JP3982111B2 - Semiconductor device member using ceramic and method for manufacturing the same - Google Patents

Semiconductor device member using ceramic and method for manufacturing the same Download PDF

Info

Publication number
JP3982111B2
JP3982111B2 JP12703599A JP12703599A JP3982111B2 JP 3982111 B2 JP3982111 B2 JP 3982111B2 JP 12703599 A JP12703599 A JP 12703599A JP 12703599 A JP12703599 A JP 12703599A JP 3982111 B2 JP3982111 B2 JP 3982111B2
Authority
JP
Japan
Prior art keywords
layer
refractory metal
metal layer
semiconductor device
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12703599A
Other languages
Japanese (ja)
Other versions
JP2000323619A (en
Inventor
隆 石井
一隆 佐々木
賢次郎 桧垣
啓 柊平
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12703599A priority Critical patent/JP3982111B2/en
Publication of JP2000323619A publication Critical patent/JP2000323619A/en
Application granted granted Critical
Publication of JP3982111B2 publication Critical patent/JP3982111B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック基材上にアルミニウムを主体とする導体層を設けた、半導体素子を搭載するための半導体装置用部材に関する。
【0002】
【従来の技術】
従来、アルミニウムにより形成された導体回路をセラミック基板に接合する方法として、セラミック基板と導体回路を直接接着する方法が知られている。この直接接着方法として、例えば、アルミニウム溶融体にセラミック基材を直接接触させ、その接触部を順次アルミニウムの凝固温度以下にしてアルミニウムの導体回路を形成する方法、Al−Siロウ材又はAl−Geロウ材を用いて両者を接合する方法、アルミニウム板を融点付近まで加熱した後、セラミック基材との間に圧力をかけて接合する方法等がある。
【0003】
しかし、上記した直接接合方法では、導体回路をセラミックス基板に接合できるものの、セラミック基板とアルミニウムの導体回路との熱膨張係数が異なるため、基板に反りを生じたり、熱サイクルにより基板に割れが発生するという問題があった。特に電流密度を高めるために導体回路の断面積を増大させようとすると、導体回路に生じる熱応力がセラミック基板の強度を上回ってセラミックス基板が破損する恐れがあった。これを解消するためにセラミック基板の厚さを増加させると、重量の増加と形状の大型化を招くと共に、熱抵抗値の増大から放熱特性が低下してしまう。
【0004】
【発明が解決しようとする課題】
上記の問題を解決する方法として、特開平9−36277号公報には、セラミック基板と金属導体回路との間に、気孔率20〜50%のCu、Al又はAgの多孔質焼結体からなる可塑性多孔質金属層を設け、この可塑性多孔質金属層により熱変形を吸収して接合する方法が提案されている。
【0005】
しかしながら、上記可塑性多孔質金属層とセラミック基板との接合は、前記直接接合着法と同様に、セラミック基板と可塑性多孔質金属層との熱膨張係数が異なるため、セラミック基板に反りを生じたり、実装時や使用時の熱サイクルによりセラミック基板に割れが発生する等の欠点がある。
【0006】
本発明は、かかる従来の事情に鑑み、セラミック基材とアルミニウムの導体回路とを接合する際のセラミック基材の破損や変形をなくし、両者が高い接合強度で接合され、過酷な熱サイクルにおいても高い信頼性を有する半導体装置用部材を提供する。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する半導体装置用部材は、セラミック基材と、該セラミック基材上に設けた主に高融点金属からなる高融点金属層と、該高融点金属層上に設けたAl−Si系合金、Zn−Al系合金、Zn−Sn系合金から選ばれた少なくとも1種からなる金属介在層とを備え、該金属介在層にアルミニウムを主体とする導体層が接合されていて、該導体層の接合界面における平面方向の長さ及び幅が前記高融点金属層のそれより0 . 05mm以上短いことを特徴とするものである。
【0008】
また、本発明の半導体装置用部材においては、前記アルミニウムを主体とする導体層の接合界面における平面方向の長さ及び幅が、前記高融点金属層のそれより0.05mm以上短いことが必要であるが、この場合、導体層のこれらの寸法は前記金属介在層のそれと同一である方がより好ましい。
【0009】
上記本発明の半導体装置用部材の製造方法の一つは、焼結体からなるセラミック基材上に高融点金属を含むペーストを塗布し、焼成して高融点金属層を形成する工程と、該高融点金属層上にAl−Si系合金、Zn−Al系合金、Zn−Sn系合金から選ばれた少なくとも1種からなる金属介在層を形成する工程と、該金属介在層上にアルミニウムを主体とする導体層とを接合する工程とを備え、該導体層の接合界面における平面方向の長さ及び幅を前記高融点金属層のそれより0 . 05mm以上短くすることを特徴とする。
【0010】
また、本発明の半導体装置用部材の製造方法の他の一つは、セラミック基材原料粉末の成形体上に高融点金属を含むペーストを塗布し、焼成して成形体からセラミック基材を得ると同時にその上に高融点金属層を形成する工程と、該高融点金属層上にAl−Si系合金、Zn−Al系合金、Zn−Sn系合金から選ばれた少なくとも1種からなる金属介在層を形成する工程と、該金属介在層上にアルミニウムを主体とする導体層とを接合する工程とを備え、該導体層の接合界面における平面方向の長さ及び幅を前記高融点金属層のそれより0 . 05mm以上短くすることを特徴とする。
【0011】
【発明の実施の形態】
本発明では、図1に示すように、セラミック基材1の上に高融点金属層2を形成し、この高融点金属層2を介してアルミニウムを主体とする導体層3をセラミック基材1に接合する。高融点金属層2は、セラミック基材1と導体層3の間の熱膨張係数差による熱応力を緩和し、接合時や使用時の熱サイクルによるセラミック基材1の割れや変形を防止する。
【0012】
本発明が用いるセラミック基材は、窒化アルミニウム(AlN)系、窒化ケイ素(Si34)系、アルミナ(Al23)系のセラミックスである。これらのセラミックは、焼結助剤として例えばY23等の希土類元素化合物、CaO等のアルカリ土類元素化合物等を添加したもの、更に必要に応じて例えばTiN系のような他の遷移元素化合物が添加されたものであってよい。これらのセラミックスは相対密度が95%以上、好ましくは98%以上のものを用いる。相対密度が95%未満では基材の強度が低下し、製品として用いた場合に熱衝撃に対する信頼性が低下することがある。尚、セラミック基材の高融点金属層形成面には、予め酸素を含む薄層を形成してもよく、更には表面部にAl、Si、希土類元素、アルカリ土類元素等を含ませることができる。
【0013】
高融点金属層の主成分は高融点金属であり、例えばW、Mo、Ta、Mn等である。この高融点金属層は、セラミック基材との接合性を改善するため、通常その焼結体中に添加される希土類元素、アルカリ土類元素、Si、Al並びにその他の遷移元素を含有するガラスフリットを含んでいてもよい。高融点金属層の焼付け後の成分構成は高融点金属を80体積%以上とし、前述のガラスフリットは20体積%以下とするのが好ましい。高融点金属が80体積%未満か、又はガラスフリットが20体積%を越えると、高融点金属層の熱伝導性が低下し易いからである。また、焼付け後の高融点金属層の厚みは、3μm未満では高融点金属層とセラミック基材との間に十分な接合強度が得られず、また50μmを超えると高融点金属層形成後の反り量が増す傾向があるため、3〜50μmの範囲とすることが好ましい。
【0014】
高融点金属層を介してセラミック基材に接合されるアルミニウムを主体とする導体層としては、純度99.9%を越えるアルミニウム、例えばJIS 1080のアルミニウム材を用いることが好ましい。純度が下がると電気伝導率が低下するため、通電時に温度上昇を招く恐れがあるからである。
【0015】
尚、上記高融点金属層上に金属介在層を設け、この金属介在層を介して導体層を接合してもよい。金属介在層はアルミニウムを主体とする導体層より低融点のもの、例えば比較的融点の高いAl−Si系合金からなるロウ材や、これより融点の低いZn−Al系、Zn−Sn系及びPb−Sn系の合金からなる共晶半田材の少なくとも1種を主成分とした、融点660℃以下の材料からなることが好ましい。これは、アルミニウムを主体とする導体層の回路パターンの形状を維持するためである。また、金属介在層は2層以上を積層してもよい。金属介在層の厚みは2〜200μmの範囲が好ましく、5〜50μmが更に好ましい。金属介在層の厚みが2μm未満では接合時に十分な液相が得られず、それによって熱抵抗が増大したり、導体層とセラミック基材との熱収縮差に起因する応力が集中して基材に破損や変形が発生しやすくなり、逆に厚みが200μmを越えると熱抵抗が増大するからである。
【0016】
また、上記高融点金属層の上にニッケル層を形成し、このニッケル層上に上記金属介在層を配置することもできる。高融点金属層上のニッケル層と金属介在層を介してセラミック基材と導体層を接合することにより、接合時の濡れ性が向上し、接合率を高めることができる。
【0017】
更に、本発明においては、アルミニウムを主体とする導体層の長さ及び幅を高融点金属層のそれより0.05mm以上短くすることにより、導体層の外周端縁が高融点金属層の外周端縁の内側に位置し、導体層の外周端部から高融点金属層の外周端部にかかる熱応力を分散させて、この部分でのセラミックス基材の割れを無くすことができる。また、導体層と金属介在層との関係でも同様に、導体層の長さ及び幅を金属介在層のそれと同一にするか、又は0.05mm以上短くすることが好ましい。
【0018】
次に、本発明の半導体装置用部材の製造方法を説明する。まず、前記したセラミック基材の表面に高融点金属層を形成する。その方法の一は、セラミック基材となる焼結体を予め用意し、このセラミック基材上に高融点金属ペーストを焼き付けて高融点金属層とする、いわゆるポストファイアメタライズ法である。他の方法は、セラミック原料粉末の成形体上に高融点金属ペーストを塗布し、焼成してセラミック基材を得ると同時に高融点金属層を形成する、いわゆるコファイアメタライズ法である。
【0019】
具体的には、ポストファイアメタライズ法では、セラミック基材に、必要により前述の酸素含有薄層の形成等の表面処理を行った後、高融点金属ペーストを印刷等により好ましくは5〜60μmの厚さに塗布する。高融点金属ペーストは、高融点金属を主成分とする金属単体若しくはその混合物又はこれらに更にガラスフリット等を含ませ、有機バインダーと有機溶媒(バインダー粘度調整用)を混合して調整する。その後焼成することにより、高融点金属ペーストを焼き付けてセラミック基材上に高融点金属層を形成する。
【0020】
一方、コファイアメタライズ法では、所定の組成に配合したセラミック原料粉末に有機バインダーを加え、これを成形した成形体上に上記と同様の手順で高融点金属ペーストを塗布する。その後焼成することにより、成形体が焼結されてセラミック基材が得られると同時に、そのセラミック基材上に高融点金属層が形成される。このコファイアメタライズ法の場合には、ペースト中の高融点金属粒子は可能な限り微粒を用い、セラミックの焼結促進のための添加剤についても低温で液相形成できるものを選ぶことによって、より低温で同時焼結でき且つ双方の収縮率が同程度になるように工夫し、焼結時の基材の変形を防止することが重要である。また、低温で焼結させることにより、セラミック基材の結晶粒子が微細になり、基材強度が上がることも期待される。
【0021】
このようにして形成した高融点金属層上には、導体層を接合する前に、前記金属介在層又はニッケル層を形成するか、若しくはその両方を形成してもよい。金属介在層の形成方法としては、メッキ法やロウ材箔を用いる方法が好ましいが、印刷法、蒸着法等の他の方法を採用することもできる。また、Ni層もメッキ法、印刷法、蒸着法等により形成できる。このようにして形成した金属介在層及びNi層は、導体層を接合する前に、非酸化性雰囲気中において焼成することが好ましい。
【0022】
以上のように高融点金属層を形成し、必要に応じて更にニッケル層及び/又は金属介在層を形成したセラミック基材上に、アルミニウムを主体とする導体層を接合する。アルミニウムを主体とする導体層の接合は、通常の場合、アルミニウムを主体とする素材をセラミック基材の高融点金属層又はニッケル層若しくは金属介在層と密着させ、非酸化性雰囲気中か又は真空中において導体層素材の融点未満の温度で焼成することにより接合する。尚、高融点金属層上に導体層を接合する場合には、溶融アルミニウムを高融点金属層に接触させた後、冷却して順次凝固させてもよい。
【0023】
尚、上記のセラミック基材に導体層素材を接合する際には、必要により、例えば炭素質、アルミナ質、窒化アルミニウム質等の耐火物からなる治具を用いて両者の仮固定を行うと共に、更に必要に応じて両者を積層したセット上に適当な荷重をかけてもよい。
【0024】
以上のごとく、高融点金属層又はその上のニッケル層や金属介在層を介してアルミニウムの導体層をセラミック基材に接合した本発明の半導体装置用部材は、接合時の温度がアルミニウムを主体とする導体層の融点未満と低いことに加え、高融点金属層の応力緩和効果によって、セラミック基材の破損や変形がなく安定した接合が得られる。しかも、接合部の接合強度は剥離強度で0.5kg/mm以上と実用上不具合を生じない高いレベルが得られ、且つ接合強度のバラツキも少なく安定している。
【0025】
尚、この剥離強度の測定方法は、例えば図2に示すように、セラミック基材1上に設けた高融点金属層2及び必要に応じて設けた金属介在層4を介して、厚み0.1mm及び幅4.0mmの導体層3を長さL=3mmとなるように接合し、導体層3の一端から上方に直角に突出させた把持部3aを上方に引っ張ることにより、導体層3を含めた接合層又はそれらの接合界面の一部が剥離し始める引っ張り荷重を求め、これを長さLの1mm当たりに換算した値をもって剥離強度の値とする。
【0026】
【実施例】
実施例1
主成分のセラミック粉末として平均粒径1.2μmのAlN粉末、Si34粉末、又はAl23粉末のいずれか97重量%と、焼結助剤として平均粒径0.6μmのY23粉及び平均粒径0.3μmのCaO粉末を共に1.5重量%となるよう秤取し、エタノール溶媒中ボールミルにて24時間均一に混合して、焼結助剤がY23−CaOからなるAlN系、Si34系、及びAl23系の3種の原料混合粉末を得た。更に、これらの原料混合粉末100重量部に対し有機バインダーとしてPVBを10重量部加え、混練してスラリーとした。このスラリーを噴霧乾燥し、得られた粉末をプレス成形して成形体とした。
【0027】
得られた成形体の半数について、AlNとSi34を主成分とする各成形体は窒素雰囲気中にて1700℃で5時間、及びAl23を主成分とする成形体は大気中にて1600℃で5時間それぞれ焼結した。このようにして得られた各焼結体の相対密度(理論密度を100%としたとき、水中法で測定したときの実測密度の比率)はいずれも99%であり、その表面に実用上問題となるような空孔等の欠陥は存在しなかった。また、レーザーフラッシュ法で測定した熱伝導率は、AlN焼結体が150〜160W/m・K、Si34焼結体が50〜60W/m・K、及びAl23焼結体が30〜40W/m・Kであった。
【0028】
これらの各焼結体の片方の主面に高融点金属のペーストをスクリーン印刷により塗布し、窒素雰囲気中で脱バインダーした後、窒素雰囲気の炉中において1650℃で1時間焼成して、高融点金属層を形成した(ポストファイアメタライズ法)。使用した高融点金属ペーストは、平均粒径1μmのW粉末80重量%をボールミルで有機溶剤10重量%、SiO2−CaO−B23系ガラス5重量%、有機バインダー5重量%と混合することにより作製した。
【0029】
また、残り半数の上記成形体については、片方の主面上に上記と同じ高融点金属ペーストをスクリーン印刷で塗布し、窒素雰囲気中にて600℃で脱バインダーした後、窒素雰囲気中にて1700℃で5時間焼成することにより、成形体を焼結すると同時にペーストを焼き付けて、セラミック基材上に高融点金属層を形成した(コファイアメタライズ法)。
【0030】
以上の2方法によりセラミック基材上にW高融点金属層を形成した各メタライズ基板は、サイズは全て幅50mm、長さ50mm、厚み0.8mmであり、またW高融点金属層の厚みは20±10μmの範囲に入っていた。
【0031】
上記コファイアメタライズ法で得られたAlN系のメタライズ基板を用い、そのW高融点金属層を660℃のルツボ内で溶融させた純度99.9%のアルミウムに接触させた後、高融点金属層上に接合されたアルミニウムを順次凝固させることにより、主面全面に厚み0.3mmのアルミニウムの導体層を形成し、Al−AlN接合基板(試料1)を得た。
【0032】
比較のため、上記ポストファイアメタライズ法で得たW高融点金属層を有しないAlN系基板を用い、この基板を660℃のルツボ内で溶融させた純度の99.9%のアルミニウムに接触させた後、基板上に接合されたアルミニウムを順次凝固させることにより、主面全面に厚み0.3mmのアルミニウムの導体層を形成し、Al−AlN接合基板(試料2)を得た。
【0033】
接合後の上記試料1及び試料2について超音波探傷面分析をした結果、異常な欠陥は認められなかった。また、接合後の試料断面を1000倍のSEM(走査型電子顕微鏡)で観察をしたところ、全ての試料の界面にクラック、ピンボール等は見られなかった。得られた各試料の接合率を下記表1に示した。尚、接合率とは以下のように定義する。欠陥のない試料の中央部を超音波探傷面分析したときの最小測定面積の超音波平均反射強度aに対し、実際の各試料の接合界面を測定した場合の同平均反射強度が2aより大きい領域をカウントして未接合部個数とする。また、試料の全測定面積を最小測定面積で割ったものを測定部個数とする。このとき、1−(未接合部個数/測定部個数)で算出した値の100倍を接合率(%)として定義する。
【0034】
上記のごとく作製した試料1及び試料2の部材を、図3に示すように、共晶半田5を用いてCu−W合金製の放熱板6上に接合して、各試料ごとに半導体装置をそれぞれ100個ずつ製造した。これらの各半導体装置を、−50℃×15分→+140℃×15分の条件で1000サイクルのヒートサイクル試験にかけ、超音波探傷面分析により欠陥部を評価すると共に20倍の実体顕微鏡で各接合端面部の欠陥の有無を調査し、作製した100個の半導体装置に対するヒートサイクル試験後の良品率を下記表1に示した。
【0035】
【表1】

Figure 0003982111
(注)表中の*を付した試料は比較例である。
【0036】
試料1と試料2の結果を比較すると、高融点金属層を介してAlN基材とAl導体層を接合した本発明の試料1の方が、高融点金属層の応力緩和効果によって基板にかかる応力が小さくなり、ヒートサイクル試験による熱衝撃に耐え、良品率が大幅に高くなることが分かる。
【0037】
尚、上記コファイアメタライズ法によるメタライズ基板に代えて、上記のポストメタライズ法で得たメタライズ基板を用い、上記試料1と同一条件で半導体装置を作製したところ、試料1とほぼ同様の接合率並びにヒートサイクル特性が得られた。この結果から、高融点金属層の形成方法が異なっても、ほぼ同様の効果が得られることが分かる。
【0038】
また、上記高融点金属層をWからTa、Mo又はMnに代え、あるいはセラミック基材をAlN系からAl23系又はSi34系に代えて、上記と同一条件で半導体装置を作製したが、いずれも試料1とほぼ同様の接合率並びにヒートサイクル特性が得られた。この結果から、セラミック基材及び高融点金属層の材質が異なっても、ほぼ同様の効果が得られることが分かる。
【0039】
実施例2
上記実施例1と同様にして、同じ形状で高融点金属層を形成していないAlN焼結体を製造した。このAlN焼結体を大気雰囲気中にて1200℃で加熱処理することにより、その表面に厚み0.2〜20μmの表面酸化層を形成した。このAlN基材上に、長さ及び幅ともに基材と同じで厚みが0.04mmのAl−Siロウ材を載せ、更にその上に導体層として長さ及び幅ともに基材と同じで厚みが0.3mmのJIS 1080のアルミニウム素材を載せ、これを黒鉛製のセッター上に並べ、600℃の窒素気流中において30分間の無負荷での炉中接合を行って、Al−AlN接合基板(試料3)を得た。
【0040】
上記と同じく高融点金属層を形成せず且つ表面酸化層を形成したAlN基材上に、厚み2μmのNi層をメッキにより形成し、その上に長さ及び幅ともに基板と同じで厚みが0.04mmのAl−Siロウ材を載せ、更にその上に長さ及び幅ともに基板と同じで厚みが0.3mmのJIS 1080のアルミニウム素材を載せて、上記と同様に600℃の窒素気流中において30分間の無負荷での炉中接合を行い、Al−AlN接合基板(試料4)を得た。
【0041】
次に、上記実施例1と同様にコファイアメタライズ法により、上記と同じ形状でW高融点金属層を有するAlNメタライズ基板を作製した。この基板のW高融点金属層上に長さ及び幅ともに基板と同じで厚みが0.04mmのAl−Siロウ材を載せ、更にその上に長さ及び幅ともに基板と同じで厚みが0.3mmのJIS 1080のアルミニウム素材を載せて、上記と同様に600℃の窒素気流中において30分間の無負荷での炉中接合を行い、Al−AlN接合基板(試料5)を得た。
【0042】
また、同じくコファイアメタライズ法で得たW高融点金属層を有するAlNメタライズ基板を準備し、この基板のW高融点金属層上に厚み2μmのNi層をメッキにより形成した後、その上に長さ及び幅ともに基板と同じで厚みが0.04mmのAl−Siロウ材を載せ、更にその上に長さ及び幅ともに基板と同じで厚みが0.3mmのJIS 1080のアルミニウム素材を載せて、上記と同様に600℃の窒素気流中において30分間の無負荷での炉中接合を行い、Al−AlN接合基板(試料6)を得た。
【0043】
上記と同じくコファイアメタライズ法で得たW高融点金属層を有するAlNメタライズ基板を準備し、この基板のW高融点金属層上に厚み2μmのNi層をメッキにより形成した。更に、この基板上のNi層の中央に、長さ及び幅ともに基板より0.6mm小さく、厚みが0.04mmのAl−Siロウ材を載せ、その上の中央に長さ及び幅ともに基板より0.6mm小さく、厚みが0.3mmのJIS1080のアルミニウム素材を載せて、上記と同様に600℃の窒素気流中において30分間の無負荷での炉中接合を行い、Al−AlN接合基板(試料7)を得た。
【0044】
更に、上記と同じくコファイアメタライズ法で得たW高融点金属層を有するAlNメタライズ基板を準備し、この基板のW高融点金属層上に厚み2μmのNi層をメッキにより形成した。一方、この基板より長さ及び幅ともに0.6mm小さく、厚みが0.3mmのJIS 1080のアルミニウム素材を準備し、その接合面にSiのイオン注入により厚み2μmのSiリッチ層を形成した。次に、上記AlNメタライズ基板のNi層とアルミニウム素材のSiリッチ層とを中央位置合わせで密着させ、上記と同様に600℃の窒素気流中において30分間の無負荷での炉中接合を行って、Al−AlN接合基板(試料8)を得た。
【0045】
上記のごとく作製した各試料3〜8について、超音波探傷面分析をした結果、異常な欠陥は認められなかった。また、接合後の試料断面を1000倍のSEM(走査型電気顕微鏡)で観察をしたところ、各試料の界面にクラック、ピンホール等は見られなかった。尚、各試料について実施例1と同様に接合率を求め、下記表2に示した。
【0046】
また、上記各試料3〜8の部材を、実施例1と同様に、共晶半田を用いてCu−W合金製の放熱板に接合し、半導体装置をそれぞれ100個ずつ製造した。これらの各半導体装置を、−50℃×15分→+140℃×15分の条件で1000サイクルのヒートサイクル試験にかけた後、超音波探傷面分析による欠陥部の評価を行うと共に20倍の実体顕微鏡で各接合端面部の欠陥の有無を調査して、半導体装置100個に対するヒートサイクル試験後の良品率を求め、その結果を下記表2に示した。
【0047】
【表2】
Figure 0003982111
(注)表中の*を付した試料は比較例である。
【0048】
上記表2から、応力緩和層としてW高融点金属層を備えた本発明の試料5〜8は、W高融点金属層を有しない比較例の試料3〜4に比べ、セラミック基板にかかる応力が小さくなるため、ヒートサイクル試験による熱衝撃に耐え、最終的な良品率が大幅に高くなることが分かる。また、試料3と試料4、試料5と試料6を比較すると、Ni層を介在させた方がW高融点金属層とAi−Siロウ材との濡れ性がよく、接合率が高くなることが分かる。
【0049】
更に、試料6と試料7を比較したとき、基材と同じ大きさのAl導体層を接合するよりも、基板よりも小さいAl導体層を接合した場合の方が、接合時の応力を緩和でき、ヒートサイクル試験による熱衝撃に耐え、良品率が高くなることが分かる。また、試料7と試料8の比較から、W高融点金属層の上にAl−Si等の金属介在層が存在しない方が、応力緩和効果がより大きいことが分かる。
【0050】
尚、上記コファイアメタライズ法によるメタライズ基板に代えて、上記のポストメタライズ法で得たメタライズ基板を用い、上記本発明の試料5〜8と同一条件で半導体装置を作製したところ、それぞれほぼ同様の接合率並びにヒートサイクル特性が得られた。この結果から、高融点金属層の形成方法が異なっても、ほぼ同様の効果が得られることが分かる。
【0051】
また、上記高融点金属層をWからTa、Mo又はMnに代え、あるいはセラミック基材をAlN系からAl23系又はSi34系に代えて、上記本発明の試料5〜8と同一条件でそれぞれ半導体装置を作製したが、いずれもほぼ同様の接合率並びにヒートサイクル特性が得られた。この結果から、セラミック基材及び高融点金属層の材質が異なっても、ほぼ同様の効果が得られることが分かる。
【0052】
更に、上記金属介在層としてのAl−Siロウ材を、Zn−Al合金半田材、Zn−Sn合金半田材、及びPb−Sn合金半田材に置き換えて、上記本発明の試料5〜7と同一条件でそれぞれ半導体装置を作製したが、いずれもほぼ同様の接合率並びにヒートサイクル特性が得られた。この結果から、金属介在層の材質が異なっても、ほぼ同様の効果が得られることが分かる。
【0053】
【発明の効果】
本発明によれば、アルミニウムからなるリードフレームのような金属部材をセラミック基材に実装する際に、高融点金属層の応力緩和作用によりセラミック基材の破損変形をなくし、しかも高い接合強度で接合でき、過酷な熱サイクルにおいても高い信頼性を有する半導体装置用部材を提供することができる。
【図面の簡単な説明】
【図1】本発明の半導体装置用部材の一具体例を示す概略の断面図である。
【図2】本発明の半導体装置用部材における剥離強度の測定方法を説明するための概略の断面図である。
【図3】本発明の半導体装置用部材を用いた半導体装置の一具体例を示す概略の断面図である。
【符号の説明】
1 セラミック基材 2 高融点金属層 3 導体層
4 金属介在層 5 共晶半田 6 放熱板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a member for a semiconductor device for mounting a semiconductor element, in which a conductor layer mainly composed of aluminum is provided on a ceramic substrate.
[0002]
[Prior art]
Conventionally, as a method of bonding a conductor circuit formed of aluminum to a ceramic substrate, a method of directly bonding the ceramic substrate and the conductor circuit is known. As this direct bonding method, for example, a ceramic base material is directly contacted with an aluminum melt, and the contact portion is successively made below the solidification temperature of aluminum to form an aluminum conductor circuit, Al-Si brazing material or Al-Ge. There are a method of bonding the two using a brazing material, a method of bonding an aluminum plate to the vicinity of the melting point, and then applying pressure to the ceramic substrate.
[0003]
However, with the direct bonding method described above, the conductor circuit can be bonded to the ceramic substrate, but the thermal expansion coefficient of the ceramic substrate and the aluminum conductor circuit are different, so that the substrate is warped or cracked due to thermal cycling. There was a problem to do. In particular, if an attempt was made to increase the cross-sectional area of the conductor circuit in order to increase the current density, the thermal stress generated in the conductor circuit exceeded the strength of the ceramic substrate, and the ceramic substrate could be damaged. Increasing the thickness of the ceramic substrate in order to eliminate this causes an increase in weight and an increase in shape, and a heat dissipation characteristic decreases due to an increase in thermal resistance.
[0004]
[Problems to be solved by the invention]
As a method for solving the above problem, Japanese Patent Laid-Open No. 9-36277 discloses a porous sintered body of Cu, Al or Ag having a porosity of 20 to 50% between a ceramic substrate and a metal conductor circuit. There has been proposed a method in which a plastic porous metal layer is provided and thermal deformation is absorbed by the plastic porous metal layer and bonded.
[0005]
However, the bonding between the plastic porous metal layer and the ceramic substrate, like the direct bonding method, because the thermal expansion coefficient of the ceramic substrate and the plastic porous metal layer is different, warping the ceramic substrate, There are disadvantages such as cracking in the ceramic substrate due to thermal cycles during mounting and use.
[0006]
In view of such conventional circumstances, the present invention eliminates damage and deformation of the ceramic base material when joining the ceramic base material and the aluminum conductor circuit, and both are joined with high joint strength, even in severe thermal cycles. Provided is a semiconductor device member having high reliability.
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, a member for a semiconductor device provided by the present invention includes a ceramic base material and a refractory metal layer mainly composed of a refractory metal provided on the ceramic base material.A metal intervening layer made of at least one selected from an Al-Si alloy, a Zn-Al alloy, and a Zn-Sn alloy provided on the refractory metal layer, and the metal intervening layer is made of aluminum. And the length and width in the planar direction at the bonding interface of the conductor layer are less than that of the refractory metal layer. . 05mm or shorterIt is characterized by this.
[0008]
  Moreover, the member for semiconductor devices of this inventionInThe length and width in the plane direction at the bonding interface of the conductor layer mainly composed of aluminum is 0.05 mm or more shorter than that of the refractory metal layer.Is necessary,In this case, it is more preferable that these dimensions of the conductor layer are the same as those of the metal intervening layer.
[0009]
  One of the methods for producing a member for a semiconductor device of the present invention is a step of applying a paste containing a refractory metal on a ceramic substrate made of a sintered body and firing to form a refractory metal layer;Forming a metal intervening layer made of at least one selected from an Al—Si based alloy, a Zn—Al based alloy, and a Zn—Sn based alloy on the refractory metal layer; and aluminum on the metal intervening layer. A step of bonding a main conductor layer, and a length and a width in a plane direction at a bonding interface of the conductor layer are set to be less than that of the refractory metal layer. . 05mm or shorterIt is characterized by that.
[0010]
  Another method for manufacturing a member for a semiconductor device according to the present invention is to apply a paste containing a refractory metal on a ceramic base material powder compact and fire it to obtain a ceramic base from the compact. And simultaneously forming a refractory metal layer thereon,Forming a metal intervening layer made of at least one selected from an Al—Si based alloy, a Zn—Al based alloy, and a Zn—Sn based alloy on the refractory metal layer; and aluminum on the metal intervening layer. A step of bonding a main conductor layer, and a length and a width in a plane direction at a bonding interface of the conductor layer are set to be less than that of the refractory metal layer. . 05mm or shorterIt is characterized by that.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, as shown in FIG. 1, a refractory metal layer 2 is formed on a ceramic substrate 1, and a conductor layer 3 mainly composed of aluminum is formed on the ceramic substrate 1 via the refractory metal layer 2. Join. The refractory metal layer 2 relieves thermal stress due to a difference in thermal expansion coefficient between the ceramic substrate 1 and the conductor layer 3, and prevents cracking and deformation of the ceramic substrate 1 due to a thermal cycle during bonding or use.
[0012]
The ceramic substrate used in the present invention is made of aluminum nitride (AlN), silicon nitride (SiThreeNFour) System, alumina (Al2OThree) Series ceramics. These ceramics are used as sintering aids, for example Y2OThreeIt is possible to add a rare earth element compound such as CaO, an alkaline earth element compound such as CaO, or the like, and, if necessary, another transition element compound such as TiN. These ceramics have a relative density of 95% or more, preferably 98% or more. When the relative density is less than 95%, the strength of the substrate is lowered, and when used as a product, the reliability against thermal shock may be lowered. Note that a thin layer containing oxygen may be formed in advance on the surface of the ceramic base material where the refractory metal layer is formed, and further, Al, Si, rare earth elements, alkaline earth elements, etc. may be included in the surface portion. it can.
[0013]
The main component of the refractory metal layer is a refractory metal such as W, Mo, Ta, or Mn. This refractory metal layer is a glass frit containing rare earth elements, alkaline earth elements, Si, Al and other transition elements usually added to the sintered body in order to improve the bondability with the ceramic substrate. May be included. The composition of the refractory metal layer after baking is preferably 80% by volume or more of the refractory metal and 20% by volume or less of the glass frit described above. This is because if the refractory metal is less than 80% by volume or the glass frit exceeds 20% by volume, the thermal conductivity of the refractory metal layer is likely to decrease. Further, if the thickness of the refractory metal layer after baking is less than 3 μm, sufficient bonding strength cannot be obtained between the refractory metal layer and the ceramic substrate, and if it exceeds 50 μm, warping after the formation of the refractory metal layer is achieved. Since the amount tends to increase, the range of 3 to 50 μm is preferable.
[0014]
As the conductor layer mainly composed of aluminum joined to the ceramic substrate through the refractory metal layer, it is preferable to use aluminum having a purity exceeding 99.9%, for example, an aluminum material of JIS 1080. This is because, when the purity is lowered, the electrical conductivity is lowered, so that the temperature may be increased during energization.
[0015]
A metal intervening layer may be provided on the refractory metal layer, and the conductor layer may be joined via the metal intervening layer. The metal intervening layer has a lower melting point than the conductor layer mainly composed of aluminum, for example, a brazing material made of an Al—Si based alloy having a relatively high melting point, a Zn—Al based, a Zn—Sn based, and a Pb having a lower melting point. It is preferable to be made of a material having a melting point of 660 ° C. or lower, which is mainly composed of at least one eutectic solder material made of an Sn-based alloy. This is to maintain the shape of the circuit pattern of the conductor layer mainly composed of aluminum. Moreover, you may laminate | stack two or more metal intervening layers. The thickness of the metal intervening layer is preferably in the range of 2 to 200 μm, more preferably 5 to 50 μm. If the thickness of the metal intervening layer is less than 2 μm, a sufficient liquid phase cannot be obtained at the time of joining, thereby increasing the thermal resistance or concentrating the stress due to the thermal shrinkage difference between the conductor layer and the ceramic substrate. This is because breakage and deformation are likely to occur, and conversely, if the thickness exceeds 200 μm, the thermal resistance increases.
[0016]
Further, a nickel layer can be formed on the refractory metal layer, and the metal intervening layer can be disposed on the nickel layer. By joining the ceramic substrate and the conductor layer via the nickel layer and the metal intervening layer on the refractory metal layer, the wettability at the time of joining is improved, and the joining rate can be increased.
[0017]
Furthermore, in the present invention, the length and width of the conductor layer mainly composed of aluminum is made 0.05 mm or more shorter than that of the refractory metal layer, so that the outer peripheral edge of the conductor layer is the outer peripheral edge of the refractory metal layer. Thermal stress applied from the outer peripheral end of the conductor layer to the outer peripheral end of the refractory metal layer can be dispersed inside the edge, and the ceramic substrate can be prevented from cracking at this portion. Similarly, in the relationship between the conductor layer and the metal intervening layer, it is preferable that the length and width of the conductor layer are the same as those of the metal intervening layer or are shortened by 0.05 mm or more.
[0018]
Next, the manufacturing method of the member for semiconductor devices of this invention is demonstrated. First, a refractory metal layer is formed on the surface of the ceramic substrate. One of the methods is a so-called post-fire metallization method in which a sintered body to be a ceramic substrate is prepared in advance, and a refractory metal paste is baked on the ceramic substrate to form a refractory metal layer. Another method is a so-called cofire metallization method in which a high-melting point metal paste is applied onto a ceramic raw material powder compact and fired to obtain a ceramic substrate and at the same time a high-melting point metal layer is formed.
[0019]
Specifically, in the post-fire metallization method, the surface of the ceramic substrate is subjected to surface treatment such as formation of the above-described oxygen-containing thin layer as necessary, and then a refractory metal paste is preferably printed to a thickness of 5 to 60 μm. Apply it. The refractory metal paste is prepared by mixing an organic binder and an organic solvent (for adjusting the binder viscosity) by adding a glass frit or the like to the metal alone or a mixture thereof containing a refractory metal as a main component. Thereafter, the refractory metal paste is baked to form a refractory metal layer on the ceramic substrate.
[0020]
On the other hand, in the cofire metallization method, an organic binder is added to a ceramic raw material powder blended in a predetermined composition, and a refractory metal paste is applied to a molded body obtained by molding the ceramic binder by the same procedure as described above. Thereafter, the compact is sintered to obtain a ceramic base material, and at the same time, a refractory metal layer is formed on the ceramic base material. In the case of this cofire metallization method, the refractory metal particles in the paste should be as fine as possible, and the additive for promoting the sintering of the ceramic can be selected by selecting one that can form a liquid phase at a low temperature. It is important to devise so that the sintering can be performed simultaneously at a low temperature and the shrinkage ratios of the both are approximately the same, thereby preventing deformation of the base material during sintering. In addition, by sintering at a low temperature, the crystal particles of the ceramic substrate become finer, and the strength of the substrate is expected to increase.
[0021]
On the refractory metal layer thus formed, the metal intervening layer and / or the nickel layer may be formed or both may be formed before joining the conductor layer. As a method for forming the metal intervening layer, a plating method or a method using a brazing foil is preferable, but other methods such as a printing method and a vapor deposition method can also be adopted. The Ni layer can also be formed by a plating method, a printing method, a vapor deposition method, or the like. The metal intervening layer and the Ni layer thus formed are preferably fired in a non-oxidizing atmosphere before joining the conductor layers.
[0022]
A refractory metal layer is formed as described above, and a conductor layer mainly composed of aluminum is bonded onto the ceramic substrate on which a nickel layer and / or a metal intervening layer is further formed as necessary. In the case of joining conductor layers mainly composed of aluminum, in general, a material mainly composed of aluminum is brought into close contact with a refractory metal layer, nickel layer or metal intervening layer of a ceramic substrate, and in a non-oxidizing atmosphere or in a vacuum. And bonding by firing at a temperature lower than the melting point of the conductor layer material. In addition, when joining a conductor layer on a refractory metal layer, after making molten aluminum contact a refractory metal layer, it may cool and it may be made to solidify sequentially.
[0023]
In addition, when joining the conductor layer material to the above ceramic substrate, if necessary, for example, using a jig made of a refractory material such as carbonaceous, alumina, aluminum nitride, and the like, Further, if necessary, an appropriate load may be applied to the set in which both are laminated.
[0024]
As described above, the semiconductor device member of the present invention in which an aluminum conductor layer is bonded to a ceramic substrate via a refractory metal layer or a nickel layer or a metal intervening layer thereon is mainly composed of aluminum at the time of bonding. In addition to the low and low melting point of the conductor layer, the stress relieving effect of the refractory metal layer makes it possible to obtain a stable bond without breakage or deformation of the ceramic substrate. In addition, the bonding strength of the bonding portion is 0.5 kg / mm or more in terms of peel strength, which is a high level that does not cause practical problems, and is stable with little variation in bonding strength.
[0025]
For example, as shown in FIG. 2, this peel strength is measured by a thickness of 0.1 mm through a refractory metal layer 2 provided on a ceramic substrate 1 and a metal intervening layer 4 provided as necessary. The conductor layer 3 having a width of 4.0 mm is joined so as to have a length L = 3 mm, and the conductor layer 3 is included by pulling upward the grip portion 3 a that protrudes perpendicularly upward from one end of the conductor layer 3. The tensile load at which a part of the joining layer or the joining interface begins to peel off is obtained, and the value obtained by converting the tensile load per 1 mm of the length L is defined as the peel strength value.
[0026]
【Example】
Example 1
AlN powder with an average particle size of 1.2 μm as the main component ceramic powder, SiThreeNFourPowder or Al2OThree97% by weight of the powder and Y having an average particle size of 0.6 μm as a sintering aid2OThreeThe powder and CaO powder with an average particle size of 0.3 μm were both weighed to 1.5% by weight and mixed uniformly in a ball mill in an ethanol solvent for 24 hours.2OThree-AlO based on CaO, SiThreeNFourSystem and Al2OThreeThree raw material mixed powders of the system were obtained. Furthermore, 10 parts by weight of PVB as an organic binder was added to 100 parts by weight of these raw material mixed powders and kneaded to obtain a slurry. This slurry was spray-dried, and the obtained powder was press-molded to obtain a molded body.
[0027]
About half of the obtained molded bodies, AlN and SiThreeNFourEach molded body mainly composed of Al is 5 hours at 1700 ° C. in a nitrogen atmosphere, and Al.2OThreeThe green compacts were sintered at 1600 ° C. for 5 hours in air. The relative density of each of the sintered bodies thus obtained (the ratio of the measured density when measured by the underwater method when the theoretical density is 100%) is 99%, and there is a practical problem on the surface. There were no defects such as vacancies. The thermal conductivity measured by the laser flash method is 150 to 160 W / m · K for the AlN sintered body, Si.ThreeNFourSintered body is 50-60W / m · K, and Al2OThreeThe sintered body was 30 to 40 W / m · K.
[0028]
A high melting point metal paste is applied to one main surface of each sintered body by screen printing, debindered in a nitrogen atmosphere, and then fired at 1650 ° C. for 1 hour in a nitrogen atmosphere furnace. A metal layer was formed (post-fire metallization method). The high melting point metal paste used was 80% by weight of W powder with an average particle size of 1 μm, 10% by weight of organic solvent with a ball mill, SiO 22-CaO-B2OThreeIt was prepared by mixing with 5% by weight of a glass base and 5% by weight of an organic binder.
[0029]
For the remaining half of the molded body, the same refractory metal paste as described above was applied on one main surface by screen printing, debindered at 600 ° C. in a nitrogen atmosphere, and then 1700 in a nitrogen atmosphere. By baking at 5 ° C. for 5 hours, the molded body was sintered and the paste was baked at the same time to form a refractory metal layer on the ceramic substrate (cofire metallization method).
[0030]
Each metallized substrate having a W refractory metal layer formed on a ceramic substrate by the above two methods has a width of 50 mm, a length of 50 mm, and a thickness of 0.8 mm, and the W refractory metal layer has a thickness of 20 mm. It was in the range of ± 10 μm.
[0031]
After using the AlN-based metallized substrate obtained by the cofire metallization method, the W refractory metal layer was brought into contact with 99.9% purity aluminum melted in a 660 ° C. crucible, and then the refractory metal layer By sequentially solidifying the aluminum bonded on top, an aluminum conductor layer having a thickness of 0.3 mm was formed on the entire main surface to obtain an Al—AlN bonded substrate (Sample 1).
[0032]
For comparison, an AlN substrate having no W refractory metal layer obtained by the post-fire metallization method was used, and this substrate was brought into contact with 99.9% purity aluminum melted in a 660 ° C. crucible. Thereafter, the aluminum bonded on the substrate was sequentially solidified to form an aluminum conductor layer having a thickness of 0.3 mm on the entire main surface to obtain an Al—AlN bonded substrate (sample 2).
[0033]
As a result of ultrasonic flaw detection surface analysis of the sample 1 and the sample 2 after joining, no abnormal defect was found. Moreover, when the cross-section of the sample after bonding was observed with a 1000 times SEM (scanning electron microscope), no cracks, pinballs, or the like were found at the interfaces of all the samples. Table 1 below shows the bonding rate of the obtained samples. The joining rate is defined as follows. A region where the average reflection intensity when the actual bonding interface of each sample is measured is larger than 2a with respect to the ultrasonic average reflection intensity a of the minimum measurement area when an ultrasonic flaw detection surface analysis is performed on the center of a sample having no defect Is the number of unjoined parts. Further, the number of measurement parts is obtained by dividing the total measurement area of the sample by the minimum measurement area. At this time, 100 times the value calculated by 1- (number of unjoined parts / number of measured parts) is defined as the joining rate (%).
[0034]
As shown in FIG. 3, the members of Sample 1 and Sample 2 produced as described above are bonded onto a heat sink 6 made of Cu—W alloy using eutectic solder 5, and a semiconductor device is mounted for each sample. 100 pieces of each were produced. Each of these semiconductor devices is subjected to a heat cycle test of 1000 cycles under the condition of −50 ° C. × 15 minutes → + 140 ° C. × 15 minutes, and a defect portion is evaluated by ultrasonic flaw detection surface analysis, and each bonding is performed with a 20 × stereo microscope. The presence / absence of defects in the end face portion was investigated, and the yield rate after the heat cycle test for 100 manufactured semiconductor devices was shown in Table 1 below.
[0035]
[Table 1]
Figure 0003982111
(Note) Samples marked with * in the table are comparative examples.
[0036]
Comparing the results of sample 1 and sample 2, the stress applied to the substrate by the stress relaxation effect of the refractory metal layer is greater in the sample 1 of the present invention in which the AlN substrate and the Al conductor layer are joined via the refractory metal layer. It can be seen that the product has a smaller size, can withstand the thermal shock of the heat cycle test, and the yield rate is significantly increased.
[0037]
When a semiconductor device was fabricated under the same conditions as the sample 1 using the metallized substrate obtained by the post metallization method instead of the metallized substrate by the cofire metallization method, the bonding rate and the same as the sample 1 were obtained. Heat cycle characteristics were obtained. From this result, it is understood that substantially the same effect can be obtained even if the method of forming the refractory metal layer is different.
[0038]
Further, the refractory metal layer is changed from W to Ta, Mo or Mn, or the ceramic substrate is changed from AlN to Al.2OThreeSystem or SiThreeNFourInstead of the system, a semiconductor device was manufactured under the same conditions as described above, but in both cases, substantially the same joining rate and heat cycle characteristics as those of Sample 1 were obtained. From this result, it can be seen that the same effect can be obtained even if the materials of the ceramic substrate and the refractory metal layer are different.
[0039]
Example 2
In the same manner as in Example 1, an AlN sintered body having the same shape and no refractory metal layer was produced. The AlN sintered body was heat-treated at 1200 ° C. in an air atmosphere to form a surface oxide layer having a thickness of 0.2 to 20 μm on the surface. On this AlN base material, an Al—Si brazing material having the same length and width as the base material and a thickness of 0.04 mm is placed, and a conductor layer having the same length and width as the base material is further formed thereon. An aluminum material of 0.3 mm JIS 1080 was placed, placed on a graphite setter, and bonded in a furnace for 30 minutes in a nitrogen stream at 600 ° C. with no load, and an Al—AlN bonded substrate (sample) 3) was obtained.
[0040]
A Ni layer having a thickness of 2 μm is formed by plating on an AlN substrate on which a refractory metal layer is not formed and a surface oxide layer is formed as described above, and the length and width are the same as the substrate and the thickness is 0. A .04 mm Al-Si brazing material is placed thereon, and a JIS 1080 aluminum material having the same length and width as the substrate and a thickness of 0.3 mm is placed thereon, and in a nitrogen stream at 600 ° C. in the same manner as described above. In-furnace bonding with no load for 30 minutes was performed to obtain an Al—AlN bonded substrate (sample 4).
[0041]
Next, an AlN metallized substrate having the same shape as described above and having a W refractory metal layer was produced by the cofire metallization method in the same manner as in Example 1. An Al—Si brazing material having the same length and width as the substrate and a thickness of 0.04 mm is placed on the W refractory metal layer of the substrate, and the length and width are both the same as the substrate and the thickness is 0.0. A 3 mm JIS 1080 aluminum material was placed, and in-furnace bonding was performed in a nitrogen stream at 600 ° C. for 30 minutes in the same manner as above to obtain an Al—AlN bonded substrate (Sample 5).
[0042]
Also, an AlN metallized substrate having a W refractory metal layer obtained by the cofire metallization method was prepared, and a Ni layer having a thickness of 2 μm was formed on the W refractory metal layer of the substrate by plating, and then a long layer was formed thereon. An Al-Si brazing material having the same thickness and width as the substrate and a thickness of 0.04 mm is placed thereon, and an aluminum material of JIS 1080 having the same length and width as the substrate and a thickness of 0.3 mm is placed thereon. In the same manner as above, in-furnace bonding was performed in a nitrogen stream at 600 ° C. for 30 minutes to obtain an Al—AlN bonded substrate (sample 6).
[0043]
An AlN metallized substrate having a W refractory metal layer obtained by the cofire metallization method as described above was prepared, and a Ni layer having a thickness of 2 μm was formed on the W refractory metal layer of the substrate by plating. Further, an Al-Si brazing material having a length and width of 0.6 mm smaller than the substrate and a thickness of 0.04 mm is placed in the center of the Ni layer on the substrate, and both the length and width are larger than the substrate in the center. A 0.6 mm smaller and 0.3 mm thick JIS 1080 aluminum material was placed, and in the same manner as above, in-furnace bonding was performed in a nitrogen stream at 600 ° C. for 30 minutes, and an Al—AlN bonded substrate (sample) 7) was obtained.
[0044]
Further, an AlN metallized substrate having a W refractory metal layer obtained by the cofire metallization method as described above was prepared, and a Ni layer having a thickness of 2 μm was formed on the W refractory metal layer of the substrate by plating. On the other hand, a JIS 1080 aluminum material having a length and width of 0.6 mm smaller than this substrate and a thickness of 0.3 mm was prepared, and a Si-rich layer having a thickness of 2 μm was formed on the bonding surface by Si ion implantation. Next, the Ni layer of the AlN metallized substrate and the Si-rich layer of the aluminum material are brought into close contact with each other at the center position, and in the same manner as described above, in-furnace bonding is performed in a nitrogen stream at 600 ° C. for 30 minutes. An Al—AlN bonded substrate (Sample 8) was obtained.
[0045]
As a result of analyzing the ultrasonic flaw detection surface for each of the samples 3 to 8 produced as described above, no abnormal defect was observed. Further, when the cross section of the sample after bonding was observed with a 1000 times SEM (scanning electric microscope), no cracks, pinholes, or the like were found at the interface of each sample. In addition, the joining rate was calculated | required similarly to Example 1 about each sample, and it showed in following Table 2.
[0046]
Further, in the same manner as in Example 1, the members of Samples 3 to 8 were joined to a heat sink made of Cu—W alloy using eutectic solder, and 100 semiconductor devices were manufactured. Each of these semiconductor devices was subjected to a heat cycle test of 1000 cycles under the condition of −50 ° C. × 15 minutes → + 140 ° C. × 15 minutes, and then the defect portion was evaluated by ultrasonic flaw detection surface analysis and a 20 × stereo microscope. Then, the presence / absence of defects in each joint end face portion was investigated, and the yield rate after heat cycle test for 100 semiconductor devices was determined. The results are shown in Table 2 below.
[0047]
[Table 2]
Figure 0003982111
(Note) Samples marked with * in the table are comparative examples.
[0048]
From Table 2 above, the samples 5 to 8 of the present invention having the W refractory metal layer as the stress relaxation layer have a stress applied to the ceramic substrate as compared with the samples 3 to 4 of the comparative examples having no W refractory metal layer. Since it becomes small, it can withstand the thermal shock by the heat cycle test, and it can be seen that the final yield rate is greatly increased. In addition, when Sample 3 and Sample 4 and Sample 5 and Sample 6 are compared, the interposition of the Ni layer may improve the wettability between the W refractory metal layer and the Ai-Si brazing material and increase the bonding rate. I understand.
[0049]
Furthermore, when comparing the sample 6 and the sample 7, it is possible to relieve stress at the time of bonding when the Al conductor layer smaller than the substrate is bonded, rather than when the Al conductor layer having the same size as the base material is bonded. It can be seen that the product can withstand thermal shock by heat cycle test and the yield rate is high. Moreover, it can be seen from the comparison between the sample 7 and the sample 8 that the stress relaxation effect is larger when the metal intervening layer such as Al—Si does not exist on the W refractory metal layer.
[0050]
In addition, it replaces with the metallization board | substrate by the said cofire metallization method, and when the semiconductor device was produced on the same conditions as the samples 5-8 of the said invention using the metallization board | substrate obtained by said post metallization method, respectively, it is substantially the same. Bonding rate and heat cycle characteristics were obtained. From this result, it is understood that substantially the same effect can be obtained even if the method of forming the refractory metal layer is different.
[0051]
Further, the refractory metal layer is changed from W to Ta, Mo or Mn, or the ceramic substrate is changed from AlN to Al.2OThreeSystem or SiThreeNFourIn place of the system, semiconductor devices were respectively produced under the same conditions as those of Samples 5 to 8 of the present invention, and almost the same joining rate and heat cycle characteristics were obtained in all cases. From this result, it can be seen that the same effect can be obtained even if the materials of the ceramic substrate and the refractory metal layer are different.
[0052]
Further, the Al—Si brazing material as the metal intervening layer is replaced with a Zn—Al alloy solder material, a Zn—Sn alloy solder material, and a Pb—Sn alloy solder material, and is the same as the samples 5 to 7 of the present invention. Each semiconductor device was fabricated under the same conditions, but almost the same bonding rate and heat cycle characteristics were obtained in all cases. From this result, it can be seen that substantially the same effect can be obtained even if the material of the metal intervening layer is different.
[0053]
【The invention's effect】
According to the present invention, when a metal member such as an aluminum lead frame is mounted on a ceramic substrate, the ceramic substrate is prevented from being damaged and deformed by the stress relaxation action of the refractory metal layer, and bonded with high bonding strength. It is possible to provide a semiconductor device member having high reliability even in a severe thermal cycle.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a specific example of a member for a semiconductor device of the present invention.
FIG. 2 is a schematic cross-sectional view for explaining a method for measuring peel strength in a semiconductor device member of the present invention.
FIG. 3 is a schematic cross-sectional view showing a specific example of a semiconductor device using the semiconductor device member of the present invention.
[Explanation of symbols]
1 Ceramic substrate 2 High melting point metal layer 3 Conductor layer
4 Metal intervening layer 5 Eutectic solder 6 Heat sink

Claims (7)

セラミック基材と、該セラミック基材上に設けた主に高融点金属からなる高融点金属層と、該高融点金属層上に設けたAl−Si系合金、Zn−Al系合金、Zn−Sn系合金から選ばれた少なくとも1種からなる金属介在層とを備え、該金属介在層にアルミニウムを主体とする導体層が接合されていて、該導体層の接合界面における平面方向の長さ及び幅が前記高融点金属層のそれより0 . 05mm以上短いことを特徴とする半導体装置用部材。A ceramic substrate, a refractory metal layer mainly made of a refractory metal provided on the ceramic substrate, an Al-Si alloy, a Zn-Al alloy, Zn-Sn provided on the refractory metal layer A metal intervening layer made of at least one selected from a system alloy, a conductor layer mainly composed of aluminum being joined to the metal intervening layer, and the length and width in the planar direction at the joining interface of the conductor layer member for a semiconductor device but which is characterized in that from 0. it 05mm or less of the high-melting-point metal layer. 前記高融点金属層がW、Ta、Mo、Mnから選ばれた少なくとも1種からなることを特徴とする、請求項1に記載の半導体装置用部材。2. The member for a semiconductor device according to claim 1, wherein the refractory metal layer is made of at least one selected from W, Ta, Mo, and Mn . 前記導体層の接合界面における平面方向の長さ及び幅が、前記金属介在層のそれと同一であることを特徴とする、請求項1又は2に記載の半導体装置用部材。 3. The semiconductor device member according to claim 1 , wherein a length and a width in a planar direction at a bonding interface of the conductor layer are the same as those of the metal intervening layer . 前記セラミック基材がAlN系、Al 系及びSi 系セラミックのいずれかであることを特徴とする、請求項1〜3のいずれかに記載の半導体装置用部材。 The ceramic base material is AlN system, characterized in that either Al 2 O 3 system and Si 3 N 4 based ceramic, the member for a semiconductor device according to claim 1. セラミック基材にアルミニウムを主体とする導体層を接合した半導体装置用部材の製造方法であって、焼結体からなるセラミック基材上に高融点金属を含むペーストを塗布し、焼成して高融点金属層を形成する工程と、該高融点金属層上にAl−Si系合金、Zn−Al系合金、Zn−Sn系合金から選ばれた少なくとも1種からなる金属介在層を形成する工程と、該金属介在層上にアルミニウムを主体とする導体層とを接合する工程とを備え、該導体層の接合界面における平面方向の長さ及び幅を前記高融点金属層のそれより0 . 05mm以上短くすることを特徴とする半導体装置用部材の製造方法 A method for manufacturing a member for a semiconductor device in which a conductor layer mainly composed of aluminum is bonded to a ceramic base material, wherein a paste containing a refractory metal is applied on a ceramic base material made of a sintered body and fired to obtain a high melting point. A step of forming a metal layer, a step of forming a metal intervening layer made of at least one selected from an Al-Si alloy, a Zn-Al alloy, and a Zn-Sn alloy on the refractory metal layer, And a step of bonding a conductor layer mainly composed of aluminum on the metal intervening layer, wherein the length and width in the plane direction at the bonding interface of the conductor layer are shorter than that of the refractory metal layer by 0.05 mm or more . A method for manufacturing a member for a semiconductor device . セラミック基材にアルミニウムを主体とする導体層を接合した半導体装置用部材の製造方法であって、セラミック原料粉末の成形体上に高融点金属を含むペーストを塗布し、焼成して成形体からセラミック基材を得ると同時に該セラミック基材上に高融点金属層を形成する工程と、該高融点金属層上にAl−Si系合金、Zn−Al系合金、Zn−Sn系合金から選ばれた少なくとも1種からなる金属介在層を形成する工程と、該金属介在層上にアルミニウムを主体とする導体層とを接合する工程とを備え、該導体層の接合界面における平面方向の長さ及び幅を前記高融点金属層のそれより0 . 05mm以上短くすることを特徴とする半導体装置用部材の製造方法 A method for manufacturing a member for a semiconductor device in which a conductor layer mainly composed of aluminum is bonded to a ceramic base material, wherein a paste containing a refractory metal is applied onto a molded body of ceramic raw material powder and fired to form a ceramic from the molded body The step of forming a refractory metal layer on the ceramic substrate at the same time as obtaining the substrate, and an Al-Si alloy, a Zn-Al alloy, or a Zn-Sn alloy was selected on the refractory metal layer. A step of forming at least one metal intervening layer; and a step of bonding a conductor layer mainly composed of aluminum on the metal intervening layer, the length and width in the planar direction at the bonding interface of the conductor layer method for producing it from 0. member for a semiconductor device characterized by shorter than 05mm of the refractory metal layer. 請求項1〜4のいずれかの半導体装置用部材に、半導体素子をダイボンディングしてなる半導体装置 A semiconductor device obtained by die-bonding a semiconductor element to the semiconductor device member according to claim 1 .
JP12703599A 1999-05-07 1999-05-07 Semiconductor device member using ceramic and method for manufacturing the same Expired - Lifetime JP3982111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12703599A JP3982111B2 (en) 1999-05-07 1999-05-07 Semiconductor device member using ceramic and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12703599A JP3982111B2 (en) 1999-05-07 1999-05-07 Semiconductor device member using ceramic and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000323619A JP2000323619A (en) 2000-11-24
JP3982111B2 true JP3982111B2 (en) 2007-09-26

Family

ID=14950047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12703599A Expired - Lifetime JP3982111B2 (en) 1999-05-07 1999-05-07 Semiconductor device member using ceramic and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3982111B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4372669B2 (en) 2004-11-25 2009-11-25 株式会社トクヤマ Device mounting substrate manufacturing method
EP2061290B1 (en) * 2006-09-06 2011-10-12 Tokuyama Corporation Ceramic substrate manufacturing method and ceramic substrate
JP2017208477A (en) * 2016-05-19 2017-11-24 京セラ株式会社 Composite substrate and method for manufacturing the same
JP6851033B2 (en) * 2016-06-09 2021-03-31 国立研究開発法人産業技術総合研究所 Method of manufacturing the joint and the joint
JP7249759B2 (en) * 2018-11-08 2023-03-31 日本特殊陶業株式会社 zygote
CN114592176B (en) * 2021-12-31 2023-02-21 核工业西南物理研究院 Ion implantation method for replacing metal transition connection layer

Also Published As

Publication number Publication date
JP2000323619A (en) 2000-11-24

Similar Documents

Publication Publication Date Title
US5561321A (en) Ceramic-metal composite structure and process of producing same
JP3845925B2 (en) Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
JP4360061B2 (en) Semiconductor device member and semiconductor device using the same
JPH0715101A (en) Oxide ceramic circuit board and its manufacture
EP0297511A2 (en) Connection structure between components for semiconductor apparatus
KR20200021019A (en) Production method of nitride ceramics active metal brazing substrate having excellent bonding strength
JPH09157054A (en) Circuit board
US6783867B2 (en) Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same
JP2000323618A (en) Copper circuit clad substrate and manufacture thereof
JP3834351B2 (en) Ceramic circuit board
JP3982111B2 (en) Semiconductor device member using ceramic and method for manufacturing the same
JP4959079B2 (en) Package for storing semiconductor elements
JP3566569B2 (en) Wiring board and method of manufacturing the same
JP2772273B2 (en) Silicon nitride circuit board
JPH1067586A (en) Circuit base plate for power module and its production
JP4220869B2 (en) Manufacturing method of ceramic package
JP3518841B2 (en) Substrate and method of manufacturing the same
JP2677748B2 (en) Ceramics copper circuit board
JPH0624880A (en) Metal-ceramic material and production thereof
JP2000114724A (en) Multilayer wiring board
JP2001156413A (en) Copper circuit junction substrate and its manufacturing method
JP2000311969A (en) Copper circuit bonded board and manufacture of the same
JP2650044B2 (en) Connection structure between components for semiconductor devices
JP2004134703A (en) Circuit board with terminal
JP2005019750A (en) Ceramic circuit board and its manufacturing method, and electric circuit module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150