JP3980345B2 - Nozzle for generating liquid particles - Google Patents

Nozzle for generating liquid particles Download PDF

Info

Publication number
JP3980345B2
JP3980345B2 JP2001380589A JP2001380589A JP3980345B2 JP 3980345 B2 JP3980345 B2 JP 3980345B2 JP 2001380589 A JP2001380589 A JP 2001380589A JP 2001380589 A JP2001380589 A JP 2001380589A JP 3980345 B2 JP3980345 B2 JP 3980345B2
Authority
JP
Japan
Prior art keywords
liquid
nozzle
fine particles
gas
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001380589A
Other languages
Japanese (ja)
Other versions
JP2003181330A (en
Inventor
田 祐 己 濱
藤 英 利 間
Original Assignee
株式会社藤森技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社藤森技術研究所 filed Critical 株式会社藤森技術研究所
Priority to JP2001380589A priority Critical patent/JP3980345B2/en
Publication of JP2003181330A publication Critical patent/JP2003181330A/en
Application granted granted Critical
Publication of JP3980345B2 publication Critical patent/JP3980345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子の液体を噴射する液体微粒子発生用ノズルに関し、詳しくは、噴射方向の周辺領域への液体微粒子の飛散を防止し、所定領域に均一な液体微粒子の噴霧を可能とする液体微粒子発生用ノズルに係るものである。
【0002】
【従来の技術】
従来の液体微粒子発生用ノズルは、例えば、特開平4−322731号公報に開示のものがある。このノズルは図6にその構成を示すように、ノズル基体60と旋回流発生部70とからなる。ノズル基体60は、液体送入口61と加圧気体吸入口62とを備え、それぞれ対応する液体吸入口63と気体噴出口64とによってノズル基体60の中心部に備えられた第1次液体破砕室65に連通されている。さらに、ノズル基体60は、上記第1次液体破砕室65に並行して気体挿通孔66を備え、当該気体挿通孔66の一端が上記加圧気体吸入口62に連通され、他端が旋回流発生部70が備える円環気体室71に連通されている。
【0003】
上記旋回流発生部70とは、中央部に旋回流噴出口72を形成したキャップ形のケーシング73を、ナット80でノズル基体60に締結一体化して形成したケーシング内部をいう。当該旋回流発生部70は、その中心部に上記ノズル基体60の第1次液体破砕室65から延長して形成された両端開放の円筒状の混合気体通路74を備え、その先端部を上記ケーシング73の旋回流噴出口72に位置させて混合気体噴出口75を形成している。
【0004】
上記円筒状の混合気体通路74の外周面には中央部が膨らんだ略円筒状の固定中子76を嵌合して装着し、さらに当該固定中子76の混合気体噴出口75側には旋回導孔形成部材77を装着し、またノズル基体60側には圧縮コイルスプリング78を装着して、当該圧縮コイルスプリング78によって旋回導孔形成部材77をケーシング73の内壁に付勢圧接させている。この場合、上記固定中子76とケーシング73とによって形成された空間部が円環気体室71となる。
【0005】
上記旋回導孔形成部材77は、中央貫通口を形成した略円錐台形状をなし、その中央部には旋回流室79を形成する円形凹部を備えている。さらに、旋回導孔形成部材77は、円環気体室71と旋回流室79とを連通させる図示省略の渦巻状に配設された旋回導孔を備えている。
【0006】
このように、従来の液体微粒子発生用ノズルは、ノズル基体60の加圧気体吸入口62より導入した高圧気体を気体噴出口64より第1次液体破砕室65に噴出させて高速気流を形成するとともに、液体吸入口63に負圧を発生させて液体を吸入し、当該液体を第1次破砕して霧状の液体と気体との混合気体を形成する。該形成された混合気体は、混合気体通路74を通って混合気体噴出口75より噴出される。このとき混合気体は、気体挿通孔66及び円環気体室71を経て導入され旋回導孔形成部材77に備えた旋回導孔によって生成された高速の旋回流気体によって第2次破砕されて超微粒子の液体となり放射状に噴射される(図6の矢印参照)。
【0007】
【発明が解決しようとする課題】
しかし、このような従来の液体微粒子発生用ノズルにおいては、微粒子化された液体が放射状に噴出されるため、所定の領域外に飛散する液体微粒子が発生することがあった。この傾向は、上記旋回流気体によって液体粒子を第2次破砕して超微粒子の液体を生成させる液体微粒子発生用ノズルにおいて顕著である。即ち、第2次破砕段階で十分に破砕されなかった粒子径の比較的大きい液体粒子は、旋回流気体によって遠心力を受けて遠くまで飛散するからである。その後、飛散した液体粒子が凝集し、大きな粒となって垂れ落ちて均一な塗布膜の形成を困難にするおそれがあった。
【0008】
そこで、本発明は、このような問題点に対処すべく、噴射方向の周辺領域への液体微粒子の飛散を防止し、所定領域に均一な液体微粒子の噴霧を可能とする液体微粒子発生用ノズルを提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明による液体微粒子発生用ノズルは、ノズル本体部に高圧気体と液体とを導入し、高速流の気体によって破砕された液体微粒子及び気体の混合気体を噴出する混合気体噴出口を先端部に備えた液体微粒子発生用ノズルにおいて、上記ノズル本体部の先端部に内部が中空とされて2重壁構造をなした筒状の飛散液体捕捉カバーを混合気体噴出方向に突出させて設け、その内周壁面に上2重壁構造の中空部に連通して、所定の領域外に飛散する液体微粒子を捕捉する液体捕捉孔を形成し、該液体捕捉孔で捕捉された液体微粒子を上記中空部に貯留させるものである。
【0010】
このような構成により、ノズル本体部の先端部に混合気体噴出方向に突出させて設けられ、内部が中空とされて2重壁構造をなした筒状の飛散液体捕捉カバーの内周壁面に、上記2重壁構造の中空部に連通して設けられた液体捕捉孔によって、所定の領域外に飛散する液体微粒子を捕捉該捕捉された液体微粒子を上記中空部に貯留さる。これにより、所定領域外への液体微粒子の噴霧が防止できる。
【0011】
また、前記飛散液体捕捉カバーの外周壁面に、捕捉した液体を吸引排出する排出口を前記中空部に連通させて設けたものである。これにより、上記中空部に貯留した液体を外部に吸引排出させる。
【0012】
さらに、前記飛散液体捕捉カバーまたは前記ノズル本体部の少なくとも一方に、前記飛散液体捕捉カバーの前記ノズル本体部からの突出量を調節する突出量調節手段を備えたものである。これにより、飛散液体捕捉カバーのノズル本体部からの突出量を調整して液体噴霧範囲の調整を行うことができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。
図1は本発明による液体微粒子発生用ノズルの実施の形態を示す側断面図である。この液体微粒子発生用ノズル1は、ノズル本体部2と飛散液体捕捉カバー3とで構成されている。そして、上記ノズル本体部2は、ノズル基体4と、旋回流発生部5とから成る。ノズル基体4は、液体送入口41と加圧気体吸入口42とを備え、それぞれ対応する液体吸入口43と気体噴出口44とによって該ノズル基体4の中心部に備えた第1次液体破砕室45に連通している。さらに、ノズル基体4は、上記第1次液体破砕室45に並行して気体挿通孔46を備え、当該気体挿通孔46の一端が上記加圧気体吸入口42に連通され、他端が旋回流発生部5が備える円環気体室51に連通されている。
【0014】
上記旋回流発生部5とは、中央部に旋回流噴出口52を形成したキャップ形のケーシング53を、ナットでノズル基体4に締結一体化して形成したケーシング内部をいう。この実施の形態においては、ナットは飛散液体捕捉カバー3のノズル本体部2側の後部開放部に備えたナット部36であるが、飛散液体補足カバー3とナットとは別部品として構成してもよい。当該旋回流発生部5は、その中心部に上記ノズル基体4の第1次液体破砕室45から延長して形成された両端開放の円筒状の混合気体通路54を備え、その先端部を上記ケーシング53の旋回流噴出口52に位置させて混合気体噴出口55を形成している。
【0015】
上記円筒状の混合気体通路54の外周面には中央部が膨らんだ略円筒状の固定中子56を嵌合して装着し、さらに当該固定中子56の混合気体噴出口55側には旋回導孔形成部材57を装着し、またノズル基体4側には圧縮コイルスプリング58を装着して、当該圧縮コイルスプリング58によって旋回導孔形成部材57をケーシング53の内壁に付勢圧接させている。この場合、上記固定中子56とケーシング53とによって形成された空間部が円環気体室51となる。
【0016】
上記旋回導孔形成部材57は、図2に示すように、中央貫通口571を形成した略円錐台形状をなし、その中央部には中央貫通口571よりも大きい形状の円形凹部572を備え、上記したケーシング53の内壁に付勢圧接されたときに当該円形凹部572が旋回流室59を形成するようになっている。さらに、円形凹部572から外部に向かって渦巻状に旋回導孔573が形成され、円環気体室51と旋回流室59とを連通させている。
【0017】
また、前記飛散液体捕捉カバー3は、内部が中空31とされた2重壁構造の略円筒状のカバーであり、混合気体噴出方向に突出させて設けられている。そして、その内周壁面32に上2重壁構造の中空31に連通して、所定の領域外に飛散する液微粒子を捕捉する液体捕捉孔33を形成している。この実施の形態においては、図3に示すように、当該液体捕捉孔33は、飛散液体捕捉カバー3の液体噴射側3aの内周壁面32(図1参照)に形成された円環状の孔である。なお、液体捕捉孔33は、上記の形状に限定されるものでなく、例えば図4に示すように円形状の孔33aを複数備えたものでもよく、また、図5に示すようにスリット状の孔33bを複数備えたものでもよい。さらに、液体捕捉孔33の形状及び大きさ並びにその形成位置は、液体の捕捉効率または吸引時の騒音等との関係から適宜決定される。
【0018】
さらに、飛散液体捕捉カバー3の外周壁面34には、捕捉した液体を吸引排出する排出口35が上記中空31に連通して設けられている。そして、上記飛散液体捕捉カバー3は、ノズル本体部2側の後部開放端に前述したナット部36を形成し、ノズル基体4に備えたボルト部47と締結一体化できるようになっている。また、その際、同時にケーシング53をもノズル基体4と締結一体化させる作用も為している。
【0019】
上記飛散液体捕捉カバー3のナット部36とノズル基体4のボルト部47は、その締結深度を調節することにより、飛散液体捕捉カバー3のノズル本体部2からの突出量を調節する突出量調節手段としての機能も果たしている。
【0020】
次に、このように構成された液体微粒子発生用ノズルの動作について説明する。図1において、ノズル基体4が備える加圧気体吸入口42に空気、アルゴンまたは窒素等の高圧気体が導入され、同時に液体送入口41に所定の液体が供給される。液体は、半導体基板、ディスプレイ基板、ガラス基板あるいはこれに類した工業用薄膜形成対象物の表面を処理する表面処理剤や薄膜形成用薬剤等の用途に応じて適宜選択された薬剤である。
【0021】
高圧気体は、気体噴出口44より第1次液体破砕室45に噴出する。第1次液体破砕室45を気体が高速で流出するため液体吸入口43には負圧が発生し、液体が液体吸入口43から第1次液体破砕室45に吸入される。このとき、吸入された液体は、高速気流によって第1次破砕され微粒子化されて気体と混合し、混合気体を形成する。そして、当該混合気体は、混合気体通路54を通って混合気体噴出口55より前方側に噴出する。
【0022】
他方、加圧気体吸入口42に導入された高圧気体の一部は、気体挿通孔46を通して旋回流発生部5の円環気体室51に流れ、さらに旋回導孔形成部材57の旋回導孔573(図2参照)より旋回流室59に流入する。そして、当該旋回流室59において高速の旋回流気体を発生させ、混合気体噴出口55より噴出した混合気体に旋回流を生じさせる。このとき、混合気体中の微粒子の液体はさらに第2次破砕され超微粒子化されて放射状に放出する(図1の矢印参照)。
【0023】
ここで、第2次破砕が不十分で超微粒子化され得なかった液体粒子は重いため、高速の旋回流気体によって遠心力を受けて大きな放射角で放出する(図1の破線矢印参照)。このような液体微粒子は、飛散液体捕捉カバー3の内周壁面32に形成された液体捕捉孔33によって捕捉され、中空31に一時貯留されまたは排出口35を経て図示外の外部に備えたポンプにより吸引排出される。
【0024】
こうして、液体微粒子発生用ノズル1からは所定の放射角度で放出された液体微粒子のみが放射され(図1の実線矢印参照)、所定の領域に均一な液体微粒子の噴霧を行う。なお、飛散液体捕捉カバー3に備えたナット部36によってノズル本体部2と締結一体化するとき、その締結深度を調節することによりノズル本体部2からの飛散液体捕捉カバー3の突出量を調節して、液体微粒子の放射角度に制限を与えることができる。この場合、液体微粒子発生用ノズル1と液体微粒子の噴霧対象物との距離を調節することなく、飛散液体捕捉カバー3の突出量を調節するだけで液体微粒子の噴霧範囲を調整することが可能となる。なお、飛散液体捕捉カバー3またはノズル本体部2の少なくとも一方に個別の突出量調節手段を設けてもよい。
【0025】
以上のような動作により、大きな角度で放射された液体微粒子は、飛散液体捕捉カバー3によって捕捉され、当該飛散液体捕捉カバー3の内周壁面32に形成された液体捕捉孔33により吸引されて外部に排出されるため、液体微粒子発生用ノズル1より放射される液体微粒子は所定の放射角度を有するもののみとなり、液体微粒子の噴霧対象物の所定の領域のみに均一な液体噴霧が可能となる。
【0026】
また、飛散液体捕捉カバー3の内周壁面32に付着した液体微粒子は、上記液体捕捉孔33により吸引して排出されるため、当該液体微粒子が凝集して垂れ落ちて塗布膜厚にむらを生じさせるおそれがない。
【0027】
なお、本発明は、高圧気体と液体とを導入し、高速流の気体によって破砕された液体微粒子と気体の混合気体を噴出する混合気体噴出口55を先端部に備えるとともに、さらに上記混合気体噴出口55を中央部に配設した円形凹状の旋回流室59と、当該旋回流室59から外部に向かって渦巻き状に形成した旋回導孔573とを備え、分岐して導入した高圧気体を当該旋回導孔573より上記旋回流室59に導入して高速の旋回気流を発生させ、超微粒子の液体噴射を行わせるようにした液体微粒子発生用ノズル1に対して適用した場合により効果的である。ただし、これに限定されるものではなく、通常の直線流形式の液体微粒子発生用ノズルに対しても適用できることは言うまでもない。
【0028】
【発明の効果】
本発明は以上のように構成されたので、請求項1に係る発明によれば、ノズル本体部の先端部に混合気体噴出方向に突出させて設けられ、内部が中空とされて2重壁構造をなした筒状の飛散液体捕捉カバーの内周壁面に、上記2重壁構造の中空部に連通して設けられた液体捕捉孔によって、所定の領域外に飛散する液体微粒子を捕捉該捕捉された液体微粒子を上記中空部に貯留させることができる。従って、所定領域外への液体微粒子の噴霧が防止できる。
【0029】
また、請求項2に係る発明によれば、飛散液体捕捉カバーの内周壁面に形成された排出口により、中空に貯留した液体を外部に吸引排出することができる。従って、不要な液体微粒子をより効果的に捕捉して排出することができる。
【0030】
さらに、請求項3に係る発明によれば、突出量調節手段により、飛散液体捕捉カバーのノズル本体部からの突出量の調節を行うことができる。従って、液体微粒子の放射角度を制限して液体噴霧範囲を調整することが可能となる。
【図面の簡単な説明】
【図1】 本発明による液体微粒子発生用ノズルの実施の形態を示す側断面図である。
【図2】 旋回導孔形成部材の構成を示す斜視図である。
【図3】 本発明による液体微粒子発生用ノズルの外観を示す斜視図である。
【図4】 飛散液体捕捉カバーに形成される液体捕捉孔の他の例を示す平面図である。
【図5】 飛散液体捕捉カバーに形成される液体捕捉孔の更に他の例を示す平面図である。
【図6】 従来の液体微粒子発生用ノズルを示す側断面図である。
【符号の説明】
1…液体微粒子発生用ノズル
2…ノズル本体部
3…飛散液体捕捉カバー
31…中空
32…内周壁面
33,33a,33b…液体捕捉孔
34…外周壁面
35…排出口
36…ナット部(突出量調節手段)
47…ボルト部(突出量調節手段)
55…混合気体噴出口
[0001]
BACKGROUND OF THE INVENTION
More particularly, the present invention relates to a liquid fine particle generating nozzle that ejects a liquid of fine particles. Specifically, the liquid fine particles prevent spraying of liquid fine particles to a peripheral region in the injection direction and enable spraying of uniform liquid fine particles to a predetermined region. This relates to the generating nozzle.
[0002]
[Prior art]
A conventional nozzle for generating fine liquid particles is disclosed in, for example, Japanese Patent Application Laid-Open No. 4-322931. As shown in FIG. 6, this nozzle is composed of a nozzle base 60 and a swirl flow generator 70. The nozzle base 60 includes a liquid inlet 61 and a pressurized gas inlet 62, and a primary liquid crushing chamber provided at the center of the nozzle base 60 by a corresponding liquid inlet 63 and a gas outlet 64, respectively. 65 is communicated. Further, the nozzle base 60 includes a gas insertion hole 66 in parallel with the primary liquid crushing chamber 65, one end of the gas insertion hole 66 communicates with the pressurized gas suction port 62, and the other end swirls. The generator 70 communicates with an annular gas chamber 71.
[0003]
The swirl flow generating unit 70 refers to the inside of a casing formed by fastening and integrating a cap-shaped casing 73 having a swirl flow jet outlet 72 at the center thereof with the nozzle base 60 with a nut 80. The swirling flow generating unit 70 includes a cylindrical mixed gas passage 74 that is open at both ends and formed at the center of the nozzle base member 60 so as to extend from the primary liquid crushing chamber 65 of the nozzle base 60. A gas mixture outlet 75 is formed at the swirl outlet 72.
[0004]
The cylindrical mixed gas passage 74 is fitted with a substantially cylindrical fixed core 76 having a swelled central portion on the outer peripheral surface thereof, and is further swung to the mixed gas outlet 75 side of the fixed core 76. A guide hole forming member 77 is mounted, and a compression coil spring 78 is mounted on the nozzle base 60 side, and the turning guide hole forming member 77 is urged and pressed against the inner wall of the casing 73 by the compression coil spring 78. In this case, the space formed by the stationary core 76 and the casing 73 becomes the annular gas chamber 71.
[0005]
The swirl guide hole forming member 77 has a substantially frustoconical shape with a central through-hole formed therein, and is provided with a circular recess for forming a swirl flow chamber 79 at the center. Further, the swirl guide hole forming member 77 includes swirl guide holes disposed in a spiral shape (not shown) that allow the annular gas chamber 71 and the swirl flow chamber 79 to communicate with each other.
[0006]
As described above, the conventional nozzle for generating liquid fine particles forms a high-speed air flow by ejecting the high-pressure gas introduced from the pressurized gas suction port 62 of the nozzle base 60 into the primary liquid crushing chamber 65 from the gas ejection port 64. At the same time, a negative pressure is generated at the liquid suction port 63 to suck in the liquid, and the liquid is first crushed to form a mixed gas of mist-like liquid and gas. The formed mixed gas is ejected from the mixed gas outlet 75 through the mixed gas passage 74. At this time, the mixed gas is secondarily crushed by the high-speed swirling gas introduced through the gas insertion hole 66 and the annular gas chamber 71 and generated by the swirl guiding hole provided in the swirl guiding hole forming member 77, and is ultrafine particles. And are ejected radially (see arrows in FIG. 6).
[0007]
[Problems to be solved by the invention]
However, in such a conventional nozzle for generating fine liquid particles, the finely divided liquid is ejected radially, so that fine liquid particles scattered outside a predetermined region may be generated. This tendency is remarkable in the nozzle for generating fine liquid particles, in which the liquid particles are secondarily crushed by the swirling gas to generate an ultrafine liquid. That is, liquid particles having a relatively large particle diameter that have not been sufficiently crushed in the second crushing stage are subjected to centrifugal force by the swirling gas and are scattered far away. Thereafter, the scattered liquid particles aggregate and hang down as large particles, which may make it difficult to form a uniform coating film.
[0008]
Accordingly, in order to cope with such problems, the present invention provides a liquid particle generating nozzle that prevents liquid particles from scattering to the peripheral area in the ejection direction and enables spraying of uniform liquid particles in a predetermined area. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a nozzle for generating liquid particles according to the present invention introduces a high-pressure gas and a liquid into a nozzle body, and mixes the liquid particles and gas mixture crushed by a high-speed gas. In the nozzle for generating fine liquid particles having a gas outlet at its tip, a cylindrical scattered liquid trapping cover having a double wall structure is formed in the tip of the nozzle body in the direction of the mixed gas jet. provided by protruding, in communication with the hollow portion of the upper Symbol double wall structure the inner peripheral wall surface of that, to form a liquid capturing hole for capturing the liquid particles from scattering outside of the predetermined area, captured by liquid trap aperture The liquid fine particles are stored in the hollow portion .
[0010]
With such a configuration, the inner peripheral wall surface of the cylindrical scattered liquid trapping cover that is provided at the front end portion of the nozzle main body portion so as to protrude in the mixed gas ejection direction and is hollow and has a double wall structure , the liquid acquisition holes provided in communication with the hollow portion of the double wall structure, to capture liquid particles scattered outside a predetermined area, Ru said captured liquid fine particles are retained in the hollow portion. Thereby, spraying of the liquid fine particles outside the predetermined region can be prevented.
[0011]
Further, a discharge port for sucking and discharging the captured liquid is provided on the outer peripheral wall surface of the scattered liquid capturing cover so as to communicate with the hollow portion. Thereby, the liquid stored in the hollow portion is sucked and discharged to the outside.
[0012]
Furthermore, at least one of the scattered liquid catching cover and the nozzle body part is provided with a projecting amount adjusting means for adjusting the projecting amount of the scattered liquid catching cover from the nozzle body part. Thereby, the protrusion amount from the nozzle main-body part of a scattering liquid capture | acquisition cover can be adjusted, and the liquid spray range can be adjusted.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a side sectional view showing an embodiment of a liquid particle generating nozzle according to the present invention. The liquid fine particle generating nozzle 1 includes a nozzle body 2 and a scattered liquid capturing cover 3. The nozzle body 2 includes a nozzle base 4 and a swirl flow generator 5. The nozzle base 4 includes a liquid inlet 41 and a pressurized gas inlet 42, and a primary liquid crushing chamber provided in the center of the nozzle base 4 by a corresponding liquid inlet 43 and a gas outlet 44, respectively. 45. Further, the nozzle base 4 includes a gas insertion hole 46 in parallel with the primary liquid crushing chamber 45, one end of the gas insertion hole 46 is communicated with the pressurized gas suction port 42, and the other end is swirling. The generator 5 communicates with an annular gas chamber 51.
[0014]
The swirl flow generating portion 5 refers to the inside of a casing formed by fastening and integrating a cap-shaped casing 53 having a swirl flow jet port 52 formed in the center with the nozzle base 4 with a nut. In this embodiment, the nut is the nut portion 36 provided in the rear opening portion of the scattered liquid catching cover 3 on the nozzle body portion 2 side, but the scattered liquid supplement cover 3 and the nut may be configured as separate parts. Good. The swirl flow generating unit 5 includes a cylindrical mixed gas passage 54 that is open at both ends and formed at the center of the nozzle base member 4 so as to extend from the primary liquid crushing chamber 45 of the nozzle base 4. A gas mixture outlet 55 is formed at the swirl outlet 53 of the gas outlet 53.
[0015]
The cylindrical mixed gas passage 54 is fitted with a substantially cylindrical fixed core 56 having a swelled central portion on the outer peripheral surface thereof, and is further turned to the mixed gas outlet 55 side of the fixed core 56. A guide hole forming member 57 is mounted, and a compression coil spring 58 is mounted on the nozzle base 4 side, and the turning guide hole forming member 57 is urged and pressed against the inner wall of the casing 53 by the compression coil spring 58. In this case, the space formed by the fixed core 56 and the casing 53 becomes the annular gas chamber 51.
[0016]
As shown in FIG. 2, the turning guide hole forming member 57 has a substantially truncated cone shape having a central through hole 571, and includes a circular concave portion 572 having a shape larger than that of the central through hole 571 at the center thereof. The circular recess 572 forms a swirling flow chamber 59 when it is urged and pressed against the inner wall of the casing 53 described above. Further, a swirl guide hole 573 is formed spirally from the circular recess 572 to the outside, and the annular gas chamber 51 and the swirl flow chamber 59 are communicated with each other.
[0017]
Further, the scattered liquid capturing cover 3 is a substantially cylindrical cover having a double wall structure with a hollow 31 inside, and is provided so as to protrude in the mixed gas ejection direction. Then, in communication with the hollow 31 of the upper Symbol double wall construction on the inner peripheral wall 32 thereof, to form a liquid capturing hole 33 for trapping liquid particles scattered outside a predetermined area. In this embodiment, as shown in FIG. 3, the liquid capture hole 33 is an annular hole formed in the inner peripheral wall surface 32 (see FIG. 1) of the liquid ejection side 3a of the scattered liquid capture cover 3. is there. The liquid catching hole 33 is not limited to the above-mentioned shape, and for example, it may be provided with a plurality of circular holes 33a as shown in FIG. The thing provided with two or more holes 33b may be sufficient. Further, the shape and size of the liquid capturing hole 33 and the position where the liquid capturing hole 33 is formed are appropriately determined from the relationship between the liquid capturing efficiency or the noise during suction.
[0018]
Further, a discharge port 35 for sucking and discharging the captured liquid is provided on the outer peripheral wall surface 34 of the scattered liquid capturing cover 3 so as to communicate with the hollow 31. The scattered liquid capturing cover 3 is configured such that the nut portion 36 described above is formed at the rear open end of the nozzle body portion 2 and can be fastened and integrated with the bolt portion 47 provided in the nozzle base 4. At the same time, the casing 53 is also fastened and integrated with the nozzle base 4 at the same time.
[0019]
The nut portion 36 of the scattered liquid catching cover 3 and the bolt portion 47 of the nozzle base 4 adjust the depth of fastening, thereby adjusting the amount of projection of the scattered liquid catching cover 3 from the nozzle body 2. It also serves as a
[0020]
Next, the operation of the thus configured liquid particle generating nozzle will be described. In FIG. 1, a high-pressure gas such as air, argon, or nitrogen is introduced into a pressurized gas inlet 42 provided in the nozzle base 4, and at the same time, a predetermined liquid is supplied to a liquid inlet 41. The liquid is an agent appropriately selected according to the use such as a surface treatment agent or a thin film forming agent for treating the surface of a semiconductor substrate, a display substrate, a glass substrate, or an industrial thin film forming object similar thereto.
[0021]
The high-pressure gas is ejected from the gas ejection port 44 to the primary liquid crushing chamber 45. Since the gas flows out from the primary liquid crushing chamber 45 at a high speed, a negative pressure is generated at the liquid suction port 43, and the liquid is sucked into the primary liquid crushing chamber 45 from the liquid suction port 43. At this time, the sucked liquid is primarily crushed and finely divided by a high-speed air stream and mixed with the gas to form a mixed gas. Then, the mixed gas is ejected forward from the mixed gas outlet 55 through the mixed gas passage 54.
[0022]
On the other hand, part of the high-pressure gas introduced into the pressurized gas suction port 42 flows into the annular gas chamber 51 of the swirl flow generating unit 5 through the gas insertion hole 46, and further, the swirl guide hole 573 of the swirl guide hole forming member 57. It flows into the swirl flow chamber 59 from (see FIG. 2). Then, high-speed swirling gas is generated in the swirling flow chamber 59, and swirling flow is generated in the mixed gas ejected from the mixed gas outlet 55. At this time, the liquid of fine particles in the mixed gas is further secondarily crushed into ultrafine particles and discharged radially (see arrows in FIG. 1).
[0023]
Here, since the secondary crushing is insufficient and the liquid particles that could not be made into ultrafine particles are heavy, the liquid particles receive a centrifugal force by a high-speed swirling gas and are released at a large radiation angle (see broken line arrows in FIG. 1). Such liquid fine particles are captured by the liquid capturing hole 33 formed in the inner peripheral wall surface 32 of the scattered liquid capturing cover 3 and temporarily stored in the hollow 31 or by a pump provided outside the figure through the discharge port 35. Suctioned out.
[0024]
In this way, only the liquid fine particles emitted at a predetermined radiation angle are emitted from the liquid fine particle generating nozzle 1 (see the solid line arrow in FIG. 1), and uniform liquid fine particles are sprayed on a predetermined region. Note that when the nut main body 2 is fastened and integrated by the nut portion 36 provided in the scattered liquid capturing cover 3, the amount of protrusion of the scattered liquid capturing cover 3 from the nozzle main body 2 is adjusted by adjusting the fastening depth. Thus, the emission angle of the liquid fine particles can be limited. In this case, it is possible to adjust the spray range of the liquid fine particles by adjusting the protruding amount of the scattered liquid capturing cover 3 without adjusting the distance between the liquid fine particle generating nozzle 1 and the liquid fine particle spray target. Become. In addition, you may provide a separate protrusion amount adjustment means in at least one of the scattering liquid capture | acquisition cover 3 or the nozzle main-body part 2. FIG.
[0025]
Through the operation as described above, the liquid fine particles radiated at a large angle are captured by the scattered liquid capturing cover 3, sucked by the liquid capturing holes 33 formed in the inner peripheral wall surface 32 of the scattered liquid capturing cover 3, and externally. Therefore, the liquid fine particles emitted from the liquid fine particle generating nozzle 1 are only those having a predetermined radiation angle, and uniform liquid spraying is possible only on a predetermined region of the liquid fine particle spray target.
[0026]
Further, since the liquid fine particles adhering to the inner peripheral wall surface 32 of the scattered liquid catching cover 3 are sucked and discharged through the liquid catching hole 33, the liquid fine particles aggregate and sag to cause unevenness in the coating film thickness. There is no fear.
[0027]
The present invention is provided with a mixed gas outlet 55 for introducing a mixed gas of liquid fine particles and gas crushed by a high-speed gas into which a high-pressure gas and a liquid are introduced, and further, the mixed gas jet A circular concave swirl flow chamber 59 having an outlet 55 disposed in the center thereof, and a swirl guide hole 573 formed in a spiral shape from the swirl flow chamber 59 to the outside, the branched high pressure gas introduced It is more effective when applied to the liquid fine particle generating nozzle 1 which is introduced into the swirl flow chamber 59 from the swirl guide hole 573 to generate a high-speed swirl air flow and to eject the liquid of ultra fine particles. . However, the present invention is not limited to this, and it goes without saying that the present invention can also be applied to a normal linear flow type liquid particle generating nozzle.
[0028]
【The invention's effect】
Since the present invention is configured as described above, according to the first aspect of the present invention, a double wall structure is provided in which the tip end portion of the nozzle body portion is provided so as to protrude in the mixed gas ejection direction, and the inside is hollow. a cylindrical scattering inner peripheral wall surface of the liquid catcher cover without the by liquid trapping hole provided in communication with the hollow portion of the double wall structure, to capture liquid particles scattered outside a predetermined area, the The captured liquid fine particles can be stored in the hollow portion. Therefore, the spraying of the liquid fine particles outside the predetermined area can be prevented.
[0029]
Moreover, according to the invention which concerns on Claim 2, the liquid stored hollowly can be attracted | sucked and discharged | emitted outside by the discharge port formed in the inner peripheral wall surface of a scattering liquid capture cover. Therefore, unnecessary liquid fine particles can be captured and discharged more effectively.
[0030]
Furthermore, according to the invention which concerns on Claim 3, the protrusion amount from the nozzle main-body part of a scattering liquid capture | acquisition cover can be adjusted with a protrusion amount adjustment means. Therefore, it is possible to adjust the liquid spray range by limiting the emission angle of the liquid fine particles.
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an embodiment of a nozzle for generating liquid particles according to the present invention.
FIG. 2 is a perspective view showing a configuration of a turning guide hole forming member.
FIG. 3 is a perspective view showing an external appearance of a nozzle for generating liquid fine particles according to the present invention.
FIG. 4 is a plan view showing another example of a liquid catching hole formed in the scattered liquid catching cover.
FIG. 5 is a plan view showing still another example of the liquid catching hole formed in the scattered liquid catching cover.
FIG. 6 is a side sectional view showing a conventional nozzle for generating liquid particles.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Liquid particle generation nozzle 2 ... Nozzle main-body part 3 ... Spattering liquid capture | acquisition cover 31 ... Hollow 32 ... Inner peripheral wall surface 33, 33a, 33b ... Liquid capture hole 34 ... Outer peripheral wall surface 35 ... Discharge port 36 ... Nut part (projection amount) Adjustment means)
47. Bolt part (projection amount adjusting means)
55 ... Mixed gas outlet

Claims (3)

ノズル本体部に高圧気体と液体とを導入し、高速流の気体によって破砕された液体微粒子及び気体の混合気体を噴出する混合気体噴出口を先端部に備えた液体微粒子発生用ノズルにおいて、
上記ノズル本体部の先端部に内部が中空とされて2重壁構造をなした筒状の飛散液体捕捉カバーを混合気体噴出方向に突出させて設け、その内周壁面に上2重壁構造の中空部に連通して、所定の領域外に飛散する液体微粒子を捕捉する液体捕捉孔を形成し、該液体捕捉孔で捕捉された液体微粒子を上記中空部に貯留させることを特徴とする液体微粒子発生用ノズル。
In the nozzle for generating liquid fine particles, the high-pressure gas and the liquid are introduced into the nozzle body, and the liquid fine particle generating nozzle is provided with a mixed gas ejection port at the tip portion for ejecting a mixed gas of liquid fine particles and gas crushed by a high-speed flow gas.
Provided to protrude the tubular scattering liquid catcher cover forms a double wall structure inside is hollow in the mixed gas ejection direction to the tip portion of the nozzle body, the upper Symbol double wall on the inner peripheral wall of its A liquid trapping hole is formed which communicates with a hollow portion of the structure and traps liquid fine particles scattered outside a predetermined region, and the liquid fine particles trapped in the liquid trapping hole are stored in the hollow portion. Nozzle for generating liquid particles.
前記飛散液体捕捉カバーの外周壁面に、捕捉した液体を吸引排出する排出口を前記中空部に連通させて設けたことを特徴とする請求項1に記載の液体微粒子発生用ノズル。  2. The nozzle for generating liquid fine particles according to claim 1, wherein a discharge port for sucking and discharging the captured liquid is provided on the outer peripheral wall surface of the scattered liquid capturing cover so as to communicate with the hollow portion. 前記飛散液体捕捉カバーまたは前記ノズル本体部の少なくとも一方に、前記飛散液体捕捉カバーの前記ノズル本体部からの突出量を調節する突出量調節手段を備えたことを特徴とする請求項1または2に記載の液体微粒子発生用ノズル。  The protrusion amount adjustment means for adjusting the protrusion amount of the splash liquid capture cover from the nozzle body portion is provided in at least one of the splash liquid capture cover or the nozzle body portion. The nozzle for generating liquid fine particles as described.
JP2001380589A 2001-12-13 2001-12-13 Nozzle for generating liquid particles Expired - Lifetime JP3980345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380589A JP3980345B2 (en) 2001-12-13 2001-12-13 Nozzle for generating liquid particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001380589A JP3980345B2 (en) 2001-12-13 2001-12-13 Nozzle for generating liquid particles

Publications (2)

Publication Number Publication Date
JP2003181330A JP2003181330A (en) 2003-07-02
JP3980345B2 true JP3980345B2 (en) 2007-09-26

Family

ID=27591575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380589A Expired - Lifetime JP3980345B2 (en) 2001-12-13 2001-12-13 Nozzle for generating liquid particles

Country Status (1)

Country Link
JP (1) JP3980345B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986514B2 (en) * 2006-06-29 2012-07-25 小林製薬株式会社 Sprayer hood and sprayer
KR200458213Y1 (en) 2009-11-23 2012-01-30 (주)아모레퍼시픽 Diffuser for foundation filling appatatus and chrging device having the same
JP2017159195A (en) * 2016-03-07 2017-09-14 ミクロ技研株式会社 Fluid nozzle and injector
JP2017225947A (en) * 2016-06-23 2017-12-28 株式会社デンソーテン Spray device and method for jetting misty object using spray device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3583634A (en) * 1968-12-02 1971-06-08 Fmc Corp Spray nozzle
JPS5075629A (en) * 1973-11-07 1975-06-20
JPS5970763U (en) * 1982-11-02 1984-05-14 株式会社明電舎 painting equipment
JPH04322731A (en) * 1991-03-12 1992-11-12 Kimitoshi Mato Method and device for dissolution of gas
JPH05293407A (en) * 1992-04-20 1993-11-09 Kimitoshi Mato Powder nozzle

Also Published As

Publication number Publication date
JP2003181330A (en) 2003-07-02

Similar Documents

Publication Publication Date Title
US11040362B2 (en) Atomizing nozzle and atomizing device comprising same
JP6903134B2 (en) Water drop sound reduction mechanism and atomizer
US2246211A (en) Method of and means for mixing and atomizing liquids
JP2004344882A (en) Dual spray having external mixing chamber
KR20050012788A (en) Apparatus for preparing a consumable beverage with a fine-bubbled foam layer
PL185170B1 (en) Manually pressurised atomiser for liquids
JPS62216659A (en) Two-piece foaming nozzle assembly
JP3980345B2 (en) Nozzle for generating liquid particles
JP5021925B2 (en) Vortex atomization nozzle capable of various mixed atomization of powder and liquid
JPH08309248A (en) Liquid atomizer
KR102286416B1 (en) Spray nozzle for ultra-fine particle
US5295628A (en) Discharge nozzle for media
CN110090747B (en) Spraying device
JP2011125769A (en) Air spray gun
CN209189050U (en) It is a kind of with the Dry ice cleaning nozzle for stablizing dry ice and flowing to function
JP3143449B2 (en) Applicator
JPS6339657A (en) Liquid atomizer
JP3097941U (en) Spraying equipment
JP5342600B2 (en) Rotary atomization coating equipment
TW201707793A (en) Spraying nozzle comprising first and second discharge openings to discharge gas to respectively form first and second gas curtains that shape mist sprayed from a nozzle assembly
JP2013017933A (en) Coating spray gun
JP4551117B2 (en) Fine particle spray device
JPH08323249A (en) Coating device
US20220040355A1 (en) Wireless disinfection device
US20230097329A1 (en) Rotary atomizing coating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350