JP4717246B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4717246B2
JP4717246B2 JP2001111468A JP2001111468A JP4717246B2 JP 4717246 B2 JP4717246 B2 JP 4717246B2 JP 2001111468 A JP2001111468 A JP 2001111468A JP 2001111468 A JP2001111468 A JP 2001111468A JP 4717246 B2 JP4717246 B2 JP 4717246B2
Authority
JP
Japan
Prior art keywords
type
resistor
semiconductor device
voltage
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001111468A
Other languages
Japanese (ja)
Other versions
JP2002313927A (en
Inventor
博昭 鷹巣
潤 小山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2001111468A priority Critical patent/JP4717246B2/en
Priority to US10/116,666 priority patent/US6653688B2/en
Publication of JP2002313927A publication Critical patent/JP2002313927A/en
Application granted granted Critical
Publication of JP4717246B2 publication Critical patent/JP4717246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置、特に抵抗体を有する半導体装置や、抵抗体を使用したブリーダー抵抗回路及び該ブリーダー抵抗回路を有する半導体装置に関する。
【0002】
【従来の技術】
従来、ポリシリコン等の半導体薄膜で形成された抵抗体や、それらを使用したブリーダー抵抗回路は数多く使用されているが、N型あるいはP型のどちらか一方の導電型の半導体薄膜で形成されたものが知られていた。MOS型トランジスタのゲート電極はN型のポリシリコン薄膜が一般的であり、一部、パフォーマンスを重視する用途でNMOSにはN型の、PMOSにはP型のゲート電極を与えるいわゆる同極ゲート電極が知られていた。また、レーザートリミングによりポリシリコンヒューズを切断して、ブリーダー抵抗回路の接続を変化させることで、所望の電圧の分圧比を得る方法が知られていた。そして、これらを利用してボルテージディテクタや、ボルテージレギュレータなどのICが作られていた。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の薄膜抵抗体は、樹脂パッケージ化した場合等、薄膜抵抗体に応力がかかった場合には抵抗値が変化してしまい、ブリーダー抵抗回路では、樹脂パッケージ後に、しばしば分圧比が変動してしまうという問題点があった。また、従来のレーザートリミング法では、ブリーダー抵抗回路の他に、レーザービームによるトリミングのためのヒューズを設ける必要があった。
【0004】
本発明は、上記課題を解消して、パッケージ後も初期の抵抗値を保持し、ブリーダー抵抗回路においては正確な分圧比を保持できる、高精度のブリーダー抵抗回路を得ること、また、従来必要だったヒューズを設置することなく、小型で高精度な半導体装置、例えばボルテージディテクタ、ボルテージレギュレータ等の半導体装置を高いパフォーマンスで安価に提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の半導体装置が上記目的を達成するために採用した第1の手段は、抵抗体およびそれらを使用したブリーダー抵抗回路の抵抗体は、P型の半導体で形成されたP型抵抗体と、N型の半導体で形成されたN型抵抗体とから構成するようにした。さらにブリーダー抵抗回路において、1単位となる抵抗値はP型抵抗体と、N型抵抗体とを組み合せて作られた抵抗値によって規定するようにしたことにより、以下に述べるP型抵抗体と、N型抵抗体とのピエゾ効果による抵抗値の変化を互いに相殺するようにしたことを特徴とする。
【0006】
以下にピエゾ効果による抵抗値の変化とブリーダー抵抗回路に及ぼす影響を述べる。
【0007】
抵抗体に応力を加えた場合には、いわゆるピエゾ効果によって、抵抗体の抵抗値が変化してしまうが、P型抵抗体と、N型抵抗体とでは抵抗値の変化の方向が逆になる。これは本発明者の実験によっても確かめられている。例えばP型抵抗体の抵抗値は減少し、N型抵抗体の抵抗値は増加する(変化の向きは応力の方向によって変わる)。
【0008】
ICを樹脂パッケージ化すると応力が生じるので上述のようにピエゾ効果によって、抵抗体の抵抗値は変化する。ブリーダ抵抗回路は正確な分圧比を得るためのものであるが、個々の抵抗体の抵抗値が変化してしまうので分圧比も変動してしまう。
【0009】
本発明による抵抗体は、P型の半導体で形成されたP型抵抗体と、N型の半導体で形成されたN型抵抗体とから構成しているので応力がかかった場合でも抵抗値の変化を防止できる。またブリーダー抵抗回路においては、1単位となる抵抗値は、P型抵抗体と、N型抵抗体とを組み合せて作られた抵抗値によって規定するようにしたので、応力がかかったばあいでも、個々の抵抗体の抵抗値変化を相殺し、正確な分圧比を保つことができる。
【0010】
本発明の半導体装置が上記目的を達成するために採用した第2の手段は、P型抵抗体は低電位側に、前記N型抵抗体は高電位側に配置し、互いに絶縁膜により分離し、そのままでは電流が流れない状態としておき、必要な部分のみにレーザービームを絶縁膜部に照射することにより、絶縁性を破壊して導通を可能にするようにする。これにより、従来必要であったヒューズを不要としたことを特徴とする。
【0011】
本発明の半導体装置が上記目的を達成するために採用した第3の手段は、MOS型トランジスタのゲート電極とP型抵抗体を同一のポリシリコン薄膜により形成し、P型抵抗体の金属配線との電気的接続を行うための高濃度の不純物領域は、MOS型トランジスタのゲート電極と同一の不純物及び不純物濃度を有するポリシリコン薄膜により形成したことを特徴とする。これにより、工程増なしに、安価にP型MOSトランジスタのパフォーマンスを向上させることができる。
【0012】
【作用】
本発明の半導体装置の抵抗体は、P型の半導体で形成されたP型抵抗体と、N型の半導体で形成されたN型抵抗体とから構成されているので、樹脂パッケージ化などで応力がかかった場合でも、個々の抵抗体の抵抗値変化を相殺し、初期の抵抗値を保持する事ができる。また、ブリーダー抵抗回路において、1単位となる抵抗値は、P型抵抗体と、N型抵抗体とを組み合せて作られた抵抗値によって規定するようにしたので、正確な分圧比を保つことができる。また、P型抵抗体は低電位側に、N型抵抗体は高電位側に絶縁膜を介して隣接して配置し、レーザービーム等を絶縁膜部に照射することにより、絶縁性を破壊して導通を可能にするようにしたので、従来必要であったヒューズを不要とすることができる。また、MOS型トランジスタのゲート電極とP型抵抗体とを同一のポリシリコン薄膜により形成し、P型抵抗体の金属配線との電気的接続を行うための高濃度の不純物領域は、MOS型トランジスタのゲート電極と同一の不純物及び不純物濃度を有するポリシリコン薄膜により形成したので、P型MOSトランジスタのパフォーマンスを工程増なしに向上させることができる。
【0013】
このようなブリーダー抵抗回路を用ることにより、小型で高精度な半導体装置、例えばボルテージディテクタ、ボルテージレギュレータ等の半導体装置を得ることができる。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施例を説明する。
【0015】
図1は本発明の半導体装置のポリシリコン薄膜抵抗体の1実施例を示す模式的断面図である。
【0016】
半導体基板101上には第1の絶縁膜102が形成され、第1の絶縁膜102上には、濃いP型の不純物を含むP型の低抵抗領域701に挟まれたP型の高抵抗領域702を有するP型ポリシリコン抵抗体703及び、濃いN型の不純物を含むN型の低抵抗領域704に挟まれたN型の高抵抗領域705を有するN型ポリシリコン抵抗体706が、P型の低抵抗領域701の1つとN型の低抵抗領域704の1つとが薄い絶縁膜815を介して接するように配置され、P型ポリシリコン抵抗体703とN型ポリシリコン抵抗体706とが1対のペアとなった抵抗体707が形成される。また、N型ポリシリコン抵抗体706と接していない側のP型の低抵抗領域701には、アルミニウムからなる配線810が、また、P型ポリシリコン抵抗体703と接していない側のN型の低抵抗領域704には、アルミニウムからなる配線811が接続される。ここで配線810は例えばVSS側へ、配線811はVDD側へと接続され、配線810の方が、配線811よりも低い電位に接続されるようにする。さらに、抵抗体707の上には、窒化シリコン膜等からなる保護膜813が、レーザービームを照射して、絶縁膜815にダメージを与え、絶縁性を無くすための、P型の低抵抗領域701の1つとN型の低抵抗領域704の1つとが接するエリア814上を除いて形成される。
【0017】
ここで、P型ポリシリコン抵抗体703とN型ポリシリコン抵抗体706との組み合わせで得られた抵抗体707の抵抗値は、樹脂パッケージ化などで応力がかかった場合でも、P型ポリシリコン抵抗体703の抵抗値変化とN型ポリシリコン抵抗体706の抵抗値変化を互いに相殺できるので初期の抵抗値を保持する事ができる。
【0018】
図1では、1つのP型ポリシリコン抵抗体703と1つのN型ポリシリコン抵抗体706とを組み合わせた
例のみを示したが、ブリーダー抵抗回路は、複数のP型ポリシリコン抵抗体703とN型ポリシリコン抵抗体706を組み合わせて得られた抵抗体707によって構成されている。
【0019】
また、図1に示したP型ポリシリコン抵抗体703とN型ポリシリコン抵抗体706との組み合わせで得られた抵抗体707をブリーダ回路の1単位として規定し、抵抗体707を複数個形成してブリーダ回路全体を構成するようにすると、樹脂パッケージ化などで応力がかかった場合でも、正確な分圧比を保つことができる。このようなブリーダー抵抗回路を用ることにより、高精度な半導体装置、例えばボルテージディテクタ、ボルテージレギュレータ等の半導体装置を得ることができる。
【0020】
さらに、図1では、ポリシリコン薄膜抵抗体を用いた例を示したが、本発明はこれに限定するものではなく、単結晶薄膜抵抗体や、シリコン基板中に形成した拡散抵抗体等、P型とN型の抵抗体を一体化して形成できれば適用可能である。
【0021】
また、図1に示した実施例によれば、ブリーダー抵抗回路の所望の分圧比を得るために、抵抗体707に対してレーザートリミングを行なえば良いことになるので、従来必要であったレーザービームによる切断を行なうためのヒューズは不要になる。なお、図1の実施例では、抵抗体707の上には、窒化シリコン膜等からなる保護膜813が、レーザービームを照射して、絶縁膜815にダメージを与え、絶縁性を無くすための、P型の低抵抗領域701の1つとN型の低抵抗領域704の1つとが接するエリア814上を除いて形成されるようにしたが、保護膜813が存在しても、レーザービームによる絶縁性の破壊が可能である場合は、P型の低抵抗領域701の1つとN型の低抵抗領域704の1つとが接するエリア814上にも保護膜813を形成して構わない。
【0022】
また、図示しないが、抵抗体707と同一チップに搭載されるMOS型トランジスタのゲート電極はP型ポリシリコン抵抗体703と同一のポリシリコン薄膜により形成されている。さらにMOS型トランジスタのゲート電極は濃いP型の不純物を含むP型の低抵抗領域701と同一の不純物および不純物濃度を有するP型ポリシリコン薄膜であり、その形成工程は、P型ポリシリコン抵抗体703内におけるP型の低抵抗領域701と全く同一である。このため、特別な工程を増加させることなく、特にP型MOSトランジスタのパフォーマンス向上に適したP型の不純物を有するゲート電極を形成することが出来る。この際、N型MOSトランジスタのパフォーマンスは若干のダウンが見られる場合もあるが、後述するようにボルテージレギュレータなどの電源コントロール用ICの場合、ほとんどの場合はP型MOSトランジスタをドライバトランジスタとして用いるのでこちらのほうが好都合である場合が多い。
【0023】
図2は本発明によるブリーダ抵抗回路を用いたボルテージディテクタの一実施例のブロック図である。
【0024】
簡単のため単純な回路の例を示したが、実際の製品には必要に応じて機能を追加すればよい。
【0025】
ボルテージディテクタの基本的な回路構成要素は電流源903、基準電圧回路901、ブリーダー抵抗回路902、誤差増幅器904であり他にインバータ906、N型トランジスタ905および908、P型トランジスタ907などが付加されている。以下に簡単に動作の一部を説明をする。
【0026】
VDDが所定の解除電圧以上のときはN型トランジスタ905、908がOFFし、P型トランジスタ907はONとなり出力OUTにはVDDが出力される。
このとき誤差増幅器904の入力電圧は(RB+RC)/(RA+RB+RC)*VDDとなる。
【0027】
VDDが低下し検出電圧以下になると出力OUTにはVSSが出力される。このときN型トランジスタ905はONで、誤差増幅器904の入力電圧はRB/(RA+RB)*VDDとなる。
【0028】
このように、基本的な動作は、基準電圧回路901で発生した基準電圧とブリーダー抵抗回路902で分圧された電圧とを誤差増幅器904で比較することにより行われる。従ってブリーダー抵抗回路902で分圧された電圧の精度がきわめて重要となる。ブリーダー抵抗回路902の分圧精度が悪いと誤差増幅器904への入力電圧がバラツキ、所定の解除あるいは検出電圧が得られなくなってしまう。本発明によるブリーダー抵抗回路を用いることによりICを樹脂パッケージした後も高精度の分圧が可能となるためICとしての製品歩留まりが向上したり、より高精度なボルテージディテクタを製造する事が可能となる。
【0029】
図3は本発明によるブリーダ抵抗回路を用いたボルテージレギュレータの一実施例のブロック図である。
【0030】
簡単のため単純な回路の例を示したが、実際の製品には必要に応じて機能を追加すればよい。
【0031】
ボルテージレギュレータの基本的な回路構成要素は電流源903、基準電圧回路901、ブリーダー抵抗回路902、誤差増幅器904そして電流制御トランジスタとして働くP型トランジスタ910などである。以下に簡単に動作の一部を説明をする。
【0032】
誤差増幅器904は、ブリーダー抵抗回路902によって分圧された電圧と基準電圧回路901で発生した基準電圧とを比較し、入力電圧VINや温度変化の影響を受けない一定の出力電圧VOUTを得るために必要なゲート電圧をP型トランジスタ910に供給する。ボルテージレギュレータにおいても図2で説明したボルテージディテクタの場合と同様に、基本的な動作は、基準電圧回路901で発生した基準電圧とブリーダー抵抗回路902で分圧された電圧とを誤差増幅器904で比較することにより行われる。従ってブリーダー抵抗回路902で分圧された電圧の精度がきわめて重要となる。ブリーダー抵抗回路902の分圧精度が悪いと誤差増幅器904への入力電圧がバラツキ、所定の出力電圧VOUTが得られなくなってしまう。本発明によるブリーダー抵抗回路を用いることによりICを樹脂パッケージした後も高精度の分圧が可能となるためICとしての製品歩留まりが向上したり、より高精度なボルテージレギュレータを製造する事が可能となる。
【0033】
また、P型トランジスタ910は一般にドライバトランジスタと呼ばれるもので、高い電流駆動能力が要求されるものである。本発明では、ゲート電極としてP型の濃い不純物濃度のポリシリコン薄膜が用いられるため、表面チャネル型のデバイスとすることが可能となり、一定のリーク電流に抑えるためのトランジスタのゲート長(いわゆるL長)を一般のN型ポリシリコン薄膜のゲート電極を有するP型MOSトランジスタに比べて短くすることができるようになる。したがって高い電流駆動能力を発揮することが出来る。
【0034】
【発明の効果】
上述したように、本発明の半導体装置の薄膜抵抗体は、P型の半導体薄膜で形成されたP型薄膜抵抗体と、N型の半導体薄膜で形成されたN型薄膜抵抗体とから構成されているので、樹脂パッケージ化などで応力がかかった場合でも、個々の抵抗体の抵抗値変化を相殺し、初期の抵抗値を保持する事ができる。また、ブリーダー抵抗回路において、1単位となる抵抗値は、P型薄膜抵抗体と、N型薄膜抵抗体とを組み合せて作られた抵抗値によって規定するようにしたので、正確な分圧比を保つことができる。また、P型抵抗体は高電位側に、N型抵抗体は低電位側に配置し、レーザービーム等を絶縁膜部に照射することにより、絶縁性を破壊して導通を可能にするようにしたので、従来必要であったヒューズを不要とすることができる。また、P型MOSトランジスタであるドライバトランジスタの電流駆動能力を特別な工程増加無しで、向上させることができる。
【0035】
このようなブリーダー抵抗回路を用ることにより、小型で高精度な半導体装置、例えばボルテージディテクタ、ボルテージレギュレータ等の半導体装置を得ることができるという効果がある。
【図面の簡単な説明】
【図1】本発明の半導体装置の半導体薄膜抵抗体の1実施例を示す模式的断面図である。
【図2】本発明によるブリーダ抵抗回路を用いたボルテージディテクタの一実施例のブロック図である。
【図3】本発明によるブリーダ抵抗回路を用いたボルテージレギュレータの一実施例ののブロック図である。
【符号の説明】
101 半導体基板
102 第1の絶縁膜
701 P型の低抵抗領域
702 P型の高抵抗領域
703 P型ポリシリコン抵抗体
704 N型の低抵抗領域
705 N型の高抵抗領域
706 N型ポリシリコン抵抗体
707 抵抗体
801 第2の絶縁膜
810 配線
811 配線
814 P型の低抵抗領域701の1つとN型の低抵抗領域704の1つ とが接するエリア
815 絶縁膜
901 基準電圧回路
902 ブリーダー抵抗回路
903 電流源
904 誤差増幅器
905 N型トランジスタ
906 インバータ
907 P型トランジスタ
908 N型トランジスタ
909 寄生ダイオード
910 P型トランジスタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device, in particular, a semiconductor device having a resistor, a bleeder resistance circuit using the resistor, and a semiconductor device having the bleeder resistance circuit.
[0002]
[Prior art]
Conventionally, many resistors formed of semiconductor thin films such as polysilicon and bleeder resistor circuits using them have been used, but they were formed of either N-type or P-type semiconductor thin films. Things were known. The gate electrode of the MOS transistor is generally an N-type polysilicon thin film, and so-called a homopolar gate electrode that provides an N-type gate electrode for NMOS and a P-type gate electrode for PMOS for some performance-oriented applications. Was known. Further, there has been known a method of obtaining a desired voltage division ratio by cutting a polysilicon fuse by laser trimming to change connection of a bleeder resistance circuit. And ICs such as a voltage detector and a voltage regulator have been made using these.
[0003]
[Problems to be solved by the invention]
However, the resistance value of a conventional thin film resistor changes when a stress is applied to the thin film resistor, such as when it is made into a resin package. In a bleeder resistor circuit, the voltage dividing ratio often fluctuates after the resin package. There was a problem that it was. Further, in the conventional laser trimming method, it is necessary to provide a fuse for trimming with a laser beam in addition to a bleeder resistance circuit.
[0004]
The present invention eliminates the above-described problems, and obtains a highly accurate bleeder resistance circuit that retains an initial resistance value after packaging and can maintain an accurate voltage dividing ratio in the bleeder resistance circuit. It is an object of the present invention to provide a small and highly accurate semiconductor device such as a voltage detector and a voltage regulator with high performance and low cost without installing a fuse.
[0005]
[Means for Solving the Problems]
The first means employed by the semiconductor device of the present invention to achieve the above object is that the resistor and the resistor of the bleeder resistance circuit using them are a P-type resistor formed of a P-type semiconductor, And an N-type resistor formed of an N-type semiconductor. Further, in the bleeder resistance circuit, the resistance value as one unit is defined by the resistance value formed by combining the P-type resistor and the N-type resistor, so that the P-type resistor described below, It is characterized in that the change in resistance value due to the piezo effect with the N-type resistor cancels each other.
[0006]
The following describes the change in resistance due to the piezo effect and the effect on the bleeder resistance circuit.
[0007]
When stress is applied to the resistor, the resistance value of the resistor changes due to the so-called piezo effect, but the direction of change in resistance value is reversed between the P-type resistor and the N-type resistor. . This has also been confirmed by experiments of the present inventors. For example, the resistance value of the P-type resistor decreases and the resistance value of the N-type resistor increases (the direction of change varies depending on the direction of stress).
[0008]
Since stress is generated when the IC is packaged in a resin package, the resistance value of the resistor changes due to the piezoelectric effect as described above. The bleeder resistance circuit is used to obtain an accurate voltage dividing ratio. However, since the resistance value of each resistor changes, the voltage dividing ratio also varies.
[0009]
Since the resistor according to the present invention is composed of a P-type resistor formed of a P-type semiconductor and an N-type resistor formed of an N-type semiconductor, the resistance value changes even when stress is applied. Can be prevented. In the bleeder resistance circuit, the resistance value as one unit is defined by the resistance value formed by combining the P-type resistor and the N-type resistor, so even if stress is applied, It is possible to cancel changes in the resistance values of individual resistors and maintain an accurate voltage division ratio.
[0010]
The second means employed by the semiconductor device of the present invention to achieve the above object is that the P-type resistor is disposed on the low potential side and the N-type resistor is disposed on the high potential side, and separated from each other by an insulating film. In this state, a current does not flow, and only a necessary portion is irradiated with a laser beam on the insulating film portion, thereby destroying the insulating property and enabling conduction. As a result, a fuse that has been conventionally required is unnecessary.
[0011]
The third means employed by the semiconductor device of the present invention to achieve the above object is that the gate electrode of the MOS transistor and the P-type resistor are formed of the same polysilicon thin film, and the metal wiring of the P-type resistor The high-concentration impurity region for the electrical connection is formed of a polysilicon thin film having the same impurity and impurity concentration as the gate electrode of the MOS transistor. Thereby, the performance of the P-type MOS transistor can be improved at low cost without increasing the number of processes.
[0012]
[Action]
The resistor of the semiconductor device of the present invention is composed of a P-type resistor formed of a P-type semiconductor and an N-type resistor formed of an N-type semiconductor. Even when the resistance is applied, it is possible to cancel the resistance value changes of the individual resistors and maintain the initial resistance value. In the bleeder resistance circuit, the resistance value as one unit is defined by the resistance value formed by combining the P-type resistor and the N-type resistor, so that an accurate voltage division ratio can be maintained. it can. In addition, the P-type resistor is disposed on the low potential side and the N-type resistor is disposed adjacent to the high potential side via an insulating film, and the insulating film is destroyed by irradiating the insulating film portion with a laser beam or the like. Therefore, it is possible to eliminate the need for a fuse which has been conventionally required. Further, the MOS transistor has a gate electrode and a P-type resistor formed of the same polysilicon thin film, and a high-concentration impurity region for electrical connection with the metal wiring of the P-type resistor Since the gate electrode is formed of a polysilicon thin film having the same impurity and impurity concentration, the performance of the P-type MOS transistor can be improved without increasing the number of steps.
[0013]
By using such a bleeder resistance circuit, a small and highly accurate semiconductor device, for example, a semiconductor device such as a voltage detector or a voltage regulator can be obtained.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a polysilicon thin film resistor of a semiconductor device of the present invention.
[0016]
A first insulating film 102 is formed on the semiconductor substrate 101, and a P-type high-resistance region sandwiched between P-type low-resistance regions 701 containing a dense P-type impurity is formed on the first insulating film 102. A P-type polysilicon resistor 703 having 702 and an N-type polysilicon resistor 706 having an N-type high-resistance region 705 sandwiched between N-type low-resistance regions 704 containing dense N-type impurities are P-type. One of the low-resistance regions 701 and one of the N-type low-resistance regions 704 are arranged so as to be in contact with each other through a thin insulating film 815, and the P-type polysilicon resistor 703 and the N-type polysilicon resistor 706 are 1 A pair of resistors 707 is formed. Also, in the P-type low resistance region 701 on the side not in contact with the N-type polysilicon resistor 706, a wiring 810 made of aluminum is also provided on the side not in contact with the P-type polysilicon resistor 703. A wiring 811 made of aluminum is connected to the low resistance region 704. Here, for example, the wiring 810 is connected to the VSS side and the wiring 811 is connected to the VDD side, and the wiring 810 is connected to a potential lower than that of the wiring 811. Further, on the resistor 707, a protective film 813 made of a silicon nitride film or the like irradiates a laser beam, damages the insulating film 815, and eliminates the insulating property. And one of the N-type low-resistance regions 704 are formed except on the area 814.
[0017]
Here, the resistance value of the resistor 707 obtained by combining the P-type polysilicon resistor 703 and the N-type polysilicon resistor 706 is the P-type polysilicon resistance even when stress is applied due to resin packaging or the like. Since the change in resistance value of the body 703 and the change in resistance value of the N-type polysilicon resistor 706 can be canceled out, the initial resistance value can be maintained.
[0018]
Although FIG. 1 shows only an example in which one P-type polysilicon resistor 703 and one N-type polysilicon resistor 706 are combined, the bleeder resistor circuit includes a plurality of P-type polysilicon resistors 703 and N The resistor 707 is obtained by combining the type polysilicon resistor 706.
[0019]
Further, a resistor 707 obtained by combining the P-type polysilicon resistor 703 and the N-type polysilicon resistor 706 shown in FIG. 1 is defined as one unit of the bleeder circuit, and a plurality of resistors 707 are formed. If the entire bleeder circuit is configured, an accurate voltage division ratio can be maintained even when stress is applied due to resin packaging. By using such a bleeder resistance circuit, a highly accurate semiconductor device, for example, a semiconductor device such as a voltage detector or a voltage regulator can be obtained.
[0020]
Further, although an example using a polysilicon thin film resistor is shown in FIG. 1, the present invention is not limited to this, and a single crystal thin film resistor, a diffusion resistor formed in a silicon substrate, etc. The present invention is applicable if the mold and the N-type resistor can be formed integrally.
[0021]
Further, according to the embodiment shown in FIG. 1, laser trimming may be performed on the resistor 707 in order to obtain a desired voltage dividing ratio of the bleeder resistance circuit. A fuse for cutting by is not required. In the embodiment of FIG. 1, a protective film 813 made of a silicon nitride film or the like is irradiated on the resistor 707 with a laser beam to damage the insulating film 815 and eliminate insulation. It is formed except on the area 814 where one of the P-type low-resistance regions 701 and one of the N-type low-resistance regions 704 are in contact with each other. In this case, the protective film 813 may be formed also on the area 814 where one of the P-type low resistance regions 701 and one of the N-type low resistance regions 704 are in contact with each other.
[0022]
Although not shown, the gate electrode of the MOS transistor mounted on the same chip as the resistor 707 is formed of the same polysilicon thin film as the P-type polysilicon resistor 703. Further, the gate electrode of the MOS transistor is a P-type polysilicon thin film having the same impurity and impurity concentration as the P-type low-resistance region 701 containing a dense P-type impurity. This is exactly the same as the P-type low resistance region 701 in 703. Therefore, it is possible to form a gate electrode having a P-type impurity suitable for improving the performance of the P-type MOS transistor without increasing the number of special steps. In this case, the performance of the N-type MOS transistor may be slightly reduced. However, as will be described later, in the case of a power supply control IC such as a voltage regulator, in most cases, a P-type MOS transistor is used as a driver transistor. This is often more convenient.
[0023]
FIG. 2 is a block diagram of an embodiment of a voltage detector using a bleeder resistance circuit according to the present invention.
[0024]
For simplicity, an example of a simple circuit is shown. However, functions may be added to actual products as necessary.
[0025]
The basic circuit components of the voltage detector are a current source 903, a reference voltage circuit 901, a bleeder resistance circuit 902, and an error amplifier 904. In addition, an inverter 906, N-type transistors 905 and 908, a P-type transistor 907, and the like are added. Yes. A part of the operation will be briefly described below.
[0026]
When VDD is equal to or higher than a predetermined release voltage, the N-type transistors 905 and 908 are turned off, the P-type transistor 907 is turned on, and VDD is output to the output OUT.
At this time, the input voltage of the error amplifier 904 is (RB + RC) / (RA + RB + RC) * VDD.
[0027]
When VDD falls below the detection voltage, VSS is output to the output OUT. At this time, the N-type transistor 905 is ON, and the input voltage of the error amplifier 904 is RB / (RA + RB) * VDD.
[0028]
Thus, the basic operation is performed by comparing the reference voltage generated by the reference voltage circuit 901 with the voltage divided by the bleeder resistance circuit 902 by the error amplifier 904. Therefore, the accuracy of the voltage divided by the bleeder resistance circuit 902 is extremely important. If the voltage dividing accuracy of the bleeder resistance circuit 902 is poor, the input voltage to the error amplifier 904 varies, and a predetermined release or detection voltage cannot be obtained. By using the bleeder resistance circuit according to the present invention, it is possible to perform high-precision voltage division even after resin packaging of the IC, so that the product yield as an IC can be improved and a more accurate voltage detector can be manufactured. Become.
[0029]
FIG. 3 is a block diagram of an embodiment of a voltage regulator using a bleeder resistance circuit according to the present invention.
[0030]
For simplicity, an example of a simple circuit is shown. However, functions may be added to actual products as necessary.
[0031]
The basic circuit components of the voltage regulator are a current source 903, a reference voltage circuit 901, a bleeder resistance circuit 902, an error amplifier 904, and a P-type transistor 910 that functions as a current control transistor. A part of the operation will be briefly described below.
[0032]
The error amplifier 904 compares the voltage divided by the bleeder resistance circuit 902 with the reference voltage generated by the reference voltage circuit 901, and obtains a constant output voltage VOUT that is not affected by the input voltage VIN or temperature change. A necessary gate voltage is supplied to the P-type transistor 910. In the voltage regulator, as in the case of the voltage detector described with reference to FIG. 2, the basic operation is to compare the reference voltage generated by the reference voltage circuit 901 with the voltage divided by the bleeder resistance circuit 902 by the error amplifier 904. Is done. Therefore, the accuracy of the voltage divided by the bleeder resistance circuit 902 is extremely important. If the voltage dividing accuracy of the bleeder resistance circuit 902 is poor, the input voltage to the error amplifier 904 varies and a predetermined output voltage VOUT cannot be obtained. The use of the bleeder resistance circuit according to the present invention enables high-precision voltage division even after resin packaging of the IC, thereby improving the product yield as an IC and making it possible to manufacture a higher-precision voltage regulator. Become.
[0033]
The P-type transistor 910 is generally called a driver transistor, and requires a high current driving capability. In the present invention, since a polysilicon thin film having a high P-type impurity concentration is used as the gate electrode, a surface channel type device can be obtained, and the transistor gate length (so-called L length) for suppressing a constant leakage current can be obtained. ) Can be shortened as compared with a P-type MOS transistor having a gate electrode of a general N-type polysilicon thin film. Therefore, a high current driving capability can be exhibited.
[0034]
【The invention's effect】
As described above, the thin film resistor of the semiconductor device of the present invention is composed of a P-type thin film resistor formed of a P-type semiconductor thin film and an N-type thin film resistor formed of an N-type semiconductor thin film. Therefore, even when stress is applied due to resin packaging or the like, it is possible to cancel the resistance value change of each resistor and to maintain the initial resistance value. Further, in the bleeder resistance circuit, the resistance value as one unit is defined by the resistance value formed by combining the P-type thin film resistor and the N-type thin film resistor, so that an accurate voltage dividing ratio is maintained. be able to. Further, the P-type resistor is arranged on the high potential side, the N-type resistor is arranged on the low potential side, and the insulating film portion is irradiated with a laser beam or the like so that the insulation is destroyed and conduction is enabled. As a result, it is possible to eliminate the need for a fuse that has been conventionally required. Further, the current driving capability of the driver transistor, which is a P-type MOS transistor, can be improved without any special process increase.
[0035]
By using such a bleeder resistance circuit, there is an effect that a small and highly accurate semiconductor device, for example, a semiconductor device such as a voltage detector or a voltage regulator can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing one embodiment of a semiconductor thin film resistor of a semiconductor device of the present invention.
FIG. 2 is a block diagram of an embodiment of a voltage detector using a bleeder resistance circuit according to the present invention.
FIG. 3 is a block diagram of an embodiment of a voltage regulator using a bleeder resistance circuit according to the present invention.
[Explanation of symbols]
101 Semiconductor substrate 102 First insulating film 701 P-type low resistance region 702 P-type high resistance region 703 P-type polysilicon resistor 704 N-type low resistance region 705 N-type high resistance region 706 N-type polysilicon resistance Body 707 Resistor 801 Second insulating film 810 Wiring 811 Wiring 814 Area 815 where one of P-type low resistance region 701 and one of N-type low resistance region 704 are in contact 815 Insulating film 901 Reference voltage circuit 902 Breeder resistance circuit 903 Current source 904 Error amplifier 905 N-type transistor 906 Inverter 907 P-type transistor 908 N-type transistor 909 Parasitic diode 910 P-type transistor

Claims (5)

MOS型トランジスタと、抵抗体とを有する半導体装置において、前記抵抗体は、P型の半導体で形成されたP型抵抗体と、N型の半導体で形成されたN型抵抗体とが絶縁膜を介して隣接し配置されて成り、前記P型抵抗体は低電位側に、前記N型抵抗体は高電位側に配置されており、レーザービーム等を前記絶縁膜部に照射することにより、絶縁性を破壊して導通を可能にすることを特徴とする半導体装置。In a semiconductor device having a MOS transistor and a resistor, the resistor includes an insulating film formed by a P-type resistor formed of a P-type semiconductor and an N-type resistor formed of an N-type semiconductor. The P-type resistor is arranged on the low potential side and the N-type resistor is arranged on the high potential side, and the insulating film portion is irradiated by irradiating it with a laser beam or the like. A semiconductor device characterized in that the electrical property is destroyed and conduction is enabled. 前記抵抗体はポリシリコン薄膜により形成されていることを特徴とする請求項1記載の半導体装置。The semiconductor device according to claim 1, wherein the resistor is formed of a polysilicon thin film. 前記MOS型トランジスタのゲート電極と前記P型抵抗体とは、同一のポリシリコン薄膜により形成され、前記P型抵抗体の金属配線との電気的接続を行うための高濃度の不純物領域は、前記MOS型トランジスタのゲート電極と同一の不純物及び不純物濃度を有するポリシリコン薄膜により形成されていることを特徴とする請求項1記載の半導体装置。The gate electrode of the MOS transistor and the P-type resistor are formed of the same polysilicon thin film, and the high-concentration impurity region for electrical connection with the metal wiring of the P-type resistor is 2. The semiconductor device according to claim 1, wherein the semiconductor device is formed of a polysilicon thin film having the same impurity and impurity concentration as the gate electrode of the MOS transistor. 前記半導体装置はボルテージディテクタであることを特徴とする請求項1記載の半導体装置。The semiconductor device according to claim 1, wherein the semiconductor device is a voltage detector. 前記半導体装置はボルテージレギュレータであることを特徴とする請求項1記載の半導体装置。The semiconductor device according to claim 1, wherein the semiconductor device is a voltage regulator.
JP2001111468A 2001-04-10 2001-04-10 Semiconductor device Expired - Lifetime JP4717246B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001111468A JP4717246B2 (en) 2001-04-10 2001-04-10 Semiconductor device
US10/116,666 US6653688B2 (en) 2001-04-10 2002-04-03 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001111468A JP4717246B2 (en) 2001-04-10 2001-04-10 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2002313927A JP2002313927A (en) 2002-10-25
JP4717246B2 true JP4717246B2 (en) 2011-07-06

Family

ID=18963063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001111468A Expired - Lifetime JP4717246B2 (en) 2001-04-10 2001-04-10 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4717246B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081530A (en) * 2005-09-12 2007-03-29 Citizen Watch Co Ltd Amplifier circuit and physical value sensor employing the same
JP2018170457A (en) * 2017-03-30 2018-11-01 エイブリック株式会社 Semiconductor device having resistance voltage dividing circuit
JP7267786B2 (en) 2019-03-13 2023-05-02 エイブリック株式会社 Semiconductor device manufacturing method
CN112543014B (en) * 2019-09-20 2022-09-30 圣邦微电子(北京)股份有限公司 Comparator output structure capable of selecting output type through laser cutting
EP4068330A1 (en) * 2021-03-31 2022-10-05 Siemens Aktiengesellschaft Device for compensating for resistance tolerances of a fuse for a circuit and line driver for a connection of a communication device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297688A (en) * 1976-02-10 1977-08-16 Nec Corp Semiconductor device
JPS5961061A (en) * 1982-09-30 1984-04-07 Fujitsu Ltd Manufacture of semiconductor device
JPS62154641A (en) * 1985-12-26 1987-07-09 Casio Comput Co Ltd Semiconductor integrated circuit with trimming function
JP3124473B2 (en) * 1994-08-19 2001-01-15 セイコーインスツルメンツ株式会社 Semiconductor device and manufacturing method thereof
JP3054937B2 (en) * 1996-03-25 2000-06-19 セイコーインスツルメンツ株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002313927A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
KR100274918B1 (en) Silicon-on-insulator body-coupled gated diode for electrostatic discharge(esd) and analog applications
JP2731119B2 (en) Semiconductor power device and its shutoff circuit
TWI402944B (en) Semiconductor integrated circuit device
US4691217A (en) Semiconductor integrated circuit device
KR950010064A (en) Current control semiconductor integrated circuit device and manufacturing method thereof
JP2003303890A (en) Overvoltage protecting circuit
JP2001502435A (en) Temperature detection circuit
US9472547B2 (en) Semiconductor device
KR960009161A (en) Semiconductor integrated circuit
JP4717246B2 (en) Semiconductor device
JP3764848B2 (en) Semiconductor device
US9105753B2 (en) Semiconductor physical quantity sensor and method for manufacturing the same
US20020096739A1 (en) Semiconductor device
JP4765168B2 (en) Reference voltage semiconductor device
JP5341543B2 (en) Semiconductor device
US6653688B2 (en) Semiconductor device
US6441461B1 (en) Thin film resistor with stress compensation
JP3289518B2 (en) Transistor / gate drive voltage generation circuit
JP2001320019A (en) Manufacturing method of semiconductor device
JP2002313926A (en) Semiconductor device
JP2002313928A (en) Semiconductor device
JP2006013300A (en) Semiconductor device
JPH06169222A (en) Overheat detection circuit
JPH0412627B2 (en)
KR100493587B1 (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250