JP3984171B2 - Relay device and setting method thereof - Google Patents

Relay device and setting method thereof Download PDF

Info

Publication number
JP3984171B2
JP3984171B2 JP2003009392A JP2003009392A JP3984171B2 JP 3984171 B2 JP3984171 B2 JP 3984171B2 JP 2003009392 A JP2003009392 A JP 2003009392A JP 2003009392 A JP2003009392 A JP 2003009392A JP 3984171 B2 JP3984171 B2 JP 3984171B2
Authority
JP
Japan
Prior art keywords
wavelength
optical
optical signal
multiplexing device
demultiplexing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003009392A
Other languages
Japanese (ja)
Other versions
JP2004222127A (en
Inventor
摂 森脇
一人 野口
博正 田野辺
顕 岡田
尊 坂本
茂登 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003009392A priority Critical patent/JP3984171B2/en
Publication of JP2004222127A publication Critical patent/JP2004222127A/en
Application granted granted Critical
Publication of JP3984171B2 publication Critical patent/JP3984171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、光波長分割多重(WDM)方式による光通信ネットワークを構成する中継装置に関する。
【0002】
【従来の技術】
光波長分割多重信号を送信する送信機及び光波長分割多重信号を受信する受信機を備えた複数の通信ノード間で光波長分割多重(WDM)方式による光通信ネットワークを構成する場合、各通信ノードを、それぞれの光信号を互いに輻輳することなく伝達可能な中継装置に接続する必要がある。
【0003】
図3はN入力N出力(ここでは8入力8出力)の波長周回性アレイ導波路回折格子による従来の中継装置の一例を示すもので、図中、10−1〜10−8は通信ノードの送信機、20−1〜20−8は通信ノードの受信機、30は波長周回性アレイ導波路回折格子(中継装置)である。
【0004】
波長周回性アレイ導波路回折格子30は、8個の入力ポート31−1〜31−8及び8個の出力ポート32−1〜32−8を有し、第k(k=1,2,…8)番目の入力ポート31−kは第k番目の通信ノードの送信機10−kと光ファイバ等の光伝送路により接続され、また、第k番目の出力ポート32−kは第k番目の通信ノードの受信機20−kと光ファイバ等の光伝送路により接続される。
【0005】
送信機10から波長分割多重されて送られてきた波長λ1〜λ8(λ1<λ2<λ3<λ4<λ5<λ6<λ7<λ8、又はλ1>λ2>λ3>λ4>λ5>λ6>λ7>λ8)の光信号は、波長周回性アレイ導波路回折格子30の該当する入力ポート31に入力されると、アレイ導波路回折格子30の波長分波機能により、波長毎に異なる出力ポート32からそれぞれ出力される。
【0006】
図4は波長周回性アレイ導波路回折格子30の入力ポート31−1〜31−8及び出力ポート32−1〜32−8間を結ぶ波長の関係を表で示したものである。特にアレイ導波路回折格子30が波長周回性を有することにより8×8通りの入出力を8種類の波長を用いて実現することができる(特許文献1参照)。
【0007】
【特許文献1】
特開2000−201112号公報
【0008】
【発明が解決しようとする課題】
しかしながら、前述したN入力N出力の波長周回性アレイ導波路回折格子による中継装置を用いた場合、Nより少ないM個の通信ノードを収容するネットワークを、連続した波長の光信号を用いて構成しようとすると、必要な波長の数は2M−1とNのうち小さい方の値(例えば、8入力8出力の波長周回性アレイ導波路回折格子を用いて4つの通信ノード間を接続するためには7波長が必要であり、16入力16出力の波長周回性アレイ導波路回折格子を用いて7つの通信ノード間を接続するためには13波長が必要)になる。
【0009】
これは波長周回性アレイ導波路回折格子の入出力特性において、一部分の入出力関係のみに着目すると、波長周回性が満たされていないためである。
【0010】
ネットワークに収容できる通信ノード数の上限はNであるから、将来の拡張性を見込んでNの大きな波長周回性アレイ導波路回折格子による中継装置を用いてネットワークを構築すると、通信ノード数が少ない初期導入時においても多数の波長の光信号が必要となり、使用する波長数を少なくできる特徴が生かせないという問題があった。
【0011】
本発明は、上記従来の欠点に鑑みてなされたもので、収容可能な通信ノード数の上限値に比べて実際に収容する通信ノードの数が少ない時に、連続した波長の光信号を用いてネットワークを構成するために必要な波長数が少なくて済む中継装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、この発明では、光波長分割多重信号を送信する送信機及び光波長分割多重信号を受信する受信機を備えた通信ノード間を接続して光通信ネットワークを構成する中継装置であって、
光伝送路を介して通信ノードの送信機にそれぞれ接続される2n(nは以上の任意の整数)個の入力ポートと、光伝送路を介して通信ノードの受信機にそれぞれ接続される2n個の出力ポートと、各入力ポートに対応して設けられ、前記送信機からの光波長分割多重信号を波長毎の光信号に分波する波長分波装置と、各出力ポートに対応して設けられ、波長毎の光信号を光波長分割多重信号に合波して前記受信機に送出する波長合波装置と、波長分波装置と波長合波装置との間を接続する複数の光導波路とからなり、
a,Aは0以上でn以下の整数、bは0以上で2a-1未満の整数(但し、a=0の場合はb=0のみとする)、Bは0以上で2A-1未満の整数(但し、A=0の場合はB=0のみとする)とし、光信号の波長を1からの連番で表すものとする時、
1番目の波長分波装置及び1番目の波長合波装置を結ぶ光導波路は、番号1の波長の光信号を出力する前記波長分波装置の出力端と、当該番号1の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路は、
a=Aの時(但し、a=A=0の場合は除く)は、2a-1−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a>Aの時は、2a-1−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2a-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a<Aの時は、2a−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2A-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとした中継装置を提案する。
【0013】
前記構成によれば、2i(i=1,2,……n)を単位とする数の入力ポート及び出力ポート間で波長周回性が満たされることになるため、収容可能な通信ノード数の上限値N(但し、N=2n)より少ないM個の通信ノードを収容するネットワークを、連続した波長の光信号を用いて構成する場合に必要な波長の数が2iのうちM以上で最小の値(例えば、8入力8出力(n=3)の中継装置を用いて4つの通信ノード間を接続するために必要な波長の数は4、16入力16出力(n=4)の中継装置を用いて7つの通信ノード間を接続するために必要な波長の数は8)となり、従来に比べて必要な波長数を削減することができる。
【0014】
【発明の実施の形態】
以下、本発明を詳しく説明する。
【0015】
図1は本発明の中継装置の実施の形態の一例を示すもので、図中、10−1〜10−8は通信ノードの送信機、20−1〜20−8は通信ノードの受信機、40は本発明の中継装置である。
【0016】
中継装置40は、2n(nは以上の任意の整数)個、ここでは8(n=3)個の入力ポート41−1〜41−8と、8個の出力ポート42−1〜42−8と、各入力ポートに対応して設けられ、光波長分割多重信号を波長毎の光信号に分波する波長分波装置43−1〜43−8と、各出力ポートに対応して設けられ、波長毎の光信号を光波長分割多重信号に合波する波長合波装置44−1〜44−8と、波長分波装置43−1〜43−8と波長合波装置44−1〜44−8との間を接続する複数の光導波路45とからなっている。
【0017】
ここで、光導波路45は、波長分波装置43−1〜43−8と波長合波装置44−1〜44−8との間を、2i(i=1,2,3)を単位とする数の入力ポート及び出力ポート間で波長周回性が満たされるように設定・配置する、具体的には以下のように設定・配置する。
【0018】
即ち、a,Aは0以上でn以下の整数、bは0以上で2a-1未満の整数(但し、a=0の場合はb=0のみとする)、Bは0以上で2A-1未満の整数(但し、A=0の場合はB=0のみとする)とし、光信号の波長を1からの連番で表すものとする時、
1番目の波長分波装置及び1番目の波長合波装置を結ぶ光導波路は、番号1の波長の光信号を出力する前記波長分波装置の出力端と、当該番号1の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路は、
a=Aの時(但し、a=A=0の場合は除く)は、2a-1−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a>Aの時は、2a-1−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2a-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a<Aの時は、2a−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2A-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとする、ように設定・配置する。
【0019】
以下、n=2(4入力4出力)の場合の設定の過程について説明する。
【0020】
まず、1番目の波長分波装置43−1及び1番目の波長合波装置44−1を結ぶ光導波路(a=0、A=0、b=0、B=0)は、1番目の波長、即ち波長λ1の光信号を出力する波長分波装置43−1の出力端と、当該波長λ1の光信号を入力する波長合波装置44−1の入力端との間を結ぶ。
【0021】
次に、aに1を加算した時(a=1、A=0、b=0、B=0)の波長分波装置43−2及び波長合波装置44−1を結ぶ光導波路は、2a-1−b=1番目の波長分波装置及び2A−B=1番目の波長合波装置を結ぶ光導波路を通る波長λ1に対し2a-1=1を加えた番号、即ち波長λ2の光信号を出力する波長分波装置43−2の出力端と、当該波長λ2の光信号を入力する波長合波装置44−1の入力端との間を結ぶ。
【0022】
aにさらに1を加算した時(a=2、A=0、b=0、B=0)の波長分波装置43−4及び波長合波装置44−1を結ぶ光導波路は、2a-1−b=2番目の波長分波装置及び2A−B=1番目の波長合波装置を結ぶ光導波路を通る波長λ2に対し2a-1=2を加えた番号、即ち波長λ4の光信号を出力する波長分波装置43−4の出力端と、当該波長λ2の光信号を入力する波長合波装置44−1の入力端との間を結ぶ。
【0023】
さらにbに1を加算した時(a=2、A=0、b=1、B=0)の波長分波装置43−3及び波長合波装置44−1を結ぶ光導波路は、2a-1−b=1番目の波長分波装置及び2A−B=1番目の波長合波装置を結ぶ光導波路を通る波長λ1に対し2a-1=2を加えた番号、即ち波長λ3の光信号を出力する波長分波装置43−3の出力端と、当該波長λ2の光信号を入力する波長合波装置44−1の入力端との間を結ぶ。
【0024】
次に、a,bを0に戻し、Aに1を加算した時(a=0、A=1、b=0、B=0)の波長分波装置43−1及び波長合波装置44−2を結ぶ光導波路は、2a−b=1番目の波長分波装置及び2A-1−B=1番目の波長合波装置を結ぶ光導波路を通る波長λ1に対し2A-1=1を加えた番号、即ち波長λ2の光信号を出力する波長分波装置43−1の出力端と、当該波長λ2の光信号を入力する波長合波装置44−2の入力端との間を結ぶ。
【0025】
さらにaに1を加算した時(a=1、A=1、b=0、B=0)の波長分波装置43−2及び波長合波装置44−2を結ぶ光導波路は、2a-1−b=1番目の波長分波装置及び2A-1−B=1番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長、即ち波長λ1の光信号を出力する波長分波装置43−2の出力端と、当該波長λ1の光信号を入力する波長合波装置44−2の入力端との間を結ぶ。
【0026】
aにさらに1を加算した時(a=2、A=1、b=0、B=0)の波長分波装置43−4及び波長合波装置44−2を結ぶ光導波路は、2a-1−b=2番目の波長分波装置及び2A−B=2番目の波長合波装置を結ぶ光導波路を通る波長λ1に対し2a-1=2を加えた番号、即ち波長λ3の光信号を出力する波長分波装置43−4の出力端と、当該波長λ3の光信号を入力する波長合波装置44−2の入力端との間を結ぶ。
【0027】
さらにbに1を加算した時(a=2、A=1、b=1、B=0)の波長分波装置43−3及び波長合波装置44−2を結ぶ光導波路は、2a-1−b=1番目の波長分波装置及び2A−B=2番目の波長合波装置を結ぶ光導波路を通る波長λ2に対し2a-1=2を加えた番号、即ち波長λ4の光信号を出力する波長分波装置43−3の出力端と、当該波長λ4の光信号を入力する波長合波装置44−2の入力端との間を結ぶ。
【0028】
次に、a,bを0に戻し、Aにさらに1を加算した時(a=0、A=2、b=0、B=0)の波長分波装置43−1及び波長合波装置44−4を結ぶ光導波路は、2a−b=1番目の波長分波装置及び2A-1−B=2番目の波長合波装置を結ぶ光導波路を通る波長λ2に対し2A-1=2を加えた番号、即ち波長λ4の光信号を出力する波長分波装置43−1の出力端と、当該波長λ4の光信号を入力する波長合波装置44−4の入力端との間を結ぶ。
【0029】
さらにaに1を加算した時(a=1、A=2、b=0、B=0)の波長分波装置43−2及び波長合波装置44−4を結ぶ光導波路は、2a−b=2番目の波長分波装置及び2A-1−B=2番目の波長合波装置を結ぶ光導波路を通る波長λ1に対し2A-1=2を加えた番号、即ち波長λ3の光信号を出力する波長分波装置43−2の出力端と、当該波長λ3の光信号を入力する波長合波装置44−4の入力端との間を結ぶ。
【0030】
aにさらに1を加算した時(a=2、A=2、b=0、B=0)の波長分波装置43−4及び波長合波装置44−4を結ぶ光導波路は、2a-1−b=2番目の波長分波装置及び2A-1−B=2番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長、即ち波長λ1の光信号を出力する波長分波装置43−4の出力端と、当該波長λ1の光信号を入力する波長合波装置44−4の入力端との間を結ぶ。
【0031】
さらにbに1を加算した時(a=2、A=2、b=1、B=0)の波長分波装置43−3及び波長合波装置44−4を結ぶ光導波路は、2a-1−b=1番目の波長分波装置及び2A-1−B=2番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長、即ち波長λ2の光信号を出力する波長分波装置43−3の出力端と、当該波長λ2の光信号を入力する波長合波装置44−4の入力端との間を結ぶ。
【0032】
次に、a,bを0に戻し、さらにBに1を加算した時(a=0、A=2、b=0、B=1)の波長分波装置43−1及び波長合波装置44−3を結ぶ光導波路は、2a−b=1番目の波長分波装置及び2A-1−B=1番目の波長合波装置を結ぶ光導波路を通る波長λ1に対し2A-1=2を加えた番号、即ち波長λ3の光信号を出力する波長分波装置43−1の出力端と、当該波長λ3の光信号を入力する波長合波装置44−3の入力端との間を結ぶ。
【0033】
さらにaに1を加算した時(a=1、A=2、b=0、B=1)の波長分波装置43−2及び波長合波装置44−3を結ぶ光導波路は、2a−b=2番目の波長分波装置及び2A-1−B=1番目の波長合波装置を結ぶ光導波路を通る波長λ2に対し2A-1=2を加えた番号、即ち波長λ4の光信号を出力する波長分波装置43−2の出力端と、当該波長λ4の光信号を入力する波長合波装置44−3の入力端との間を結ぶ。
【0034】
aにさらに1を加算した時(a=2、A=2、b=0、B=1)の波長分波装置43−4及び波長合波装置44−3を結ぶ光導波路は、2a-1−b=2番目の波長分波装置及び2A-1−B=1番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長、即ち波長λ2の光信号を出力する波長分波装置43−4の出力端と、当該波長λ2の光信号を入力する波長合波装置44−3の入力端との間を結ぶ。
【0035】
さらにbに1を加算した時(a=2、A=2、b=1、B=1)の波長分波装置43−3及び波長合波装置44−3を結ぶ光導波路は、2a-1−b=1番目の波長分波装置及び2A-1−B=1番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長、即ち波長λ1の光信号を出力する波長分波装置43−3の出力端と、当該波長λ1の光信号を入力する波長合波装置44−3の入力端との間を結ぶ。
【0036】
図2は光導波路45によって結ばれる波長分波装置43−1〜43−8及び波長合波装置44−1〜44−8間の波長の関係、実質的に中継装置40の入力ポート41−1〜41−8及び出力ポート42−1〜42−8間を結ぶ波長の関係を表で示したものである。
【0037】
中継装置40の入力ポート41−1〜41−8及び出力ポート42−1〜42−8は、従来の場合と同様、第k(k=1,2,…8)番目の入力ポート41−kは第k番目の通信ノードの送信機10−kと光ファイバ等の光伝送路により接続され、また、第k番目の出力ポート42−kは第k番目の通信ノードの受信機20−kと光ファイバ等の光伝送路により接続される。
【0038】
第k番目の通信ノードの送信機10−kから光伝送路を介して送られてきた波長λ1〜λ8の光波長分割多重信号は、中継装置40の該当する入力ポート41−kに入力され、波長分波装置43−kに入力され、分波される。分波された光信号は、光導波路45を介して波長合波装置44−1〜44−8のいずれかにそれぞれ入力される。
【0039】
一方、第k番目の波長合波装置44−kは、波長分波装置43−1〜43−8のいずれかからそれぞれ入力された波長λ1〜λ8の光信号を合波して光波長分割多重信号を生成する。波長合波装置44−kにて生成された光波長分割多重信号は、中継装置40の該当する出力ポート42−kから出力され、光伝送路を介して通信ノードの受信機20−kに送られる。
【0040】
図2からも分かるように、前述した中継装置40においては、2i(i=1,2,3,4)を単位とする数の入力ポート及び出力ポート間で波長周回性が満たされているため、8個の通信ノード間の接続をλ1からλ8までの8つの波長を用いて実現できる外、4個以下の通信ノード間の接続をλ1からλ4までの4つの波長(1番目から4番目までの入力ポート及び出力ポート、又は5番目から8番目までの入力ポート及び出力ポートを用いて)もしくはλ5からλ8までの4つの波長(1番目から4番目までの入力ポート及び5番目から8番目までの出力ポート、又は5番目から8番目までの入力ポート及び1番目から4番目までの出力ポートを用いて)を用いて実現でき、また、2個以下の通信ノード間の接続についても、λ1,λ2の2つの波長もしくはλ3,λ4の2つの波長もしくはλ5,λ6の2つの波長もしくはλ7,λ8の2つの波長を用いて前記同様に実現できる。
【0041】
なお、前述した中継装置における波長分波装置及び波長合波装置としては、アレイ導波路回折格子を用いることができ、また、光導波路としては光ファイバを用いることができる。また、前述した実施の形態では、入力ポート及び出力ポートの数が8(n=3)個の場合を示しているが、これに限定されるものではない。
【0042】
【発明の効果】
以上説明したように、本発明の中継装置によれば、2i(i=1,2,……n)を単位とする数の入力ポート及び出力ポート間で波長周回性が満たされることになるため、収容可能な通信ノード数の上限値N(但し、N=2n)より少ないM個の通信ノードを収容するネットワークを、連続した波長の光信号を用いて構成する場合に必要な波長の数が2iのうちM以上で最小の値となり、従来に比べて必要な波長数を削減することができる。
【図面の簡単な説明】
【図1】本発明の中継装置の実施の形態の一例を示す構成図
【図2】本発明の中継装置における入力ポート及び出力ポート間を結ぶ波長の関係を示す説明図
【図3】従来の中継装置の一例を示す構成図
【図4】従来の中継装置における入力ポート及び出力ポート間を結ぶ波長の関係を示す説明図
【符号の説明】
10−1〜10−8:通信ノードの送信機、20−1〜20−8:通信ノードの受信機、40:中継装置、41−1〜41−8:入力ポート、42−1〜42−8:出力ポート、43−1〜43−8:波長分波装置、44−1〜44−8:波長合波装置、45:光導波路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a repeater that constitutes an optical communication network using an optical wavelength division multiplexing (WDM) system.
[0002]
[Prior art]
When configuring an optical communication network based on an optical wavelength division multiplexing (WDM) system between a plurality of communication nodes having a transmitter that transmits an optical wavelength division multiplexed signal and a receiver that receives an optical wavelength division multiplexed signal, each communication node Must be connected to a repeater that can transmit the optical signals without congesting each other.
[0003]
FIG. 3 shows an example of a conventional repeater using a wavelength-circulating arrayed waveguide grating having N inputs and N outputs (here, 8 inputs and 8 outputs). In the figure, reference numerals 10-1 to 10-8 denote communication nodes. A transmitter, 20-1 to 20-8 are receivers of communication nodes, and 30 is a wavelength-circulating arrayed waveguide grating (relay device).
[0004]
The wavelength-circulating arrayed waveguide grating 30 has eight input ports 31-1 to 31-8 and eight output ports 32-1 to 32-8, and kth (k = 1, 2,...). 8) The k-th input port 31-k is connected to the transmitter 10-k of the k-th communication node by an optical transmission line such as an optical fiber, and the k-th output port 32-k is the k-th output port. The communication node receiver 20-k is connected by an optical transmission line such as an optical fiber.
[0005]
Wavelengths λ1 to λ8 (λ1 <λ2 <λ3 <λ4 <λ5 <λ6 <λ7 <λ8, or λ1>λ2>λ3>λ4>λ5>λ6>λ7> λ8 transmitted from the transmitter 10 by wavelength division multiplexing. ) Is input to the corresponding input port 31 of the wavelength-circulating arrayed waveguide grating 30, and is output from the output port 32 that is different for each wavelength by the wavelength demultiplexing function of the arrayed waveguide grating 30. Is done.
[0006]
FIG. 4 is a table showing the relationship of wavelengths connecting the input ports 31-1 to 31-8 and the output ports 32-1 to 32-8 of the wavelength-circulating arrayed waveguide grating 30. In particular, since the arrayed waveguide diffraction grating 30 has wavelength revolving characteristics, 8 × 8 input / outputs can be realized using eight types of wavelengths (see Patent Document 1).
[0007]
[Patent Document 1]
JP 2000-201112 A
[Problems to be solved by the invention]
However, when the above-described repeater using an N-input N-output wavelength-circulating arrayed waveguide grating is used, a network that accommodates M communication nodes that are fewer than N is configured using optical signals having continuous wavelengths. Then, the number of required wavelengths is the smaller of 2M-1 and N (for example, in order to connect four communication nodes using an 8-input 8-output wavelength-circulating arrayed waveguide grating) 7 wavelengths are required, and 13 wavelengths are required to connect 7 communication nodes using a 16-input 16-output wavelength-circulating arrayed waveguide grating.
[0009]
This is because, in the input / output characteristics of the wavelength-circulating arrayed waveguide grating, focusing on only a part of the input / output relationship, the wavelength-circulating property is not satisfied.
[0010]
Since the upper limit of the number of communication nodes that can be accommodated in the network is N, if a network is constructed using a repeater using a wavelength-circular arrayed waveguide diffraction grating having a large N in anticipation of future expandability, the initial number of communication nodes is small. Even at the time of introduction, an optical signal having a large number of wavelengths is required, and there is a problem that the feature of reducing the number of wavelengths used cannot be utilized.
[0011]
The present invention has been made in view of the above-mentioned conventional drawbacks, and is a network using optical signals of continuous wavelengths when the number of communication nodes actually accommodated is smaller than the upper limit value of the number of communication nodes that can be accommodated. It is an object of the present invention to provide a relay device that requires a small number of wavelengths to configure.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a relay that configures an optical communication network by connecting communication nodes including a transmitter that transmits an optical wavelength division multiplexed signal and a receiver that receives the optical wavelength division multiplexed signal. A device,
2 n (n is an arbitrary integer greater than or equal to 2 ) input ports respectively connected to the transmitter of the communication node via the optical transmission line, and connected to the receiver of the communication node via the optical transmission line 2 n output ports, a wavelength demultiplexer provided corresponding to each input port and demultiplexing the optical wavelength division multiplexed signal from the transmitter into optical signals for each wavelength, and corresponding to each output port A wavelength multiplexing device that multiplexes an optical signal for each wavelength into an optical wavelength division multiplexed signal and sends it to the receiver, and a plurality of optical devices that connect between the wavelength demultiplexing device and the wavelength multiplexing device Consisting of a waveguide,
a and A are integers greater than or equal to 0 and less than or equal to n, b is an integer greater than or equal to 0 and less than 2 a-1 (provided that only b = 0 when a = 0), B is greater than or equal to 0 and 2 A-1 An integer less than (however, if A = 0, only B = 0), and the wavelength of the optical signal is represented by a serial number from 1,
An optical waveguide connecting the first wavelength demultiplexing device and the first wavelength multiplexing device includes an output end of the wavelength demultiplexing device that outputs an optical signal having a wavelength of No. 1 and an optical signal having the wavelength of the No. 1 It shall be connected to the input end of the wavelength multiplexer to be input,
An optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device is:
When a = A (except when a = A = 0), an optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device is used. It connects between the output end of the wavelength demultiplexing device that outputs an optical signal of the same number as the wavelength that passes through, and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a> A, the wavelength having a number obtained by adding 2 a-1 to the wavelength passing through the optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device It connects between the output end of the wavelength demultiplexing device that outputs an optical signal and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a <A, the wavelength of the number obtained by adding 2 A-1 to the wavelength passing through the optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device A relay device is proposed that connects between an output end of the wavelength demultiplexing device that outputs an optical signal and an input end of the wavelength multiplexing device that inputs an optical signal of the wavelength of the number.
[0013]
According to the above-described configuration, since the wavelength circulation property is satisfied between the number of input ports and output ports in units of 2 i (i = 1 , 2,... N), the number of communication nodes that can be accommodated. When a network accommodating M communication nodes smaller than the upper limit value N (where N = 2 n ) is configured using optical signals having continuous wavelengths, the number of wavelengths required is M or more of 2 i. The number of wavelengths required to connect four communication nodes using a relay device with the minimum value (for example, 8 inputs 8 outputs (n = 3) is 4, 16 inputs 16 outputs (n = 4). The number of wavelengths necessary for connecting the seven communication nodes using the apparatus is 8), and the number of wavelengths necessary can be reduced as compared with the conventional case.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0015]
FIG. 1 shows an example of an embodiment of a relay apparatus according to the present invention, in which 10-1 to 10-8 are transmitters of communication nodes, 20-1 to 20-8 are receivers of communication nodes, Reference numeral 40 denotes a relay device of the present invention.
[0016]
The relay apparatus 40 has 2 n (n is an arbitrary integer equal to or greater than 2 ), here, 8 (n = 3) input ports 41-1 to 41-8 and 8 output ports 42-1 to 42. -8 and wavelength demultiplexing devices 43-1 to 43-8 that are provided corresponding to each input port and demultiplex an optical wavelength division multiplexed signal into optical signals for each wavelength, and provided corresponding to each output port Wavelength multiplexing devices 44-1 to 44-8 for multiplexing optical signals for each wavelength into optical wavelength division multiplexed signals, wavelength demultiplexing devices 43-1 to 43-8, and wavelength multiplexing devices 44-1 to 44-1. 44-8, and a plurality of optical waveguides 45 connecting between them.
[0017]
Here, the optical waveguide 45 has a unit between 2 i (i = 1 , 2, 3) between the wavelength demultiplexing devices 43-1 to 43-8 and the wavelength multiplexing devices 44-1 to 44-8. The number of input ports and the number of input ports are set and arranged so as to satisfy the wavelength circulation property. Specifically, the setting and arrangement are performed as follows.
[0018]
That is, a and A are integers greater than or equal to 0 and less than or equal to n, b is an integer greater than or equal to 0 and less than 2 a-1 (provided that only b = 0 when a = 0), and B is greater than 0 and equal to 2 A When an integer less than -1 is used (however, if A = 0, only B = 0), and the wavelength of the optical signal is represented by a serial number from 1,
An optical waveguide connecting the first wavelength demultiplexing device and the first wavelength multiplexing device includes an output end of the wavelength demultiplexing device that outputs an optical signal having a wavelength of No. 1 and an optical signal having the wavelength of the No. 1 It shall be connected to the input end of the wavelength multiplexer to be input,
An optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device is:
When a = A (except when a = A = 0), an optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device is used. It connects between the output end of the wavelength demultiplexing device that outputs an optical signal of the same number as the wavelength that passes through, and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a> A, the wavelength having a number obtained by adding 2 a-1 to the wavelength passing through the optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device It connects between the output end of the wavelength demultiplexing device that outputs an optical signal and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a <A, the wavelength of the number obtained by adding 2 A-1 to the wavelength passing through the optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device It is set and arranged so as to connect between an output end of the wavelength demultiplexing device that outputs an optical signal and an input end of the wavelength multiplexing device that inputs an optical signal having the wavelength of the number.
[0019]
The setting process when n = 2 (4 inputs and 4 outputs) will be described below.
[0020]
First, the optical waveguide (a = 0, A = 0, b = 0, B = 0) connecting the first wavelength demultiplexing device 43-1 and the first wavelength multiplexing device 44-1 is the first wavelength. That is, the output terminal of the wavelength demultiplexing device 43-1 that outputs the optical signal having the wavelength λ1 is connected to the input terminal of the wavelength multiplexing device 44-1 that inputs the optical signal having the wavelength λ1.
[0021]
Next, when 1 is added to a (a = 1, A = 0, b = 0, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-2 and the wavelength multiplexing device 44-1 is 2 a-1 -b = 1 is a number obtained by adding 2 a-1 = 1 to the wavelength λ1 passing through the optical waveguide connecting the first wavelength demultiplexing device and 2 A -B = 1st wavelength multiplexing device, that is, the wavelength λ2 Is connected between the output end of the wavelength demultiplexing device 43-2 for outputting the optical signal and the input end of the wavelength multiplexing device 44-1 for inputting the optical signal of the wavelength λ2.
[0022]
When 1 is further added to a (a = 2, A = 0, b = 0, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-4 and the wavelength multiplexing device 44-1 is 2 a− 1− b = 2 is a number obtained by adding 2 a−1 = 2 to the wavelength λ2 passing through the optical waveguide connecting the second wavelength demultiplexing device and 2 A− B = first wavelength multiplexing device, that is, the light of wavelength λ4. The output end of the wavelength demultiplexing device 43-4 that outputs a signal is connected to the input end of the wavelength multiplexing device 44-1 that inputs an optical signal of the wavelength λ2.
[0023]
Further, when 1 is added to b (a = 2, A = 0, b = 1, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-3 and the wavelength multiplexing device 44-1 is 2 a−. 1− b = 1 is a number obtained by adding 2 a−1 = 2 to the wavelength λ1 passing through the optical waveguide connecting the first wavelength demultiplexing device and the 2 A− B = first wavelength multiplexing device, that is, the light of wavelength λ3. The output end of the wavelength demultiplexing device 43-3 that outputs a signal is connected to the input end of the wavelength multiplexing device 44-1 that inputs an optical signal of the wavelength λ2.
[0024]
Next, a and b are returned to 0, and 1 is added to A (a = 0, A = 1, b = 0, B = 0), the wavelength demultiplexing device 43-1 and the wavelength multiplexing device 44- an optical waveguide connecting the 2, 2 a -b = 1 th the wavelength λ1 passing through the optical waveguide connecting the wavelength demultiplexing device, and 2 a-1 -B = 1 th wavelength multiplexing device 2 a-1 = 1 Between the output end of the wavelength demultiplexing device 43-1 that outputs the optical signal having the wavelength λ2 and the input end of the wavelength multiplexing device 44-2 that inputs the optical signal having the wavelength λ2. .
[0025]
Further, when 1 is added to a (a = 1, A = 1, b = 0, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-2 and the wavelength multiplexing device 44-2 is 2 a−. 1 −b = 1 wavelength, and 2 A−1 −B = wavelength having the same number as the wavelength passing through the optical waveguide connecting the first wavelength multiplexing device, that is, the wavelength for outputting the optical signal of wavelength λ1 The output terminal of the wave device 43-2 is connected to the input terminal of the wavelength multiplexer 44-2 for inputting the optical signal having the wavelength λ1.
[0026]
When 1 is further added to a (a = 2, A = 1, b = 0, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-4 and the wavelength multiplexing device 44-2 is 2 a− 1− b = 2 is a number obtained by adding 2 a−1 = 2 to the wavelength λ1 passing through the optical waveguide connecting the second wavelength demultiplexing device and 2 A− B = second wavelength multiplexing device, that is, the light of wavelength λ3. The output end of the wavelength demultiplexing device 43-4 that outputs the signal is connected to the input end of the wavelength multiplexing device 44-2 that inputs the optical signal of the wavelength λ3.
[0027]
Further, when 1 is added to b (a = 2, A = 1, b = 1, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-3 and the wavelength multiplexing device 44-2 is 2 a−. 1− b = 1 is a number obtained by adding 2 a−1 = 2 to the wavelength λ2 passing through the optical waveguide connecting the first wavelength demultiplexing device and the 2 A− B = 2nd wavelength multiplexing device, that is, the light of wavelength λ4. The output end of the wavelength demultiplexing device 43-3 that outputs a signal is connected to the input end of the wavelength multiplexing device 44-2 that inputs an optical signal of the wavelength λ4.
[0028]
Next, a and b are returned to 0, and 1 is added to A (a = 0, A = 2, b = 0, B = 0), the wavelength demultiplexing device 43-1 and the wavelength multiplexing device 44. an optical waveguide connecting the -4, 2 a -b = 1 th the wavelength λ2 passing through the optical waveguide connecting the wavelength demultiplexing device, and 2 a-1 -B = 2-th wavelength multiplexing device 2 a-1 = 2 between the output end of the wavelength demultiplexing device 43-1 that outputs the optical signal of wavelength λ4 and the input end of the wavelength multiplexing device 44-4 that inputs the optical signal of wavelength λ4. tie.
[0029]
Further, when 1 is added to a (a = 1, A = 2, b = 0, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-2 and the wavelength multiplexing device 44-4 is 2 a −. b = number obtained by adding 2 A-1 = 2 to the wavelength λ1 passing through the optical waveguide connecting the second wavelength demultiplexing device and 2 A-1 -B = second wavelength multiplexing device, that is, the light of wavelength λ3 The output end of the wavelength demultiplexing device 43-2 that outputs the signal is connected to the input end of the wavelength multiplexing device 44-4 that inputs the optical signal of the wavelength λ3.
[0030]
When 1 is further added to a (a = 2, A = 2, b = 0, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-4 and the wavelength multiplexing device 44-4 is 2 a− 1 −b = the wavelength having the same number as the wavelength passing through the optical waveguide connecting the second wavelength demultiplexing device and 2 A-1 −B = second wavelength multiplexing device, that is, the wavelength for outputting the optical signal having the wavelength λ1. The output terminal of the wave device 43-4 is connected to the input terminal of the wavelength multiplexer 44-4 for inputting the optical signal having the wavelength λ1.
[0031]
Further, when 1 is added to b (a = 2, A = 2, b = 1, B = 0), the optical waveguide connecting the wavelength demultiplexing device 43-3 and the wavelength multiplexing device 44-4 is 2 a−. 1 -b = wavelength of the same number as the wavelength passing through the optical waveguide connecting the first wavelength demultiplexing device and 2 A-1 -B = second wavelength multiplexing device, that is, the wavelength for outputting the optical signal of wavelength λ2 The output terminal of the wave device 43-3 is connected to the input terminal of the wavelength multiplexer 44-4 for inputting the optical signal having the wavelength λ2.
[0032]
Next, the wavelength demultiplexing device 43-1 and the wavelength multiplexing device 44 when a and b are returned to 0 and 1 is further added to B (a = 0, A = 2, b = 0, B = 1). -3 is 2 A-1 = 2 with respect to the wavelength λ1 passing through the optical waveguide connecting the 2 a -b = 1st wavelength demultiplexing device and the 2 A-1 -B = 1st wavelength multiplexing device. 2 between the output end of the wavelength demultiplexing device 43-1 that outputs the optical signal of wavelength λ3 and the input end of the wavelength multiplexing device 44-3 that inputs the optical signal of wavelength λ3. tie.
[0033]
Further, when 1 is added to a (a = 1, A = 2, b = 0, B = 1), the optical waveguide connecting the wavelength demultiplexing device 43-2 and the wavelength multiplexing device 44-3 is 2 a −. b = number obtained by adding 2 A-1 = 2 to the wavelength λ2 passing through the optical waveguide connecting the second wavelength demultiplexing device and the 2 A-1 -B = first wavelength multiplexing device, that is, the light of wavelength λ4 The output end of the wavelength demultiplexing device 43-2 that outputs a signal and the input end of the wavelength multiplexing device 44-3 that inputs an optical signal of the wavelength λ4 are connected.
[0034]
When 1 is further added to a (a = 2, A = 2, b = 0, B = 1), the optical waveguide connecting the wavelength demultiplexing device 43-4 and the wavelength multiplexing device 44-3 is 2 a− 1 −b = the wavelength of the same number as the wavelength passing through the optical waveguide connecting the second wavelength demultiplexing device and 2 A−1 -B = first wavelength multiplexing device, that is, the wavelength for outputting the optical signal of wavelength λ 2 The output terminal of the wave device 43-4 is connected to the input terminal of the wavelength multiplexer 44-3 for inputting the optical signal having the wavelength λ2.
[0035]
Further, when 1 is added to b (a = 2, A = 2, b = 1, B = 1), the optical waveguide connecting the wavelength demultiplexing device 43-3 and the wavelength multiplexing device 44-3 is 2 a−. 1 −b = 1 wavelength, and 2 A−1 −B = wavelength having the same number as the wavelength passing through the optical waveguide connecting the first wavelength multiplexing device, that is, the wavelength for outputting the optical signal of wavelength λ1 The output terminal of the wave device 43-3 is connected to the input terminal of the wavelength multiplexer 44-3 for inputting the optical signal having the wavelength λ1.
[0036]
FIG. 2 shows the wavelength relationship between the wavelength demultiplexing devices 43-1 to 43-8 and the wavelength multiplexing devices 44-1 to 44-8 connected by the optical waveguide 45, substantially the input port 41-1 of the repeater 40. ˜41-8 and the relationship of wavelengths connecting the output ports 42-1 to 42-8 are shown in a table.
[0037]
The input ports 41-1 to 41-8 and the output ports 42-1 to 42-8 of the relay device 40 are the k-th (k = 1, 2,... 8) -th input port 41-k as in the conventional case. Are connected to the transmitter 10-k of the kth communication node by an optical transmission line such as an optical fiber, and the kth output port 42-k is connected to the receiver 20-k of the kth communication node. They are connected by an optical transmission line such as an optical fiber.
[0038]
The optical wavelength division multiplexed signals of wavelengths λ1 to λ8 sent from the transmitter 10-k of the kth communication node via the optical transmission line are input to the corresponding input port 41-k of the relay device 40, The signal is input to the wavelength demultiplexer 43-k and demultiplexed. The demultiplexed optical signal is input to any of the wavelength multiplexing devices 44-1 to 44-8 via the optical waveguide 45.
[0039]
On the other hand, the k-th wavelength multiplexing device 44-k multiplexes optical signals of wavelengths λ1 to λ8 respectively input from any of the wavelength demultiplexing devices 43-1 to 43-8, and performs optical wavelength division multiplexing. Generate a signal. The optical wavelength division multiplexed signal generated by the wavelength multiplexing device 44-k is output from the corresponding output port 42-k of the relay device 40 and sent to the receiver 20-k of the communication node via the optical transmission line. It is done.
[0040]
As can be seen from FIG. 2, in the relay device 40 described above, the wavelength circulation property is satisfied between the number of input ports and output ports in units of 2 i (i = 1 , 2, 3, 4). Therefore, the connection between the eight communication nodes can be realized using eight wavelengths from λ1 to λ8, and the connection between the four communication nodes can be performed at four wavelengths from λ1 to λ4 (from the first to the fourth). 4 wavelengths (from 1st to 4th input port and 5th to 8th) or from λ5 to λ8) Output ports, or 5th to 8th input ports and 1st to 4th output ports), and connection between two or less communication nodes , 2 of λ2 The wavelength or [lambda] 3, .lambda.4 two wavelengths or [lambda] 5, two wavelengths or λ7 of .lambda.6, the equally realized using two wavelengths of .lambda.8.
[0041]
An arrayed waveguide diffraction grating can be used as the wavelength demultiplexing device and wavelength multiplexing device in the above-described repeater, and an optical fiber can be used as the optical waveguide. In the above-described embodiment, the number of input ports and output ports is 8 (n = 3). However, the present invention is not limited to this.
[0042]
【The invention's effect】
As described above, according to the relay apparatus of the present invention, the wavelength circulatory property is satisfied between the number of input ports and output ports in units of 2 i (i = 1 , 2,... N). Therefore, the number of wavelengths required when a network accommodating M communication nodes smaller than the upper limit value N (where N = 2 n ) of the number of communication nodes that can be accommodated is configured using optical signals having continuous wavelengths. The number is minimum when the number is 2 i or more, and the required number of wavelengths can be reduced as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of an embodiment of a relay apparatus of the present invention. FIG. 2 is an explanatory diagram showing a relationship between wavelengths connecting an input port and an output port in the relay apparatus of the present invention. FIG. 4 is a block diagram showing an example of a relay device. FIG. 4 is an explanatory diagram showing the relationship of wavelengths connecting input ports and output ports in a conventional relay device.
10-1 to 10-8: transmitter of communication node, 20-1 to 20-8: receiver of communication node, 40: relay device, 41-1 to 41-8: input port, 42-1 to 42- 8: output port, 43-1 to 43-8: wavelength demultiplexing device, 44-1 to 44-8: wavelength multiplexing device, 45: optical waveguide.

Claims (2)

光波長分割多重信号を送信する送信機及び光波長分割多重信号を受信する受信機を備えた通信ノード間を接続して光通信ネットワークを構成する中継装置であって、
光伝送路を介して通信ノードの送信機にそれぞれ接続される2n(nは以上の任意の整数)個の入力ポートと、光伝送路を介して通信ノードの受信機にそれぞれ接続される2n個の出力ポートと、各入力ポートに対応して設けられ、前記送信機からの光波長分割多重信号を波長毎の光信号に分波する波長分波装置と、各出力ポートに対応して設けられ、波長毎の光信号を光波長分割多重信号に合波して前記受信機に送出する波長合波装置と、波長分波装置と波長合波装置との間を接続する複数の光導波路とからなり、
a,Aは0以上でn以下の整数、bは0以上で2a-1未満の整数(但し、a=0の場合はb=0のみとする)、Bは0以上で2A-1未満の整数(但し、A=0の場合はB=0のみとする)とし、光信号の波長を1からの連番で表すものとする時、
1番目の波長分波装置及び1番目の波長合波装置を結ぶ光導波路は、番号1の波長の光信号を出力する前記波長分波装置の出力端と、当該番号1の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路は、
a=Aの時(但し、a=A=0の場合は除く)は、2a-1−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a>Aの時は、2a-1−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2a-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a<Aの時は、2a−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2A-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとした
ことを特徴とする中継装置。
A relay device that configures an optical communication network by connecting between communication nodes including a transmitter that transmits an optical wavelength division multiplexed signal and a receiver that receives an optical wavelength division multiplexed signal,
2 n (n is an arbitrary integer greater than or equal to 2 ) input ports respectively connected to the transmitter of the communication node via the optical transmission line, and connected to the receiver of the communication node via the optical transmission line 2 n output ports, a wavelength demultiplexer provided corresponding to each input port and demultiplexing the optical wavelength division multiplexed signal from the transmitter into optical signals for each wavelength, and corresponding to each output port A wavelength multiplexing device that multiplexes an optical signal for each wavelength into an optical wavelength division multiplexed signal and sends it to the receiver, and a plurality of optical devices that connect between the wavelength demultiplexing device and the wavelength multiplexing device Consisting of a waveguide,
a and A are integers greater than or equal to 0 and less than or equal to n, b is an integer greater than or equal to 0 and less than 2 a-1 (provided that only b = 0 when a = 0), B is greater than or equal to 0 and 2 A-1 An integer less than (however, if A = 0, only B = 0), and the wavelength of the optical signal is represented by a serial number from 1,
An optical waveguide connecting the first wavelength demultiplexing device and the first wavelength multiplexing device includes an output end of the wavelength demultiplexing device that outputs an optical signal having a wavelength of No. 1 and an optical signal having the wavelength of the No. 1 It shall be connected to the input end of the wavelength multiplexer to be input,
An optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device is:
When a = A (except when a = A = 0), an optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device is used. It connects between the output end of the wavelength demultiplexing device that outputs an optical signal of the same number as the wavelength that passes through, and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a> A, the wavelength having a number obtained by adding 2 a-1 to the wavelength passing through the optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device It connects between the output end of the wavelength demultiplexing device that outputs an optical signal and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a <A, the wavelength of the number obtained by adding 2 A-1 to the wavelength passing through the optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device A relay apparatus characterized in that it connects between an output end of the wavelength demultiplexing apparatus that outputs an optical signal and an input end of the wavelength multiplexing apparatus that inputs an optical signal of the wavelength of the number.
n(nは以上の任意の整数)個の入力ポートと、2n個の出力ポートと、各入力ポートに対応して設けられ、光波長分割多重信号を波長毎の光信号に分波する波長分波装置と、各出力ポートに対応して設けられ、波長毎の光信号を光波長分割多重信号に合波送出する波長合波装置と、波長分波装置と波長合波装置との間を接続する複数の光導波路とからなる中継装置における光導波路の設定方法であって、
a,Aは0以上でn以下の整数、bは0以上で2a-1未満の整数(但し、a=0の場合はb=0のみとする)、Bは0以上で2A-1未満の整数(但し、A=0の場合はB=0のみとする)とし、光信号の波長を1からの連番で表すものとする時、
1番目の波長分波装置及び1番目の波長合波装置を結ぶ光導波路は、番号1の波長の光信号を出力する前記波長分波装置の出力端と、当該番号1の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路は、
a=Aの時(但し、a=A=0の場合は除く)は、2a-1−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長と同じ番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a>Aの時は、2a-1−b番目の波長分波装置及び2A−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2a-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとし、
a<Aの時は、2a−b番目の波長分波装置及び2A-1−B番目の波長合波装置を結ぶ光導波路を通る波長に対し2A-1を加えた番号の波長の光信号を出力する前記波長分波装置の出力端と、当該番号の波長の光信号を入力する前記波長合波装置の入力端との間を結ぶものとする
ことを特徴とする中継装置における光導波路の設定方法。
2 n (n is an arbitrary integer greater than or equal to 2 ) input ports, 2 n output ports, and corresponding to each input port are provided, and an optical wavelength division multiplexed signal is demultiplexed into optical signals for each wavelength. A wavelength demultiplexer, a wavelength demultiplexer provided corresponding to each output port, for multiplexing and transmitting an optical signal for each wavelength into an optical wavelength division multiplexed signal, and a wavelength demultiplexer and a wavelength demultiplexer It is a setting method of an optical waveguide in a relay device comprising a plurality of optical waveguides connecting between,
a and A are integers greater than or equal to 0 and less than or equal to n, b is an integer greater than or equal to 0 and less than 2 a-1 (provided that only b = 0 when a = 0), B is greater than or equal to 0 and 2 A-1 An integer less than (however, if A = 0, only B = 0), and the wavelength of the optical signal is represented by a serial number from 1,
An optical waveguide connecting the first wavelength demultiplexing device and the first wavelength multiplexing device includes an output end of the wavelength demultiplexing device that outputs an optical signal having a wavelength of No. 1 and an optical signal having the wavelength of the No. 1 It shall be connected to the input end of the wavelength multiplexer to be input,
An optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device is:
When a = A (except when a = A = 0), an optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device is used. It connects between the output end of the wavelength demultiplexing device that outputs an optical signal of the same number as the wavelength that passes through, and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a> A, the wavelength having a number obtained by adding 2 a-1 to the wavelength passing through the optical waveguide connecting the 2 a-1 -b th wavelength demultiplexing device and the 2 A -B th wavelength multiplexing device It connects between the output end of the wavelength demultiplexing device that outputs an optical signal and the input end of the wavelength multiplexing device that inputs the optical signal of the wavelength of the number,
When a <A, the wavelength of the number obtained by adding 2 A-1 to the wavelength passing through the optical waveguide connecting the 2 a -b th wavelength demultiplexing device and the 2 A-1 -B th wavelength multiplexing device The optical fiber in the repeater is characterized in that it connects between an output end of the wavelength demultiplexing device that outputs an optical signal and an input end of the wavelength multiplexing device that inputs an optical signal of the wavelength of the number. Waveguide setting method.
JP2003009392A 2003-01-17 2003-01-17 Relay device and setting method thereof Expired - Fee Related JP3984171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009392A JP3984171B2 (en) 2003-01-17 2003-01-17 Relay device and setting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009392A JP3984171B2 (en) 2003-01-17 2003-01-17 Relay device and setting method thereof

Publications (2)

Publication Number Publication Date
JP2004222127A JP2004222127A (en) 2004-08-05
JP3984171B2 true JP3984171B2 (en) 2007-10-03

Family

ID=32898903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009392A Expired - Fee Related JP3984171B2 (en) 2003-01-17 2003-01-17 Relay device and setting method thereof

Country Status (1)

Country Link
JP (1) JP3984171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964829A (en) * 2017-05-22 2018-12-07 中兴通讯股份有限公司 A kind of trunking

Also Published As

Publication number Publication date
JP2004222127A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
JPH04167634A (en) Optical wavelength multiplex add/drop device and optical wavelength multiplex network
JP3993580B2 (en) Wavelength division multiplexing self-healing bidirectional ring network
US20030206743A1 (en) Cross connecting device and optical communication system
JP2002152784A (en) Optical cross connect device
EP1116346B1 (en) Tuneable add/drop multiplexer
JP3984171B2 (en) Relay device and setting method thereof
JP3480544B2 (en) WDM communication system and method
JP2004135331A (en) Optical cross-connect system
US7133614B2 (en) Optical multiple transmission method, optical network and optical transmission apparatus
JP2000224108A (en) Wavelength division multiplexer demltiplexer
JP3614320B2 (en) Wavelength multiple polymerization demultiplexing transmission system and wavelength division multiplexing transmission apparatus
JP3055603B2 (en) Optical network
JP3703018B2 (en) Star optical network
JP3889721B2 (en) Optical wavelength division multiplexing network equipment
JPH04104634A (en) Wavelength multiplex optical network
JP4553236B2 (en) Optical communication method and optical transmission apparatus
JP3566593B2 (en) WDM network
JP3895295B2 (en) Optical wavelength division multiplexing network equipment
JP2000206362A (en) OPTICAL ADM(Add/Drop Multiplexing) NODE DEVICE
JP3616991B2 (en) Optical communication network
JP4476200B2 (en) Optical signal transmitter / receiver, optical signal multiplexer / demultiplexer, and optical communication network
JP2005117509A (en) Optical communication network system and its wavelength routing device
JP4233973B2 (en) Optical communication network system
JPH10303984A (en) Optical switching device and optical network system
JP4755126B2 (en) Wavelength routing network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3984171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees