JP4553236B2 - Optical communication method and optical transmission apparatus - Google Patents

Optical communication method and optical transmission apparatus Download PDF

Info

Publication number
JP4553236B2
JP4553236B2 JP2004168445A JP2004168445A JP4553236B2 JP 4553236 B2 JP4553236 B2 JP 4553236B2 JP 2004168445 A JP2004168445 A JP 2004168445A JP 2004168445 A JP2004168445 A JP 2004168445A JP 4553236 B2 JP4553236 B2 JP 4553236B2
Authority
JP
Japan
Prior art keywords
optical
wavelength
node
parent node
child
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004168445A
Other languages
Japanese (ja)
Other versions
JP2005348311A (en
Inventor
晋 西原
俊二 木村
智暁 吉田
崇史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004168445A priority Critical patent/JP4553236B2/en
Publication of JP2005348311A publication Critical patent/JP2005348311A/en
Application granted granted Critical
Publication of JP4553236B2 publication Critical patent/JP4553236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Description

本発明は、波長多重光通信システムや時分割多重光通信システムにおけるトラフィック制御を目的とした光通信技術に関し、特に1対nの双方向光通信の下り通信技術に関するものである。   The present invention relates to an optical communication technique aimed at traffic control in a wavelength division multiplexing optical communication system or a time division multiplexing optical communication system, and more particularly to a downlink communication technique for one-to-n bidirectional optical communication.

図6〜図11に従来の光通信方式を示す。図6はPON(Passive Optical Network)による従来の光通信方式を説明する図である。光ネットワークは、1個の親ノード10A、n個の子ノード21〜2n、n分岐スターカプラ30を備え、親ノード10Aとスターカプラ30が1本の光ファイバ40で、スターカプラ30とn個の子ノード21〜2nがn本の光ファイバ51〜5nで接続された構成をとる。   6 to 11 show conventional optical communication systems. FIG. 6 is a diagram for explaining a conventional optical communication system using a PON (Passive Optical Network). The optical network includes one parent node 10A, n child nodes 21 to 2n, and n branch star coupler 30. The parent node 10A and the star coupler 30 are one optical fiber 40, and n star couplers 30 are provided. The child nodes 21 to 2n are connected by n optical fibers 51 to 5n.

親ノード10Aから子ノード21〜2nに向けた通信を「下り通信」、その逆方向の通信を「上り通信」と呼ぶのが一般的であるので、本明細書でも同様の表現を用いる。また、本発明は下り通信に関するもので、特に上り通信方式によらないため、従来技術に関しても便宜上、下り通信のみの説明にとどめる。   Since communication from the parent node 10A to the child nodes 21 to 2n is generally referred to as “downlink communication” and communication in the opposite direction is referred to as “uplink communication”, the same expression is used in this specification. In addition, the present invention relates to downlink communication and does not depend on an uplink communication method in particular, and therefore only the downlink communication is described for convenience with respect to the prior art.

各子ノード21〜2nへの信号は時分割多重(Time Division Multiplexing;TDM)により多重伝送される。すなわち、親ノード10Aから送信された信号は、スターカプラ30によって分岐され、全ての子ノード21〜2nに同じ信号が到達する。このため各子ノード21〜2nは、受信した信号の中から自ノード宛の信号のみを識別して受信する能力を有する必要がある。   Signals to the child nodes 21 to 2n are multiplexed and transmitted by time division multiplexing (TDM). That is, the signal transmitted from the parent node 10A is branched by the star coupler 30, and the same signal reaches all the child nodes 21 to 2n. Therefore, each of the child nodes 21 to 2n needs to have an ability to identify and receive only the signal addressed to the own node from the received signals.

以上のようなTDM−PONによる光通信方式においては、親ノード10Aからスターカプラ30までの光ファイバ40を複数の子ノードで共有することができる。また、1個の光送信器を備える光伝送装置を親ノード10Aに置くだけで、n個の子ノード21〜2nを賄うことができることから、少ない設備投資でネットワークを構築できるというメリットがある。   In the optical communication system using TDM-PON as described above, the optical fiber 40 from the parent node 10A to the star coupler 30 can be shared by a plurality of child nodes. Further, since the n child nodes 21 to 2n can be covered only by placing an optical transmission device including one optical transmitter in the parent node 10A, there is an advantage that a network can be constructed with a small capital investment.

図7はWDM−PON(Wavelength Division Multiplexing−PON)による光通信方式を説明する図である。前記のTDM−PONとの大きな違いは、スターカプラ30の代わりに波長フィルタ60(この場合、nチャネル)を用いている点である。このネットワークでは、各子ノード21〜2n向けの下り通信に対して各々1波長ずつ割り当てられており、図8に示すように、それぞれの波長λ1〜λnの光信号を送信する光送信器Tx1〜Txnを子ノード21〜2nの数nだけ親ノード10Bに用意し、またnチャネル合波器11も用意する。信号は、親ノード10Bから波長フィルタ60までの光ファイバ40上ではWDMにより伝送され、波長フィルタ60で分波された後は各子ノード21〜2n向けに振り分けられる。   FIG. 7 is a diagram for explaining an optical communication system based on WDM-PON (Wavelength Division Multiplexing-PON). A major difference from the TDM-PON is that a wavelength filter 60 (in this case, n-channel) is used instead of the star coupler 30. In this network, one wavelength is assigned to each downlink communication for each of the child nodes 21 to 2n, and as shown in FIG. 8, optical transmitters Tx1 to Tx1 that transmit optical signals of the respective wavelengths λ1 to λn. Txn is prepared in the parent node 10B by the number n of the child nodes 21 to 2n, and the n-channel multiplexer 11 is also prepared. The signal is transmitted by WDM on the optical fiber 40 from the parent node 10B to the wavelength filter 60, and after being demultiplexed by the wavelength filter 60, the signal is distributed to each of the child nodes 21 to 2n.

このWDM−PONによる光通信方式では、各子ノード21〜2nには自ノード向けの信号しか伝送されないために、通信の守秘性を確保することが出来るばかりでなく、信号パワーは分岐されないため、少ないパワー損失で子ノードに伝送することが出来る。   In this optical communication method using WDM-PON, since only the signal for the own node is transmitted to each of the child nodes 21 to 2n, not only the confidentiality of communication can be secured, but also the signal power is not branched. It can be transmitted to the child node with little power loss.

図9は、WDM/TDM−PONによる光通信方式(例えば、特許文献1の図1、および特許文献2の図2参照)を説明する図である。ネットワーク構成は前記のWDM−PONによる光通信方式のように、1個の親ノード10C、n個の子ノード21〜2n、波長フィルタ60(この場合、nチャネル)を備え、親ノード10Cと波長フィルタ60が1本の光ファイバ40で、波長フィルタ60とn個の子ノード21〜2nがn本の光ファイバ51〜5nで接続された構成をとる。従って、各子ノード21〜2nには割り当てられた波長λ1〜λnの光信号のみ伝送される。   FIG. 9 is a diagram for explaining an optical communication system based on WDM / TDM-PON (for example, see FIG. 1 of Patent Document 1 and FIG. 2 of Patent Document 2). The network configuration includes one parent node 10C, n child nodes 21 to 2n, and a wavelength filter 60 (in this case, n channels) as in the optical communication system using the WDM-PON, and the wavelength of the parent node 10C The filter 60 is a single optical fiber 40, and the wavelength filter 60 and n child nodes 21 to 2n are connected by n optical fibers 51 to 5n. Accordingly, only the optical signals having the assigned wavelengths λ1 to λn are transmitted to the child nodes 21 to 2n.

このWDM/TDM−PONによる光通信方式では、親ノード10Cの光伝送装置は子ノード21〜2nの数nだけ異なる波長の光信号を送信可能な、波長可変光源を光源として備える光送信器を1個備え、各子ノード21〜2nの信号は、図9に示すように時間的に波長λ1〜λnを切り替えることによって時分割多重されて伝送される。   In this optical communication system based on WDM / TDM-PON, an optical transmitter provided with a tunable light source as a light source, in which the optical transmission device of the parent node 10C can transmit optical signals having different wavelengths by the number n of the child nodes 21 to 2n. A signal of each of the child nodes 21 to 2n is provided and is time-division multiplexed and transmitted by switching the wavelengths λ1 to λn in time as shown in FIG.

このWDM/TDM−PONによる光通信方式は、前記のTDM−PONおよびWDM−PONによる光通信方式の特徴を併せ持った通信方式であるが、親ノード10C側に用意する光送信器の数が1個で済むという点が前記WDM−PONによる光通信方式と異なる。   This optical communication system based on WDM / TDM-PON is a communication system having the characteristics of the optical communication systems based on TDM-PON and WDM-PON, but the number of optical transmitters prepared on the parent node 10C side is one. This is different from the optical communication system based on the WDM-PON in that only one piece is sufficient.

また、図10に示すように、各加入者の上り通信/下り通信双方に1波長ずつ割り当てるような双方向の波長多重通信において、光合分波器としてアレイ導波路回折格子型光合分波器(AWG)71,72を用い、各加入者に対して上り通信用の波長λ1’〜λn’と下り通信用の波長λ1〜λnとを、前記AWG71,72のFSRだけ離れた関係になるように割り当てることによって、親ノード10Dと各子ノード21〜2nとの間で1本の光ファイバ41による1心双方向の波長多重通信を実現する技術が提案されている(例えば、特許文献3参照)。図10において、Tx1〜Txnは親ノード10D側の光送信器、Rx1〜Rxnは光受信器、Tx1’〜Txn’は子ノード21〜2n側の光送信器、Rx1’〜Rxn’は光受信器である。図11にその際に用いられるAWGの透過スペクトルを大まかに示す。   Further, as shown in FIG. 10, in a bidirectional wavelength division multiplexing communication in which one wavelength is allocated to both the upstream communication and the downstream communication of each subscriber, an arrayed waveguide diffraction grating type optical multiplexer / demultiplexer ( AWG) 71 and 72, so that the wavelengths λ1 ′ to λn ′ for upstream communication and the wavelengths λ1 to λn for downstream communication are separated from each subscriber by the FSR of the AWGs 71 and 72. A technique for realizing one-core bidirectional wavelength division multiplexing communication using one optical fiber 41 between the parent node 10D and each of the child nodes 21 to 2n has been proposed (see, for example, Patent Document 3). . In FIG. 10, Tx1 to Txn are optical transmitters on the parent node 10D side, Rx1 to Rxn are optical receivers, Tx1 'to Txn' are optical transmitters on the child nodes 21 to 2n side, and Rx1 'to Rxn' are optical receivers. It is a vessel. FIG. 11 roughly shows the transmission spectrum of the AWG used at that time.

特開平3−64136号公報Japanese Patent Laid-Open No. 3-64136 特開平10−229363号公報Japanese Patent Laid-Open No. 10-229363 特開2003−143084号公報JP 2003-143084 A

しかし、図6で説明したTDM−PONによる光通信方式は、全ての子ノード21〜2n向け信号が全ての子ノードに送信されるため、子ノード側の受信装置の故障や、悪意を持った人間が子ノード装置を改造することにより、通信の守秘性を確保できない可能性があるという問題がある。また、スターカプラ30による分岐は、光信号のパワーを分岐することになるため、一般に高い最小受光感度を実現することが難しい超高速伝送を実現するためには、分岐数n(=子ノード数)を減少させざるを得なくなり、経済効果が薄れてしまうという問題も挙げられる。また、1波長を複数の子ノードで共有するため高速化に限界があるという問題もある。   However, in the optical communication method using TDM-PON described in FIG. 6, since the signals for all the child nodes 21 to 2n are transmitted to all the child nodes, the reception device on the child node side is broken or malicious. There is a problem that there is a possibility that the confidentiality of communication may not be ensured when a human modifies a child node device. Further, since branching by the star coupler 30 branches the power of the optical signal, the number of branches n (= number of child nodes) is generally required in order to realize ultrahigh-speed transmission in which it is difficult to realize high minimum light receiving sensitivity. ) Must be reduced, and the economic effect is diminished. Another problem is that there is a limit to speeding up because one wavelength is shared by a plurality of child nodes.

また、図7、8で説明したWDM−PONによる光通信方式は、親ノードに子ノードの数と等しい数の光送信器が必要になるため、設備投資の増大、設置面積の増大を招き、高コストになってしまうという問題がある。   In addition, the optical communication method by WDM-PON described in FIGS. 7 and 8 requires an optical transmitter of the same number as the number of child nodes in the parent node, which causes an increase in capital investment and an increase in installation area. There is a problem of high costs.

また、図9で説明したWDM/TDM−PONによる光通信方式は、実効的な通信速度がWDM−PON方式に比べて1/N(N:通信中の子ノード数)に低下し、また、例えば光送信器をもう1個増やして2個にし、割当波長、つまり帯域を割り当てる子ノードの数を各光送信器で半分ずつに分担させたとしても、子ノードを各光送信器に半ば固定的に割り当てている限り、通信する子ノードが一方の送信器側に集中していた場合などには、増設の効果が出にくいという問題がある。また、子ノードの数と同じ数の光送信器を親ノードに用意することは、高コスト化を避けられないという問題がある。   Further, in the optical communication method using WDM / TDM-PON described in FIG. 9, the effective communication speed is reduced to 1 / N (N: the number of child nodes during communication) compared to the WDM-PON method. For example, even if the number of optical transmitters is increased to 2 and the number of assigned nodes, that is, the number of child nodes to which bandwidth is allocated, is divided by half with each optical transmitter, the child nodes are fixed to each optical transmitter halfway. As a result, there is a problem that it is difficult to achieve the effect of expansion if the communicating child nodes are concentrated on one transmitter side. In addition, providing the same number of optical transmitters as the number of child nodes in the parent node has a problem that cost increases cannot be avoided.

さらに、図10で説明した双方向の波長多重通信方式は、親ノードには子ノードの数と等しい数だけの光送信器が必要となるために、高コスト化が避けられないという問題は未解決のままである。   Furthermore, the bidirectional wavelength division multiplexing method described with reference to FIG. 10 requires a number of optical transmitters equal to the number of child nodes in the parent node, so that there is no problem that cost increases cannot be avoided. It remains a solution.

本発明の目的は、上記した問題を解決し、下り通信に関して、親ノードに必要とされる光送信器の数を子ノードの数より少なくして、低コスト化を図り、かつ、通信の高速化を実現することである。   An object of the present invention is to solve the above-described problems, and in downlink communication, the number of optical transmitters required for a parent node is less than the number of child nodes, thereby reducing the cost and achieving high-speed communication. It is to realize.

請求項1にかかる発明の光通信方法は、対向する1個の親ノードとn個(n:3以上の整数)の子ノードによって構成され、かつ、前記親ノードから前記n個の子ノードに対して送信する下り方向の光信号に、各々異なる波長が1波長ずつ固定的に割り当てられている光ネットワークでの光通信方法において、前記親ノードが波長可変光源を光信号の光源として有する2個以上n個未満の光送信器を備え、該光送信器各々により光信号の波長を、同一波長が同時に2以上重ならなず、且つ異なる波長が同時に2以上重なることを許すように、時間的に切り替えて、下り方向に送信することを特徴とする。 An optical communication method according to a first aspect of the present invention includes one opposing parent node and n (n: an integer of 3 or more) child nodes, and the parent node to the n child nodes. In the optical communication method in an optical network in which one different wavelength is fixedly assigned to each downstream optical signal transmitted to the downstream optical signal, the parent node has two wavelength variable light sources as the optical signal light sources. Less than n optical transmitters, and each of the optical transmitters is configured to allow the optical signals to have the same wavelength in such a way that two or more of the same wavelengths do not overlap at the same time and two or more of the different wavelengths overlap at the same time. And transmitting in the downstream direction.

請求項2にかかる発明は、請求項1に記載の光通信方法において、特定の1個の子ノードに対して複数の異なる光信号を複数の光送信器から同一波長で送信する際に、該複数の異なる光信号が該特定の子ノードに時間的重なりを持って到着しないように、該光信号の送信タイミングを制御することを特徴とする。   According to a second aspect of the present invention, in the optical communication method according to the first aspect, when a plurality of different optical signals are transmitted from a plurality of optical transmitters to the specific one child node at the same wavelength, The transmission timing of the optical signal is controlled so that a plurality of different optical signals do not arrive at the specific child node with time overlap.

請求項3にかかる発明の光伝送装置は、対向する1個の親ノードとn個(n:3以上の整数)の子ノードによって構成され、かつ、前記親ノードから前記n個の子ノードに対して送信する下り方向の光信号に、各々異なる波長が1波長ずつ固定的に割り当てられている光ネットワークの、前記親ノードが備える光伝送装置であって、波長可変光源を光信号の光源として有する2個以上n個未満の光送信器と、該光送信器各々の光信号の波長を、同一波長が同時に2以上重ならなず、且つ異なる波長が同時に2以上重なることを許すように、時間的に切り替える送信器制御部とを具備することを特徴とする。
An optical transmission device according to a third aspect of the present invention includes one opposing parent node and n child nodes (n: an integer of 3 or more), and the parent node to the n child nodes. An optical transmission device provided in the parent node of an optical network in which each different wavelength is fixedly assigned to each downstream optical signal transmitted to the downstream optical signal, wherein the variable wavelength light source is used as a light source of the optical signal In order to allow two or more and less than n optical transmitters, and the wavelength of the optical signal of each of the optical transmitters , the same wavelength must not overlap two or more at the same time, and different wavelengths can overlap two or more at the same time, And a transmitter controller that switches over time.

請求項にかかる発明は、請求項に記載の光伝送装置において、前記送信器制御部は、特定の1個の子ノードに対して複数の異なる光信号を複数の光送信器から同一波長で送信する際に、該複数の異なる光信号が該特定の1個の子ノードに時間的重なりを持って到着しないように、該光信号の送信タイミングを制御することを特徴とする。 According to a fourth aspect of the present invention, in the optical transmission apparatus according to the third aspect , the transmitter control unit sends a plurality of different optical signals to a specific child node from a plurality of optical transmitters at the same wavelength. The transmission timing of the optical signal is controlled so that the plurality of different optical signals do not arrive at the specific one child node with a temporal overlap when transmitting the optical signal.

本発明によれば、下り通信に関して、親ノードに必要とされる光送信器の数が子ノードの数より少なくかつ2以上であるので、該光送信器の数が少なければより低コストを、多ければより高速化を実現することができ、両者の兼ね合いにより低コスト化と通信の高速化の双方を満足させることができる。また、特定の1個の子ノード向けの複数の異なる光信号を複数の光送信器から同一波長で送信する際に、該子ノードに時間的重なりを持って到着しないように光信号の送信タイミングを制御することにより、該子ノードは正確な受信が可能となる。さらに、特定の1個の子ノードに対して、複数の光送信器から光信号を送信する際に、該光信号が同一波長で同時に該子ノードに到着するように光信号の送信タイミングを制御することにより、伝送損失の問題を緩和することができる。   According to the present invention, since the number of optical transmitters required for the parent node is less than the number of child nodes and two or more for downlink communication, the lower the number of the optical transmitters, the lower the cost. If the number is large, higher speed can be realized, and the balance between the two can satisfy both cost reduction and speedup of communication. Also, when a plurality of different optical signals for a specific child node are transmitted from a plurality of optical transmitters at the same wavelength, the transmission timing of the optical signal is prevented so as not to arrive at the child node with a temporal overlap. By controlling this, the child node can receive correctly. Furthermore, when transmitting optical signals from a plurality of optical transmitters to a specific child node, the optical signal transmission timing is controlled so that the optical signals arrive at the child node at the same wavelength at the same time. By doing so, the problem of transmission loss can be alleviated.

本発明は、1個の親ノードとn個の子ノードにより構成される光ネットワークにおいて、子ノードに対して1波長ずつ異なる波長を割り当て、かつ、それらの通信時間を変化させることにより、通信速度を制御する下り方向通信についてのものである。波長可変光源を光信号の光源として備えた光送信器を親ノードに2個以上n個未満具備させ、該光送信器間の送信波長割当を送信先子ノードに応じて変更させることにより、親ノードの光送信器の数で子ノード帯域を制御する。このとき、同一の子ノード向けの複数の異なる光信号を複数の光送信器から同じ波長で担持して送信する際には、その複数の異なる光信号が該子ノードに時間的に重なりをもって到着しないように、各光信号の送信タイミングを制御することにより、該子ノードでの正確な受信を可能とする。また、同じ信号を担持する同じ波長の複数の光信号が特定の1つの子ノードに同時に到着するように、複数の光信号の送信タイミングを制御することにより、該子ノードの光信号強度を強め、これにより伝送損失を補償し、高域収容を可能にする。以下、詳しく説明する。   The present invention relates to an optical network composed of one parent node and n child nodes, assigning different wavelengths to the child nodes one by one, and changing the communication time thereof, thereby increasing the communication speed. It is about the downlink communication which controls. By providing two or more and less than n optical transmitters each having a wavelength tunable light source as a light source for an optical signal, and changing the transmission wavelength allocation between the optical transmitters according to the destination child node, The child node bandwidth is controlled by the number of optical transmitters in the node. At this time, when a plurality of different optical signals for the same child node are transmitted from a plurality of optical transmitters with the same wavelength, the plurality of different optical signals arrive at the child node with time overlap. Therefore, accurate reception at the child node is enabled by controlling the transmission timing of each optical signal. In addition, by controlling the transmission timing of a plurality of optical signals so that a plurality of optical signals carrying the same signal and having the same wavelength arrive at one specific child node at the same time, the optical signal intensity of the child node is strengthened. This compensates for transmission loss and enables high frequency accommodation. This will be described in detail below.

図1〜図5は本発明の実施例1を説明する図である。まず、ネットワーク構成とその構成要素について説明する。図1に示すように、光ネットワークが、対向する1個の親ノード10と8個の子ノード21〜28、2個の通信ノード81,82から構成され、親ノード10と子ノード21〜28との間に波長フィルタ60(この場合、8チャネル)が配置され、親ノード10と波長フィルタ60が1本の光ファイバ40で、波長フィルタ60と8個の子ノード21〜28が8本の光ファイバ51〜58で、それぞれ接続されている。また、親ノード10は通信ノード81,82とそれぞれ1本の光ファイバ91,92で接続されている。各子ノード21〜28の下り方向光信号には、各々異なる波長が1波長ずつ、固定的に割り当てられており、子ノードkの割当波長をλkと表現する(k:8以下の自然数)。   1-5 is a figure explaining Example 1 of this invention. First, the network configuration and its components will be described. As shown in FIG. 1, the optical network is composed of one parent node 10 and eight child nodes 21 to 28 and two communication nodes 81 and 82 facing each other, and the parent node 10 and child nodes 21 to 28 are arranged. Wavelength filter 60 (in this case, 8 channels) is arranged, and the parent node 10 and the wavelength filter 60 are one optical fiber 40, and the wavelength filter 60 and the eight child nodes 21 to 28 are eight. The optical fibers 51 to 58 are connected to each other. The parent node 10 is connected to the communication nodes 81 and 82 by one optical fiber 91 and 92, respectively. A different wavelength is fixedly assigned to each of the downstream optical signals of the child nodes 21 to 28, and the assigned wavelength of the child node k is expressed as λk (k: a natural number of 8 or less).

親ノード10は、図2に示すように、波長可変光源を光信号の光源として1個備える2個の光送信器Tx1、Tx2と、該各光送信器Tx1、Tx2からの光信号を1本の光ファイバ40に合波する光合波器11と、該各光送信器Tx1,Tx2の割当波長やその時間等を制御する送信器制御部12を、下り方向の光伝送装置として備える。子ノード21〜28各々は光受信器(図示せず)をそれぞれ備える。   As shown in FIG. 2, the parent node 10 includes two optical transmitters Tx1 and Tx2 each having one wavelength variable light source as a light source of optical signals, and one optical signal from each of the optical transmitters Tx1 and Tx2. The optical multiplexer 11 that multiplexes the optical fiber 40 and the transmitter control unit 12 that controls the allocated wavelength and the time of each of the optical transmitters Tx1 and Tx2 are provided as a downstream optical transmission device. Each of the child nodes 21 to 28 includes an optical receiver (not shown).

まず、通信ノード81,82から、子ノード21〜28への信号が親ノード10を介して伝送されてくる場合を考える。通信ノード81からは子ノード21、22、23、24宛の信号D1、D2、D3、D4が、通信ノード82からは子ノード25、26、27,28宛の信号D5、D6、D7、D8が、図3に示すようなタイミングで、親ノード10に伝送される。その時、親ノード10においては、送信器制御部12によって、光送信器Tx1にλ5〜λ8の4波長の光信号を、光送信器2にλ1〜λ4の4波長の光信号を、それぞれ割り当てて送信させる。λ1〜λ8は信号D1〜D8各々を担持する光信号の波長である。   First, consider a case where signals from the communication nodes 81 and 82 to the child nodes 21 to 28 are transmitted via the parent node 10. Signals D1, D2, D3, D4 addressed to the child nodes 21, 22, 23, 24 from the communication node 81, and signals D5, D6, D7, D8 addressed to the child nodes 25, 26, 27, 28 from the communication node 82. Is transmitted to the parent node 10 at the timing shown in FIG. At that time, in the parent node 10, the transmitter controller 12 assigns optical signals of λ5 to λ8 having four wavelengths to the optical transmitter Tx1, and assigns optical signals of four wavelengths of λ1 to λ4 to the optical transmitter 2, respectively. Send it. λ1 to λ8 are wavelengths of optical signals that carry the signals D1 to D8, respectively.

なお、図4に示すように、通信ノード81から子ノード21、22、25宛の信号D1、D2、D5が、通信ノード82からは子ノード26、27,28宛の信号D6、D7、D8が親ノード10に伝送されるような時は、光送信器Tx1にλ1、λ2、λ5の3波長の光信号を、光送信器Tx2にλ6、λ7、λ8の3波長の光信号を割り当てて送信させる。   As shown in FIG. 4, signals D1, D2, D5 addressed from the communication node 81 to the child nodes 21, 22, 25 are signals D1, D2, D5 addressed from the communication node 82 to the child nodes 26, 27, 28. Is transmitted to the parent node 10, optical signals with three wavelengths λ1, λ2, and λ5 are allocated to the optical transmitter Tx1, and optical signals with three wavelengths λ6, λ7, and λ8 are allocated to the optical transmitter Tx2. Send it.

次に、図5に示すように、2つの通信ノード81、82から親ノード10に対して、同一の子ノード宛の下り信号が同時に伝送されて来るような状況を考える。例えば、子ノード22への下り信号が両通信ノード81,82から同時に伝送されてきて、それらをD21、D22と定義し、前者を光送信器Tx1に、後者を光送信器Tx2に割り当て、送信させるものとする。この時、2種類の異なる信号D2l、D22が子ノード22に時間的に重なりを持って到達(同じ波長λ2の光信号で到達)してしまうと、子ノード22が正確に受信することが出来ない。従って、それらが子ノード22に到達する時点で時間的に一切の重なりを持たないように、送信器制御部12により、どちらかの信号、例えばD21を親ノード10が備えるバッファ13にためておいて、後で波長λ2の光信号で送信しても良い。もしくは破棄しても良い。   Next, as shown in FIG. 5, a situation is considered in which downlink signals addressed to the same child node are simultaneously transmitted from the two communication nodes 81 and 82 to the parent node 10. For example, downlink signals to the child node 22 are simultaneously transmitted from both communication nodes 81 and 82, which are defined as D21 and D22, the former is assigned to the optical transmitter Tx1, the latter is assigned to the optical transmitter Tx2, and transmission is performed. Shall be allowed to. At this time, if two different types of signals D2l and D22 arrive at the child node 22 with time overlap (arrive with an optical signal having the same wavelength λ2), the child node 22 can receive it accurately. Absent. Therefore, one of the signals, for example, D21 is stored in the buffer 13 of the parent node 10 by the transmitter control unit 12 so that there is no overlap in time when they reach the child node 22. Then, it may be transmitted later with an optical signal having a wavelength λ2. Or you may discard.

また、本実施例においては、通信ノード81、82等から親ノード10を介して子ノード21〜28への信号の量が非常に増えて、例えば2個の光送信器Tx1、Tx2では親ノード10に入ってくる信号を送信しきれないような状況においては、波長可変光源を備える光送信器を3個以上に増設することによって、子ノード21〜28の装置に一切の手を加えることなく、より多くの信号を子ノードに送信可能になるというメリットもある。つまり、子ノードに対してより高速な下り信号を送信することが可能になる。但し、光送信器の数は必ず子ノードの数未満とする。   In this embodiment, the amount of signals from the communication nodes 81 and 82 to the child nodes 21 to 28 via the parent node 10 is greatly increased. For example, in the two optical transmitters Tx1 and Tx2, the parent node In a situation where the signal entering 10 cannot be transmitted, the number of optical transmitters equipped with a wavelength tunable light source is increased to three or more, so that all the devices of the child nodes 21 to 28 are not added. There is also an advantage that more signals can be transmitted to the child node. That is, it becomes possible to transmit a higher speed downlink signal to the child node. However, the number of optical transmitters must be less than the number of child nodes.

本発明の実施例2を説明する。光ネットワークは、実施例1と同様、親ノード10と、それに対向する8個の子ノード21〜28とから構成され、そられの間に波長フィルタ60(この場合、8チャネル)が配置され、親ノード10と波長フィルタ60が1本の光ファイバ40で、波長フィルタ60と8個の子ノード21〜28が8本の光ファイバ51〜58で、それぞれ接続されている。   A second embodiment of the present invention will be described. As in the first embodiment, the optical network includes a parent node 10 and eight child nodes 21 to 28 facing the parent node 10, and a wavelength filter 60 (in this case, eight channels) is disposed between the optical nodes. The parent node 10 and the wavelength filter 60 are connected by one optical fiber 40, and the wavelength filter 60 and the eight child nodes 21 to 28 are connected by eight optical fibers 51 to 58, respectively.

本実施例においても、図2に示すように、親ノード10が、波長可変光源を光信号の光源として1個備える2個の光送信器Tx1、Tx2と、該各光送信器Tx1、Tx2からの光信号を1本の光ファイバ40に合波する光合波器11と、該各光送信器Tx1,Tx2の割当波長やその時間等を制御する送信器制御部12を、下り方向の光伝送装置として備える。子ノード21〜28はそれぞれ、光受信器(図示せず)を備える。   Also in the present embodiment, as shown in FIG. 2, the parent node 10 includes two optical transmitters Tx1 and Tx2 each having one wavelength variable light source as a light source of optical signals, and the optical transmitters Tx1 and Tx2. The optical multiplexer 11 that multiplexes the optical signal of the optical signal into one optical fiber 40 and the transmitter controller 12 that controls the allocated wavelength of each of the optical transmitters Tx1 and Tx2 and the time thereof are transmitted in the downstream optical transmission. Provide as a device. Each of the child nodes 21 to 28 includes an optical receiver (not shown).

その際に、例えば、子ノード23は親ノード10から非常に遠方に位置していて、下りの光信号を伝送する際の損失が大きいとする。そこで、子ノード23宛の信号D3を、同一の波長λ3の光信号で同時に該子ノード23に到着するように、2個の光送信器Tx1、Tx2内のそれぞれの波長可変光源を制御して送信させることによって、該波長λ3の光信号の強度を高める。その際には、2つの光送信器Tx1、Tx2から子ノード23までの距離を正確に測定した後に、同じ信号が同時に子ノードに到達するように光送信器Tx1、Tx2を送信器制御部12により制御する。この方法により、大きな伝送損失の問題を解消できる。   In this case, for example, it is assumed that the child node 23 is located very far from the parent node 10 and has a large loss when transmitting a downstream optical signal. Therefore, the wavelength variable light sources in the two optical transmitters Tx1 and Tx2 are controlled so that the signal D3 addressed to the child node 23 arrives at the child node 23 simultaneously with the optical signal of the same wavelength λ3. By transmitting, the intensity of the optical signal having the wavelength λ3 is increased. In this case, after accurately measuring the distance from the two optical transmitters Tx1 and Tx2 to the child node 23, the optical transmitters Tx1 and Tx2 are connected to the transmitter controller 12 so that the same signal reaches the child node at the same time. Control by. This method can solve the problem of large transmission loss.

以上の実施例1,2では、子ノードが8個で、親ノード10に光送信器が2個存在する場合を例に説明したが、光送信器が3個以上(ただし、8個未満)のとき、3個以上の光送信器で同様のことを行っても良い。   In the first and second embodiments, the case where there are eight child nodes and two optical transmitters exist in the parent node 10 has been described as an example. However, there are three or more optical transmitters (however, less than eight). In this case, the same may be performed with three or more optical transmitters.

実施例1,2におけるネットワーク構成の説明図である。It is explanatory drawing of the network structure in Example 1,2. 実施例1,2における親ノード構成の説明図である。It is explanatory drawing of the parent node structure in Example 1,2. 実施例1の下り通信動作の説明図である。It is explanatory drawing of the downlink communication operation | movement of Example 1. FIG. 実施例1の下り通信動作の説明図である。It is explanatory drawing of the downlink communication operation | movement of Example 1. FIG. 実施例1の下り通信動作の説明図である。It is explanatory drawing of the downlink communication operation | movement of Example 1. FIG. 従来のTDM−POMによる光通信方式の説明図である。It is explanatory drawing of the optical communication system by the conventional TDM-POM. WDM−POMにおける親ノード構成の説明図である。It is explanatory drawing of the parent node structure in WDM-POM. 従来のWDM−POMによる光通信方式の説明図である。It is explanatory drawing of the optical communication system by the conventional WDM-POM. 従来のTDM/WDM−POMによる光通信方式の説明図である。It is explanatory drawing of the optical communication system by the conventional TDM / WDM-POM. 従来技術(特許文献3)におけるネットワーク構成の説明図である。It is explanatory drawing of the network structure in a prior art (patent document 3). 従来技術(特許文献3)において使用するAWGの透過スペクトルの特性図である。It is a characteristic view of the transmission spectrum of AWG used in a prior art (patent document 3).

符号の説明Explanation of symbols

10,10A〜10D:親ノード、Rx1〜Rxn:光受信器、Tx1〜Txn:光送信器、11:光合波器、12:送信器制御部、13:バッファ
21〜2n:子ノード、Rx1’〜Rxn’:光受信器、Tx1’〜Txn’:光送信器
30:n分岐スターカプラ
40:光ファイバ
51〜5n:光ファイバ
60:波長フィルタ
71,72:アレイ導波路回折格子型光合分波器(AWG)
81,82:通信ノード
91,92:光ファイバ
λ1〜λn:下り光信号の波長
λ1’〜λn’:上り光信号の波長
10, 10A to 10D: parent node, Rx1 to Rxn: optical receiver, Tx1 to Txn: optical transmitter, 11: optical multiplexer, 12: transmitter control unit, 13: buffer 21-2n: child node, Rx1 ′ ˜Rxn ′: optical receiver, Tx1 ′ to Txn ′: optical transmitter 30: n-branch star coupler 40: optical fiber 51-5n: optical fiber 60: wavelength filter 71, 72: optical waveguide multiplexing / demultiplexing type (AWG)
81, 82: Communication node 91, 92: Optical fiber λ1-λn: Wavelength of downstream optical signal λ1′-λn ′: Wavelength of upstream optical signal

Claims (4)

対向する1個の親ノードとn個(n:3以上の整数)の子ノードによって構成され、かつ、前記親ノードから前記n個の子ノードに対して送信する下り方向の光信号に、各々異なる波長が1波長ずつ固定的に割り当てられている光ネットワークでの光通信方法において、
前記親ノードが波長可変光源を光信号の光源として有する2個以上n個未満の光送信器を備え、該光送信器各々により光信号の波長を、同一波長が同時に2以上重ならなず、且つ異なる波長が同時に2以上重なることを許すように、時間的に切り替えて、下り方向に送信することを特徴とする光通信方法。
Each of the optical signals in the downlink direction is composed of one opposing parent node and n child nodes (n is an integer of 3 or more) and transmitted from the parent node to the n child nodes. In an optical communication method in an optical network in which different wavelengths are fixedly assigned one by one,
The parent node includes two or more and less than n optical transmitters having a wavelength tunable light source as a light source of an optical signal, and the optical signal has a wavelength equal to two or more at the same time by each of the optical transmitters , An optical communication method characterized by switching in time and transmitting in the downlink direction so as to allow two or more different wavelengths to overlap at the same time .
請求項1に記載の光通信方法において、
特定の1個の子ノードに対して複数の異なる光信号を複数の光送信器から同一波長で送信する際に、該複数の異なる光信号が該特定の子ノードに時間的重なりを持って到着しないように、該光信号の送信タイミングを制御することを特徴とする光通信方法。
The optical communication method according to claim 1,
When a plurality of different optical signals are transmitted from a plurality of optical transmitters to the specific one child node at the same wavelength, the plurality of different optical signals arrive at the specific child node with time overlap. An optical communication method characterized in that the transmission timing of the optical signal is controlled so as not to occur.
対向する1個の親ノードとn個(n:3以上の整数)の子ノードによって構成され、かつ、前記親ノードから前記n個の子ノードに対して送信する下り方向の光信号に、各々異なる波長が1波長ずつ固定的に割り当てられている光ネットワークの、前記親ノードが備える光伝送装置であって、
波長可変光源を光信号の光源として有する2個以上n個未満の光送信器と、該光送信器各々の光信号の波長を、同一波長が同時に2以上重ならなず、且つ異なる波長が同時に2以上重なることを許すように、時間的に切り替える送信器制御部とを具備することを特徴とする光伝送装置。
Each of the optical signals in the downlink direction is composed of one opposing parent node and n child nodes (n is an integer of 3 or more) and transmitted from the parent node to the n child nodes. An optical transmission apparatus provided in the parent node of an optical network in which different wavelengths are fixedly assigned to each wavelength,
Two or more and less than n optical transmitters having a wavelength tunable light source as a light source of an optical signal, and the wavelength of the optical signal of each of the optical transmitters , the same wavelength must not overlap two or more at the same time, and different wavelengths can be simultaneously An optical transmission device comprising: a transmitter control unit that switches over time so as to allow two or more overlapping .
請求項3に記載の光伝送装置において、
前記送信器制御部は、特定の1個の子ノードに対して複数の異なる光信号を複数の光送信器から同一波長で送信する際に、該複数の異なる光信号が該特定の1個の子ノードに時間的重なりを持って到着しないように、該光信号の送信タイミングを制御することを特徴とする光伝送装置。
The optical transmission device according to claim 3.
When the transmitter control unit transmits a plurality of different optical signals from a plurality of optical transmitters to the specific one child node at the same wavelength, the plurality of different optical signals are transmitted to the specific one child node. An optical transmission apparatus characterized by controlling the transmission timing of the optical signal so as not to arrive at a child node with time overlap .
JP2004168445A 2004-06-07 2004-06-07 Optical communication method and optical transmission apparatus Expired - Fee Related JP4553236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004168445A JP4553236B2 (en) 2004-06-07 2004-06-07 Optical communication method and optical transmission apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168445A JP4553236B2 (en) 2004-06-07 2004-06-07 Optical communication method and optical transmission apparatus

Publications (2)

Publication Number Publication Date
JP2005348311A JP2005348311A (en) 2005-12-15
JP4553236B2 true JP4553236B2 (en) 2010-09-29

Family

ID=35500228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168445A Expired - Fee Related JP4553236B2 (en) 2004-06-07 2004-06-07 Optical communication method and optical transmission apparatus

Country Status (1)

Country Link
JP (1) JP4553236B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933357B2 (en) * 2007-06-13 2012-05-16 財団法人電力中央研究所 Optical fiber wireless access system
JP2009218920A (en) * 2008-03-11 2009-09-24 Mitsubishi Electric Corp Communication system and communication method
CN102379105B (en) * 2009-04-07 2014-04-23 株式会社日立制作所 Optical multiplexing terminating device, passive optical network system, and method for allocating frequency

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143540A (en) * 1987-11-30 1989-06-06 Nec Corp Optical transmission data addressing system
JPH0364136A (en) * 1989-07-31 1991-03-19 Nippon Telegr & Teleph Corp <Ntt> Bidirectional optical communication system
JPH05190958A (en) * 1992-01-07 1993-07-30 Nec Corp Wavelength switching equipment and wavelength switching method
JPH06350566A (en) * 1993-03-11 1994-12-22 American Teleph & Telegr Co <Att> Communication equipment and communication system
JPH07307719A (en) * 1994-05-13 1995-11-21 Nec Corp Optical network
JPH09219680A (en) * 1996-02-14 1997-08-19 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JPH10229363A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JPH10229385A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Two-way transmission system
JP2001177505A (en) * 1999-12-16 2001-06-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for wavelength multiple two-way optical transmission
JP2001358697A (en) * 2000-06-16 2001-12-26 Nippon Telegr & Teleph Corp <Ntt> Optical access network, optical network terminating device, and optical subscriber line terminating device
JP2003046451A (en) * 2001-06-25 2003-02-14 Lucent Technol Inc Method for multiplexing optical information transport
JP2003143084A (en) * 2001-10-31 2003-05-16 Japan Telecom Co Ltd One-core two-way type optical wavelength division multiplex transmission system
JP2003521136A (en) * 1999-03-03 2003-07-08 富士通株式会社 Optical network
JP2003324456A (en) * 2002-05-01 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplex transmission method and optical wavelength multiplex transmission system

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143540A (en) * 1987-11-30 1989-06-06 Nec Corp Optical transmission data addressing system
JPH0364136A (en) * 1989-07-31 1991-03-19 Nippon Telegr & Teleph Corp <Ntt> Bidirectional optical communication system
JPH05190958A (en) * 1992-01-07 1993-07-30 Nec Corp Wavelength switching equipment and wavelength switching method
JPH06350566A (en) * 1993-03-11 1994-12-22 American Teleph & Telegr Co <Att> Communication equipment and communication system
JPH07307719A (en) * 1994-05-13 1995-11-21 Nec Corp Optical network
JPH09219680A (en) * 1996-02-14 1997-08-19 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JPH10229363A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Optical transmission system
JPH10229385A (en) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> Two-way transmission system
JP2003521136A (en) * 1999-03-03 2003-07-08 富士通株式会社 Optical network
JP2001177505A (en) * 1999-12-16 2001-06-29 Nippon Telegr & Teleph Corp <Ntt> Method and device for wavelength multiple two-way optical transmission
JP2001358697A (en) * 2000-06-16 2001-12-26 Nippon Telegr & Teleph Corp <Ntt> Optical access network, optical network terminating device, and optical subscriber line terminating device
JP2003046451A (en) * 2001-06-25 2003-02-14 Lucent Technol Inc Method for multiplexing optical information transport
JP2003143084A (en) * 2001-10-31 2003-05-16 Japan Telecom Co Ltd One-core two-way type optical wavelength division multiplex transmission system
JP2003324456A (en) * 2002-05-01 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength multiplex transmission method and optical wavelength multiplex transmission system

Also Published As

Publication number Publication date
JP2005348311A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US9444572B2 (en) Transmission device and transmission method
JP4786720B2 (en) PON system and PON connection method
KR100640456B1 (en) Crosstalk-free WDM-PON and Its Crosstalk-free Method
EP2946506B1 (en) Photonic cross-connect with reconfigurable add-drop-functionality
WO2012065460A1 (en) Passive optical network system and method, optical line terminal and wavelength routing unit
JP5853822B2 (en) Subscriber side device registration method
JP2001358697A (en) Optical access network, optical network terminating device, and optical subscriber line terminating device
JP6297139B2 (en) Optical ring network
JP4677195B2 (en) Optical network system and optical multiplexer / demultiplexer
US9025915B2 (en) Method and module for switching optical signals having different modes of propagation
JP4553236B2 (en) Optical communication method and optical transmission apparatus
JP4553238B2 (en) Optical communication method, optical transmission apparatus, program, and recording medium.
JP2006054874A (en) Wideband optical module and passive optical subscriber network using same
JP5846007B2 (en) Subscriber side apparatus registration method and optical network system
JP2013207716A (en) Optical network unit registration method
JP5867233B2 (en) Station side equipment
JP2003234721A (en) Optical communication system
JP3614320B2 (en) Wavelength multiple polymerization demultiplexing transmission system and wavelength division multiplexing transmission apparatus
WO2009122577A1 (en) Optical communication system, master station, and slave station
JP3889721B2 (en) Optical wavelength division multiplexing network equipment
WO2024033995A1 (en) Optical communication device and optical communication method
JP5255513B2 (en) Composite optical signal multiplexer / demultiplexer and passive optical subscriber system
JP2008219518A (en) Optical communication device, system and optical communication control method
JP2012120136A (en) Optical communication system, and transmitting-and-receiving method for optical communication system
JP2006025224A (en) Optical transmission system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees