4096936B2 (en) Optical fiber, optical fiber end face sealing method, optical fiber connection structure, and optical connector
JPH0574804B2 (en)
JP2007212841A (en) Method of connecting optical fiber
JP2004133276A (en) Method for splicing photonic crystal fiber and splicing structure of photonic crystal fiber
JPH08136757A (en) Wide-band opbtical fiber, its coated fiber, cord and coated optical fiber with connector and cord
JPH06230242A (en) Reinforcing structure for multifiber type optical fiber coupler
JP2022187136A (en) optical connection structure
JP2002189144A (en) Two-fiber fiber collimator and optical multiplexer/ demultiplexer
JP2005202200A (en) Optical fiber collimator and optical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees