JP3983061B2 - production management system - Google Patents

production management system Download PDF

Info

Publication number
JP3983061B2
JP3983061B2 JP2002034803A JP2002034803A JP3983061B2 JP 3983061 B2 JP3983061 B2 JP 3983061B2 JP 2002034803 A JP2002034803 A JP 2002034803A JP 2002034803 A JP2002034803 A JP 2002034803A JP 3983061 B2 JP3983061 B2 JP 3983061B2
Authority
JP
Japan
Prior art keywords
production
amount
target value
value
management system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002034803A
Other languages
Japanese (ja)
Other versions
JP2003233410A (en
Inventor
康宏 濱塚
和男 堀口
和彦 前田
和重 橋本
浩之 金野
博文 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2002034803A priority Critical patent/JP3983061B2/en
Publication of JP2003233410A publication Critical patent/JP2003233410A/en
Application granted granted Critical
Publication of JP3983061B2 publication Critical patent/JP3983061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,歩留りの変動,装置稼働率低下などの影響により生産量の変動が大きい多段階生産システムにおいて,少ない仕掛りで需要を満たして生産することができる生産管理システム,方法,及びプログラムに関するものである。
【0002】
【従来の技術】
従来,半導体などの薄膜製品では製品完成までに時間がかかることや歩留りの変動や装置の故障による生産量の低下に対応するために,その生産過程に大量の仕掛りを保持して生産を行ってきた。しかし,製品のライフサイクルの短縮化や顧客納期の遵守といった観点から,仕掛りを適正化し,必要とされる量をタイムリーに生産することが要求されるようになってきた。また,生産過程には工程数が非常に多く,かつ生産過程はジョブショップ方式のレイアウトをとっているために同一製品が工程は異なるが同一生産装置を繰り返し何回も通過することや,さらに品種数が非常に多いために各工程での仕掛り量を管理すること自体が難しいという問題があった。
【0003】
そこで,特開平6-69089号公報や特開平7-74226号公報などのように,生産過程の各工程もしくは重要工程において適正仕掛り量を維持するように生産量を制御して仕掛り量を抑え,かつリードタイムを短縮する方法が提案されている。
【0004】
また,特開平6-69089号公報や特開平11-296208号公報などのように,過去の生産実績から生産量と仕掛り量の関係を求め,要求される生産量に対する仕掛り量を算出することにより,適正な仕掛量を設定する方法が提案されている。
【0005】
【発明が解決しようとする課題】
生産過程の個々の工程において仕掛り量を最適化しても部分的な最適化であり,生産過程全体を最適化することができない。例えば,装置の故障などによりある工程で適正仕掛り量をはるかに超える仕掛りが生じた場合や顧客の要求により急激な生産を行い,仕掛が適正仕掛り量をはるかに下回った場合などは個々の工程で仕掛り量を適正化すると,前者は次工程の仕掛り量が適正量を上回り,後者は前工程の仕掛り量が適正量を下回ることになるからである。したがって,本発明の第1の課題としては,生産過程全体の仕掛り量を適正化するように生産量の制御を行うことである。また,第2の課題としては,需要を満たして生産を行うことができる前記仕掛り量の適正値を定量化することである。
【0006】
【課題を解決するための手段】
前述の課題を解決するために,本発明においては,生産計画に基づいて生産過程の各工程別に仕掛り量の目標値を算出及び設定する手段と,生産過程の各工程別に前記仕掛り量の目標値及び仕掛り量の実際値のそれぞれについて最終工程から逆順に各工程までの累積値を算出する手段と,前記累積した仕掛り量の目標値と実際値との乖離量に応じて各工程の生産量を制御する手段により,生産過程全体の仕掛り量を適正値に抑えて生産することができる。また,製品の生産過程における最終工程の生産計画量を前方の各工程の生産時間に基づいて,順次前方の工程に展開することにより求まる各工程における生産量と各工程の生産時間により各工程での仕掛り量目標値を算出する手段により需要を満たして生産することを可能とする仕掛り量の適正値を算出することができる。
【0007】
【発明の実施の形態】
本発明の実施の形態について説明する。半導体などの薄膜製品では,シリコンなどの基板上に膜を形成し,その上に回路パターンを作成することにより製品の生産を行っており,製品の機能によってはこの作業を数十層繰り返すことになる。この生産過程の概略を半導体を例にして示したものが図2である。このように,工程が複数存在するだけでなく,各層を段階的に形成していく生産過程となっている。また,この生産過程においてはジョブショップ形式のレイアウトをとっているために,各層の同一処理を行う工程は同一の設備群に属する装置によって処理される。したがって,各装置には複数の製品の仕掛りだけではなく,同一製品であっても段階(層)の異なる仕掛りが混在するために,どの仕掛りを生産すれば生産計画を遵守できるかを作業者が把握することは困難となっている。
【0008】
そこで,本発明では図1に示す機能を持つ生産管理方法に基づいて生産を行うことにより,前述のような多段階の生産過程からなる生産システムにおいて生産計画を遵守して生産を行うことを実現している。以下,図1に従い,本発明の生産管理方法における生産量の制御方式について説明する。工程定義取得部1では,製品の生産過程,各工程の生産時間の定義情報を取得し,格納する。また,生産計画量取得部2では前記生産過程への投入量及び前記工程における生産量の計画値を取得し,格納する。これらの情報を元に仕掛り量目標値算出部3において前記生産過程の各工程における仕掛り量目標値を算出する。なお,仕掛り量目標値に関しては,従来技術にあるように過去の実績に基づく生産量と仕掛り量の関係から統計的手法から算出もしくは,経験に基づいて設定することも考えられる。この場合には,仕掛り量目標値設定部4から前記仕掛り量目標値算出結果を変更する機能を設定しても構わない。次に,逆累積仕掛り量算出部5においては,前記仕掛り量目標値の算出部3もしくは設定部4により得られる各工程における仕掛り量目標値をもとに,前記生産過程の最終工程の仕掛り量目標値から工程逆順に各工程までの仕掛り量目標値の累積量を求める。以下,これを逆累積仕掛り量の目標値とする。また,生産実績取得部6において取得した各工程の実際の仕掛り量に対しても同様に,実際の仕掛り量の累積量を工程別に算出し,これを逆累積仕掛り量の実際値とする。
【0009】
これらの算出例の一例を図10の表に示す。図10では,簡単に生産過程を5工程で表しているものとする。また,これらの5工程はそれぞれ1日の生産量が5ずつとし,各工程の仕掛り量目標値がそれぞれ生産量の2倍の10としている。なお,簡単のためにこれらの5工程は図2に示したように同一装置群で処理される工程のみ,例えばフォトリソグラフィーのみを表しているとする。したがって,同一設備群で処理される訳であるから各工程の生産量が均等に5では無く,例えば工程2の生産量を10とし,工程3の生産量を0とすることが可能であり,またはある特定工程だけに生産量を1日に最大25とすることも可能となる。
【0010】
まず,従来の技術では,個々の工程において目標値と実際値の乖離を把握することはできるが,例えば生産過程全体の仕掛り量が多いかどうかなどの全体の状況を把握することはできない。しかし,本方式のように累積量を管理することにより個々の工程での目標値と実際値との乖離の他に,生産過程全体での仕掛り量が目標値に対してどのような状況にあるかを把握することができる。また,(生産過程全体の仕掛り量+1)が新規に生産過程に投入される製品のリードタイムに比例するので,逆累積仕掛り量の目標値と実際値との差により新規に投入する製品の納期への影響を把握することが可能となる。
【0011】
また,目標とする仕掛り量を維持するように生産量を制御する場合に,従来の技術では,個々の工程の仕掛り量を目標値に近づけようとするために,工程毎でみた乖離が最も大きい工程2に着目し、まず工程2の生産量を20としたとすると装置能力により残りの生産能力は5となり,次に工程5の仕掛り量を維持するために工程4の生産量を5としたとする。しかし,この場合の処理が終わると,工程4の仕掛り量が0,工程3の仕掛り量が25となるために目標値を満足させることがきない。また,この場合には工程5から製品が生産されないので,新規に投入する製品は生産過程全体の仕掛り量の総和を目標値より増やすことになりリードタイムが伸びることになるが,従来の技術では工程1の仕掛り量を目標値に一致させるために新規に製品を投入することになる。したがって,図10のような場合には従来の技術のように個々の工程で制御を行うと,全ての工程で条件を満足することが難しくなり,全体を制御することが困難になる場合が生じる。
【0012】
そこで,本発明においては逆累積仕掛り量の目標値と実際値との乖離量に基づき,図12から図15に示すように,各工程の生産量及び投入量を制御して,段階的に目標値と一致させる。これによりリードタイムを伸ばすことなく生産することが可能となる。本発明では,これらの処理を生産量算出部7において行う。これについて,図3の生産量算出処理フローチャートに従い説明する。なお,以下の説明では実績値から目標値を差し引いた場合として符号の説明を記しており,逆の場合は前記乖離量の符号も逆になる。
【0013】
まず,ステップS1において前記逆累積仕掛り量の目標値と実績値の差分から前記逆累積仕掛り量の乖離量を工程別に求める(図10:逆累積仕掛り量の乖離量の欄)。ステップS2において前記乖離量が0でない工程が存在するかどうかを判断し,該当する工程が無ければ各工程の生産量は生産計画通りとし,処理を終了する。続いて,前記乖離量が0でない工程が存在する場合にはステップS3において各工程の生産量の初期値を0とする。次に,ステップS4において前記乖離量の絶対値の最大値が生産能力を上回るかを調べ,上回る場合はステップS5において乖離量の補正処理を行う。ここでは,「乖離量の絶対値の最大値×補正係数2=生産能力」となる補正係数2を算出し,ステップS1で算出した乖離量全てに補正係数2を乗じる。そして,ステップS6において前記乖離量が負になるものが存在するかを調べる。以下,乖離量が負のものが存在する場合についてステップS7からステップS12までの処理を説明する。まず,ステップS7において前記乖離量が負で小さい順に工程nを抽出し(図10の例では、工程3),ステップS8において工程n-1の生産量を算出する。例えば,図10の例では、工程3での乖離値が負(−15)であるので、この処理により図12の工程2の生産量が中間値として15となる。ただし, ステップS7において前記乖離量が同じ場合は工程の順序が前の工程を先に処理する。ここで,補正係数1は各工程の生産量のばらつきが大きくなりすぎる場合に乖離量を小さくするために乗じる係数であり,補正係数2は前記乖離量の絶対値が生産能力を上回り生産できないような場合に乖離量を小さくするために乗じる係数であり,ともに1未満の値を設定すると逆累積仕掛り量の目標値に収束する時間が長くなる。なお,本実施例では補正係数1を1としている。この後に,ステップS9において前記乖離量が負になるものが他に存在するかを確認し,存在すればステップS7からステップS9の処理を繰り返し行う。以上の処理により,図12の工程3,4の生産量の中間値が求まる。
【0014】
続いて,ステップS10において生産能力の残量を調べ,ステップS10までの処理において生産能力を上回る場合にはステップS11により生産量補正処理を行う。ここでは,乖離量の絶対値の最大値から算出された工程の生産量及び生産量0の工程を除いて各工程の生産量を同量ずつ削減することにより,各工程の生産量の和を生産能力以内に補正する。図12において各工程生産量の中間値の和を求めると30となり生産能力の25を上回るので工程2を除き,工程3,4の生産量を3ずつ削減し,それぞれの生産量を7,2とする。その後,ステップS12において最終工程生産量を算出する。ここでは,ステップS11までの処理によって生じた生産能力残量を算出し,その生産能力残量を最終工程及び生産量0以外の工程に均等に配分する。ただし,均等配分できない場合は最終工程を優先する。また,生産過程全体の仕掛り量総和を一定とするために投入量は最終工程の生産量と同一とする。図12を例とすると,生産能力の残量は25−(15+7+2)より1であるので最終となる工程5の生産量は1及び投入量も1となる。以上の処理により,図12の生産量の決定値が各工程別に求められる。なお,ステップS6において前記乖離量が負となるものが存在しない場合は,まず,ステップS13において前記乖離量が正で大きい順に工程nを抽出し,ステップS14において工程nの生産量を算出する。ただし,ステップS13において前記乖離量が同じ場合は工程の順序が後の工程が先に処理する。そして,ステップS15において前記乖離量が正となるものがあるかを調べ,ある場合はステップS13からステップS15の処理を繰り返す。その後は,前記のステップS10からステップS12までと同じ処理を行う。
【0015】
以上の処理により、図12に示すような1日の投入量と工程毎の生産量を算出し、図12の投入量と生産量に基づいて、図10に示す仕掛り製品の生産を行う。その生産の結果、仕掛り製品の状態は図13に示すような数量(仕掛り量の実際値)に推移する。例えば、工程1では、仕掛り製品は5に1つ新たに投入されるが、その日の生産量は0なので、5+1−0で、仕掛り量は6となる。以下、同様に計算処理される。ここで、逆累積仕掛り量を計算すると図13のように算出され、図10の段階(1日の生産前)と比較しても仕掛り量を一定に維持しながらも、乖離値が平均化されていることが分かる。
【0016】
次に、図13の段階で、さらに図3に示す実施形態を実行する場合を以下に説明する。図14、15を例に説明する。
【0017】
ステップS1からS9までの処理の結果,図14のように各工程の生産量の中間値がそれぞれ工程2では1,工程3では4及び工程4では4となる。続いて,ステップS10において生産能力残量は25−(1+4+4)>0なので,ステップS12の処理を行う。ここで,生産能力残量は16であり,最終工程の工程5を含めて生産量0以外の工程に生産能力残量を均等配分すると(この例では4ずつ),図14のように各工程の生産量の決定値が工程2では5,工程3と工程4は8及び工程5は4となる。このような演算処理により図14に示す投入量と工程毎の生産量が算出され、当該算出結果に基づいた生産制御を実行すると図15に示すような仕掛りの状態となり、仕掛り量の目標値と実際値とが一致する。
【0018】
以上の処理により,仕掛り量は図15のように制御され,逆累積仕掛り量の実際値を目標値に一致させることが可能となる。以上のようにして、生産量算出部7の算出した投入量と生産量に基づいて、生産指示部8より生産指示を出力して生産を行う。以上の1から8の機能は生産量の指示サイクルにあわせて実施し,必要に応じて1日の生産時間内に5から8の機能を実行することにより生産量の補正を行うことも可能である。
【0019】
また,図1に示すように,前述の方法で算出した逆累積仕掛り量の目標値9と実績値10をそれぞれ工程順及び工程別にグラフ表示することにより,製品の生産過程全体及び各工程において生産計画に対する現在の生産進捗状況を仕掛り量により把握することができる。したがって,生産指示部8においてこの逆累積仕掛り量及び乖離量の表示を行うだけでも,人手で図1の網掛け部分を減少するように乖離量の絶対値が大きい工程を中心に生産量を調整して生産することにより,生産計画を遵守することも可能である。
【0020】
以上の逆累積仕掛り量による生産量の制御方式及び表示方法は一製品による例を示しているが,複数製品が混流して生産されている場合においても同様に管理できる。一例として,図4に示す2製品について説明する。同一設備を使用する工程は同一工程名称として,製品A,Bの生産過程が図4のように表せたとする。これらを合わせたものが,図4に示す統一生産過程と定義する。まず,同一工程名称の工程順に生産過程を定義し,その間に含まれる工程は自由に定義しても構わない。例えば,図4では工程2,工程3の順であるが工程3,工程2の順であっても構わない。このように定義した統一生産過程に従い,製品A,Bそれぞれにおいて前述のように逆累積仕掛り量の目標値及び実際値を算出する。そして,製品A,Bそれぞれの逆累積仕掛り量の目標値を加えたものを統一逆累積仕掛り量の目標値とし,同様に実際値を定義する。それから,それぞれの逆累積仕掛り量の目標値と実際値の差分により乖離量を算出する。この数値例の一例を図11に示す。以上の処理は2製品以上でも同様に処理できる。生産量の算出に関しては,まず,前記統一逆累積仕掛り量の乖離量から比較を行い,その後に個別製品の逆累積仕掛り量の乖離量の比較を行うことにより前述の一製品の場合と同様に生産量を決定することができる。また,図5は図11のデータを例として,製品Aの逆累積仕掛り量の目標値11と実際値12,製品Bの逆累積仕掛り量の目標値13と実際値14及び統一逆累積仕掛り量の目標値15と実際値16を表示したものである。したがって,図1と同様に,複数製品の場合も図5を用いることにより人手で生産量の調整を行うことができる。
【0021】
続いて,仕掛り数を抑え,かつ需要を満たして生産することを可能とする仕掛り量の目標値の算出方法について説明する。まず,一例として,図1の工程定義取得部1で格納されたデータより,製品の生産過程が図6のように定義され,また,前記生産過程の各工程の生産時間データより前記生産過程の最終工程から工程nまでの累積生産時間がXn日,同様に工程1までの累積生産時間がX1日及び同様に工程2までの累積生産時間がX2日であったとする。次に,図1の生産計画量取得部2で取得した前記生産過程の最終工程生産計画量が取得した日を基点として図7のように表せたとする。この時,Xn=N(日),X1=X2=N+i(日)であったとすると,図7の関係から生産日N,N+iに対応する最終工程生産計画量YN,YN+iが求まる。このようにして得られる各工程に対応する最終工程生産計画量は,最終工程生産計画量を取得した日に各工程で要求される生産量に等しくなる。同様にして,最終工程から各工程までの累積生産時間に基づいて,図8に示すように各工程の生産量Znが求まる。その時の各工程の生産量Znはそれぞれの次工程への投入量に等しくなるので,待ち行列理論により各工程の仕掛り量Wnは,1日の生産活動時間t,各工程の生産時間Tn,nは工程数として(式1)で表せる。
Wn = ( Zn-1 / t ) × Tn ・・・(式1)
ただし,n=1の場合はZ0=投入量とする。
【0022】
また,需要の変動により最終工程生産計画量の変動が激しくなる場合は,生産計画サイクルの日程範囲内で最終工程生産計画量を平均化処理すればよい。
【0023】
なお,各工程の生産時間は実際の処理時間の他に待ち時間なども含み,各工程の生産時間の累積和が通常の納期を設定するために用いる生産所要日数(製品原料を新規に生産過程に投入し,最終工程を経て完成するまでに要する日数)に等しくなるように設定している。したがって,この仕掛り量Wnを目標値として生産を行えば余分な仕掛りを持たずに,顧客納期に基づいた生産計画,つまり需要を満たして生産することが可能となる。
【0024】
また,生産計画外の製品を投入する場合は逆累積仕掛り量の実際値が目標値から乖離することになり,リードタイムが伸びることになる。これを防ぐためには計画済みの製品の投入量を減らすことになる。したがって,予定に無い顧客の開発・試作品等の製品を受注する時に,どれだけ他の製品のリードタイムが伸びる,もしくは投入量を減らさなければいけないかを,逆累積仕掛り量の実際値18に前記顧客の要求量を加算して推定値19として目標値17とともに表すことで図9のように可視化することができる。また,工程1での逆累積仕掛り量の目標値と推定値との乖離量が顧客の要求による影響であり,この乖離量と計画済み製品の価格情報に基づき損失利益を求め,逆累積仕掛り量の関係とあわせて表示することにより,顧客との価格交渉に活用することができる。もしくは,前記損失利益を引受け価格としてWeb等により顧客に情報を開示して販促活動に活用することも可能である。
【0025】
【発明の効果】
以上の説明のように,本発明の生産管理方法によれば,歩留りの変動,装置稼働率低下などの影響により生産量の変動が大きい多段階生産システムにおいて,生産過程全体でみて少ない仕掛りで需要を満たす生産をすることができる。
【図面の簡単な説明】
【図1】機能ブロック図
【図2】半導体の生産過程概略図
【図3】生産量算出処理フローチャート
【図4】複数製品における生産過程の扱いの一例
【図5】複数製品における逆累積仕掛り量の一例
【図6】最終工程からの工程別累積生産時間の一例
【図7】最終工程生産計画量の一例
【図8】各工程別生産量の一例
【図9】他の実施の形態における逆累積仕掛り量の一例
【図10】逆累積仕掛り量を工程毎に示した表
【図11】複数製品における逆累積仕掛り量を工程毎に示した表
【図12】工程毎の生産量の算出結果の一例
【図13】生産量に応じた1回目の生産指示後の逆累積仕掛り量を示す一例
【図14】工程毎の生産量の算出結果の別の一例
【図15】生産量に応じた2回目の生産指示後の逆累積仕掛り量を示す一例
【符号の説明】
1 工程定義取得部
2 生産計画量取得部
3 仕掛り量目標値算出部
4 仕掛り量目標値設定部
5 逆累積仕掛り量算出部
6 仕掛り取得部
7 生産量算出部
8 生産実行部
9 逆累積仕掛り量の目標値
10 逆累積仕掛り量の実際値
11 製品Aの逆累積仕掛り量の目標値
12 製品Aの逆累積仕掛り量の実際値
13 製品Bの逆累積仕掛り量の目標値
14 製品Bの逆累積仕掛り量の実際値
15 統一逆累積仕掛り量の目標値
16 統一逆累積仕掛り量の実際値
17 逆累積仕掛り量の目標値
18 逆累積仕掛り量の実際値
19 逆累積仕掛り量の推定値
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a production management system, method, and program capable of satisfying demand and producing with a small number of in-process in a multi-stage production system having a large production fluctuation due to the influence of yield fluctuation and apparatus operating rate reduction. Is.
[0002]
[Prior art]
Conventionally, thin film products such as semiconductors are manufactured with a large amount of in-process in the production process in order to cope with the time required for product completion and the decrease in production due to yield fluctuations and equipment failures. I came. However, from the viewpoints of shortening the product life cycle and complying with customer delivery dates, it has become necessary to optimize the in-process and produce the required amount in a timely manner. In addition, the production process has a very large number of processes, and the production process has a job shop layout, so the same product is different in process but passes through the same production equipment many times. Since the number is very large, there is a problem that it is difficult to manage the in-process amount in each process.
[0003]
Therefore, as in JP-A-6-69089 and JP-A-7-74226, the amount of in-process is controlled by controlling the amount of in-process to maintain the appropriate amount of in-process in each process or important process of the production process. Methods have been proposed to reduce lead time.
[0004]
Further, as in JP-A-6-69089 and JP-A-11-296208, the relationship between the production amount and the in-process amount is obtained from the past production results, and the in-process amount for the required production amount is calculated. Therefore, a method for setting an appropriate work-in-progress amount has been proposed.
[0005]
[Problems to be solved by the invention]
Even if the in-process amount is optimized in each process of the production process, it is a partial optimization, and the entire production process cannot be optimized. For example, when a work-in-process far exceeding the proper work-in-process amount occurs due to equipment failure, or when rapid production is performed at the customer's request and the work-in-process is far below the proper work-in-process amount, This is because when the in-process amount is optimized in this process, the in-process amount in the next process exceeds the appropriate amount, and the latter in-process amount is less than the appropriate amount. Therefore, the first problem of the present invention is to control the production amount so as to optimize the in-process amount of the entire production process. The second problem is to quantify an appropriate value of the in-process amount that can be produced while satisfying the demand.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, a means for calculating and setting a target value of the in-process amount for each process of the production process based on the production plan, and the in-process amount of the in-process amount for each process of the production process. Means for calculating a cumulative value from the final process to each process in reverse order for each of the target value and the actual value of the in-process amount, and each process according to the amount of deviation between the target value and the actual value of the accumulated in-process amount By means of controlling the production amount, the in-process amount of the entire production process can be suppressed to an appropriate value. In addition, based on the production time of each preceding process based on the production time of each preceding process based on the production time of the final process in the production process of the product, An appropriate value of the in-process amount that enables production to meet the demand can be calculated by means for calculating the in-process amount target value.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described. In thin film products such as semiconductors, products are produced by forming a film on a substrate such as silicon and creating a circuit pattern on the substrate. Depending on the function of the product, this work may be repeated for several tens of layers. Become. FIG. 2 shows an outline of this production process using a semiconductor as an example. Thus, not only a plurality of processes exist, but also a production process in which each layer is formed in stages. In addition, since this production process has a job shop layout, the processes for performing the same processing for each layer are processed by devices belonging to the same equipment group. Therefore, each device has not only multiple products in progress but also different products in different stages (layers) even if they are the same product, so which devices can be produced to comply with the production plan. It is difficult for an operator to grasp.
[0008]
Therefore, in the present invention, by performing production based on the production management method having the function shown in FIG. 1, it is possible to perform production in compliance with the production plan in the production system consisting of the multi-stage production process as described above. is doing. Hereinafter, the production control method in the production management method of the present invention will be described with reference to FIG. The process definition acquisition unit 1 acquires and stores product production process and definition information of production time of each process. In addition, the production plan amount acquisition unit 2 acquires and stores the input amount to the production process and the plan value of the production amount in the process. Based on these pieces of information, an in-process amount target value calculation unit 3 calculates an in-process amount target value in each process of the production process. The in-process amount target value may be calculated from a statistical method based on the relationship between the production amount and the in-process amount based on past results, or set based on experience, as in the prior art. In this case, a function for changing the in-process amount target value calculation result from the in-process amount target value setting unit 4 may be set. Next, in the reverse cumulative work amount calculation unit 5, the final process of the production process is performed based on the work amount target value in each process obtained by the work amount target value calculation unit 3 or the setting unit 4. The cumulative amount of the in-process amount target value from the in-process amount target value to the respective processes in reverse order of the process is obtained. Hereinafter, this is the target value of the reverse cumulative work in progress. Similarly, the actual in-process amount of each process acquired in the production result acquisition unit 6 is calculated for each process, and this is calculated as the actual value of the reverse accumulated in-process amount. To do.
[0009]
An example of these calculation examples is shown in the table of FIG. In FIG. 10, it is assumed that the production process is simply represented by five steps. Each of these five processes has a daily production volume of 5, and the in-process amount target value of each process is 10 which is twice the production volume. For the sake of simplicity, it is assumed that these five steps represent only the steps processed by the same apparatus group as shown in FIG. 2, for example, only photolithography. Therefore, since the processing is performed in the same equipment group, the production volume of each process is not equal to 5, for example, the production volume of the process 2 can be 10 and the production volume of the process 3 can be 0. Alternatively, it is possible to increase the production amount to a maximum of 25 per day only for a specific process.
[0010]
First, in the conventional technology, it is possible to grasp the difference between the target value and the actual value in each process, but it is not possible to grasp the whole situation, for example, whether or not the amount of work in the entire production process is large. However, by managing the cumulative amount as in this method, in addition to the divergence between the target value and the actual value in each process, in what situation the in-process amount in the entire production process is relative to the target value. You can see if there is. In addition, since (in-process amount of the entire production process + 1) is proportional to the lead time of the product newly input into the production process, the product to be newly input due to the difference between the target value and the actual value of the reverse cumulative in-process amount It becomes possible to grasp the influence on the delivery date.
[0011]
In addition, when controlling the production volume so as to maintain the target in-process amount, the conventional technology has a difference in each process in order to bring the in-process amount of each process closer to the target value. Paying attention to the largest process 2, if the production volume of process 2 is set to 20, the remaining production capacity will be 5 due to the equipment capacity, and then the production volume of process 4 will be reduced in order to maintain the in-process amount of process 5. It is assumed that 5. However, when the processing in this case is completed, the in-process amount in step 4 is 0, and the in-process amount in step 3 is 25, so the target value cannot be satisfied. In this case, since the product is not produced from step 5, the newly introduced product increases the total in-process amount of the entire production process from the target value, leading to an increase in lead time. Then, in order to make the in-process amount in step 1 coincide with the target value, a new product is introduced. Therefore, in the case shown in FIG. 10, if control is performed in individual processes as in the conventional technique, it may be difficult to satisfy the conditions in all processes and it may be difficult to control the entire process. .
[0012]
Therefore, in the present invention, as shown in FIGS. 12 to 15, the production amount and the input amount of each process are controlled step by step based on the deviation amount between the target value and the actual value of the reverse cumulative work amount. Match with the target value. This makes it possible to produce without extending the lead time. In the present invention, these processes are performed in the production amount calculation unit 7. This will be described with reference to the production amount calculation processing flowchart of FIG. In the following description, the sign is described as a case where the target value is subtracted from the actual value. In the opposite case, the sign of the deviation amount is also reversed.
[0013]
First, in step S1, the divergence amount of the reverse cumulative work amount is obtained for each process from the difference between the target value and the actual value of the reverse cumulative work amount (FIG. 10: column of divergence amount of reverse cumulative work amount). In step S2, it is determined whether or not there is a process whose deviation amount is not 0. If there is no corresponding process, the production amount of each process is set as the production plan, and the process is terminated. Subsequently, when there is a process in which the deviation amount is not 0, the initial value of the production amount of each process is set to 0 in step S3. Next, in step S4, it is checked whether the maximum absolute value of the divergence amount exceeds the production capacity. If it exceeds, the deviation amount is corrected in step S5. Here, the correction coefficient 2 is calculated as “the maximum absolute value of the deviation amount × the correction coefficient 2 = the production capacity”, and the deviation coefficient calculated in step S1 is multiplied by the correction coefficient 2. In step S6, a check is made to see if there is a negative deviation. Hereinafter, the processing from step S7 to step S12 will be described in the case where there is a negative deviation amount. First, in step S7, the process n is extracted in ascending order of the divergence amount (step 3 in the example of FIG. 10), and the production amount of the process n-1 is calculated in step S8. For example, in the example of FIG. 10, since the divergence value in step 3 is negative (−15), the amount of production in step 2 of FIG. However, if the divergence amount is the same in step S7, the process having the previous process order is processed first. Here, the correction coefficient 1 is a coefficient to be multiplied in order to reduce the deviation amount when the variation in the production amount of each process becomes too large, and the correction coefficient 2 is set so that the absolute value of the deviation amount cannot exceed the production capacity and cannot be produced. In this case, the coefficient is multiplied to reduce the divergence amount. When both values are set to be less than 1, the time for convergence to the target value of the reverse cumulative work-in amount increases. In this embodiment, the correction coefficient 1 is 1. After this, in step S9, it is confirmed whether there is another one that has a negative divergence amount, and if there is, the process from step S7 to step S9 is repeated. Through the above processing, an intermediate value of the production amount in steps 3 and 4 in FIG. 12 is obtained.
[0014]
Subsequently, the remaining capacity of the production capacity is checked in step S10, and if the production capacity is exceeded in the processes up to step S10, the production amount correction process is performed in step S11. Here, the total amount of production in each process is reduced by reducing the production volume of each process by the same amount except for the production volume of the process calculated from the maximum absolute value of the deviation amount and the process of production volume 0. Correct within production capacity. In FIG. 12, the sum of the intermediate values of each process production amount is 30 and exceeds the production capacity of 25. Therefore, except for process 2, the production quantities of processes 3 and 4 are reduced by 3, and the respective production quantities are 7 and 2. And Thereafter, the final process production amount is calculated in step S12. Here, the remaining capacity of the production capacity generated by the processing up to step S11 is calculated, and the remaining capacity of the production capacity is evenly distributed to the final process and the processes other than the production amount 0. However, if equal distribution is not possible, priority is given to the final process. In addition, the input amount is the same as the production amount in the final process in order to keep the total in-process amount in the entire production process constant. Taking FIG. 12 as an example, the remaining amount of production capacity is 1 from 25− (15 + 7 + 2), so the final production amount in step 5 is 1 and the input amount is also 1. With the above processing, the determined production amount shown in FIG. 12 is obtained for each process. If there is no negative difference in step S6, first, in step S13, the process n is extracted in descending order of the deviation, and the production amount of the process n is calculated in step S14. However, if the divergence amount is the same in step S13, the process having the next process order is processed first. Then, in step S15, it is checked whether there is a positive deviation, and if there is, the processing from step S13 to step S15 is repeated. Thereafter, the same processing as that in steps S10 to S12 is performed.
[0015]
Through the above processing, the daily input amount and the production amount for each process as shown in FIG. 12 are calculated, and the in-process product shown in FIG. 10 is produced based on the input amount and the production amount shown in FIG. As a result of the production, the state of the in-process product changes to a quantity (actual value of the in-process amount) as shown in FIG. For example, in process 1, one in-process product is newly added to 5. However, since the production amount for the day is 0, the in-process amount is 6 at 5 + 1-0. Thereafter, the calculation process is similarly performed. Here, when the reverse cumulative in-process amount is calculated, it is calculated as shown in FIG. 13, and the deviation value is averaged while maintaining the in-process amount constant even when compared with the stage of FIG. It can be seen that
[0016]
Next, the case where the embodiment shown in FIG. 3 is further executed at the stage of FIG. 13 will be described below. 14 and 15 will be described as an example.
[0017]
As a result of the processing from step S1 to step S9, as shown in FIG. 14, the intermediate values of the production amounts of the respective processes are 1 in process 2, 4 in process 3, and 4 in process 4. Subsequently, since the remaining production capacity is 25− (1 + 4 + 4)> 0 in step S10, the process of step S12 is performed. Here, the remaining amount of production capacity is 16, and if the remaining amount of production capacity is evenly distributed to processes other than the production amount 0 including step 5 of the final process (4 in this example), each process as shown in FIG. The determined value of the production amount is 5 for the process 2, 8 for the process 3 and 4, and 4 for the process 5. The input amount shown in FIG. 14 and the production amount for each process are calculated by such arithmetic processing, and when the production control based on the calculation result is executed, the in-process state shown in FIG. 15 is obtained, and the in-process amount target is obtained. The value matches the actual value.
[0018]
By the above processing, the in-process amount is controlled as shown in FIG. 15, and the actual value of the reverse cumulative in-process amount can be matched with the target value. As described above, based on the input amount and the production amount calculated by the production amount calculation unit 7, the production instruction unit 8 outputs a production instruction to perform production. The above functions 1 to 8 are carried out in accordance with the production volume instruction cycle, and if necessary, the production volume can be corrected by executing the functions 5 to 8 within the daily production time. is there.
[0019]
In addition, as shown in FIG. 1, the target value 9 and the actual value 10 of the reverse cumulative work in progress calculated by the above-described method are displayed in graphs according to the process order and process, respectively. The current production progress status with respect to the production plan can be grasped from the in-process amount. Therefore, even if only the reverse cumulative work amount and the divergence amount are displayed in the production instruction unit 8, the production amount is mainly set in the process where the absolute value of the divergence amount is large so as to reduce the shaded portion in FIG. By adjusting the production, it is possible to comply with the production plan.
[0020]
Although the above-described production control method and display method based on the reverse cumulative work-in-process amount is an example of one product, it can be similarly managed when a plurality of products are mixed and produced. As an example, two products shown in FIG. 4 will be described. Assume that the processes using the same equipment have the same process name, and the production processes of products A and B can be expressed as shown in FIG. The combination of these is defined as the unified production process shown in FIG. First, production processes may be defined in the order of processes having the same process name, and the processes included between them may be freely defined. For example, in FIG. 4, the order of the process 2 and the process 3 is shown, but the order of the process 3 and the process 2 may be used. According to the unified production process defined in this way, the target value and actual value of the reverse cumulative work in progress are calculated for each of products A and B as described above. Then, the target value of the unified reverse cumulative work in progress is obtained by adding the target values of the reverse cumulative work in progress for products A and B, and the actual value is defined in the same manner. Then, the divergence amount is calculated from the difference between the target value and the actual value of each reverse cumulative work amount. An example of this numerical example is shown in FIG. The above processing can be similarly performed for two or more products. Regarding the calculation of the production amount, first, a comparison is made from the divergence amount of the unified reverse cumulative work-in-process amount, and then the divergence amount of the reverse cumulative work-in-process amount of individual products is compared with the case of the aforementioned one product. Similarly, the production volume can be determined. FIG. 5 shows the data of FIG. 11 as an example. The target value 11 and the actual value 12 of the reverse cumulative work amount of the product A, the target value 13 and the actual value 14 of the reverse cumulative work amount of the product B, and the unified reverse cumulative. The in-process amount target value 15 and the actual value 16 are displayed. Therefore, similarly to FIG. 1, even in the case of a plurality of products, the production amount can be adjusted manually by using FIG.
[0021]
Next, a method for calculating a target value of an in-process amount that enables production while meeting the demand while suppressing the number of in-process is described. First, as an example, the production process of a product is defined as shown in FIG. 6 from the data stored in the process definition acquisition unit 1 of FIG. 1, and the production process is determined from the production time data of each process of the production process. Assume that the cumulative production time from the final process to the process n is Xn days, the cumulative production time to the process 1 is X1 days, and the cumulative production time to the process 2 is also X2 days. Next, it is assumed that the final process production plan quantity of the production process acquired by the production plan quantity acquisition unit 2 of FIG. 1 can be expressed as shown in FIG. If Xn = N (day) and X1 = X2 = N + i (day) at this time, the final process production plan quantities YN and YN + i corresponding to the production dates N and N + i are obtained from the relationship shown in FIG. Is obtained. The final process production plan quantity corresponding to each process obtained in this way is equal to the production quantity required for each process on the day when the final process production plan quantity is acquired. Similarly, based on the accumulated production time from the final process to each process, the production amount Zn of each process is obtained as shown in FIG. Since the production quantity Zn of each process at that time is equal to the input quantity to each next process, the in-process quantity Wn of each process is calculated based on the queuing theory, the production activity time t of each day, the production time Tn of each process, n can be expressed by (Formula 1) as the number of steps.
Wn = (Zn-1 / t) x Tn (Equation 1)
However, if n = 1, Z0 = input amount.
[0022]
If the final process production plan quantity fluctuates significantly due to fluctuations in demand, the final process production plan quantity may be averaged within the schedule range of the production planning cycle.
[0023]
The production time of each process includes the waiting time in addition to the actual processing time, and the cumulative sum of the production time of each process is the number of days required for production to set the normal delivery time (product raw material is newly It is set to be equal to the number of days required to complete through the final process. Therefore, if production is performed with the in-process amount Wn as a target value, it is possible to produce a production plan based on the customer delivery date, that is, satisfy the demand without having an extra in-process.
[0024]
In addition, when a product outside the production plan is introduced, the actual value of the reverse cumulative work in progress will deviate from the target value, leading to an increase in lead time. To prevent this, the amount of planned product input will be reduced. Therefore, when an order is received for a product such as an unplanned customer development / prototype, the actual value of the reverse cumulative work amount 18 indicates how much the lead time of other products should be increased or the input amount must be reduced. By adding the request amount of the customer and expressing the estimated value 19 together with the target value 17, it can be visualized as shown in FIG. Also, the divergence between the target value and the estimated value of the reverse cumulative work in process 1 is the effect of the customer's request. Based on this divergence and the price information of the planned product, the loss profit is obtained, and the reverse cumulative work is obtained. By displaying together with the relationship between the quantity, it can be used for price negotiation with customers. Alternatively, the loss profit can be used as an underwriting price to disclose information to customers via the Web or the like for sales promotion activities.
[0025]
【The invention's effect】
As described above, according to the production management method of the present invention, in a multi-stage production system in which the production amount varies greatly due to the influence of the yield variation, the equipment operation rate decrease, etc., the number of devices in the entire production process is small. Production that meets demand is possible.
[Brief description of the drawings]
[Fig. 1] Functional block diagram [Fig. 2] Schematic diagram of semiconductor production process [Fig. 3] Production volume calculation process flowchart [Fig. 4] Example of handling of production process in multiple products [Fig. 5] Reverse accumulation in multiple products Example of quantity [FIG. 6] Example of cumulative production time by process from final process [FIG. 7] Example of final process production plan quantity [FIG. 8] Example of production quantity by process [FIG. 9] In other embodiments Example of reverse cumulative work in progress [FIG. 10] Table showing reverse cumulative work in progress for each process [FIG. 11] Table showing reverse cumulative work in progress for multiple products in each process [FIG. 12] Production by process Example of amount calculation result [FIG. 13] Example showing reverse cumulative work amount after first production instruction according to production amount [FIG. 14] Another example of production amount calculation result for each process [FIG. 15] An example showing the reverse cumulative work in progress after the second production instruction according to the production volume [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Process definition acquisition part 2 Production plan amount acquisition part 3 In-process amount target value calculation part 4 In-process amount target value setting part 5 Reverse accumulation in-process amount calculation part 6 In-process acquisition part 7 Production amount calculation part 8 Production execution part 9 Target value of reverse cumulative work amount 10 Actual value of reverse cumulative work amount 11 Target value of reverse cumulative work amount of product A 12 Actual value of reverse cumulative work amount of product A 13 Reverse cumulative work amount of product B Target value of product 14 Actual value of reverse cumulative work in progress 15 Target value of unified reverse cumulative work in progress 16 Actual value of unified reverse cumulative work in progress 17 Target value of reverse cumulative work in progress 18 Reverse cumulative work in progress Actual value of 19 Estimated value of reverse cumulative work in progress

Claims (3)

製品を多段階の生産過程において生産し,その生産過程を管理する生産管理システムであって,生産計画に基づいて生産過程の各工程別に仕掛り量の目標値を算出及び設定する手段と,生産過程の各工程別に前記仕掛り量の目標値及び仕掛り量の実際値のそれぞれについて最終工程から逆順に各工程までの累積値を算出する手段と,前記累積した仕掛り量の目標値と実際値との乖離量に応じて各工程の生産量を制御する手段と,を有することを特徴とする生産管理システム。  A production management system for producing a product in a multi-stage production process and managing the production process, a means for calculating and setting a target value of an in-process amount for each process of the production process based on a production plan, Means for calculating a cumulative value from the last process to each process in reverse order for each of the target value of the in-process amount and the actual value of the in-process amount for each process of the process, and the target value and actual value of the accumulated in-process amount And a means for controlling the production amount of each process in accordance with the amount of deviation from the value. 請求項1に記載の生産管理システムにおいて,前記累積した仕掛り量の目標値と実際値を工程順及び各工程毎に表示する表示手段を有し,前記生産過程の生産進捗状況を把握できることを特徴とする生産管理システム。  The production management system according to claim 1, further comprising display means for displaying the target value and actual value of the accumulated in-process amount in the order of processes and for each process, so that the production progress status of the production process can be grasped. A featured production management system. 請求項1に記載の生産管理システムにおいて,前記仕掛り量の目標値を算出及び設定する手段が,前記生産過程の各工程(n)の生産時間データ Tn より、最終工程から各工程までの累積生産時間を求め、生産計画によって求められた前記生産過程における最終工程の各日の生産計画量に基づき、最終工程生産計画量を取得した日を基点として、前記各工程は、前記累積生産時間が表す生産日数分だけ最終工程よりも前日に、前記最終工程の生産計画量と同じ生産量を生産するとして、前記最終工程の各日の生産計画量を前記各工程に要求される生産量 Zn として算出し、
各工程の仕掛り量の目標値Wn を、次式
Wn = ( Zn-1/ t ) × Tn
ただし、 t は1日の生産活動時間、 n は工程数
により算出して設定することを特徴とする生産管理システム。
2. The production management system according to claim 1, wherein means for calculating and setting the target value of the in-process amount is accumulated from the last process to each process from the production time data Tn of each process (n) of the production process. Based on the production plan quantity for each day of the final process in the production process determined by the production plan , each process has the cumulative production time based on the date on which the final process production plan quantity was acquired. the day before than production date only a few minutes the final step of indicating, as to produce the same production as the production plan of the final step, each day of production plan of the final step as a production Zn required for each step Calculate
The target value Wn of the in- process amount for each process is
Wn = (Zn-1 / t) × Tn
Where t is the daily production activity time and n is the number of processes
A production management system characterized by being calculated and set by
JP2002034803A 2002-02-13 2002-02-13 production management system Expired - Fee Related JP3983061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002034803A JP3983061B2 (en) 2002-02-13 2002-02-13 production management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034803A JP3983061B2 (en) 2002-02-13 2002-02-13 production management system

Publications (2)

Publication Number Publication Date
JP2003233410A JP2003233410A (en) 2003-08-22
JP3983061B2 true JP3983061B2 (en) 2007-09-26

Family

ID=27777169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034803A Expired - Fee Related JP3983061B2 (en) 2002-02-13 2002-02-13 production management system

Country Status (1)

Country Link
JP (1) JP3983061B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135280A (en) * 2003-10-31 2005-05-26 Fujitsu Ltd Production scheme planning method and device
JP2005316934A (en) * 2004-03-30 2005-11-10 Sharp Corp Method for managing production and method for producing industrial product
JP5494194B2 (en) * 2010-04-30 2014-05-14 Jfeスチール株式会社 Production target range setting device and production target range setting method
JP5986531B2 (en) * 2013-03-29 2016-09-06 株式会社日立製作所 Production management system and management method
CN117047870B (en) * 2023-10-12 2023-12-22 四川省致链数字科技有限公司 Furniture punching procedure flexible matching system and method based on industrial Internet

Also Published As

Publication number Publication date
JP2003233410A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
JP4033291B2 (en) Project risk management system
US7693593B2 (en) Production planning method and production planning system
JP2000077289A (en) Production predicting control system
US7027884B2 (en) Method of production control and method of manufacturing industrial products
JP4193996B2 (en) Production management method and production management system
JP5958227B2 (en) Process management system
JP3983061B2 (en) production management system
CN105988439B (en) A kind of production capacity optimization method based on dynamic prediction board load capacity
Chen et al. Advanced planning and scheduling for TFT-LCD color filter fab with multiple lines
JP2009129090A (en) Stock level decision supporting device
JP2003058228A (en) Product progress management method and device
JP2006178920A (en) Method and device for simulating production distribution, and a production method
Sawik Integer programming approach to reactive scheduling in make-to-order manufacturing
JP2003150227A (en) Method for preparing manufacturing plan and method for manufacturing semiconductor product
JP2798299B2 (en) Inventory simulation system
JP5803318B2 (en) Operation rule creation method and production logistics plan creation method
JP2022177408A (en) Working time estimation device, working time estimation system and working time estimation method
JP2004152052A (en) Production management method and manufacturing method of electronic equipment
JP4308554B2 (en) PRODUCTION MANAGEMENT SUPPORT DEVICE, PRODUCTION MANAGEMENT SUPPORT COMPUTER PROGRAM, AND RECORDING MEDIUM CONTAINING THE COMPUTER PROGRAM
JP2005228128A (en) Production scheduling method, device and computer program
JP2009181165A (en) Production control device
Chin et al. New methodology of dynamic lot dispatching: required turn rate
CN118710182A (en) Material management method, electronic equipment and storage medium
JPH03239460A (en) Production completion schedule calculating method and device
JP2008159846A (en) Control method and system of leveling number of in-process items of semiconductor device manufacturing line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040816

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees