JP3984079B2 - Hexagonal switching valve and filtration device - Google Patents

Hexagonal switching valve and filtration device Download PDF

Info

Publication number
JP3984079B2
JP3984079B2 JP2002067452A JP2002067452A JP3984079B2 JP 3984079 B2 JP3984079 B2 JP 3984079B2 JP 2002067452 A JP2002067452 A JP 2002067452A JP 2002067452 A JP2002067452 A JP 2002067452A JP 3984079 B2 JP3984079 B2 JP 3984079B2
Authority
JP
Japan
Prior art keywords
flow path
valve
valve body
switching position
connection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002067452A
Other languages
Japanese (ja)
Other versions
JP2003269630A (en
Inventor
茂 菅沼
博美 村川
Original Assignee
株式会社川本製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社川本製作所 filed Critical 株式会社川本製作所
Priority to JP2002067452A priority Critical patent/JP3984079B2/en
Publication of JP2003269630A publication Critical patent/JP2003269630A/en
Application granted granted Critical
Publication of JP3984079B2 publication Critical patent/JP3984079B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えばろ過器に接続して使用する六方切換弁およびこの六方切換弁を有するろ過装置に関する。
【0002】
【従来の技術】
井戸水に溶存している不純物、例えば鉄分の除去には、一般に、井戸水に次亜塩素酸ナトリウム液を注入して、含まれる鉄分を酸化処理し、この酸化処理した井戸水(原水)をろ過器でろ過して、井戸水に含まれる鉄分を分離除去すること行われている。
【0003】
家庭用の除鉄ろ過器では、筒状をなした縦形の収容容器の内部に微粒子状のろ過材を収容し、ろ過材層の上面から井戸水(原水)を供給して、ろ過材層に井戸水を通過させている。そして、井戸水がろ過材を通過する間に、含まれる鉄分がろ過されて分離除去されるようにしている。
【0004】
【発明が解決しようとする課題】
ところで、ろ過器のろ過材は、浄水が進むにしたがい目詰まりを起こす。
【0005】
そこで、この対策として、従来、浄水処理した水を溜める構造を採用して、ろ過材が目詰まりを生じたときには、溜まった処理水をろ過器へ流入させて、ろ過材に付いた鉄分などを洗い流す逆洗運転を行なうようにしていた。
【0006】
ところが、こうした逆洗浄運転を行なう構造は、ろ過器の原水入口や処理水出口などに弁装置を設けて切換システムを構成することが強いられ、多くの弁装置を用いることによるコスト的な負担が強いられる。
【0007】
しかも、逆洗運転を終えた後、配管の一部は、汚れた逆洗水が溜まったり、汚れた逆洗水が触れたりしているので、その処置が求められるが、従来では、給水側に別途、排水弁を設けて、浄水運転を再開した直後、排水弁を操作して、汚れた水を捨てさせていた(洗浄)。このため、浄水が使用できるまでには、離れた地点にある多くの弁装置の操作が強いられるために、円滑に浄水運転、逆洗運転、洗浄運転の切換えが行えない難点があった。
【0008】
そこで、本発明は、1つの弁装置で、浄水運転、原水を用いた逆洗運転、浄水運転を利用した洗浄運転の円滑な切換動作を可能とした六方切換弁およびろ過装置を提供する。
【0009】
【課題を解決するための手段】
上記目的を達成するために請求項1、請求項4に記載の発明は、弁箱に、第1ないし第6の外部接続口と、第1ないし第5の流路と、第1ないし第3の弁体と、該第1ないし第3の弁体を所定のモードに切換える切換手段とを設けるというコンパクトに切換機能を集約した六方切換弁の採用により、第2の外部接続口をろ過器の原水供給口にセットし、第4の外部接続口をろ過器の処理水出口にセットして、第1の外部接続口から原水を流入するだけで、切換モードのしたがった各弁体の切換えにより、1つの弁装置だけで、通常の浄水運転、原水による逆洗運転、浄水運転を用いた洗浄運転の円滑な切換えが可能となる。
【0010】
特に逆洗運転は、処理水による逆洗ではなく、浄水運転のときと同じ原水を用いるので、処理水を溜める設備は不要となり、しかも洗浄運転は浄水運転時の切換えを一部変更させるだけなので、処理水を逆洗運転に使用する場合に比べ、コスト的に安価ですむ。
【0011】
請求項2に記載の発明は、浄水運転中や停止中のシール性を確保しつつ軽い操作力で流路の切換えが行えるよう、第1ないし第3の弁体は、いずれも弁室に非接触状態で回動可能に収まり、このうちの第1の弁体と第3の弁体には、弁体に追従して弁室内面を移動する球状のストッパ弁を内蔵し、さらに第1の弁体が収まる弁室には、第1の弁体が第1の切換位置に位置決めれるとストッパ弁で塞がる開口を形成した構造を用い、第3の弁体が収まる弁室には、第3の弁体が第5の切換位置に位置決められるとストッパ弁で塞がる開口が形成した構造を用いて、弁体の回動に伴う摺動抵抗を抑えるうえ、弁箱の内外シールが求められる箇所ではストッパ弁に加わる正圧を利用して確実なシールが得られるようにした。
【0012】
請求項3に記載の発明は、各モードの切換えが自動で行えるよう、所定に位相させた第1の弁体と第2の弁体との相互を軸部材により同軸状に連結するとともにこの連結した弁体を回動させる第1の電動モータと、第3の弁体を回動させる第2の電動モータとを用いた切換構造を採用した。
【0013】
【発明の実施の形態】
以下、本発明を図1ないし図8に示す第1の実施形態にもとづいて説明する。
【0014】
図1〜図3は、例えば一般家庭で用いられる井戸用ろ過装置を示し、図中1は該ろ過装置を構成するろ過器、例えば除鉄用ろ過器である。
【0015】
このろ過器1は、例えば縦形の円筒形タンクから構成されている。円筒形タンクは、下部が塞がれ、上端が開口した円筒状の胴部3aと、この胴部3aの上部端を塞ぐ皿状又は球面状に形成された鏡板3bとから構成されている。そして、胴部3aの上部端と鏡板3bの開口端の相互が、それら各開口端の外周部に取着してある環状のフランジ4を用いて着脱可能に締結してある。なお、5はフランジ4,4間に挟まれたガスケット部材、6はフランジ相互を締結するボルト、7はタンク全体を縦向きに据付けるための脚を示す。
【0016】
胴部3a内には、開口寄りの地点から底部に形成されている集溜室8までの間に微粒子のろ過材9(例えばろ過砂など)が収容されている。また集溜室8の直上には、上面が塞がれたフィルター10が埋め込まれ、ろ過材9、フィルター10による2段ろ過構造を構成している。
【0017】
また鏡板3bとこれに向き合うろ過材層の上面との間には流入室11が形成してある。この流入室11内には、流入配管12が収められている。流入配管12は、胴部3aの開口側の周壁に据付けてある台座13から胴部3a内の中央へ向かう横配管14aと、横配管14aの端部から鏡板3bの内面中央の近くまで立ち上がる縦配管14bとを有している。そして、横配管14aの端部が、台座13に形成してある流入口15(原水供給口に相当)に接続してある。また縦配管14bの端部は、鏡板3bの内面に臨んでいて、出口16を形成している。
【0018】
また台座13には、流入口15と並んで下側に流出口17(処理水出口に相当)が形成してある。この流出口17には、胴部3a内へ向かう流出配管18が接続してある。この流出配管18は、ろ過材9を貫通して下方へ延びていて、その先端部がフィルター10を通して集溜室8に接続してある。
【0019】
ろ過器1の台座13には、六方切換弁20が取付けられ、浄水運転、逆洗運転、洗浄運転が切換えられるようにしてある。
【0020】
図4にはこの六方切換弁20の模式構造が示され、図5には六方切換弁20の全体の外観が示され、図6には同じく内部構造が示され、図7には同じく正面図および側面図が示され、図8は断面図が示されている。
【0021】
この六方切換弁20の構造について説明すると、図中21は鋳造成形された弁箱を示す。弁箱21は、3つの弁箱部21a〜21cから構成されている。このうち弁箱部21aは、流入口15に組付く部分で、弁箱部21bは流出口17に組付く部分で、弁箱部21cは弁箱部21bに組付く部分である。
【0022】
弁箱部21aは、図5〜図8に示されるように上部に底が形成され、下部に開口が形成された有底円筒状をなしている。
【0023】
弁箱部21bは、上側にリング状の溝部25が形成され、その下側に下方へ開口する有底円筒状の空間が形成された本体部26を有している。本体部26の上部には、溝部25の開口を塞ぐよう仕切板27がねじ止めされる。また本体部26の下部には、有底円筒状の空間を塞ぐように蓋体28がねじ止めされ、内部に円筒形の弁室29を形成している。そして、仕切板27で弁箱部21aの開口を塞ぐよう、弁箱部21bの上部と弁箱部21aの下部とが、互いにフランジ結合によって、同心状に直列に締結され、弁箱部21aの内部に円筒状の弁室30を形成している。
【0024】
弁室30内の中央には、軸心方向に向かって延びる弁軸31(軸部材に相当)が収められている。この弁軸31の上端部は、弁箱部21aの上部から突き出ているボス部32内に回動可能に嵌まり、下端部は、仕切板27を貫通して、溝部25の内周側の周壁で形成されるボス部分25a内に回動可能に嵌まる。この弁軸31には、例えばゴム部材で形成された弁体33(第1の弁体に相当)が付いている。この弁体33には、弁室30の一部に収まる形状、例えば中心側が狭く、外周側が広くした略扇形状のブロックが用いてある。この弁体33は、弁室30とは隙間嵌めとなる形状、すなわち弁室30の内面(外周面、上下面)との間で、若干の隙間が確保される形状に仕上げてあり、弁軸31を支点として弁室30の壁面と非接触を保ちながら該弁室30内を回動できる構造にしてある。また弁体33の下面には、軸心方向に延びる円筒状の穴34が形成されている。この穴34には、ストッパ弁、例えば球状部材で形成される球状弁体35が移動自在に収めてある。この球状弁体35は、穴34内に収めたコイル状のスプリング部材34aにより、開口側、すなわち仕切板27側へ付勢される構造としてあり、弁体33の動きに追従して弁室30の下面沿いに移動(変位)できるようにしてある。
【0025】
弁室29内の中央には、軸心方向に向かって延びる弁軸37(軸部材に相当)が収められている。この弁軸37の上端部は、弁箱部21bの上部のボス部分25a内に回動可能に嵌まり、下端部は蓋体28に形成されたボス部28aに回動可能に嵌まる。そして、ボス部分25a内で、弁軸37の上端部と弁軸31の下端部との相互がジョイント部、例えば凹溝とこれに嵌まる突片部とがなす嵌合部38によって、同軸に結合させてある。この弁軸37には、先の弁体33と同様、略扇形状をなしたゴム部材製の弁体39(第2の弁体に相当)が付いている。この弁体39も弁体33と同様、弁室29と隙間嵌めとなる形状、すなわち弁室29の内面(外周面、上下面)との間で、若干の隙間が確保される形状に仕上げてある。つまり、弁体39も、弁軸37を支点として弁室29の壁面と非接触を保ちながら弁室29内を回動できる構造にしてある。なお、弁体39にはストッパ弁は付いていない。
【0026】
弁箱部21cは、上部に底が形成され、下部に開口が形成された有底円筒状の本体部40を有している。この本体部40の下端部には、有底円筒状の空間を塞ぐよう蓋体41がねじ止めされ、内部に円筒形の弁室43を形成している。この弁箱部21cの側部と弁箱21bの側部とが、各側部に形成された口体部44同士の接続、具体的には口体部44の端部同士によるフランジ結合により互いに並列に連なるように締結してある。各口体部44の内腔は、弁室30の周壁面、弁室43の周壁面に開口していて、隣合う弁室30,43同士を連通させている。
【0027】
弁室43内の中央には、軸心方向に向かって延びる弁軸45が収められている。この弁軸45の上端部は、弁箱部21cの上部から突き出るボス部46内に回動自在に嵌まり、下端部は蓋体41に形成されたボス部41a(図7(a)に図示)内に回動可能に嵌まる。この弁軸37には、先の弁体33と同様の略扇形状をなしたゴム部材製の弁体47(第3の弁体に相当)が付いている。この弁体47も弁体33と同様、弁室29と隙間嵌めとなる形状、すなわち弁室43の内面(外周面、上下面)との間で、若干の隙間が確保される形状に仕上げてあり、弁軸45を支点として弁室29の壁面と非接触を保ちながら弁室43内を回動できる構造にしてある。この弁体47の下面にも、先の弁体33と同じく、ストッパ弁構造、具体的には円筒状の穴48と、該穴48に移動自在に収めた球状弁体49(ストッパ弁)、該球状弁体35を付勢するコイル状のスプリング部材50が内蔵してある。
【0028】
こうした各弁箱部21a〜21cの各部外面には、図5および図6に示されるように6つの外部接続口51〜56が形成してある。外部接続口51は、原水流入用で、同接続口51には弁箱部21aの側部、詳しくは弁箱部21a〜21cの列方向とは略直交する片側の側部から筒状の接続口体60を突出させた構造が用いられる。そして、接続口体60の先端部は、原水流入側の器材(原水流入機器につながる配管部材など)が取付くねじ孔としてある。また基端部は弁室30の周壁面に開口していて、接続口体60の先端から弁室30内へ原水が導けるようにしてある。
【0029】
外部接続口52は、ろ過器1の流入口接続用で、同接続口52には先の接続口体60とは反対側の弁箱部21aの側部から、筒状の接続口体61を突出させた構造が用いられる。そして、この接続口体61の先端部には台座13の流入口15と取付くフランジ部62が形成され、基端部は弁室30の周壁面に開口している。つまり、接続口体61は、弁室30を通じて、接続口体60と連通する。これにより、図4に示されるように外部接続口51と外部接続口52とを結ぶ流路81(第1の流路に相当)を形成している。
【0030】
外部接続口53は、排水用で、同接続口53には、弁箱部21bの側部のうち溝部25の外壁を形成する側部分から、筒状の接続口体63を突出させた構造が用いられる。この接続口体64の先端部は、排水配管64(図1および図2のみ図示)が取付くねじ孔としてある。また基端部は、溝部空間と連通、さらには仕切板27のうち弁体33の球状弁体35が通る軌跡をなす板面部分に形成した弁孔66と連通している。つまり、接続口体63は弁室30と連通する。この弁室30下面との連通により、図4に示されるように外部接続口53と流路81の途中を結ぶ流路83(第3の流路に相当)を形成している。
【0031】
外部接続口54は、ろ過器1の流出口接続用で、同接続口54には、弁箱部21bの弁室29の周壁をなす側部分から、筒状の接続口体68を突出させた構造が用いられる。この接続口体68は先の流入口接続用の接続口体61と同方向に突き出ている。そして、接続口体68の先端部には、台座13の流出口17と組付くフランジ部69が形成してある。また接続口体68の基端部は弁室29の周壁面に開口している。
【0032】
外部接続口55は、処理水流出用で、同接続口55には、弁箱部21cの側部から、筒状の接続口体70を突出させた構造が用いられる。そして、この接続口体70の先端部には、給水側の器材(給水配管など)が取付く接続部、例えばねじ継ぎ手71(図7、図8に図示)が組付けてある。また基端部は弁室43の周壁面に開口している。これにより、図4に示されるように弁室29、弁室43を通じて、外部接続口55と外部接続口54とを結ぶ流路82(第2の流路に相当)を形成している。
【0033】
一方、原水流入用の接続口体60には、図4、図5および図7に示されるようにその途中から弁箱部21bへ分かれる分岐口体60aが形成されている。この分岐口体60aの先端部は、接続口体60と同じ向きで弁箱部21bの側部に取着されている。そして、その先端を弁室30の周壁面に開口させている。これにより、図4に示されるように原水を弁室30に導く通路72を形成している。この通路72により、図4に示されるように外部接続口51と流路82の上流側部分とを結ぶ流路84を形成している。
【0034】
外部接続口56は、排水用で、同接続口56には、弁室43の下部をなす蓋体41から、筒状の接続口体73を突出させた構造が用いられる。この接続口体73の先端部は、排水配管64が取付くねじ孔としてある。また基端部は、弁体47の球状弁体49が通る軌跡をなす板面部分に形成した弁孔75に連通している。この連通構造により、図4に示されるように外部接続口56と流路82の下流側部分とを結ぶ流路85を形成している。
【0035】
他方、流路81と流路83が交わる流路部分に有る弁体33には、弁室30に開口する各開口位置と関連づけて、図4(a)に示されるように例えば横向姿勢のとき流路81を連通させるとともに流路83を遮断させる切換位置Aと、図4(b)に示されるように例えば90°位相した縦向姿勢のとき流路83と外部接続口52とを連通させるとともに流路82を遮断させる切換位置Bとが設定してある。つまり、弁体33が各切換位置に回動すると、流路81と流路83の切換えが行われるようにしてある。また流路83の入口をなす弁孔66は、弁体33が切換位置Aに至ると、弁体33に内蔵の球状弁体35で塞がれる構造としてあり、球状弁体35に加わる流体の圧力を利用して、外部に流体が漏れるのを防ぐ構造としてある。
【0036】
流路82と流路84が交わる流路部分にある弁体39には、弁室29に開口する各開口位置に関連づけて、図4(a)に示されるように例えば縦向姿勢のとき、流路82を連通させるとともに流路84を遮断させる切換位置C、図4(b)に示されるように例えば90°位相した横向姿勢のとき、流路84と外部接続口54とを連通させるとともに流路84を遮断させる切換位置Dが設定してある。つまり、弁体39が各切換位置に回動すると、流路82と流路84の切換えが行われるようにしてある。
【0037】
流路82と流路85が交わる流路部分にある弁体47は、弁室43に開口する各開口位置に関連づけて、図4(a)に示されるように縦向姿勢のとき、流路82を流通させるとともに流路85を遮断させる切換位置E、図4(b),(c)に示されるように例えば90°位相した横向姿勢のとき、流路82と流路85とを連通させるとともに流路82を遮断させる切換位置Fが設定してある。つまり、弁体47が各切換位置に回動すると、流路82と流路85の切換えが行われるようにしてある。また流路85の入口をなす弁孔75は、弁体47が切換位置Eに至ると、弁体47に内蔵の球状弁体49で塞がれる構造としてあり、球状弁体49に加わる流体の圧力を利用して、外部に流体が漏れるのを防ぐ構造としてある。
【0038】
そして、弁箱部21aのボス部32の端部には、図8に示されるように電動モータ77が据え付けてある。なお、32aはボス部32の端部に形成したモータ取付用のフランジ部を示す。そして、電動モータ77の出力軸は、ボス部31内の弁軸32の上端部に、ジョイント部、例えば凹凸嵌合部32aを介して接続してあり、位相させてある2つの弁体33,39を連携させながら回動できるようにしてある。
【0039】
また弁箱部21cのボス部46の端部には、電動モータ79が据え付けてある。なお、46aはボス部46の端部に形成したモータ取付用のフランジ部を示す。そして、電動モータ79の出力軸は、ボス部46内の弁軸45の上端部に、ジョイント部、例えば凹凸嵌合部45aを介して接続してあり、弁体47を回動できるようにしてある。
【0040】
こうした六方切換弁20が、ろ過器1の流入口15に外部接続口52が合致、ろ過器1の流出口17に外部接続口54とが合致するよう、フランジ部62,69を用いて、ろ過器1の台座13に取付けてある。
【0041】
そして、電動モータ77,79の回動による六方切換弁20の切換えにより、浄水運転モード、原水による逆洗運転モード、浄水運転を活用した洗浄運転モードの各切換えが行えるようにしている(切換手段)。具体的には、浄水運転モード(第1の切換モード)は、図4(a)に示されるように弁体33が切換位置A、弁体39が切換位置C、弁体47が切換位置Eに切換わることで形成され、逆洗運転モード(第2の切換モード)は、図4(b)に示されるように弁体33が切換位置B、弁体39が切換位置Dおよび弁体47が切換位置Fに切換わることで形成され、洗浄運転モード(第3の切換モード)は図4(c)に示されるように弁体33が切換位置A、弁体39が切換位置C、弁体47が切換位置Fに切換わることで形成されている。
