JP3980934B2 - Gallium purification equipment - Google Patents

Gallium purification equipment Download PDF

Info

Publication number
JP3980934B2
JP3980934B2 JP2002149495A JP2002149495A JP3980934B2 JP 3980934 B2 JP3980934 B2 JP 3980934B2 JP 2002149495 A JP2002149495 A JP 2002149495A JP 2002149495 A JP2002149495 A JP 2002149495A JP 3980934 B2 JP3980934 B2 JP 3980934B2
Authority
JP
Japan
Prior art keywords
container
gallium
suction pipe
solidification
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002149495A
Other languages
Japanese (ja)
Other versions
JP2003342651A (en
Inventor
克行 斉藤
幸雄 佐藤
和司 佐野
光昭 虻川
淳一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2002149495A priority Critical patent/JP3980934B2/en
Publication of JP2003342651A publication Critical patent/JP2003342651A/en
Application granted granted Critical
Publication of JP3980934B2 publication Critical patent/JP3980934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,金属ガリウムの精製装置に関する。
【0002】
【従来の技術】
化合物半導体のGaAs単結晶は,シリコン等の単体元素のそれに比べて約5倍の電子移動度をもつほか,高周波特性,磁気変換機能,受発光機能等にも優れるので,高速IC,光電子集積回路等の電子デバイス用または光デバイス用の基板として広く用いられている。
【0003】
GaAs単結晶を作成するのに用いられるGa原料とAs原料のうち,As原料については,7N(セブンナイン,即ち99.99999%を意味する。以下同様)の高純度Asを市場で入手することは比較的容易である。しかし,Ga原料には,Ga起源に応じて多種多様な不純物が混在し,各不純物の量も変動しているのが普通であるから,GaAs単結晶の製作にとって不都合な不純物が混在しないGa原料を安定して得るのは困難である。しかも,金属Ga中の個々の不純物元素についての含有量は,現在の分析技術(グロー放電質量分析装置)では各成分について0.01ppm以下では信頼性のある値が得られないのが実状である。このため,GaAs単結晶の製作に供するGa原料中に微量に含まれる個々の不純物元素の真の含有量を特定することすら,困難な状況にある。
【0004】
また,化合物半導体のGaP単結晶は,受発光機能に優れるので発光素子などの光デバイス用の基板に使用されているが,高輝度の発光素子を得るには,GaP単結晶基板中の不純物を極限まで抑える必要がある。とくにGaP多結晶合成時のキャリア濃度を高くし且つ抵抗率を低くする不純物が有害である。そして,このような有害な不純物の同伴は,GaAsの場合と同じく,Ga原料に由来するものが多いとされている。他のGa系の化合物半導体,例えばGaN単結晶などの場合も同様である。
【0005】
従来より,不純物を除去するための金属ガリウムの精製法として,酸処理法,電解精製法,ゾーンメルティング法,結晶引き上げ法,融体固化による再結晶化法などが知られている。このうち,融体固化による再結晶化法は比較的簡単な設備と操作で精製できるので他の方法にはない利点がある。その原理は,不純物を含む原料ガリウムの液体を凝固させる過程において,結晶側の不純物濃度が残液中の不純物濃度よりも低くなるという現象を利用するものである。
【0006】
この現象を利用してガリウムを精製する方法として,同一出願人に係る特開2000−129372号公報において,凝固界面が漸次縮径するように凝固を進行させることにより,残液中の液相側に不純物を効率よく濃縮するガリウムの精製法および装置を提案した。また同じく特開2001−122623号公報において,同様のガリウム精製法を実施するさいに,種結晶を残してこれを繰り返すことにより,純度が7N以上の金属ガリウムを安定して製造できる方法および装置を提案した。
【0007】
いずれにしても,特開2000−129372号公報および特開2001−122623号公報に記載されたガリウム精製装置は,円筒状の内壁をもつ容器と,この容器の外周面に取付けられた冷却・加熱ゾーンと,容器の中央部に配置されたサクションパイプと,容器の下方に設置された磁石回転子とからなり,該容器に収容した液体状態のガリウム原料を該磁石回転子によって攪拌しながら該容器の内壁面から容器中央の方向に筒状の凝固界面が漸次縮径するように凝固を進行させ,容器内原料の全部が凝固する前に容器中央部に存在する液相を該サクションパイプによって該容器外に吸引することを要旨とするものである。
【0008】
【発明が解決しようとする課題】
前記の装置に従って本発明者らはガリウムの精製を続けてきたが,凝固の過程で円筒状容器の中央側に残る残液の一部が,ときおり,それより外側に形成される環状の固相の表面(容器の底と平行な固相の上表面)の上に,オーバーフローする現象が起きることを知った。不純物濃度が高い残液が,不純物濃度の低い固相側に,液滴程度の少量であろうともこれが混ざり込むことは,精製される固相側のガリウム純度を低下させる原因となるので,操業効率の点からは好ましいことではない。
【0009】
したがって,本発明はこの問題の解決を目的としたものであり,特開2000−129372号公報および特開2001−122623号公報に提案したガリウムの精製装置を一層改善して,効率よく高純度の金属ガリウムを精製することを課題としたものである。
【0010】
【課題を解決するための手段】
本発明によれば,円筒状の内壁をもつ容器と,この容器の外周面に取付けられた冷却・加熱ゾーンと,容器の中央部に配置されたサクションパイプと,容器の下方に設置された磁石回転子とからなり,該容器に収容した液体状態のガリウム原料を該磁石回転子によって攪拌しながら該容器の内壁面から容器中央の方向に筒状の凝固界面が漸次縮径するように凝固を進行させ,容器内原料の全部が凝固する前に容器中央部に存在する液相を該サクションパイプによって該容器外に吸引するガリウム精製装置おいて,該容器の中央部に該凝固界面の終点位置制御手段を設けたことを特徴とするガリウム精製装置を提供する。この終点位置制御手段としては,熱媒例えば温水がその中を通流するコイル状熱交換器を用いることができ,これをサクションパイプを取り巻くように設置するのがよい。
【0011】
また,本発明によれば,円筒状の内壁をもつ容器と,この容器の外周面に取付けられた冷却・加熱ゾーンと,容器の中央部に配置されたサクションパイプと,容器の下方に設置された磁石回転子とからなり,該容器に収容した液体状態のガリウム原料を該磁石回転子によって攪拌しながら該容器の内壁面から容器中央の方向に筒状の凝固界面が漸次縮径するように凝固を進行させ,容器内原料の全部が凝固する前に容器中央部に存在する液相を該サクションパイプによって該容器外に吸引するガリウム精製装置おいて,加熱手段を備えたセンターポールを該サクションパイプに隣接して設置し,このセンターポールの下端を容器底部に近接させるかまたは容器底部に当接させたことを特徴とするガリウム精製装置を提供する。
【0012】
【発明の実施の形態】
本発明は特開2000−129372号公報および特開2001−122623号公報に記載されたガリウム精製装置の改善に係るものである。図1に,これらの公報に記載されたガリウム精製装置の要部を示した。このガリウム精製装置は,円筒状の内壁1をもつ容器2と,この容器2の外周面に取付けられた冷却・加熱ゾーン3(その中に冷水または温水が切り換え可能に通水されるジャケットからなる)と,該内壁1より内側の容器内に設けられた加熱ゾーン4(その中に温水が通水されるコイル状熱交換からなる)と,容器の中央部に配置されたサクションパイプ5と,容器の下方に設置された永久磁石からなる回転子6とから構成されている。加熱ゾーン4は必要に応じて設けられるものであり,これは主として溶解のために使用される。サクションパイプ5の外周にも温水が通水する加熱ゾーン7が設けられ,容器の底部にも温水が通水する加熱ゾーン8が設けられている。
【0013】
これら各々の機器要素は特開2000−129372号公報および特開2001−122623号公報で説明されたものと実質的に変わりはなく,例えば図2の(A)〜(C)の段階を経てガリウムの精製が行われる。図2(A)は,容器2内に液体ガリウム原料9を入れた状態を示している。この状態では冷却・加熱ゾーン3(ジャケット3)と容器底部の加熱ゾーン8(ジャケット8)に温水を通水し,液体ガリウム原料9を融点以上の温度に維持させる。サクションパイプの加熱ゾーン7は以降の処理の間温水を通水し続ける。
【0014】
図2(B)は,前記(A)の状態から凝固を開始した凝固途中の状態を示しており,この状態では,磁石回転子6の回転を続行させながら,ジャケット3に冷水を通水し,加熱ゾーン8への温水は停止する。これにより,液相Lと固相Sの凝固界面Bは筒形状を有しながら容器中心にむけて漸次縮径してゆく。
【0015】
図2(C)は,容器中央部の残液RLをサクションパイプ5から抜き出す操作を示しており,温水と冷水の通水状態は図2(B)と実質的に変わらないが,残液RLが容器底部で凝固しないように,容器底部の加熱ゾーン8に温水を通水してもよい。
【0016】
このようにして,液相Lに旋回流の攪拌を付与しながら,円筒状容器2の内周面から中心部に向けて凝固界面Bが漸次縮径するように凝固を進行させると,残存する液相Lの不純物濃度が高くなり,不純物濃度の低い固相Sが生成してゆくが,残存する液相Lが少なくなるに従って,その界面にゆがみが発生し,必ずしも真円筒状の凝固界面Bとはならないことがある。図3にその状態の1例を示したが,Gaは固相の方が比重が小さいので,固化が進むにつれて残液部分が押し上げられて固相Sの上面は中央部ほど盛り上がったような形状となる。この場合,液相Lの一部の液滴が固相Sの上面の側にオーバーフローまたは飛散し,固相Sの上で凝固するようなことが起きる。
【0017】
すなわち,液相Lと固相Sとの凝固界面Bで凝固が起きるのではなく,液相Lの一部が飛散しそのまま凝固して固相Sと接合すると,不純物濃度の高い液相Lがそのまま固相Sに混ざることになる。このために,固相Sの純度低下をもたらし,操業効率を低下させる。この現象は,図2(C)のような凝固の終点付近で起きやすく,この段階では残液RL中の不純物濃度が高くなっているので,それだけ固相Sへの純度低下の影響も大きくなる。
【0018】
本発明はこの点を改善するものであり,本発明に従う改善点の要旨は,そのガリウム精製装置に対し,容器の中央部に該凝固界面の終点位置制御手段を設けたこと(第一の改善点),および加熱手段を備えたセンターポールを該サクションパイプに隣接して設置し,このセンターポールの下端を容器底部に近接させるかまたは容器底部に当接させたこと(第二の改善点)にある。
【0019】
図4に従って,第一の改善点について説明すると,終点位置制御手段として,サクションパイプ5を取り巻くようにコイル状熱交換器10(以下,これを中央コイル10と呼ぶ)を設置する。この中央コイル10は同心円の定ピッチ螺旋の伝熱管からなり,このものをその中心軸を容器2の軸と整合させた状態で,サクションパイプ5を取り巻くように,容器2の中央部に設置する。そしてこの中央コイル10内に温水を通水させる構成とする。
【0020】
図4の装置において,中央コイル10を設置した以外は,図1の装置と同様の構成を有しており,図4において図1と同じ符号を付した部材は図1のものと同じものを意味している。
【0021】
図5は,図4の装置の稼働状態を示したものである。図5(A)と(B)は図2(A)と(B)の段階と同じであるが,中央コイル10には温水が通水されている。このため,液相L側ではサクションパイプの加熱ゾーン7からの熱の供給に加えて,より径大の中央コイル10からの熱の供給がなされるので,凝固界面Bでの温度ムラが解消され,真円筒に近い凝固界面が漸次縮径してゆく。
【0022】
図5(C)は,中央コイル10が位置するところまで凝固が完了した凝固終点の段階を示している。中央コイル10を設けたことにより,この中央コイル10の位置するところまで凝固が完了しても,この中央コイル10の内側まで凝固が進行することを阻止できる。このため,凝固完了位置において凝固界面がその真円筒に近い形状に維持される。
【0023】
このようにして,図5の装置では,中央コイル10を設けたことにより,凝固界面のゆがみが防止され且つ凝固終点位置を正確に制御できる。また,凝固の進みすぎが回避されたことにより,図3で説明したような液相Lの一部が固相Sの上面にオーバーフローしたりスプラッシュする現象が無くなる。これらの結果,凝固した高純度側に,不純物の多い残液が混入することが阻止され,ガリウムの精製効率が向上する。他方,凝固終点位置が正確に制御できるので,凝固終点の監視負荷が軽減され,その結果,終点制御の操作性が向上し,装置の運転精度を高めることができる。
【0024】
次に,図6に従って,第二の改善点について説明すると,この場合には,加熱手段を備えたセンターポール11をサクションパイプ12に隣接して設置する。そして,このセンターポール11の下端13を,容器2の底部に近接させるかまたは容器2底部に当接させる。図示の例では,センターポール11はステンレス鋼製の二重パイプによって構成されており,この二重パイプの内部にはその下端13の近くまで温水が通水される。センターポール11の下端13を,容器2の底面14に当接させることにより,容器2の底面14に熱を付与することが可能となる。
【0025】
図1のサクションパイプ5は,その中心部から不純物濃度の高くなった残液を吸引するので,その下端を容器の底面に当接させるかその近傍に位置させると,吸引負荷が増し,そのサクションパイプ5による容器底面への熱の供給はあまり期待できなかった。そのため,凝固界面Bが中心に向かって移動してゆく過程では潜熱変化のある相変態が起こっており,しかも底部の加熱ゾーン8からの熱の供給がなされたとしても,固相Sと液相Lでは温度差が発生しているので,容器底面の温度を一定に保つことが困難となり,このことが,凝固界面Bのふくれやゆがみが発生することがわかった。
【0026】
このため,本発明の第二の改善点では,液相Lを吸引するサクションパイプとは別に,加熱手段を備えたセンターポール11を容器2の中心に設置し,その下端13を容器の底部に当接させる構成とし,このセンターポール11から容器の底部中心に熱を付与できる構成とした。その結果,容器の底面の温度ムラが解消されたことがその原因と考えられるが,前述の問題すなわち凝固界面Bの形状変化による液相Lの一部が固相Sの上面にオーバーフローしたりスプラッシュする現象が無くなり,ガリウムの精製効率を向上させることができるようになった。
【0027】
なお,センターポール11の下端13が必ずしも容器中心の底に当接していなくてもよく,その下端13が該底に近接していれば,同様の効果がある。センターポール11の下端13と容器底とは,その間に存在するそれほど攪拌の影響をうけていない金属ガリウムの液相を介して伝熱が起きるからである。また,図6に示したように,容器の底部中心にくぼみ15を形成しておき,このくぼみ15を液溜まりとしておくと,凝固終点のあと,残液をサクションパイプ12によって吸引するさいにその吸引の終期近くに容器底部に存在する残液の吸引が行いやすくなる。センターポール11の近傍に設けるサクションパイプ12は,必ずしも容器の中心軸と一致している必要はなく,センターポール11の外側に抱き合わせた状態で設置すればよい。
【0028】
図7は,図5の第一の改善点と図6の改善点を組み合わせたものである。すなわち,終点位置制御手段として,温水が通水する中央コイル10を容器の中心と同心的に設置し,この中央コイル10の中心にセンターポール11をその下端13が容器の底に当接するか近接するように設置し,このセンターポール11にサクションパイプ12を抱き合わせて取付けたものである。この組合せによると,中央コイル10による作用効果とセンターポール11による作用効果によって,縮径しながら凝固が進行してゆく凝固界面のゆがみやふくれ等の形状変化が回避できるので,それにともなう液相のオーバーフローやスプラッシュが防止されると共に,終点位置の制御を確実に行うことができるので,ガリウムの精製効率が一層向上する。
【0029】
図5〜7のガリウム精製装置の基本的な運転動作そのもの,更には,種結晶を残して精製を繰り返す再精製操作そのものは,特開2000−129372号公報および特開2001−122623号公報に開示されたものと異なるところはなく,これらの公報に記載された手順に従って,本発明の装置を稼働することができる。そのさい,中央コイル10やセンターポール11に対する温水の供給動作を適切に行うだけでよく,これらに供給する温水の温度や通水量は,容器の外周面に取付けられた冷却・加熱ゾーン3や容器の内壁近傍を巡るように設置されたコイル状熱交換4,さらには容器の底部外側の加熱ゾーン8への温水温度や通水量との兼ね合いで,適切に管理すればよい。
【0030】
【発明の効果】
以上説明したように,本発明によれば,特開2000−129372号公報および特開2001−122623号公報に開示されたガリウムの精製装置を稼働したさいに発生することがある液相の固相側へのオーバーフローやスプラッシュが防止できる。その結果,該装置によるガリウムの精製効率が高くなり,操業性が向上する。また凝固の終点制御が正確にできるので,この点でも操業性が向上する。
【図面の簡単な説明】
【図1】従来のガリウムの精製装置の例を示す略断面図である。
【図2】図1の装置の操作順序を説明するための図である。
【図3】図1の装置を稼働したさいの挙動を説明するための図である。
【図4】本発明に従うガリウムの精製装置の例を示す略断面図である。
【図5】本発明の装置を稼働状況を説明するための図である。
【図6】本発明に従う他のガリウムの精製装置の例を示す略断面図である。
【図7】本発明に従うさらに他のガリウムの精製装置の例を示す略断面図である。
【符号の説明】
1 容器内壁
2 円筒状容器
3 容器外周面に取付けられた冷却・加熱ゾーン(ジャケット)
4 容器内壁より内側の容器内に設けられた加熱ゾーン(熱交換コイル)
5 サクションパイプ
6 磁石回転子
7 サクションパイプ外周の加熱ゾーン(温水管)
8 容器底部の加熱ゾーン
9 液状の精製原料
10 コイル状熱交換器(中央コイル)
11 センターポール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for purifying metallic gallium.
[0002]
[Prior art]
Compound semiconductor GaAs single crystals have about five times the electron mobility of silicon and other simple elements, as well as high frequency characteristics, magnetic conversion functions, light receiving and emitting functions, etc., so high-speed ICs and optoelectronic integrated circuits It is widely used as a substrate for electronic devices such as optical devices.
[0003]
Of the Ga and As raw materials used to make GaAs single crystals, the As raw material is 7N (seven nines, meaning 99.99999%; the same shall apply hereinafter) to obtain high-purity As in the market. Is relatively easy. However, since a wide variety of impurities are mixed in the Ga source depending on the Ga source, and the amount of each impurity is usually fluctuating, a Ga source that does not contain impurities that are inconvenient for the production of GaAs single crystals. Is difficult to obtain stably. Moreover, the actual content of the individual impurity elements in the metal Ga is that the present analysis technique (glow discharge mass spectrometer) cannot obtain a reliable value at 0.01 ppm or less for each component. . For this reason, it is difficult to specify the true content of individual impurity elements contained in a trace amount in a Ga raw material used for the production of a GaAs single crystal.
[0004]
In addition, a compound semiconductor GaP single crystal is excellent in light receiving and emitting functions and is used for substrates for optical devices such as light emitting elements. However, in order to obtain a high luminance light emitting element, impurities in the GaP single crystal substrate are used. It is necessary to keep it to the limit. In particular, impurities that increase the carrier concentration and lower the resistivity during the synthesis of the GaP polycrystal are harmful. And it is said that many such harmful impurities are derived from Ga raw materials as in GaAs. The same applies to other Ga-based compound semiconductors such as GaN single crystals.
[0005]
Conventionally, as a purification method of metallic gallium for removing impurities, an acid treatment method, an electrolytic purification method, a zone melting method, a crystal pulling method, a recrystallization method by solidifying a melt, and the like are known. Of these, recrystallization by melt solidification has advantages over other methods because it can be purified with relatively simple equipment and operation. The principle utilizes the phenomenon that the impurity concentration on the crystal side becomes lower than the impurity concentration in the residual liquid in the process of solidifying the liquid gallium containing impurities.
[0006]
As a method for purifying gallium using this phenomenon, in Japanese Patent Application Laid-Open No. 2000-129372 filed by the same applicant, the solidification interface is gradually reduced so that the solidification interface is gradually reduced in diameter. A gallium purification method and apparatus for efficiently concentrating impurities was proposed. Similarly, in Japanese Patent Laid-Open No. 2001-122623, a method and an apparatus capable of stably producing metallic gallium having a purity of 7N or more by leaving a seed crystal and repeating it when carrying out the same gallium purification method. Proposed.
[0007]
In any case, the gallium purification apparatus described in Japanese Patent Application Laid-Open No. 2000-129372 and Japanese Patent Application Laid-Open No. 2001-122623 includes a container having a cylindrical inner wall and a cooling / heating device attached to the outer peripheral surface of the container. A zone, a suction pipe disposed at the center of the container, and a magnet rotor installed below the container, while stirring the liquid gallium raw material contained in the container by the magnet rotor Solidification proceeds so that the cylindrical solidification interface gradually decreases in diameter from the inner wall surface to the center of the container, and the liquid phase present in the center of the container is solidified by the suction pipe before all of the raw material in the container is solidified. The gist is to suck out of the container.
[0008]
[Problems to be solved by the invention]
Although the present inventors have continued to purify gallium according to the above-mentioned apparatus, a part of the residual liquid remaining on the central side of the cylindrical container during the solidification process sometimes becomes an annular solid phase formed outside of it. I found out that an overflow phenomenon occurred on the surface of (the upper surface of the solid phase parallel to the bottom of the container). Even if a residual liquid with a high impurity concentration is mixed with a solid phase side with a low impurity concentration, even if it is as small as a droplet, this may cause a decrease in the purity of the gallium on the solid phase side to be purified. It is not preferable from the viewpoint of efficiency.
[0009]
Therefore, the present invention aims to solve this problem. The gallium purification apparatus proposed in Japanese Patent Laid-Open No. 2000-129372 and Japanese Patent Laid-Open No. 2001-122623 has been further improved to efficiently achieve high purity. The object is to purify metallic gallium.
[0010]
[Means for Solving the Problems]
According to the present invention, a container having a cylindrical inner wall, a cooling / heating zone attached to the outer peripheral surface of the container, a suction pipe disposed at the center of the container, and a magnet installed below the container The liquid gallium raw material contained in the vessel is stirred by the magnet rotor and solidified so that the cylindrical solidification interface gradually decreases in diameter from the inner wall surface of the vessel toward the center of the vessel. In the gallium refining device that advances and sucks the liquid phase existing in the central part of the container outside the container by the suction pipe before all of the raw materials in the container are solidified, the end point position of the solidification interface at the central part of the container Provided is a gallium purifier characterized by comprising a control means. As this end point position control means, a heat medium such as a coiled heat exchanger through which hot water flows can be used, and this is preferably installed so as to surround the suction pipe.
[0011]
Further, according to the present invention, a container having a cylindrical inner wall, a cooling / heating zone attached to the outer peripheral surface of the container, a suction pipe disposed at the center of the container, and a container installed below the container. The cylindrical solidification interface gradually decreases in diameter from the inner wall surface of the container toward the center of the container while stirring the liquid gallium raw material contained in the container by the magnet rotor. In the gallium purification apparatus that advances the solidification and sucks the liquid phase existing in the center of the container outside the container by the suction pipe before all the raw materials in the container are solidified, a center pole provided with heating means is provided in the suction Provided is a gallium refining apparatus which is installed adjacent to a pipe and has the lower end of the center pole brought close to or in contact with the bottom of the container.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to an improvement of the gallium purification apparatus described in JP-A-2000-129372 and JP-A-2001-122623. FIG. 1 shows a main part of the gallium purification apparatus described in these publications. This gallium refining device comprises a container 2 having a cylindrical inner wall 1 and a cooling / heating zone 3 attached to the outer peripheral surface of the container 2 (a jacket through which cold water or hot water is exchanged). ), A heating zone 4 provided in the container inside the inner wall 1 (consisting of coiled heat exchange through which hot water is passed), a suction pipe 5 disposed in the center of the container, It is comprised from the rotor 6 which consists of a permanent magnet installed under the container. The heating zone 4 is provided as necessary and is mainly used for dissolution. A heating zone 7 through which hot water flows is also provided on the outer periphery of the suction pipe 5, and a heating zone 8 through which hot water passes is also provided at the bottom of the container.
[0013]
Each of these device elements is substantially the same as that described in Japanese Patent Laid-Open No. 2000-129372 and Japanese Patent Laid-Open No. 2001-122623. For example, after the steps (A) to (C) in FIG. Is purified. FIG. 2A shows a state in which the liquid gallium raw material 9 is put in the container 2. In this state, warm water is passed through the cooling / heating zone 3 (jacket 3) and the heating zone 8 (jacket 8) at the bottom of the container to maintain the liquid gallium raw material 9 at a temperature higher than the melting point. The heating zone 7 of the suction pipe continues to pass hot water during the subsequent processing.
[0014]
FIG. 2 (B) shows a state in the middle of solidification where solidification has started from the state (A). In this state, cold water is passed through the jacket 3 while continuing the rotation of the magnet rotor 6. , Hot water to the heating zone 8 is stopped. As a result, the solidification interface B between the liquid phase L and the solid phase S is gradually reduced in diameter toward the center of the container while having a cylindrical shape.
[0015]
FIG. 2 (C) shows an operation of extracting the residual liquid RL at the center of the container from the suction pipe 5, and the water flow state of hot water and cold water is not substantially different from that in FIG. 2 (B), but the residual liquid RL. In order to prevent the water from solidifying at the bottom of the container, warm water may be passed through the heating zone 8 at the bottom of the container.
[0016]
In this way, while solidification is progressed so that the diameter of the solidification interface B gradually decreases from the inner peripheral surface of the cylindrical container 2 toward the central portion while applying swirling flow stirring to the liquid phase L, the liquid phase L remains. The impurity concentration of the liquid phase L increases and a solid phase S with a low impurity concentration is generated. However, as the remaining liquid phase L decreases, the interface is distorted, and the solid cylindrical interface B is not necessarily a perfect cylinder. It may not be. FIG. 3 shows an example of such a state. Since Ga has a lower specific gravity in the solid phase, the remaining liquid portion is pushed up as the solidification progresses, and the upper surface of the solid phase S rises toward the center. It becomes. In this case, some droplets of the liquid phase L overflow or scatter to the upper surface side of the solid phase S and solidify on the solid phase S.
[0017]
That is, solidification does not occur at the solidification interface B between the liquid phase L and the solid phase S, but a part of the liquid phase L scatters and solidifies as it is and joins the solid phase S to form a liquid phase L with a high impurity concentration. The solid phase S is mixed as it is. For this reason, the purity of the solid phase S is lowered and the operation efficiency is lowered. This phenomenon is likely to occur near the end point of solidification as shown in FIG. 2 (C), and the impurity concentration in the residual liquid RL is high at this stage, so that the influence of purity reduction on the solid phase S is also increased accordingly. .
[0018]
The present invention is to improve this point, and the gist of the improvement point according to the present invention is that the gallium purification apparatus is provided with an end position control means for the solidification interface at the center of the container (first improvement). Point), and a center pole provided with heating means was installed adjacent to the suction pipe, and the lower end of the center pole was brought close to or contacted with the bottom of the container (second improvement point) It is in.
[0019]
The first improvement point will be described with reference to FIG. 4. As the end point position control means, a coiled heat exchanger 10 (hereinafter referred to as the central coil 10) is installed so as to surround the suction pipe 5. This central coil 10 is composed of a concentric constant-pitch spiral heat transfer tube, which is installed at the center of the container 2 so as to surround the suction pipe 5 with its central axis aligned with the axis of the container 2. . The central coil 10 is configured to allow warm water to flow.
[0020]
4 has the same configuration as that of the apparatus of FIG. 1 except that the central coil 10 is installed. In FIG. 4, members denoted by the same reference numerals as those of FIG. 1 are the same as those of FIG. I mean.
[0021]
FIG. 5 shows the operating state of the apparatus of FIG. 5A and 5B are the same as the stages of FIGS. 2A and 2B, but warm water is passed through the central coil 10. FIG. For this reason, in addition to the supply of heat from the heating zone 7 of the suction pipe on the liquid phase L side, the supply of heat from the central coil 10 having a larger diameter is performed, so that temperature unevenness at the solidification interface B is eliminated. The solidification interface close to a true cylinder gradually decreases in diameter.
[0022]
FIG. 5C shows a solidification end point stage where the solidification is completed up to where the central coil 10 is located. By providing the central coil 10, it is possible to prevent the solidification from progressing to the inside of the central coil 10 even if the solidification is completed up to the position where the central coil 10 is located. For this reason, the solidification interface is maintained in a shape close to the true cylinder at the solidification completion position.
[0023]
Thus, in the apparatus of FIG. 5, the central coil 10 is provided, so that the solidification interface is prevented from being distorted and the solidification end point position can be accurately controlled. Further, since the progress of solidification is avoided, a phenomenon in which a part of the liquid phase L overflows or splashes on the upper surface of the solid phase S as described with reference to FIG. As a result, it is possible to prevent the residual liquid containing a large amount of impurities from being mixed with the solidified high purity side, thereby improving the purification efficiency of gallium. On the other hand, since the solidification end point position can be accurately controlled, the monitoring load of the solidification end point is reduced. As a result, the operability of the end point control is improved and the operation accuracy of the apparatus can be increased.
[0024]
Next, the second improvement point will be described with reference to FIG. 6. In this case, the center pole 11 provided with heating means is installed adjacent to the suction pipe 12. Then, the lower end 13 of the center pole 11 is brought close to the bottom of the container 2 or brought into contact with the bottom of the container 2. In the illustrated example, the center pole 11 is constituted by a stainless steel double pipe, and warm water is passed through the double pipe to the vicinity of the lower end 13 thereof. Heat can be applied to the bottom surface 14 of the container 2 by bringing the lower end 13 of the center pole 11 into contact with the bottom surface 14 of the container 2.
[0025]
The suction pipe 5 in FIG. 1 sucks the residual liquid having a high impurity concentration from the center thereof, so that the suction load increases when the lower end of the suction pipe 5 is brought into contact with or near the bottom surface of the container. The supply of heat to the bottom of the container by the pipe 5 could not be expected so much. Therefore, in the process in which the solidification interface B moves toward the center, a phase transformation with a latent heat change occurs, and even if heat is supplied from the heating zone 8 at the bottom, the solid phase S and the liquid phase Since a temperature difference occurred in L, it was difficult to keep the temperature at the bottom of the container constant, and this proved that blistering and distortion of the solidification interface B occurred.
[0026]
For this reason, in the second improvement of the present invention, apart from the suction pipe for sucking the liquid phase L, a center pole 11 provided with heating means is installed at the center of the container 2 and its lower end 13 is placed at the bottom of the container. The configuration is such that heat is applied from the center pole 11 to the center of the bottom of the container. As a result, it is considered that the temperature unevenness on the bottom surface of the container has been eliminated. However, a part of the liquid phase L due to the above-mentioned problem, that is, the shape change of the solidification interface B overflows or splashes on the upper surface of the solid phase S. As a result, gallium purification efficiency can be improved.
[0027]
Note that the lower end 13 of the center pole 11 does not necessarily have to be in contact with the bottom of the center of the container. If the lower end 13 is close to the bottom, the same effect can be obtained. This is because heat transfer takes place between the lower end 13 of the center pole 11 and the bottom of the container through the liquid phase of metal gallium present between them, which is not significantly affected by stirring. In addition, as shown in FIG. 6, when a recess 15 is formed at the center of the bottom of the container and this recess 15 is used as a liquid reservoir, the residual liquid is sucked by the suction pipe 12 after the end of solidification. It becomes easier to suck the residual liquid present at the bottom of the container near the end of the suction. The suction pipe 12 provided in the vicinity of the center pole 11 does not necessarily need to coincide with the center axis of the container, and may be installed in a state of being tied to the outside of the center pole 11.
[0028]
FIG. 7 is a combination of the first improvement in FIG. 5 and the improvement in FIG. That is, as the end point position control means, a central coil 10 through which hot water flows is concentrically installed with the center of the container, and a center pole 11 is placed in the center of the central coil 10 with its lower end 13 in contact with or close to the bottom of the container. The suction pipe 12 is attached to the center pole 11 by tying it. According to this combination, the effect of the central coil 10 and the effect of the center pole 11 can avoid the deformation of the solidification interface, such as distortion and blistering, where solidification proceeds while reducing the diameter. Overflow and splash are prevented, and the end point position can be reliably controlled, so that the gallium purification efficiency is further improved.
[0029]
The basic operation itself of the gallium refining apparatus shown in FIGS. 5 to 7 and the repurification operation itself that repeats the purification while leaving the seed crystal are disclosed in Japanese Patent Laid-Open Nos. 2000-129372 and 2001-122623. The apparatus of the present invention can be operated according to the procedures described in these publications. At that time, it is only necessary to appropriately perform the operation of supplying hot water to the central coil 10 and the center pole 11, and the temperature and amount of water supplied to these are determined by the cooling / heating zone 3 or the container attached to the outer peripheral surface of the container. What is necessary is just to manage appropriately in consideration of the coiled heat exchange 4 installed so that it may circulate around the inner wall, and also the warm water temperature and the amount of water flow to the heating zone 8 outside the bottom of the container.
[0030]
【The invention's effect】
As described above, according to the present invention, a liquid phase solid phase that may be generated when the gallium purification apparatus disclosed in Japanese Patent Laid-Open Nos. 2000-129372 and 2001-122623 is operated. Overflow and splash to the side can be prevented. As a result, the gallium purification efficiency by the apparatus is increased and the operability is improved. Moreover, since the end point control of solidification can be performed accurately, operability is improved in this respect as well.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a conventional gallium purification apparatus.
FIG. 2 is a diagram for explaining an operation sequence of the apparatus of FIG. 1;
FIG. 3 is a diagram for explaining the behavior when the apparatus of FIG. 1 is operated;
FIG. 4 is a schematic cross-sectional view showing an example of a gallium purification apparatus according to the present invention.
FIG. 5 is a diagram for explaining the operating status of the apparatus of the present invention.
FIG. 6 is a schematic cross-sectional view showing an example of another gallium purification apparatus according to the present invention.
FIG. 7 is a schematic cross-sectional view showing still another example of a gallium purification apparatus according to the present invention.
[Explanation of symbols]
1 Container inner wall 2 Cylindrical container 3 Cooling / heating zone (jacket) attached to the outer peripheral surface of the container
4 Heating zone (heat exchange coil) provided in the container inside the container inner wall
5 Suction pipe 6 Magnet rotor 7 Heating zone around the suction pipe (hot water pipe)
8 Heating zone at the bottom of the vessel 9 Liquid refined raw material 10 Coiled heat exchanger (central coil)
11 Center pole

Claims (1)

円筒状の内壁をもつ容器と、この容器の外周面に取付けられた冷却・加熱ゾーンと、容器の中央部に配置されたサクションパイプと、容器の下方に設置された磁石回転子とからなり、該容器に収容した液体状態のガリウム原料を該磁石回転子によって攪拌しながら該容器の内壁面から容器中央の方向に筒状の凝固界面が漸次縮径するように凝固を進行させ、容器内原料の全部が凝固する前に容器中央部に存在する液相を該サクションパイプによって該容器外に吸引するガリウム精製装置において、該容器の中央部に熱媒が通流するコイル状熱交換器を前記サクションパイプを取り巻くように設置したことを特徴とするガリウム精製装置。Consists of a container having a cylindrical inner wall, a cooling / heating zone attached to the outer peripheral surface of the container, a suction pipe disposed in the center of the container, and a magnet rotor installed below the container, While the liquid gallium raw material contained in the container is agitated by the magnet rotor, solidification proceeds so that the cylindrical solidification interface gradually decreases in diameter from the inner wall surface of the container toward the center of the container. in refining gallium apparatus for sucking out the vessel the liquid phase present in the container the central part by the suction pipe before the whole is solidified, a coiled heat exchanger heat medium flowing in the central portion of the container above the A gallium refining device , installed so as to surround a suction pipe .
JP2002149495A 2002-05-23 2002-05-23 Gallium purification equipment Expired - Lifetime JP3980934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002149495A JP3980934B2 (en) 2002-05-23 2002-05-23 Gallium purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002149495A JP3980934B2 (en) 2002-05-23 2002-05-23 Gallium purification equipment

Publications (2)

Publication Number Publication Date
JP2003342651A JP2003342651A (en) 2003-12-03
JP3980934B2 true JP3980934B2 (en) 2007-09-26

Family

ID=29767646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002149495A Expired - Lifetime JP3980934B2 (en) 2002-05-23 2002-05-23 Gallium purification equipment

Country Status (1)

Country Link
JP (1) JP3980934B2 (en)

Also Published As

Publication number Publication date
JP2003342651A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP3909364B2 (en) Method and apparatus for purifying gallium
JP5400782B2 (en) Method for treating silicon powder to obtain silicon crystals
RU2445258C2 (en) Method of purifying silicon
EA017480B1 (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
JPWO2002068732A1 (en) Recharge tube for solid polycrystalline raw material and method for producing single crystal using the same
JPS6345112A (en) Purification of silicon
JPH0770666A (en) Method and apparatus for continuously refining aluminum scrap
JP3980934B2 (en) Gallium purification equipment
JP2008303113A (en) Unidirectional coagulation method for silicon
JPH05254817A (en) Production of polycrystal silicon ingot
CN104548647B (en) The reciprocating continuous crystalizer of multiple spot
JP3980998B2 (en) Method and apparatus for purifying gallium
JP5594958B2 (en) Substance purification method and substance purification equipment
JPH0432526A (en) Manufacture of aluminum material for electronic material
JP4899034B2 (en) Gallium raw material for compound semiconductor production
JP3747696B2 (en) Heat shielding member of silicon single crystal pulling device
JP4101990B2 (en) Gallium purification method and equipment
CN115786743B (en) Device and method for preparing high-purity gallium
JP3784332B2 (en) Purification method of gallium
JPH05295460A (en) Method and apparatus for purifying aluminum
KR950004887Y1 (en) Al refining apparatus
JPS61146788A (en) Method for growing single crystal
JP4657465B2 (en) Metal purification method
JP2009249231A (en) Crystal raw material for manufacturing single crystal silicon and manufacturing method of single crystal silicon ingot
JP2009113076A (en) Casting method and casting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3