JP3982090B2 - Semiconductor ion sensor - Google Patents

Semiconductor ion sensor Download PDF

Info

Publication number
JP3982090B2
JP3982090B2 JP36396198A JP36396198A JP3982090B2 JP 3982090 B2 JP3982090 B2 JP 3982090B2 JP 36396198 A JP36396198 A JP 36396198A JP 36396198 A JP36396198 A JP 36396198A JP 3982090 B2 JP3982090 B2 JP 3982090B2
Authority
JP
Japan
Prior art keywords
source
isfet
drain
electrode
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36396198A
Other languages
Japanese (ja)
Other versions
JP2000187018A (en
Inventor
幸男 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP36396198A priority Critical patent/JP3982090B2/en
Publication of JP2000187018A publication Critical patent/JP2000187018A/en
Application granted granted Critical
Publication of JP3982090B2 publication Critical patent/JP3982090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体イオンセンサに関するものである。
【0002】
【従来の技術】
従来より、溶液(測定液)中のイオンの濃度(活量)を電気信号に変換するデバイスとしてISFET(Ion Sensitive Field Effect Transistor)と呼ばれる半導体イオンセンサが提供されている。この種の半導体イオンセンサは、図3に示すように、p形シリコン基板1の主表面側にn+層よりなるドレイン領域2とn+層よりなるソース領域3とが離間して形成され、両領域2,3間のチャネル部4上にゲート絶縁膜5を介してイオン感応膜6が形成されている。また、ドレイン領域2上にはドレイン電極7が形成され、ソース領域3上にはソース電極8が形成されており、各電極7,8上には保護膜10が形成されている。なお、図3中の9はフィールド酸化膜を示す。
【0003】
要するに、図3に示す構成のISFETは、電界効果型トランジスタのドレイン・ソース間のチャネル部上にゲート絶縁膜を介して形成されたゲート電極に相当する部分に、イオン感応膜6を形成してある。したがって、ISFETでは、イオン濃度の大きさに応じてチャネル部4の電位が変わってチャネル部4の電気抵抗が変化することになり、ドレイン・ソース間の電流が変化する。
【0004】
この種の半導体イオンセンサでは、ISFETと別体の参照電極30をISFETのソース電極8に可変電圧源Vaを介して接続し、溶液(測定液)の電位を参照電極30を通してISFETのソース電位に対して一定の値にすることにより、ソース・ゲート間にはイオンの濃度に応じた電圧が加わるから、ドレイン電極7・ソース電極8間に電圧源V2を介して挿入された電流計40による測定電流によりイオン濃度を知ることができる。
【0005】
【発明が解決しようとする課題】
ところで、上記従来構成の半導体イオンセンサでは、製品ごとのISFETのしきい値電圧Vthの違いや温度特性などにより、参照電極30へ印加する最適な電圧が製品ごとに異なっており、ISFETのしきい値電圧Vthのばらつきや温度変化に関わらず一定の感度および精度を保つために、可変電圧源Vaによる参照電極30への印加電圧をその都度調整する必要があり、手間がかかるという不具合があった。
【0006】
本発明は上記事由に鑑みて為されたものであり、その目的は、参照電極への印加電圧を調整する作業が不要で安定した感度特性を有する半導体イオンセンサを提供することにある。
【0007】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、半導体基板の主表面側にドレイン領域とソース領域とが離間して形成され、半導体基板においてドレイン領域とソース領域との間に介在する領域上に絶縁膜を介してイオン感応膜が形成され、ドレイン領域上にドレイン電極が形成され、ソース領域上にソース電極が形成されたISFETと、ISFETのソース電極に接続された参照電極と、該参照電極とISFETのソース電極との間に挿入されISFETのしきい値電圧と略同じしきい値電圧を有するFETであってドレインおよびゲートが参照電極に接続され、ソースがISFETのソース電極に接続された定電圧用FETと、定電圧用FETのドレイン・ソース間に並列接続される電流制御用抵抗と電圧源との直列回路とを備えることを特徴とするものであり、参照電極の電位をISFETのしきい値電圧に略一致させることができるので、従来のように参照電極に印加する電圧を調整するような作業が不要で、半導体イオンセンサの感度特性が温度変化やISFETのしきい値電圧Vthのばらつきなどがあっても変わることなく、製品ごとの感度特性のばらつきが小さい安定した感度特性を有する。
【0008】
請求項2の発明は、請求項1の発明において、定電圧用FETとISFETとは隣接して同一半導体基板に形成され、両FETのソース領域が共通化されているので、両FETのしきい値電圧を容易に一致させることができ製品ごとの感度特性のばらつきがより小さくなるとともに、センサの小型化を図ることができる。
【0009】
【発明の実施の形態】
(実施形態1)
本実施形態の半導体イオンセンサの基本構成は図3に示した従来構成と略同じであって、図1に示すように、参照電極30とISFETのソース電極8との間に、ISFETのしきい値電圧と略同じしきい値電圧を有するMOSFETであってドレインおよびゲートが参照電極30に接続されソースがISFETのソース電極8に接続された定電圧用MOSFET20を設けるとともに、電流制御用抵抗Rと電圧源V1との直列回路を定電圧用MOSFET20のドレイン・ソース間に並列接続した点に特徴がある。なお、図3に示した従来構成と同様の構成要素には同一の符号を付して説明を省略する。
【0010】
ここにおいて、定電圧用MOSFET20は、ゲート・ドレイン間が短絡され、ドレイン・ソース間に上記直列回路が並列接続されているので、定電圧源として機能し、参照電極30の電位を常にISFETのドレイン電流が流れ始める電位に保つことができる。
【0011】
しかして、本実施形態の半導体イオンセンサでは、参照電極30の電位をISFETのしきい値電圧に略一致させることができるから、従来のように参照電極30に印加する電圧を可変電圧源Va(図3参照)によって調整するような作業が不要で、温度変化やISFETのしきい値電圧Vthのばらつきなどがあっても感度特性が変わることなく、製品ごとの感度特性のばらつきが小さくなり、感度特性が安定する。
【0012】
(実施形態2)
本実施形態の半導体イオンセンサの基本構成は図1に示した従来構成と略同じであって、図2に示すように、実施形態1の定電圧用MOSFET20をISFETが形成されたp形シリコン基板1に形成し、ソース領域3を共通化した点に特徴がある。すなわち、本実施形態では、ISFETと定電圧用MOSFET20とが1チップ内に隣接して形成されている。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
【0013】
定電圧用MOSFET20は、ISFETが形成されたp形シリコン基板1のの主表面側にn+層よりなるドレイン領域2’とソース領域3とが離間して形成され、両領域2’,3間のチャネル部4’上にゲート絶縁膜15を介してゲート電極16が形成されている。また、ドレイン領域2’上にはドレイン電極7’が形成され、ソース領域3上にはソース電極8が形成されており、各電極7,8,16上には保護膜10が形成されている。ここに、定電圧用MOSFET20のソース領域3およびソース電極8はISFETと共通である。
【0014】
しかして、本実施形態の半導体イオンセンサでは、ISFETと定電圧用MOSFET20とが同一チップに形成されソース領域3が共通化されているので、ISFETのしきい値電圧と定電圧用MOSFET20のしきい値電圧とを容易に一致させることができ製品ごとの感度特性のばらつきがより小さくなるとともに、両FETを別々のチップに形成する場合やソース領域3を共通化しない場合に比べてセンサの小型化を図ることができる。
【0015】
【発明の効果】
請求項1の発明は、半導体基板の主表面側にドレイン領域とソース領域とが離間して形成され、半導体基板においてドレイン領域とソース領域との間に介在する領域上に絶縁膜を介してイオン感応膜が形成され、ドレイン領域上にドレイン電極が形成され、ソース領域上にソース電極が形成されたISFETと、ISFETのソース電極に接続された参照電極と、該参照電極とISFETのソース電極との間に挿入されISFETのしきい値電圧と略同じしきい値電圧を有するFETであってドレインおよびゲートが参照電極に接続され、ソースがISFETのソース電極に接続された定電圧用FETと、定電圧用FETのドレイン・ソース間に並列接続される電流制御用抵抗と電圧源との直列回路とを備えるので、参照電極の電位をISFETのしきい値電圧に略一致させることができるから、従来のように参照電極に印加する電圧を調整するような作業が不要で、半導体イオンセンサの感度特性が温度変化やISFETのしきい値電圧Vthのばらつきなどがあっても変わることなく、製品ごとの感度特性のばらつきが小さい安定した感度特性を有するという効果がある。
【0016】
請求項2の発明は、請求項1の発明において、定電圧用FETとISFETとは隣接して同一半導体基板に形成され、両FETのソース領域が共通化されているので、両FETのしきい値電圧を容易に一致させることができ製品ごとの感度特性のばらつきがより小さくなるとともに、センサの小型化を図ることができるという効果がある。
【図面の簡単な説明】
【図1】実施形態1を示す概略構成図である。
【図2】実施形態2を示す概略構成図である。
【図3】従来例を示す概略構成図である。
【符号の説明】
1 p形シリコン基板
2 ドレイン領域
3 ソース領域
4 チャネル部
5 ゲート絶縁膜
6 イオン感応膜
7 ドレイン電極
8 ソース電極
9 フィールド酸化膜
10 保護膜
20 定電圧用MOSFET
30 参照電極
R 電流制御用抵抗
V1 電圧源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor ion sensor.
[0002]
[Prior art]
Conventionally, a semiconductor ion sensor called an ISFET (Ion Sensitive Field Effect Transistor) has been provided as a device that converts the concentration (activity) of ions in a solution (measurement solution) into an electrical signal. In this type of semiconductor ion sensor, as shown in FIG. 3, a drain region 2 made of an n + layer and a source region 3 made of an n + layer are formed on the main surface side of a p-type silicon substrate 1 separately from each other. An ion sensitive film 6 is formed on the channel portion 4 between the two regions 2 and 3 via a gate insulating film 5. A drain electrode 7 is formed on the drain region 2, a source electrode 8 is formed on the source region 3, and a protective film 10 is formed on each of the electrodes 7 and 8. In FIG. 3, 9 indicates a field oxide film.
[0003]
In short, the ISFET having the configuration shown in FIG. 3 has an ion sensitive film 6 formed in a portion corresponding to a gate electrode formed on a channel portion between the drain and source of a field effect transistor via a gate insulating film. is there. Therefore, in the ISFET, the potential of the channel portion 4 changes according to the magnitude of the ion concentration, and the electric resistance of the channel portion 4 changes, and the current between the drain and the source changes.
[0004]
In this type of semiconductor ion sensor, a reference electrode 30 separate from the ISFET is connected to the source electrode 8 of the ISFET via the variable voltage source Va, and the potential of the solution (measurement solution) is made to the source potential of the ISFET through the reference electrode 30. On the other hand, since a voltage corresponding to the ion concentration is applied between the source and the gate by setting a constant value, measurement by the ammeter 40 inserted between the drain electrode 7 and the source electrode 8 via the voltage source V2 is performed. The ion concentration can be known from the current.
[0005]
[Problems to be solved by the invention]
By the way, in the semiconductor ion sensor having the above-described conventional configuration, the optimum voltage to be applied to the reference electrode 30 differs depending on the product due to the difference in threshold voltage Vth of the ISFET for each product, temperature characteristics, and the like. In order to maintain constant sensitivity and accuracy regardless of variations in the value voltage Vth and temperature changes, it is necessary to adjust the voltage applied to the reference electrode 30 by the variable voltage source Va each time, which is troublesome. .
[0006]
The present invention has been made in view of the above reasons, and an object of the present invention is to provide a semiconductor ion sensor having a stable sensitivity characteristic that does not require an operation of adjusting a voltage applied to a reference electrode.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, in order to achieve the above object, a drain region and a source region are formed apart from each other on the main surface side of a semiconductor substrate, and the region interposed between the drain region and the source region in the semiconductor substrate. An ISFET having an ion sensitive film formed thereon via an insulating film, a drain electrode formed on the drain region, a source electrode formed on the source region, a reference electrode connected to the source electrode of the ISFET, An FET that is inserted between the reference electrode and the source electrode of ISFET and has a threshold voltage substantially the same as the threshold voltage of ISFET, the drain and gate are connected to the reference electrode, and the source is connected to the source electrode of ISFET And a series circuit of a current control resistor and a voltage source connected in parallel between the drain and source of the constant voltage FET. Since the potential of the reference electrode can be made to substantially match the threshold voltage of the ISFET, there is no need to adjust the voltage applied to the reference electrode as in the prior art. The sensitivity characteristic of the sensor does not change even if there is a change in temperature or a variation in threshold voltage Vth of the ISFET, and the sensor has a stable sensitivity characteristic with a small variation in sensitivity characteristic for each product.
[0008]
According to a second aspect of the present invention, in the first aspect of the invention, the constant voltage FET and the ISFET are formed adjacent to each other on the same semiconductor substrate, and the source regions of both FETs are made common. The value voltages can be easily matched, and variations in sensitivity characteristics among products can be further reduced, and the size of the sensor can be reduced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
The basic configuration of the semiconductor ion sensor of the present embodiment is substantially the same as the conventional configuration shown in FIG. 3, and as shown in FIG. 1, the threshold of the ISFET is between the reference electrode 30 and the source electrode 8 of the ISFET. A constant voltage MOSFET 20 having a threshold voltage substantially the same as the value voltage and having a drain and gate connected to the reference electrode 30 and a source connected to the source electrode 8 of the ISFET is provided, and a current control resistor R and It is characterized in that a series circuit with the voltage source V1 is connected in parallel between the drain and source of the constant voltage MOSFET 20. It should be noted that the same components as those in the conventional configuration shown in FIG.
[0010]
Here, the constant voltage MOSFET 20 is short-circuited between the gate and drain, and the series circuit is connected in parallel between the drain and source. Therefore, the constant voltage MOSFET 20 functions as a constant voltage source, and the potential of the reference electrode 30 is always set to the drain of the ISFET. It can be kept at a potential at which current begins to flow.
[0011]
Thus, in the semiconductor ion sensor of the present embodiment, the potential of the reference electrode 30 can be made substantially equal to the threshold voltage of the ISFET, so that the voltage applied to the reference electrode 30 can be set to the variable voltage source Va ( (See Fig. 3) Adjustment is not necessary, and even if there is a change in temperature or variation in threshold voltage Vth of ISFET, the sensitivity characteristics do not change, and the variation in sensitivity characteristics from product to product is reduced. The characteristics are stable.
[0012]
(Embodiment 2)
The basic configuration of the semiconductor ion sensor of this embodiment is substantially the same as the conventional configuration shown in FIG. 1, and as shown in FIG. 2, the constant voltage MOSFET 20 of Embodiment 1 is a p-type silicon substrate on which an ISFET is formed. 1 in that the source region 3 is shared. That is, in this embodiment, the ISFET and the constant voltage MOSFET 20 are formed adjacent to each other in one chip. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.
[0013]
The constant voltage MOSFET 20 is formed on the main surface side of the p-type silicon substrate 1 on which the ISFET is formed, with a drain region 2 ′ made of an n + layer and a source region 3 separated from each other, and between the regions 2 ′ and 3. A gate electrode 16 is formed on the channel portion 4 ′ via a gate insulating film 15. A drain electrode 7 ′ is formed on the drain region 2 ′, a source electrode 8 is formed on the source region 3, and a protective film 10 is formed on each electrode 7, 8, 16. . Here, the source region 3 and the source electrode 8 of the constant voltage MOSFET 20 are common to the ISFET.
[0014]
Therefore, in the semiconductor ion sensor of this embodiment, the ISFET and the constant voltage MOSFET 20 are formed on the same chip and the source region 3 is shared, so that the threshold voltage of the ISFET and the threshold of the constant voltage MOSFET 20 are the same. The value voltage can be easily matched and the variation in sensitivity characteristics of each product becomes smaller, and the size of the sensor is smaller than when both FETs are formed on separate chips or when the source region 3 is not shared. Can be achieved.
[0015]
【The invention's effect】
According to the first aspect of the present invention, the drain region and the source region are formed on the main surface side of the semiconductor substrate so as to be separated from each other, and ions are interposed on the region interposed between the drain region and the source region in the semiconductor substrate via the insulating film. A sensitive film is formed, a drain electrode is formed on the drain region, a source electrode is formed on the source region, a reference electrode connected to the source electrode of the ISFET, the reference electrode and the source electrode of the ISFET, A constant voltage FET having a threshold voltage substantially the same as the threshold voltage of the ISFET and having a drain and a gate connected to the reference electrode and a source connected to the source electrode of the ISFET; Since it has a series circuit of a current control resistor and a voltage source connected in parallel between the drain and source of the constant voltage FET, the potential of the reference electrode is set to ISF Since it can be made substantially equal to the threshold voltage of T, there is no need to adjust the voltage applied to the reference electrode as in the prior art, and the sensitivity characteristics of the semiconductor ion sensor are affected by temperature changes and the threshold of ISFET. Even if there is a variation in the voltage Vth or the like, there is an effect that there is a stable sensitivity characteristic with a small variation in sensitivity characteristic among products.
[0016]
According to a second aspect of the present invention, in the first aspect of the invention, the constant voltage FET and the ISFET are formed adjacent to each other on the same semiconductor substrate, and the source regions of both FETs are made common. The value voltages can be easily matched to each other, so that variations in sensitivity characteristics among products are further reduced, and the sensor can be miniaturized.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment.
FIG. 2 is a schematic configuration diagram showing a second embodiment.
FIG. 3 is a schematic configuration diagram showing a conventional example.
[Explanation of symbols]
1 p-type silicon substrate 2 drain region 3 source region 4 channel portion 5 gate insulating film 6 ion sensitive film 7 drain electrode 8 source electrode 9 field oxide film 10 protective film 20 constant voltage MOSFET
30 Reference electrode R Current control resistor V1 Voltage source

Claims (2)

半導体基板の主表面側にドレイン領域とソース領域とが離間して形成され、半導体基板においてドレイン領域とソース領域との間に介在する領域上に絶縁膜を介してイオン感応膜が形成され、ドレイン領域上にドレイン電極が形成され、ソース領域上にソース電極が形成されたISFETと、ISFETのソース電極に接続された参照電極と、該参照電極とISFETのソース電極との間に挿入されISFETのしきい値電圧と略同じしきい値電圧を有するFETであってドレインおよびゲートが参照電極に接続され、ソースがISFETのソース電極に接続された定電圧用FETと、定電圧用FETのドレイン・ソース間に並列接続される電流制御用抵抗と電圧源との直列回路とを備えることを特徴とする半導体イオンセンサ。A drain region and a source region are formed apart from each other on the main surface side of the semiconductor substrate, and an ion sensitive film is formed through an insulating film on a region interposed between the drain region and the source region in the semiconductor substrate. An ISFET having a drain electrode formed on the region, a source electrode formed on the source region, a reference electrode connected to the source electrode of the ISFET, and an ISFET inserted between the reference electrode and the source electrode of the ISFET A FET having a threshold voltage substantially equal to the threshold voltage, the drain and gate of which are connected to the reference electrode, the source of which is connected to the source electrode of the ISFET, and the drain of the constant voltage FET A semiconductor ion sensor comprising: a current control resistor connected in parallel between sources; and a series circuit of a voltage source. 定電圧用FETとISFETとは隣接して同一半導体基板に形成され、両FETのソース領域が共通化されてなることを特徴とする請求項1記載の半導体イオンセンサ。2. The semiconductor ion sensor according to claim 1, wherein the constant voltage FET and the ISFET are formed adjacent to each other on the same semiconductor substrate, and the source regions of both FETs are made common.
JP36396198A 1998-12-22 1998-12-22 Semiconductor ion sensor Expired - Lifetime JP3982090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36396198A JP3982090B2 (en) 1998-12-22 1998-12-22 Semiconductor ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36396198A JP3982090B2 (en) 1998-12-22 1998-12-22 Semiconductor ion sensor

Publications (2)

Publication Number Publication Date
JP2000187018A JP2000187018A (en) 2000-07-04
JP3982090B2 true JP3982090B2 (en) 2007-09-26

Family

ID=18480631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36396198A Expired - Lifetime JP3982090B2 (en) 1998-12-22 1998-12-22 Semiconductor ion sensor

Country Status (1)

Country Link
JP (1) JP3982090B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100334443C (en) * 2003-06-02 2007-08-29 友达光电股份有限公司 Ion induced field effect transistor and producing method thereof
DE10325718B4 (en) * 2003-06-06 2006-07-06 Micronas Gmbh Semiconductor sensor with a FET and method for driving such a semiconductor sensor
GB2416210B (en) * 2004-07-13 2008-02-20 Christofer Toumazou Ion sensitive field effect transistors
CN114441611B (en) * 2021-12-22 2024-03-26 天津大学 Wide dynamic measurement range glucose sensor based on organic field effect transistor

Also Published As

Publication number Publication date
JP2000187018A (en) 2000-07-04

Similar Documents

Publication Publication Date Title
US5103277A (en) Radiation hard CMOS circuits in silicon-on-insulator films
US5583462A (en) Method and apparatus for multiplexing devices having long thermal time constants
US7952333B2 (en) Circuit and method for determining current in a load
JPH08334534A (en) Circuit device for detection of load current of power semiconductor entity
US6448811B1 (en) Integrated circuit current reference
EP1028526B1 (en) Switching device with weak-current detecting function
JPH01268065A (en) Vertical field-effect transistor
US4634961A (en) Method and circuit for the temperature compensation of a hall element
US20160211256A1 (en) Semiconductor device
JP3982090B2 (en) Semiconductor ion sensor
KR950704817A (en) Linear Voltage Controlled Resistor [LINEAR VOLTAGE-CONTROLLED RESISTANCE ELEMENT]
US4097844A (en) Output circuit for a digital correlator
US4001612A (en) Linear resistance element for lsi circuitry
US20230369421A1 (en) Threshold voltage adjustment using adaptively biased shield plate
US8482320B2 (en) Current detection circuit and semiconductor integrated circuit
US3663888A (en) All-fet linear voltage difference amplifier
JP4717246B2 (en) Semiconductor device
JPH06288972A (en) Ion sensor and ion measuring method
JPS5926964B2 (en) Reference voltage generator
WO1999007067A1 (en) Offset adjustment of cmos matched pairs with body voltage
JP2000187016A (en) Semiconductor ion sensor
JP2771574B2 (en) Semiconductor device
JP2000187017A (en) Semiconductor ion sensor
JP4245102B2 (en) Threshold detection circuit, threshold adjustment circuit, and square circuit
JPH08139200A (en) Transistor gate driving voltage generator and manufacture of the transistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350