【0042】
またろ過器1には、電動モータ77,79の制御から、各モードの自動切換えを行う制御部86が据え付けられていて、通常は浄水運転が行われ、ろ過材9で所定以上の目詰まりが生じると、逆洗運転に切換わり、所定時間経過後、逆洗運転が終了すると、洗浄運転が開始され、該洗浄運転が所定時間経過すると、再び浄水運転に戻る切換制御が行われるようにしてある。
【0043】
すなわち、ろ過器1で浄水を行なうときは、給水ポンプ(図示しない)の運転により、図1に示されるように六方切換弁20の外部接続口51へ酸化処理を終えた原水となる井戸水を供給する。
【0044】
ここで、六方切換弁20は、制御部86の指示で行われる電動モータ77,79による弁駆動により、図4(a)に示されるように各弁体33,39,47は、浄水運転モードAに切換わっている。つまり、弁体33は切換位置Aに回動され、弁体39は切換位置Cに回動され、弁体47は切換位置Eに回動している。なお、このとき排水側となる弁孔66,75は、球状弁体35,49で塞がれるうえ、さらに球状弁体35,49の上側から加わる圧力(正圧)により球状弁体35,49が弁孔66,67の開口縁に押付けられるので、高いシール性が確保されている。
【0045】
すると、井戸水は、流路81および弁室30を通じて外部接続口52から、ろ過器1の流入配管12へ導入される。すると、井戸水は、流入配管12の出口16から流出される。
【0046】
これにより、図1(a)に示されるようにろ過材層の上面へ井戸水が流れ込む。この流れ込んだ井戸水が、ろ過材9の各部を浸透、さらにはフィルター10を通過する間に、含まれる鉄分がろ過される(鉄分の除去)。ろ過処理を終えた処理水は、集溜室8、流出配管18を経て、六方切換弁20の外部接続口54へ戻される。そして、この処理水が、流路82、弁室29,43を通じて、六方切換弁外、つまり外部接続口55から、給水設備の給水配管(図示しない)へ導出される(給水側)。
【0047】
こうした浄水運転が継続され、ろ過材9において目詰まりが生じたとする。
【0048】
すると、制御部86により、浄水運転モードから逆洗運転モードへ切換わる。これにより、各弁体33,39,47は、電動モータ77,79の弁駆動により、図4(b)に示されるように90°位相した地点へ回動する。具体的には、弁体33は切換位置Bに切換わり、弁体39は切換位置Dに切換わり、弁体47は切換位置Fに切換わる。
【0049】
すると、図2および図4(b)に示されるように外部接続口51から流入した井戸水(原水)は、外部接続口2には向かわずに、流路84、弁室29、流路82の上流側部分を経て、外部接続口54から流出配管18へ導出される。
【0050】
これにより、井戸水は、ろ過器1の底部にある集溜室8へ導かれ、フィルター10から、過材層へ流れ込む。この井戸水が、ろ過材層を通過するとき、ろ過材9を撹拌して、ろ過材9に付着している鉄分など不純物を洗い流す。
【0051】
この不純物で汚水となった井戸水は、出口16から流入配管12へ流れ込んで、流入口15から外部接続口52へ戻される。すると、この汚水が、流路81、弁室30を通り、弁孔66から流路83通過して、外部接続口53から排水配管64へ排出される。これにより、原水を用いた逆洗運転が行われる。
【0052】
そして、所定時間経過により、ろ過器1の目詰まりが解消されたとすると、制御部86の指示により、今度は洗浄運転モードに切換わる。すると、図4(c)に示されるように弁体47の切換位置は変わらず、各弁体33,39だけが電動モータ77の駆動により、浄水運転のときと同じ、90°位相した地点へ戻る。具体的には、弁体33は切換位置Aに切換わり、弁体39は切換位置Cに切換わる。
【0053】
これにより、図3および図4(c)に示されるように外部接続口51へ供給された井戸水(原水)は、流路81、弁室30を通じて、外部接続口52から流入口15、流入配管12を経て、ろ過材層の上面へ流出される。これにより、原水である井戸水は、逆洗浄時に流路内面や弁室内面や弁体表面などに付着した不純物を洗い流しながら、ろ過材9を通過する。この井戸水は、集溜室8、流出配管18を経て、六方切換弁20の外部接続口54へ戻され、逆洗浄時に流出配管18の内面などに付着した不純物を洗い流す。続いて、この井戸水は、流路82を経て、弁孔75から流路85へ流れ、逆洗浄時に流路82の上流部分や弁室内面や弁体表面などに付着した不純物を洗い流す。この汚れを含んだ井戸水が、外部接続口56から排水配管64へ排出される。この洗浄運転によって、逆洗浄の後に生じる汚水は給水側へ送られずにすむ。
【0054】
この洗浄運転が所定時間続くと、制御部86は、逆洗浄による汚れが解消されたと判断し、電動モータ79により弁体47を切換位置Eへ回動させ、図1および図4(a)に示される浄水運転モードに戻る。これにより、浄水運転が再開され、浄水した井戸水が給水設備へ供給される。
【0055】
このように六方切換弁20は、弁箱21に、外部接続口51〜56、流路81〜86、弁体33,39,47、該弁体33,39,47を所定のモードに切換える切換構造を設けることによって、通常の浄水運転、原水による逆洗運転、浄水運転を用いた洗浄運転を切換える機能がコンパクトに集約されるから、コンパクトな1つの弁装置で、各運転の円滑な切換えができる。しかも、1つの弁装置ですむから、コスト的な負担が少なくてすむ。そのうえ、ろ過装置は、ろ過器1に六角切換弁20を組合わせるだけで、簡単に切換機能が確保できる。特にろ過装置の逆洗運転は、処理水による逆洗ではなく、浄水運転のときと同じ原水を用いるので、処理水を溜める設備は不要であり、しかも洗浄運転は浄水運転時の切換えを一部変更させるだけなので、処理水を逆洗運転に使用する場合に比べ、コスト的に安価ですむ。
【0056】
また弁体33,39,47には、弁室壁面と非接触状態を保ちながら回動変位する弁構造とし、そのうち外部排水の切換えを含む弁体33,47には球状弁体35,49を内蔵させて、外部排水の切換位置にある弁孔66,75を球状弁体35,49で塞ぐ構造を採用したので、六方切換弁20は各弁体33,39,47の回動に伴う摺動抵抗は小さくてすむうえ、弁箱21の内外シールが求められる箇所にある弁孔66,67は、球状弁体35,49に加わる正圧を利用して確実にシールされる。つまり、浄水運転中や停止中のシール性を確保しつつ、軽い操作力で流路切換えができ、信頼性と操作性とを両立させたろ過器用の六方切換弁20が実現できる。
【0057】
しかも、この利点を利用して、六方切換弁20の切換構造には、弁体33,39の相互を弁軸31,37で同軸状に結び、該弁軸31,37を電動モータ77に駆動する構造と、弁体47を電動モータ79で駆動する構造とを用いたので、コスト的な安価な小形のモータを使用して、自動で各モードの切換えができる。
【0058】
図9は、本発明の第2の実施形態を示す。
【0059】
本実施形態は、第1の実施形態の変形例で、電動モータ77,79に代えて、各ハンドル部材90,91を取付けて、マニュアル操作で、浄水運転モード、逆洗運転モード、洗浄運転モードの切換えが行えるようにしたものである。むろん、各弁体33,39,47には、非接触状態を保ちながら回動可能とした弁体構造が用いられているので、少ない力で滑らかに操作することができる。但し、図9において、先に説明した第1の実施形態と同じ部分には同一符号を附してその説明を省略した。
【0060】
なお、本発明は上述した各実施形態に限定されることなく、本発明の主旨を逸脱しない範囲内で種々変更して実施しても構わない。例えば上述した実施形態では、六方切換弁をろ過装置の流路切換えに適用したが、それに限らず、その他の流路を切換える際に用いても構わない。もちろん、除鉄ろ過器以外のろ過器に適用してもよい。また六方切換弁の各部の形状や構造についても各実施形態に特定されるものではない。もちろん、3つの弁体の組合わせも、2階建て構造と1階建て構造との併用でなく、他の構造でも構わない。
【0061】
【発明の効果】
以上説明したように請求項1、請求項4の発明によれば、1つの弁装置で、通常の浄水運転、原水による逆洗運転、浄水運転を用いた洗浄運転といった3つの運転を円滑に切換えることができる。特に逆洗運転は、処理水による逆洗ではなく、浄水運転のときと同じ原水を用いた運転で行われることで、処理水を溜める設備は不要であるうえ、洗浄運転は浄水運転時の流路切換えを一部変更させるだけなので、処理水を逆洗運転に使用する場合の流路切換構造に比べ、コスト的に安価ですむ。
【0062】
請求項2の発明によれば、さらに浄水運転中や停止中のシール性を確保しつつ軽い操作力で流路切換えができる。
【0063】
請求項3の発明によれば、さらに浄水運転モード、原水による逆洗運転モード、浄水運転モードの切換えが自動でできる。
【図面の簡単な説明】
【図1】(a)は本発明の第1の実施形態に係る六方切換弁が付いたろ過装置を、該ろ過装置における浄水運転時の水の流れと共に示す断面図。
(b)は同六方切換弁が付いたろ過装置の側面図。
【図2】同ろ過装置における逆洗運転時の水の流れを示す断面図。
【図3】同ろ過装置における洗浄運転時の水の流れを示す断面図。
【図4】(a)は、六方切換弁における浄水運転時の水の流れを模式的に示す断面図。
(b)は、同じく逆洗浄運転時の水の流れを模式的に示す断面図。
(c)は、同じく洗浄運転時の水の流れを模式的に示す断面図。
【図5】六方切換弁の全体の外観を示す斜視図。
【図6】同六方切換弁の内部の流路切換構造を示す斜視図。
【図7】(a)は、六方切換弁の正面図。
(b)は、同六方切換弁の側面図。
【図8】同六方切換弁の側断面図。
【図9】本発明の第2の実施形態に係る六方切換弁を示す断面図。
【符号の説明】
1…ろ過器
15…流入口(原水供給口)
17…流出口(処理水出口)
20…六方切換弁
21…弁箱
29,30,43…弁室
33,39,47…弁体
35,49…球状弁体(ストッパ弁)
51〜56…外部接続口
66,75…弁孔(開口)
77,79…電動モータ
81〜86…流路
90,91…ハンドル部材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a six-way switching valve used by being connected to a filter, for example, and a filtration apparatus having the six-way switching valve.
[0002]
[Prior art]
In order to remove impurities such as iron dissolved in well water, in general, sodium hypochlorite solution is injected into well water to oxidize the contained iron, and this oxidized well water (raw water) is filtered with a filter. Filtration is performed to separate and remove iron contained in well water.
[0003]
Household iron removal filters contain particulate filter media inside a cylindrical vertical container, supply well water (raw water) from the top of the filter media layer, and supply well water to the filter media layer. Pass through. And while well water passes a filter medium, the iron content contained is filtered and separated and removed.
[0004]
[Problems to be solved by the invention]
By the way, the filter material of the filter causes clogging as the purified water advances.
[0005]
Therefore, as a countermeasure for this, a conventional structure that collects purified water is used, and when the filter media becomes clogged, the collected treated water is flowed into the filter to remove the iron content on the filter media. A backwash operation was carried out.
[0006]
However, such a structure for performing the reverse cleaning operation is forced to provide a switching system by providing a valve device at the raw water inlet or the treated water outlet of the filter, and there is a cost burden due to the use of many valve devices. Be strong.
[0007]
In addition, after finishing the backwash operation, some of the piping is contaminated with dirty backwash water or is touched with dirty backwash water. In addition, immediately after resuming the water purification operation, the drain valve was operated to throw away dirty water (cleaning). For this reason, since operation of many valve apparatuses in a distant point is forced before water purification can be used, there was a difficulty that smooth water operation, back washing operation, and washing operation cannot be switched.
[0008]
Therefore, the present invention provides a six-way switching valve and a filtering device that enable smooth switching operation of water purification operation, backwash operation using raw water, and washing operation using water purification operation with one valve device.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first and fourth aspects of the present invention, the valve box is provided with first to sixth external connection ports, first to fifth flow paths, and first to third. And a switching means for switching the first to third valve bodies to a predetermined mode are provided, so that the second external connection port is connected to the filter by adopting a compact six-way switching valve. By setting the raw water supply port, setting the fourth external connection port to the treated water outlet of the filter, and simply flowing raw water from the first external connection port, each valve body can be switched according to the switching mode. With only one valve device, it is possible to smoothly switch between normal water purification operation, backwash operation with raw water, and washing operation using water purification operation.
[0010]
In particular, the backwash operation is not backwashed with treated water, but uses the same raw water as in the purified water operation, so facilities for storing treated water are not required, and the washing operation only changes part of the switching during the purified water operation. Compared with the case where treated water is used for backwash operation, the cost is low.
[0011]
According to the second aspect of the present invention, the first to third valve bodies are not connected to the valve chamber so that the flow path can be switched with a light operating force while ensuring the sealing performance during the water purification operation or during the stop. The first valve body and the third valve body, which can be rotated in contact with each other, incorporate a spherical stopper valve that moves on the inner surface of the valve following the valve body. The valve chamber in which the valve body is accommodated has a structure in which an opening that is closed by the stopper valve when the first valve body is positioned at the first switching position is used. When the valve body is positioned at the fifth switching position, an opening that is blocked by the stopper valve is used to suppress the sliding resistance associated with the rotation of the valve body, and at locations where the inner and outer seals of the valve box are required. A positive seal applied to the stopper valve is used to ensure a reliable seal.
[0012]
According to a third aspect of the present invention, the first valve body and the second valve body, which are phase-shifted in a predetermined phase, are coaxially connected to each other by a shaft member so that the respective modes can be automatically switched. The switching structure using the first electric motor for rotating the valve body and the second electric motor for rotating the third valve body was adopted.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on the first embodiment shown in FIGS.
[0014]
1 to 3 show, for example, a well filtration device used in a general household, and reference numeral 1 in the figure denotes a filter constituting the filtration device, for example, a filter for removing iron.
[0015]
The filter 1 is composed of, for example, a vertical cylindrical tank. The cylindrical tank is composed of a cylindrical body 3a whose bottom is closed and whose upper end is open, and an end plate 3b formed in a dish shape or a spherical shape that closes the upper end of the body 3a. And the upper end of the trunk | drum 3a and the opening end of the end plate 3b are fastened so that attachment or detachment is possible using the annular flange 4 attached to the outer peripheral part of each opening end. In addition, 5 is the gasket member pinched | interposed between the flanges 4 and 4, 6 is the volt | bolt which fastens flanges mutually, 7 shows the leg for installing the whole tank vertically.
[0016]
In the body portion 3a, a particulate filter material 9 (for example, filtration sand) is accommodated between the point near the opening and the collection chamber 8 formed at the bottom. Further, a filter 10 whose upper surface is blocked is embedded immediately above the collection chamber 8 to form a two-stage filtration structure with the filter medium 9 and the filter 10.
[0017]
An inflow chamber 11 is formed between the end plate 3b and the upper surface of the filter medium layer facing the end plate 3b. An inflow pipe 12 is housed in the inflow chamber 11. The inflow pipe 12 rises from the pedestal 13 installed on the peripheral wall on the opening side of the body part 3a toward the center in the body part 3a, and from the end of the horizontal pipe 14a to the vicinity of the center of the inner surface of the end plate 3b. And a pipe 14b. And the edge part of the horizontal piping 14a is connected to the inflow port 15 (equivalent to a raw | natural water supply port) formed in the base 13. FIG. The end of the vertical pipe 14b faces the inner surface of the end plate 3b and forms an outlet 16.
[0018]
The pedestal 13 is formed with an outlet 17 (corresponding to a treated water outlet) on the lower side along with the inlet 15. The outlet 17 is connected to an outlet pipe 18 that extends into the body 3a. This outflow pipe 18 extends downward through the filter medium 9, and its tip is connected to the collection chamber 8 through the filter 10.
[0019]
A hexagonal switching valve 20 is attached to the base 13 of the filter 1 so that the water purification operation, the backwash operation, and the washing operation can be switched.
[0020]
4 shows a schematic structure of the six-way switching valve 20, FIG. 5 shows the overall appearance of the six-way switching valve 20, FIG. 6 also shows the internal structure, and FIG. 7 also shows a front view. And a side view is shown, and FIG. 8 is a cross-sectional view.
[0021]
The structure of the six-way switching valve 20 will be described. In the figure, reference numeral 21 denotes a cast valve box. The valve box 21 is comprised from three valve box parts 21a-21c. Among these, the valve box part 21a is a part assembled to the inlet 15, the valve box part 21b is a part assembled to the outlet 17, and the valve box part 21c is a part assembled to the valve box part 21b.
[0022]
As shown in FIGS. 5 to 8, the valve box portion 21 a has a bottomed cylindrical shape in which a bottom is formed at the top and an opening is formed at the bottom.
[0023]
The valve box portion 21b has a main body portion 26 in which a ring-shaped groove portion 25 is formed on the upper side, and a bottomed cylindrical space that opens downward is formed on the lower side. A partition plate 27 is screwed to the upper portion of the main body portion 26 so as to close the opening of the groove portion 25. Further, a lid body 28 is screwed at the lower portion of the main body portion 26 so as to close the bottomed cylindrical space, and a cylindrical valve chamber 29 is formed inside. The upper part of the valve box part 21b and the lower part of the valve box part 21a are fastened concentrically in series by flange connection so as to block the opening of the valve box part 21a with the partition plate 27. A cylindrical valve chamber 30 is formed inside.
[0024]
A valve shaft 31 (corresponding to a shaft member) extending in the axial direction is housed in the center of the valve chamber 30. The upper end portion of the valve shaft 31 is rotatably fitted in the boss portion 32 protruding from the upper portion of the valve box portion 21a, and the lower end portion penetrates the partition plate 27 and is located on the inner peripheral side of the groove portion 25. It fits in a boss portion 25a formed by the peripheral wall so as to be rotatable. The valve shaft 31 is provided with a valve body 33 (corresponding to a first valve body) formed of, for example, a rubber member. The valve body 33 uses a shape that fits in a part of the valve chamber 30, for example, a substantially fan-shaped block having a narrow center side and a wide outer peripheral side. The valve body 33 is finished to have a shape that fits with the valve chamber 30, that is, a shape in which a slight clearance is ensured between the inner surface (outer peripheral surface and upper and lower surfaces) of the valve chamber 30. The valve chamber 30 can be rotated while maintaining non-contact with the wall surface of the valve chamber 30 with 31 as a fulcrum. A cylindrical hole 34 extending in the axial direction is formed on the lower surface of the valve body 33. In this hole 34, a stopper valve, for example, a spherical valve body 35 formed of a spherical member is housed movably. The spherical valve body 35 is configured to be urged toward the opening side, that is, the partition plate 27 side by a coil-shaped spring member 34 a housed in the hole 34, and follows the movement of the valve body 33 to follow the valve chamber 30. It can be moved (displaced) along the lower surface.
[0025]
A valve shaft 37 (corresponding to a shaft member) extending in the axial direction is accommodated in the center of the valve chamber 29. The upper end portion of the valve shaft 37 is rotatably fitted in the boss portion 25a at the upper portion of the valve box portion 21b, and the lower end portion is rotatably fitted to the boss portion 28a formed on the lid body 28. In the boss portion 25a, the upper end portion of the valve shaft 37 and the lower end portion of the valve shaft 31 are coaxially formed by a joint portion 38 formed by a joint portion, for example, a concave groove and a protruding piece portion fitted thereto. Combined. Similar to the previous valve body 33, the valve shaft 37 is provided with a valve body 39 (corresponding to a second valve body) made of a rubber member having a substantially fan shape. Similarly to the valve body 33, the valve body 39 is also shaped so that a clearance fits between the valve chamber 29, that is, a shape in which a slight clearance is secured between the inner surface (outer peripheral surface, upper and lower surfaces) of the valve chamber 29. is there. In other words, the valve body 39 is also configured to be able to rotate in the valve chamber 29 while keeping non-contact with the wall surface of the valve chamber 29 with the valve shaft 37 as a fulcrum. The valve body 39 is not provided with a stopper valve.
[0026]
The valve box portion 21c has a bottomed cylindrical main body portion 40 having a bottom formed at the top and an opening formed at the bottom. A lid body 41 is screwed to the lower end portion of the main body portion 40 so as to close the bottomed cylindrical space, and a cylindrical valve chamber 43 is formed inside. The side part of the valve box part 21c and the side part of the valve box 21b are connected to each other by the connection between the mouth parts 44 formed on each side part, specifically, the flange connection between the end parts of the mouth part 44. It is fastened to be connected in parallel. The lumens of the mouth portions 44 open to the peripheral wall surface of the valve chamber 30 and the peripheral wall surface of the valve chamber 43, and allow the adjacent valve chambers 30, 43 to communicate with each other.
[0027]
A valve shaft 45 extending in the axial direction is accommodated in the center of the valve chamber 43. An upper end portion of the valve shaft 45 is rotatably fitted in a boss portion 46 protruding from the upper portion of the valve box portion 21c, and a lower end portion is shown in a boss portion 41a formed on the lid body 41 (shown in FIG. 7A). ) Is pivotably fitted inside. The valve shaft 37 is provided with a valve body 47 (corresponding to a third valve body) made of a rubber member having a substantially fan shape similar to the previous valve body 33. Similarly to the valve body 33, the valve body 47 is also shaped so as to fit into the gap between the valve chamber 29, that is, a shape in which a slight gap is secured between the inner surface (outer peripheral surface, upper and lower surfaces) of the valve chamber 43. There is a structure in which the inside of the valve chamber 43 can be rotated while keeping non-contact with the wall surface of the valve chamber 29 with the valve shaft 45 as a fulcrum. Also on the lower surface of the valve body 47, as with the previous valve body 33, a stopper valve structure, specifically a cylindrical hole 48, and a spherical valve body 49 (stopper valve) movably accommodated in the hole 48, A coiled spring member 50 for energizing the spherical valve body 35 is incorporated.
[0028]
As shown in FIGS. 5 and 6, six external connection ports 51 to 56 are formed on the outer surfaces of the respective valve box portions 21a to 21c. The external connection port 51 is for inflow of raw water, and is connected to the connection port 51 from a side portion of the valve box portion 21a, more specifically, from one side portion substantially perpendicular to the row direction of the valve box portions 21a to 21c. A structure in which the mouth body 60 protrudes is used. And the front-end | tip part of the connection port body 60 is used as the screw hole which the equipment (piping member etc. which are connected to raw | natural water inflow apparatus) by the side of raw | natural water inflow attaches. Further, the base end portion is opened in the peripheral wall surface of the valve chamber 30 so that raw water can be introduced into the valve chamber 30 from the tip of the connection port body 60.
[0029]
The external connection port 52 is used for connecting the inlet of the filter 1, and a cylindrical connection port body 61 is connected to the connection port 52 from the side of the valve box portion 21 a opposite to the previous connection port body 60. A protruding structure is used. A flange portion 62 that is attached to the inflow port 15 of the pedestal 13 is formed at the distal end portion of the connection port body 61, and the proximal end portion opens to the peripheral wall surface of the valve chamber 30. That is, the connection port body 61 communicates with the connection port body 60 through the valve chamber 30. Thereby, as shown in FIG. 4, a flow path 81 (corresponding to the first flow path) connecting the external connection port 51 and the external connection port 52 is formed.
[0030]
The external connection port 53 is for drainage, and the connection port 53 has a structure in which a cylindrical connection port body 63 protrudes from a side portion of the side portion of the valve box portion 21b that forms the outer wall of the groove portion 25. Used. The distal end portion of the connection port body 64 is a screw hole to which a drain pipe 64 (shown only in FIGS. 1 and 2) is attached. Further, the base end portion communicates with the groove portion space, and further communicates with a valve hole 66 formed in a plate surface portion of the partition plate 27 that forms a trajectory through which the spherical valve body 35 of the valve body 33 passes. That is, the connection port body 63 communicates with the valve chamber 30. Due to the communication with the lower surface of the valve chamber 30, a flow path 83 (corresponding to a third flow path) connecting the external connection port 53 and the middle of the flow path 81 is formed as shown in FIG. 4.
[0031]
The external connection port 54 is for connecting the outlet of the filter 1, and a cylindrical connection port body 68 is projected from the side portion forming the peripheral wall of the valve chamber 29 of the valve box portion 21 b to the connection port 54. Structure is used. The connection port body 68 protrudes in the same direction as the connection port body 61 for connecting the previous inlet. A flange portion 69 that is assembled with the outlet 17 of the base 13 is formed at the tip of the connection port body 68. Further, the base end portion of the connection port body 68 is open to the peripheral wall surface of the valve chamber 29.
[0032]
The external connection port 55 is for outflow of treated water, and the connection port 55 has a structure in which a cylindrical connection port body 70 protrudes from the side of the valve box portion 21c. A connecting portion to which equipment on the water supply side (water supply piping or the like) is attached, for example, a screw joint 71 (shown in FIGS. 7 and 8) is assembled to the distal end portion of the connection port body 70. Further, the base end portion is open to the peripheral wall surface of the valve chamber 43. As a result, as shown in FIG. 4, a flow path 82 (corresponding to the second flow path) connecting the external connection port 55 and the external connection port 54 is formed through the valve chamber 29 and the valve chamber 43.
[0033]
On the other hand, as shown in FIGS. 4, 5, and 7, the connection port body 60 for inflowing raw water is formed with a branch port body 60a that divides into the valve box portion 21b from the middle thereof. The distal end portion of the branch port body 60 a is attached to the side portion of the valve box portion 21 b in the same direction as the connection port body 60. The tip is opened in the peripheral wall surface of the valve chamber 30. As a result, a passage 72 for guiding the raw water to the valve chamber 30 is formed as shown in FIG. As shown in FIG. 4, the passage 72 forms a flow path 84 that connects the external connection port 51 and the upstream portion of the flow path 82.
[0034]
The external connection port 56 is for drainage, and the connection port 56 has a structure in which a cylindrical connection port body 73 protrudes from the lid body 41 that forms the lower part of the valve chamber 43. The tip of the connection port 73 is a screw hole to which the drain pipe 64 is attached. Further, the base end portion communicates with a valve hole 75 formed in a plate surface portion forming a locus through which the spherical valve body 49 of the valve body 47 passes. With this communication structure, a flow path 85 that connects the external connection port 56 and the downstream portion of the flow path 82 is formed as shown in FIG.
[0035]
On the other hand, the valve element 33 in the flow path portion where the flow path 81 and the flow path 83 cross each other is associated with each opening position opening in the valve chamber 30 as shown in FIG. The switching position A for connecting the flow path 81 and blocking the flow path 83 is communicated with the external connection port 52 when the vertical position is 90 °, for example, as shown in FIG. 4B. In addition, a switching position B for blocking the flow path 82 is set. That is, when the valve body 33 is rotated to each switching position, the flow path 81 and the flow path 83 are switched. In addition, the valve hole 66 that forms the inlet of the flow path 83 has a structure in which when the valve element 33 reaches the switching position A, the valve element 33 is blocked by the spherical valve element 35 built in the valve element 33, and fluid that is added to the spherical valve element 35. The structure prevents the fluid from leaking to the outside using pressure.
[0036]
In the valve body 39 in the flow path portion where the flow path 82 and the flow path 84 intersect, in association with each opening position that opens to the valve chamber 29, as shown in FIG. In the switching position C where the flow path 82 is communicated and the flow path 84 is shut off, as shown in FIG. 4B, for example, when the sideways posture is 90 °, the flow path 84 and the external connection port 54 are communicated. A switching position D for blocking the flow path 84 is set. That is, when the valve body 39 rotates to each switching position, the flow path 82 and the flow path 84 are switched.
[0037]
When the valve element 47 in the flow path portion where the flow path 82 and the flow path 85 intersect is associated with each opening position opened in the valve chamber 43, as shown in FIG. The switching position E that circulates 82 and shuts off the flow path 85, as shown in FIGS. 4B and 4C, for example, in the horizontal orientation with a phase of 90 °, allows the flow path 82 and the flow path 85 to communicate with each other. At the same time, a switching position F for blocking the flow path 82 is set. That is, when the valve body 47 is rotated to each switching position, the flow path 82 and the flow path 85 are switched. Further, the valve hole 75 forming the inlet of the flow path 85 has a structure in which when the valve body 47 reaches the switching position E, the valve body 47 is closed by the spherical valve body 49 built in the valve body 47, and the fluid added to the spherical valve body 49 is blocked. The structure prevents the fluid from leaking to the outside using pressure.
[0038]
And the electric motor 77 is installed in the edge part of the boss | hub part 32 of the valve box part 21a as FIG. 8 shows. Reference numeral 32 a denotes a motor mounting flange portion formed at the end of the boss portion 32. The output shaft of the electric motor 77 is connected to the upper end portion of the valve shaft 32 in the boss portion 31 via a joint portion, for example, a concave / convex fitting portion 32a, and the two valve bodies 33 are phased. 39 can be rotated while being linked.
[0039]
An electric motor 79 is installed at the end of the boss portion 46 of the valve box portion 21c. In addition, 46a shows the flange part for motor attachment formed in the edge part of the boss | hub part 46. FIG. The output shaft of the electric motor 79 is connected to the upper end portion of the valve shaft 45 in the boss portion 46 via a joint portion, for example, an uneven fitting portion 45a, so that the valve body 47 can be rotated. is there.
[0040]
Such a six-way switching valve 20 is filtered using flange portions 62 and 69 so that the external connection port 52 matches the inlet 15 of the filter 1 and the external connection port 54 matches the outlet 17 of the filter 1. It is attached to the base 13 of the vessel 1.
[0041]
By switching the six-way switching valve 20 by the rotation of the electric motors 77 and 79, the water purification operation mode, the back washing operation mode using raw water, and the washing operation mode utilizing the water purification operation can be switched (switching means). ). Specifically, in the water purification operation mode (first switching mode), as shown in FIG. 4A, the valve body 33 is the switching position A, the valve body 39 is the switching position C, and the valve body 47 is the switching position E. In the backwash operation mode (second switching mode), the valve body 33 is switched to the switching position B, the valve body 39 is switched to the switching position D, and the valve body 47, as shown in FIG. Is switched to the switching position F, and the cleaning operation mode (third switching mode) is formed by switching the valve body 33 to the switching position A, the valve body 39 to the switching position C, and the valve as shown in FIG. The body 47 is formed by switching to the switching position F.
[0042]
Further, the filter 1 is provided with a control unit 86 for automatically switching each mode from the control of the electric motors 77 and 79, and usually the water purification operation is performed, and the filter medium 9 is clogged more than a predetermined amount. When it occurs, the operation is switched to the backwash operation, and after the predetermined time has elapsed, the backwash operation is completed, the cleaning operation is started, and when the predetermined time has elapsed, the switching control is performed to return to the water purification operation again. is there.
[0043]
That is, when water is purified by the filter 1, well water as raw water that has undergone oxidation treatment is supplied to the external connection port 51 of the six-way switching valve 20 as shown in FIG. 1 by operation of a water supply pump (not shown). To do.
[0044]
Here, the six-way switching valve 20 is driven by the electric motors 77 and 79 in accordance with an instruction from the control unit 86, so that the valve bodies 33, 39, and 47 are in the water purification operation mode as shown in FIG. It is switched to A. That is, the valve body 33 is rotated to the switching position A, the valve body 39 is rotated to the switching position C, and the valve body 47 is rotated to the switching position E. At this time, the valve holes 66 and 75 on the drain side are closed by the spherical valve bodies 35 and 49, and further, the spherical valve bodies 35 and 49 are applied by pressure (positive pressure) applied from the upper side of the spherical valve bodies 35 and 49. Is pressed against the opening edges of the valve holes 66 and 67, so that high sealing performance is ensured.
[0045]
Then, the well water is introduced from the external connection port 52 to the inflow pipe 12 of the filter 1 through the flow path 81 and the valve chamber 30. Then, the well water flows out from the outlet 16 of the inflow pipe 12.
[0046]
Thereby, the well water flows into the upper surface of the filter medium layer as shown in FIG. While the flowing well water penetrates through each part of the filter medium 9 and further passes through the filter 10, the contained iron content is filtered (removal of iron content). The treated water that has been filtered is returned to the external connection port 54 of the six-way switching valve 20 through the collection chamber 8 and the outflow pipe 18. Then, this treated water is led out from the hexagonal switching valve, that is, from the external connection port 55 to the water supply pipe (not shown) of the water supply facility through the flow path 82 and the valve chambers 29 and 43 (water supply side).
[0047]
It is assumed that such water purification operation is continued and clogging occurs in the filter medium 9.
[0048]
Then, the controller 86 switches from the water purification operation mode to the backwash operation mode. Thereby, each valve body 33, 39, 47 is rotated to a point that is phased by 90 ° as shown in FIG. 4B by the valve drive of the electric motors 77, 79. Specifically, the valve body 33 is switched to the switching position B, the valve body 39 is switched to the switching position D, and the valve body 47 is switched to the switching position F.
[0049]
Then, as shown in FIG. 2 and FIG. 4B, the well water (raw water) flowing from the external connection port 51 does not go to the external connection port 2, but flows into the flow path 84, the valve chamber 29, and the flow path 82. It is led out from the external connection port 54 to the outflow pipe 18 through the upstream portion.
[0050]
Thereby, well water is guide | induced to the collection chamber 8 in the bottom part of the filter 1, and flows into the excess material layer from the filter 10. FIG. When this well water passes through the filter medium layer, the filter medium 9 is stirred to wash away impurities such as iron adhering to the filter medium 9.
[0051]
The well water that has become sewage due to the impurities flows into the inflow pipe 12 from the outlet 16 and is returned from the inlet 15 to the external connection port 52. Then, the sewage passes through the flow path 81 and the valve chamber 30, passes through the flow path 83 from the valve hole 66, and is discharged from the external connection port 53 to the drain pipe 64. Thereby, the backwash operation using raw water is performed.
[0052]
Then, if the clogging of the filter 1 is resolved after a predetermined time has elapsed, the control unit 86 then switches to the cleaning operation mode. Then, the switching position of the valve body 47 does not change as shown in FIG. 4C, and only the valve bodies 33 and 39 are driven by the electric motor 77 to the same 90 ° phase point as in the water purification operation. Return. Specifically, the valve body 33 is switched to the switching position A, and the valve body 39 is switched to the switching position C.
[0053]
Thereby, as shown in FIG. 3 and FIG. 4C, the well water (raw water) supplied to the external connection port 51 passes through the flow path 81 and the valve chamber 30 from the external connection port 52 to the inflow port 15 and the inflow pipe. 12 is discharged to the upper surface of the filter medium layer. As a result, the well water, which is the raw water, passes through the filter medium 9 while washing away impurities adhering to the inner surface of the flow path, the inner surface of the valve chamber, the surface of the valve body, and the like during reverse cleaning. This well water is returned to the external connection port 54 of the six-way switching valve 20 through the collection chamber 8 and the outflow pipe 18 to wash away impurities adhering to the inner surface of the outflow pipe 18 and the like during backwashing. Subsequently, the well water flows through the flow path 82 from the valve hole 75 to the flow path 85, and wash away impurities adhering to the upstream portion of the flow path 82, the valve chamber inner surface, the valve body surface, and the like during backwashing. The well water containing the dirt is discharged from the external connection port 56 to the drain pipe 64. By this washing operation, the sewage generated after the reverse washing is not sent to the water supply side.
[0054]
When this cleaning operation continues for a predetermined time, the controller 86 determines that the dirt due to the reverse cleaning has been eliminated, and the electric motor 79 rotates the valve body 47 to the switching position E, as shown in FIGS. 1 and 4A. Return to the water purification mode shown. Thereby, the water purification operation is resumed, and the purified well water is supplied to the water supply facility.
[0055]
Thus, the six-way switching valve 20 switches the valve box 21 to switch the external connection ports 51 to 56, the flow paths 81 to 86, the valve bodies 33, 39, 47, and the valve bodies 33, 39, 47 to a predetermined mode. By providing a structure, the functions of switching between normal water purification operation, backwashing operation using raw water, and washing operation using water purification operation are integrated in a compact manner, so that each operation can be smoothly switched with one compact valve device. it can. In addition, since only one valve device is required, the cost burden can be reduced. In addition, the filtration device can easily ensure the switching function by simply combining the hexagonal switching valve 20 with the filter 1. In particular, the backwash operation of the filtration device is not backwashed with treated water, but uses the same raw water as in the purified water operation, so there is no need for facilities for storing treated water, and the washing operation is partly switched during the purified water operation. Since only the change is required, the cost is lower than when the treated water is used for backwash operation.
[0056]
The valve bodies 33, 39, and 47 have a valve structure that is rotationally displaced while maintaining a non-contact state with the wall surface of the valve chamber. Among the valve bodies 33 and 47 including switching of the external drainage, spherical valve bodies 35 and 49 are provided. Since the valve holes 66 and 75 at the switching position of the external drainage are closed by the spherical valve bodies 35 and 49, the six-way switching valve 20 is slid along with the rotation of the valve bodies 33, 39 and 47. The dynamic resistance is small, and the valve holes 66 and 67 at locations where the inner and outer seals of the valve box 21 are required are securely sealed by using the positive pressure applied to the spherical valve bodies 35 and 49. That is, the flow path can be switched with a light operating force while ensuring the sealing performance during the water purification operation or during the stop, and the six-way switching valve 20 for a filter that achieves both reliability and operability can be realized.
[0057]
In addition, by utilizing this advantage, the switching structure of the six-way switching valve 20 is configured such that the valve bodies 33 and 39 are connected to each other coaxially by the valve shafts 31 and 37, and the valve shafts 31 and 37 are driven by the electric motor 77. And the structure in which the valve body 47 is driven by the electric motor 79 can be used to automatically switch between the modes using a small, inexpensive motor.
[0058]
FIG. 9 shows a second embodiment of the present invention.
[0059]
This embodiment is a modification of the first embodiment, and instead of the electric motors 77 and 79, the handle members 90 and 91 are attached, and the water purifying operation mode, the back washing operation mode, and the washing operation mode are performed manually. Can be switched. Of course, since each valve element 33, 39, 47 has a valve element structure that can be rotated while maintaining a non-contact state, it can be operated smoothly with a small force. However, in FIG. 9, the same parts as those of the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.
[0060]
In addition, this invention is not limited to each embodiment mentioned above, You may implement in various changes within the range which does not deviate from the main point of this invention. For example, in the above-described embodiment, the six-way switching valve is applied to the switching of the flow path of the filtration device. However, the present invention is not limited to this, and may be used when switching other flow paths. Of course, you may apply to filters other than a iron removal filter. Further, the shape and structure of each part of the six-way switching valve are not specified in each embodiment. Of course, the combination of the three valve bodies is not limited to the combined use of the two-story structure and the one-story structure, but may have another structure.
[0061]
【The invention's effect】
As described above, according to the first and fourth aspects of the invention, one valve device can smoothly switch between three operations such as a normal water purification operation, a backwash operation using raw water, and a washing operation using the water purification operation. be able to. In particular, the backwash operation is not backwashed with treated water, but is performed using the same raw water as in the water purification operation. Since only part of the path switching is changed, the cost can be reduced compared to the channel switching structure when treated water is used for backwashing operation.
[0062]
According to the second aspect of the present invention, the flow path can be switched with a light operating force while further ensuring the sealing performance during the water purification operation or during the stop.
[0063]
According to the invention of claim 3, the water purification operation mode, the backwash operation mode using raw water, and the water purification operation mode can be automatically switched.
[Brief description of the drawings]
FIG. 1A is a cross-sectional view showing a filtration device with a six-way switching valve according to a first embodiment of the present invention, along with the flow of water during water purification operation in the filtration device.
(B) is a side view of a filtration device with the same six-way switching valve.
FIG. 2 is a cross-sectional view showing the flow of water during backwashing operation in the filtration device.
FIG. 3 is a cross-sectional view showing the flow of water during a cleaning operation in the filtration device.
FIG. 4A is a cross-sectional view schematically showing the flow of water during water purification operation in a six-way switching valve.
(B) is sectional drawing which shows typically the flow of the water at the time of backwashing operation similarly.
(C) is sectional drawing which shows typically the flow of the water at the time of washing | cleaning operation similarly.
FIG. 5 is a perspective view showing the overall appearance of a six-way switching valve.
FIG. 6 is a perspective view showing a flow path switching structure inside the hexagonal switching valve.
FIG. 7A is a front view of a six-way switching valve.
(B) is a side view of the hexagonal switching valve.
FIG. 8 is a side sectional view of the same six-way switching valve.
FIG. 9 is a cross-sectional view showing a six-way switching valve according to a second embodiment of the present invention.
[Explanation of symbols]
1 ... Filter
15 ... Inlet (raw water supply port)
17 ... Outlet (treated water outlet)
20 ... Six-way selector valve
21 ... Valve box
29, 30, 43 ... Valve chamber
33,39,47 ... Valve
35, 49 ... Spherical valve (stopper valve)
51-56 ... External connection port
66,75 ... Valve hole (opening)
77, 79 ... Electric motor
81-86 ... flow path
90, 91: Handle member.

Claims (4)

第1ないし第6の外部接続口を有し、この第1の外部接続口に流体が供給される弁箱と、
この弁箱に形成され、前記第1の外部接続口と前記第2の外部接続口とを結ぶ第1の流路と、
前記弁箱に形成され、前記第4の外部接続口と前記第5の外部接続口とを結ぶ流体が第4の外部接続口から第5の外部接続口に向かって流れる第2の流路と、前記弁箱に形成され、前記第3の外部接続口と前記第1の流路の途中とを結ぶ第3の流路と、
前記弁箱に形成され、前記第1の外部接続口と前記第2の流路の上流側部分とを結ぶ第4の流路と、
前記弁箱に形成され、前記第6の外部接続口と前記第2の流路の下流側部分とを結ぶ第5の流路と、
前記第1の流路と前記第3の流路とが交わる流路部分に設けられ、前記第1の流路を連通させる第1の切換位置と、前記第3の流路と前記第2の外部接続口とを連通させる第2の切換位置とに渡って切換可能な回動式の第1の弁体と、
前記第2の流路と前記第4の流路とが交わる流路部分に配置され、前記第2の流路を連通させる第3の切換位置と、前記第4の流路と前記第4の外部接続口とを連通させる第4の切換位置とに渡って切換可能な回動式の第2の弁体と、
前記第2の流路と前記第5の流路とが交わる流路部分に配置され、前記第2の流路を連通させる第5の切換位置と、前記第2の流路と前記第5の流路とを連通させる第6の切換位置とに渡って切換可能な回動式の第3の弁体と、
前記第1ないし第3の弁体を、前記第1の弁体が第1の切換位置、前記第2の弁体が第3の切換位置、前記第3の弁体が第5の切換位置となる第1の切換モードと、前記前記第1の弁体が第2の切換位置、前記第2の弁体が第4の切換位置、前記第3の弁体が第6の切換位置となる第2の切換モードと、前記第1の弁体が第1の切換位置、前記第2の弁体が第3の切換位置、前記第3の弁体が第6の切換位置となる第3の切換モードとにそれぞれ切換可能に回動させる切換手段と
を具備したことを特徴とする六方切換弁。
A valve box having first to sixth external connection ports to which fluid is supplied to the first external connection port;
A first flow path formed in the valve box and connecting the first external connection port and the second external connection port;
A second flow path formed in the valve box, and a fluid connecting the fourth external connection port and the fifth external connection port flows from the fourth external connection port toward the fifth external connection port; A third flow path formed in the valve box and connecting the third external connection port and the middle of the first flow path;
A fourth flow path formed in the valve box and connecting the first external connection port and the upstream side portion of the second flow path;
A fifth flow path formed in the valve box and connecting the sixth external connection port and a downstream portion of the second flow path;
A first switching position that is provided in a flow path portion where the first flow path and the third flow path intersect, and communicates with the first flow path; the third flow path; and the second flow path. A pivotable first valve body switchable over a second switching position for communicating with an external connection port;
A third switching position that is disposed in a flow path portion where the second flow path and the fourth flow path intersect, and that communicates the second flow path; and the fourth flow path and the fourth flow path. A pivotable second valve body that can be switched over to a fourth switching position for communicating with the external connection port;
A fifth switching position that is disposed in a flow path portion where the second flow path and the fifth flow path intersect, communicates the second flow path, the second flow path, and the fifth flow path; A pivotable third valve body switchable over a sixth switching position for communicating with the flow path;
The first to third valve bodies are configured such that the first valve body is a first switching position, the second valve body is a third switching position, and the third valve body is a fifth switching position. The first switching mode, the first valve body is the second switching position, the second valve body is the fourth switching position, and the third valve body is the sixth switching position. A second switching mode, a third switching position in which the first valve body is a first switching position, the second valve body is a third switching position, and the third valve body is a sixth switching position. 6. A six-way switching valve characterized by comprising switching means for pivotally switching between modes.
前記第1ないし第3の弁体は、いずれも弁室に非接触状態で回動可能に収まり、このうちの第1の弁体と第3の弁体には、当該弁体に追従して弁室内面を移動する球状のストッパ弁が内蔵され、さらに第1の弁体が収まる弁室には、前記第3の流路と連通し、第1の弁体が第1の切換位置に位置決められたときに前記ストッパ弁で塞がる開口が形成され、第3の弁体が収まる弁室には、前記第5の流路と連通し、第3の弁体が第5の切換位置に位置決められたときに前記ストッパ弁で塞がる開口が形成されていることを特徴とする請求項1に記載の六方切換弁。The first to third valve bodies are all rotatably accommodated in the valve chamber in a non-contact state, and the first and third valve bodies follow the valve body. A spherical stopper valve that moves on the inner surface of the valve chamber is incorporated, and the valve chamber in which the first valve body is accommodated communicates with the third flow path, and the first valve body is positioned at the first switching position. When opened, an opening that is closed by the stopper valve is formed, and a valve chamber in which the third valve body is accommodated communicates with the fifth flow path, and the third valve body is positioned at the fifth switching position. The six-way switching valve according to claim 1, wherein an opening that is closed by the stopper valve is formed. 前記切換手段は、所定に位相させた前記第1の弁体と前記第2の弁体との相互を軸部材により同軸状に連結するとともにこの連結した弁体を回動させる第1の電動モータと、前記第3の弁体を回動させる第2の電動モータとを有して構成してあることを特徴とする請求項1又は請求項2に記載の六方切換弁。The switching means connects the first valve body and the second valve body, which are phased in a predetermined phase, to each other in a coaxial manner by a shaft member and rotates the connected valve body. And a second electric motor for rotating the third valve body. The six-way switching valve according to claim 1 or 2, wherein 原水供給口と、ろ過材による原水のろ過を終えた処理水が導出される処理水出口とを有するろ過器と、
このろ過器の原水供給口および処理水出口に接続された六方切換弁とを有して構成されるろ過装置であって、
前記六方切換弁は、
原水が供給される第1の外部接続口、前記原水供給口に連なる第2の外部接続口、排水用の第3の外部接続口、前記処理水出口に連なる第4の外部接続口および排水用の第6の外部接続口を有する弁箱と、
この弁箱に形成され、前記第1の外部接続口と前記第2の外部接続口とを結ぶ第1の流路と、
前記弁箱に形成され、前記第4の外部接続口と前記第5の外部接続口とを結ぶ第2の流路と、
前記弁箱に形成され、前記第3の外部接続口と前記第1の流路の途中とを結ぶ第3の流路と、
前記弁箱に形成され、前記第1の外部接続口と前記第2の流路の上流側部分とを結ぶ第4の流路と、
前記弁箱に形成され、前記第6の外部接続口と前記第2の流路の下流側部分とを結ぶ第5の流路と、
前記第1の流路と前記第3の流路とが交わる流路部分に設けられ、前記第1の流路を連通させる第1の切換位置と、前記第3の流路と前記第2の外部接続口とを連通させる第2の切換位置とに渡って切換可能な回動式の第1の弁体と、
前記第2の流路と前記第4の流路とが交わる流路部分に配置され、前記第2の流路を連通させる第3の切換位置と、前記第4の流路と前記第4の外部接続口とを連通させる第4の切換位置とに渡って切換可能な回動式の第2の弁体と、
前記第2の流路と前記第5の流路とが交わる流路部分に配置され、前記第2の流路を連通させる第5の切換位置と、前記第2の流路と前記第5の流路とを連通させる第6の切換位置とに渡って切換可能な回動式の第3の弁体と、
前記第1ないし第3の弁体を、前記第1の弁体が第1の切換位置、前記第2の弁体が第3の切換位置、前記第3の弁体が第5の切換位置となる浄水運転モードと、前記前記第1の弁体が第2の切換位置、前記第2の弁体が第4の切換位置、前記第3の弁体が第6の切換位置となる逆洗運転モードと、前記第1の弁体が第1の切換位置、前記第2の弁体が第3の切換位置、前記第3の弁体が第6の切換位置となる洗浄運転モードとにそれぞれ切換可能に回動させる切換手段と
を具備したことを特徴とするろ過装置。
A filter having a raw water supply port and a treated water outlet from which treated water after filtration of the raw water by the filter medium is derived;
A filtration device comprising a raw water supply port of this filter and a six-way switching valve connected to a treated water outlet,
The six-way switching valve is
A first external connection port for supplying raw water, a second external connection port connected to the raw water supply port, a third external connection port for drainage, a fourth external connection port connected to the treated water outlet, and for drainage A valve box having a sixth external connection port;
A first flow path formed in the valve box and connecting the first external connection port and the second external connection port;
A second flow path formed in the valve box and connecting the fourth external connection port and the fifth external connection port;
A third flow path formed in the valve box and connecting the third external connection port and the middle of the first flow path;
A fourth flow path formed in the valve box and connecting the first external connection port and the upstream side portion of the second flow path;
A fifth flow path formed in the valve box and connecting the sixth external connection port and a downstream portion of the second flow path;
A first switching position that is provided in a flow path portion where the first flow path and the third flow path intersect, and communicates with the first flow path; the third flow path; and the second flow path. A pivotable first valve body switchable over a second switching position for communicating with an external connection port;
A third switching position that is disposed in a flow path portion where the second flow path and the fourth flow path intersect, and that communicates the second flow path; and the fourth flow path and the fourth flow path. A pivotable second valve body that can be switched over to a fourth switching position for communicating with the external connection port;
A fifth switching position that is disposed in a flow path portion where the second flow path and the fifth flow path intersect, communicates the second flow path, the second flow path, and the fifth flow path; A pivotable third valve body switchable over a sixth switching position for communicating with the flow path;
The first to third valve bodies are configured such that the first valve body is a first switching position, the second valve body is a third switching position, and the third valve body is a fifth switching position. The water purifying operation mode in which the first valve body is in the second switching position, the second valve body is in the fourth switching position, and the third valve body is in the sixth switching position. And a cleaning operation mode in which the first valve body is in the first switching position, the second valve body is in the third switching position, and the third valve body is in the sixth switching position. A filtration device comprising switching means for enabling rotation.
JP2002067452A 2002-03-12 2002-03-12 Hexagonal switching valve and filtration device Expired - Fee Related JP3984079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002067452A JP3984079B2 (en) 2002-03-12 2002-03-12 Hexagonal switching valve and filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002067452A JP3984079B2 (en) 2002-03-12 2002-03-12 Hexagonal switching valve and filtration device

Publications (2)

Publication Number Publication Date
JP2003269630A JP2003269630A (en) 2003-09-25
JP3984079B2 true JP3984079B2 (en) 2007-09-26

Family

ID=29198843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002067452A Expired - Fee Related JP3984079B2 (en) 2002-03-12 2002-03-12 Hexagonal switching valve and filtration device

Country Status (1)

Country Link
JP (1) JP3984079B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246331A (en) * 2012-04-17 2014-12-24 株式会社电装 Flow path changeover device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021361A (en) * 2005-07-15 2007-02-01 Kawamoto Pump Mfg Co Ltd Water purifier
JP6581807B2 (en) * 2015-05-21 2019-09-25 株式会社川本製作所 Filtration device and control method of filtration device
CN111664268A (en) * 2019-03-06 2020-09-15 宁波市科漫环保科技有限公司 Waterway controller for multifunctional water treatment system and control valve thereof
CN114225507B (en) * 2021-12-17 2022-12-27 菲时特集团股份有限公司 Quick-opening type filter screen angle valve with one inlet and two outlets and easy to clean
CN114470891B (en) * 2022-03-14 2023-05-23 厦门理工学院 Variable porosity filter element filtering device and filtering and back-washing method based on same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120467U (en) * 1980-02-16 1981-09-14
JPS579311U (en) * 1980-06-17 1982-01-18
JPH04986U (en) * 1990-04-19 1992-01-07
JP3161974B2 (en) * 1996-06-24 2001-04-25 株式会社三栄水栓製作所 Water tap for under sink type water purifier
JPH1137322A (en) * 1997-07-25 1999-02-12 Kawamoto Seisakusho:Kk Five-way switch valve
JP3179378B2 (en) * 1997-07-28 2001-06-25 出戸水栓株式会社 Switching valve
JP4053684B2 (en) * 1999-04-21 2008-02-27 株式会社川本製作所 Filtration device
JP2001355749A (en) * 2000-06-15 2001-12-26 Kawamoto Pump Mfg Co Ltd Five way control valve and filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104246331A (en) * 2012-04-17 2014-12-24 株式会社电装 Flow path changeover device
CN104246331B (en) * 2012-04-17 2016-08-17 株式会社电装 Flow passage switch unit

Also Published As

Publication number Publication date
JP2003269630A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
WO2014015783A1 (en) Flow controller and water treatment system having same
KR20070057769A (en) A multifunction control valve for a water treatment system
JP3984079B2 (en) Hexagonal switching valve and filtration device
WO2013011743A1 (en) Water purifier
JP4490624B2 (en) Air / water purifier with water drain
JP3116063B2 (en) Water piping switching device for water purification system
JPH1137322A (en) Five-way switch valve
JP2000300913A (en) Filter apparatus
CN214485796U (en) Novel sand filter
JP3122787B2 (en) Switching valve for shower nozzle
JP3286468B2 (en) Five-way valve structure in bath water circulation channel
JP4615740B2 (en) Five-way switching valve and filtration device
JP3707828B2 (en) Water purification system
CN214404798U (en) Flow passage adapter
JP3586007B2 (en) Switching cock
CN108619764A (en) A kind of control method of filter, purifying drinking appliance, intelligent closestool and intelligent closestool
JP6605353B2 (en) Fluid strainer mounting unit
JP3718292B2 (en) Water purifier
JPH0828726A (en) Device for stopping turn of valve element of multiple way valve
KR101449630B1 (en) Valve device
JPS6384613A (en) Filter
JPH027621Y2 (en)
CN201799444U (en) Novel three-way liquid sucking pot rotation switch with reversing function
JP3312047B2 (en) Bathtub hot water cleaning device and cleaning method
JP3032805U (en) Water tap for under sink type water purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees